
Language Processing and Learning Models

for Community Question Answering in Arabic

Salvatore Romeoa, Giovanni Da San Martinoa, Yonatan Belinkovb,
Alberto Barrón-Cedeñoa, Mohamed Eldesoukia, Kareem Darwisha,

Hamdy Mubaraka, James Glassb, Alessandro Moschittia

aQatar Computing Research Institute, HBKU, Doha, Qatar
email: {sromeo, gmartino, albarron, mohamohamed,

kdarwish, hmubarak, amoschitti}@qf.org.qa
bMIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA

email: {belinkov, glass}@mit.edu

Abstract

In this paper we focus on the problem of question ranking in community ques-
tion answering (cQA) forums in Arabic. We address the task with machine
learning algorithms using advanced Arabic text representations. The latter
are obtained by applying tree kernels to constituency parse trees combined
with textual similarities, including word embeddings. Our two main con-
tributions are: (i) an Arabic language processing pipeline based on UIMA
—from segmentation to constituency parsing— built on top of Farasa, a
state-of-the-art Arabic language processing toolkit; and (ii) the application
of long short-term memory neural networks to identify the best text frag-
ments in questions to be used in our tree-kernel-based ranker. Our thorough
experimentation on a recently released cQA dataset shows that the Arabic
linguistic processing provided by Farasa produces strong results and that
neural networks combined with tree kernels further boost the performance in
terms of both efficiency and accuracy. Our approach also enables an implicit
comparison between different processing pipelines as our tests on Farasa and
Stanford parsers demonstrate.

Keywords: community question answering, constituency parsing in Arabic,
tree-kernel-based ranking, long short-term memory neural networks,
attention models.

Preprint submitted to Information Processing & Management

1. Introduction

Community-driven question answering (cQA) on the web typically refers
to popular forums in which users ask and answer questions on diverse topics.
The freedom to post practically any question and answer in virtual anonymity
promotes massive participation. The large amount of posts resulting from
this environment demands the implementation of automatic models to filter
relevant from irrelevant contents. This scenario has received attention from
researchers in both the natural language processing and the information re-
trieval areas. However, for several reasons, languages other than English
—including Arabic— have received relatively less attention.

In this research, we focus on the problem of improving the retrieval of
questions from an Arabic forum with respect to a new user question. Our
task is formally defined as follows. Let q be a new user question and D the
set of question–answer pairs, previously posted in a forum. Rank all ρ ∈ D
according to their relevance against q. The main purpose of the ranking
model is to improve the user’s experience by (i) performing a live search on
the previously-posted questions, potentially fulfilling the user’s information
need at once and (ii) avoiding the posting of similar questions, particularly
if they have already been answered. From the natural language processing
point of view this can also be the source of a collection of question paraphrases
and near-duplicates, which can be further explored for other tasks.

Our model for question ranking uses Support Vector Machines. We use
a combination of tree kernels (TKs) applied to syntactic parse trees, and
linear kernels applied to features constituted by different textual similarity
metrics computed between q and ρ. We build the trees with the constituency
parser of Farasa —which we introduce in this paper for the first time— and
compare it against the well-consolidated Stanford parser [1]. Additionally, we
integrated Farasa in a UIMA-based cQA pipeline1 which provides powerful
machine learning features for question similarity assessment and reranking.
Furthermore, we design word embeddings to complement the feature vectors.

In contrast to other question-answering (QA) tasks, forum questions tend
to be ill-formed multi-sentence short texts with courtesy fragments, context,
and elaborations. As TKs are sensitive to long (irrelevant) texts, we focus
on the automatic selection of meaningful text fragments to feed TKs. To

1It should be noted that our UIMA pipeline with Farasa will be made available to the
research community.

2

do so, we design a selection model based on the weights assigned to each
word in the texts by an attention mechanism in a long short-term memory
network (LSTM). Such a model can filter out irrelevant or noisy subtrees
from the question syntactic trees, significantly improving both the speed and
the accuracy of the TKs-based classifier.

The rest of the paper is organized as follows. Section 2 offers the necessary
background on general QA and cQA, both in Arabic and in other languages.
In Section 3 we take a brief diversion from QA to describe Farasa, the tech-
nology we use for Arabic natural language processing. We turn back to QA in
Section 4, where we present our question ranking model. Section 5 describes
our neural network model designed to improve our tree representation by se-
lecting the most relevant text fragments. Section 6 discusses our experiments
and obtained results. Section 7 concluded with final remarks.

2. Background

As models for QA require linguistic resources, work focused on the Arabic
language is relatively humble compared to other better-resourced languages,
such as English [2]. Obviously, the scarceness of language resources is not
the only issue. In Arabic, characteristics such as a rich morphology, the
interaction among multiple dialects, and the common lack of diacritics and
capitalization in informal language, pose unprecedented challenges for a QA
system to succeed [3]. cQA is one specific scenario of QA. Most of the research
work carried out for the Arabic language is focused on standard QA: the
search for an answer over a collection of free-text documents. Therefore, this
section is divided in three parts. Firstly, we overview some of the literature
on Arabic QA. Secondly, we describe the three main stages of a cQA system,
including a review of the approaches available to tackle each task, mainly
for English. Thirdly, we overview the relatively-scarce literature on cQA for
Arabic.

2.1. Question Answering in Arabic

Here we overview some of the most representative models proposed to
address the three components of a QA system in Arabic: question analysis,
passage retrieval, and answer extraction.

In question analysis, the task consists of generating the best possible rep-
resentation for a question q in order to retrieve a subset of relevant documents
and, eventually, passages. The question pre-processing applied by Rosso et al.

3

[4] consists of stopword removal and named entity recognition. Afterwards,
they classify q by means of its intended information need —whether q is ask-
ing for a name, a date, a quantity, or a definition— in order to look for the
required information in the retrieved passages. Other approaches also try to
extract the question’s focus (i.e., the main noun phrase) as well as named
entities [5, 6, 7].

The resulting representation of q is used for retrieving text passages, p,
that might answer the question. One alternative is retrieving those p that
include a certain amount of the words or phrases in q. Besides computing
a similarity function sim(q, p) [7], the ranking function can be based on the
positional distance among the matching terms in the document [8, 9], i.e.,
the closer the terms in the document, the more likely it may represent a
good answer for q. A semantic expansion on the basis of resources such as
the Arabic WordNet can come into play as well [9].

Once the most promising text passages have been retrieved, it is time
to extract specific answers. Most approaches rely on manually-defined pat-
terns, heuristics, rules, and semantic similarities between question focus and
candidate answers; for instance, using n-grams [6, 10].

By addressing these three generic steps, different kinds of questions can
be answered. For instance, Al Chalabi [11] focused on factoid QA by first
determining if q is of kind who, what, when, how, etc. QASAL (Question-
Answering System for Arabic Language) [5] goes beyond factoid QA by ex-
ploiting the linguistic annotation system of NooJ [12] to deal with definitional
questions as well. Salem et al. [13] focused on why and how questions by
means of the Rhetorical Discourse Structure (RST) formalism.

2.2. The Architecture of a Community Question Answering System

The cQA scenario is slightly different: a new question q formulated by
the forum user tends to be less factual and more elaborated, often including
contextual information, elaborations, multiple questions, and even irrelevant
text fragments. The reference collection D is not composed of free-text docu-
ments, but of previously-posted forum questions, together with their answers
provided by other users (if any). This leads to building a system architecture
as the one represented in Figure 1, which is inspired by Potthast et al. [14].

The first step in the cQA architecture is that of heuristic retrieval. Given
question q and a relatively-large collection of forum question–answer pairs
〈ρ, α〉 ∈ D, an inexpensive mechanism is applied to retrieve the most simi-
lar (related) questions ρ. Standard information retrieval technology (e.g., a

4

Figure 1: General architecture of a system for question answering in community-generated
forums. q stands for the user question; D is the collection of previously-posted forum
questions along with their answers. The re-ranking stage appears highlighted because it
is the problem we address in this research work.

search engine based on inverted indexes), can be applied to solve this task.
The creators of the corpus [15] we use for our experiments (Section 6) used
Solr2 to deal with this stage. This step results in the subset of potentially-
relevant candidate pairs Dq ⊂ D.

Having q and Dq as input, the knowledge-based re-ranking stage is in
charge of performing a more refined ordering of the questions. The objective
is locating those pairs 〈ρ, α〉 ∈ D such that ρ are semantically-equivalent
(or at least highly relevant) to q. The relatively-small size of Dq allows for
the use of more sophisticated —generally more expensive— technology. This
is the task we address in this research work, by applying a combination of
kernels on both structural and deep learning features (cf. Section 4).

Extensive work has been carried out to design models for this crucial stage
of cQA. Although most of them have been devised for English forums, it is
worth mentioning some of the approaches. Cao et al. [16] tackled this problem
by judging topic similarity, whereas Duan et al. [17] searched for equivalent
questions by considering the question’s focus as well. Zhou et al. [18] dodged
the lexical gap3 between q and ρ by assessing their similarity on the basis of a
(monolingual) phrase-based translation model [19], built on question–answer
pairs in a similar fashion to Jeon et al. [20]. Wang et al. [21] computed the

2https://lucene.apache.org/solr
3The classical IR problem of matching the few query terms in relevant documents.

5

similarity between q and ρ on top of syntactic-tree representations: the more
substructures the trees have in common, the more similar the questions are.
The recent boom in neural network approaches has also impacted question
re-ranking. dos Santos et al. [22] applied convolutional neural networks to
retrieve semantically-equivalent questions’ subjects. They had to aggregate a
bag-of-words neural network when dealing with whole questions; that is, sub-
ject and (generally long) body. Support vector machines have shown to be
highly competitive in this task. For instance, Franco-Salvador et al. [23] used
SVMrank [24] on a manifold of features, including distributed representations
and semantic information sources, such as BabelNet [25] and Framenet [26].
Both Barrón-Cedeño et al. [27] and Filice et al. [28] achieved a good perfor-
mance using KeLP [29] to combine various kernels with different vectorial
and structural features.

Once the most promising questions ρ in the forum are retrieved, potential
answers to the new query q are selected. The answers α attached to ρ are
compared against q in order to estimate their relevance. This is not a trivial
problem because the anarchy of Web forums allows users to post irrelevant
contents. One of the first approaches to answer selection relied completely
on the website’s metadata [30], such as an author’s reputation and click
counts. Agichtein et al. [31] explored a graph-based model of contributors
relationships together with both content- and usage-based features. These
approaches depend heavily on the forum’s meta-data and social features.
Still, as Surdeanu et al. [32] stress, relying on these kinds of data causes the
model portability to be difficult; a drawback that disappears when focusing
on the content of the questions and answers only. Tran et al. [33] applied
machine translation in a similar fashion as Jeon et al. [20] and Zhou et al.
[18], together with topic models, embeddings, and similarities. Hou et al.
[34] and Nicosia et al. [35] applied supervised models with lexical, syntactic
and meta-data features. Some of the most recent proposals aim at classifying
whole threads of answers [36, 37] rather than each answer in isolation.

This cQA architecture assumes q is a newly-posted question. A hybrid
scenario is that of question deduplication. In this case, q is just another
question in the forum, together with its corresponding thread of answers. As
a result, the information of both the question and its thread of comments can
be used to determine if two posts are asking the same or similar questions.
Both Ji et al. [38] and Zhang et al. [39] used LDA topic modeling to learn
the latent semantic topics that generate question–answer pairs and used the
learned topic distribution to retrieve similar historical questions.

6

It is worth noting that many of the aforementioned approaches [23, 27,
28, 33, 34, 35] were applied during the two editions of SemEval Task 3 on
cQA [40, 15]. In this work we take advantage of the evaluation framework
developed for Arabic in the 2016 edition [15] (cf. Section 6.1).

2.3. Community Question Answering for Arabic

As the reader can observe, most of the work on cQA has been carried
out for other languages than Arabic, including LiveQA [41], which allowed
participants to provide answers to real user questions, live on the Yahoo! An-
swers site. To the best of our knowledge, the first effort to come out with a
standard framework for the evaluation of cQA models for Arabic is precisely
that of [40, 15].

This resource promoted the design of five models for question re-ranking
in Arabic. The most successful approach [42] included text similarities at
both word and sentence level on the basis of word embeddings. Such sim-
ilarities were computed both between q and ρ, new and retrieved question,
respectively, and between q and α, with α being the answer linked to the
forum question ρ after performing term selection as a pre-processing step.
Barrón-Cedeño et al. [27] used tree kernels applied to syntactic trees together
with some features in common with [42]. A combination of rule-based, text
similarities, and word embeddings has shown to give some benefit in Arabic
cQA [43]. Our cQA system reuses ideas and some of the models we developed
in [27, 42].

Magooda et al. [44] applied language models enriched with medical terms
extracted from the Arabic Wikipedia. Finally, Malhas et al. [45] exploited
embeddings in different ways, including the computation of average word
vectors and covariance matrices. The performance of these models is included
in Table 7, as they represent the state-of-the-art in the testbed we use for
our experiments.

3. The Farasa Arabic NLP Toolkit

For our Arabic processing, we used our in-house pipeline of Arabic tools
called Farasa4 —insight or chivalry in Arabic. The pipeline includes a seg-
menter, a POS tagger, a named entity recognizer, a dependency parser, a

4Available at http://farasa.qcri.org

7

constituency parser, and a diacritizer. The syntactic parser is a new con-
tribution, introduced in this paper for the first time. Farasa is tuned for
the news domain and for Modern Standard Arabic (MSA). Still, Farasa can
handle other genres along with classical and dialectal Arabic, but at reduced
accuracy. This is possible because of the large overlap between MSA and
other varieties of Arabic. Farasa fills an important gap in the span of avail-
able tools. It is the only comprehensive suite of Arabic tools that is both open
source and whose internal subcomponents are competitive with the state of
the art. Here we focus on the relevant components for our current task: seg-
menter, POS tagger, and constituency parser. We pose both segmentation
and POS tagging as ranking problems, using kernel-based machines. We pose
constituency parsing as a sequence labeling problem, where we use a CRF
labeler that uses features from the segmenter and POS tagger. Both SVM
and CRF have the advantage of being robust and computationally efficient.

3.1. UIMA Architecture for Arabic Natural Language Processing

Our Arabic natural language processing pipeline is based on UIMA.5

UIMA is a framework that allows for the integration of systems to analyze
unstructured information (e.g., text documents) whose aim is to extract new
knowledge relevant to the particular application context.

UIMA enables to compose applications with self-contained components.
Each UIMA component implements an interface defined by the framework
and both the input and output structures are described by means of XML
descriptor files. The framework is in charge of managing these components,
connecting the analysis engines and controlling the data flow. An analysis
engine (AE) is a software module that analyzes artifacts (e.g., text) and
infers information from them. The analysis engines are built starting from
building units called annotators. An annotator is a component that analyzes
artifacts and produces additional data and/or metadata (e.g., annotation on
the analyzed artifact). An AE can contain a single annotator (primitive AE)
or multiple annotators (aggregate AE).

Figure 2 shows the architecture of our pipeline, composed of four AEs.
The modularity and flexibility of UIMA allows us for opting for different
software modules to perform each of the tasks painlessly. The first AE
uses OpenNLP6 for sentence splitting, besides performing tokenization. We

5https://uima.apache.org
6https://opennlp.apache.org

8

Figure 2: Our UIMA-based Arabic natural language processing architecture. Each block
represents an analysis engine and includes the (alternative) technology it encompasses.

trained the sentence splitting model on 5k sentences from the AQMAR Ara-
bic Wikipedia Supersense corpus [46] and NIST’s MT06 corpus.7 For the rest
of the AEs, we can opt for using either Farasa’s or Stanford’s [1] technology.
They are in charge of segmentation into clitics, Part of Speech (POS) tag-
ging, and parsing. In Section 6, we will show the impact of using Farasa or
Stanford to process the texts, by comparing different question rankers, each
using one of the two parsing systems.

In the following subsections we describe the Farasa segmenter, POS tag-
ger, and parser.

3.2. Farasa Segmenter

The Farasa segmenter is described in detail in [47, 48]. The segmenter
breaks words into their underlying clitics. For example, the word wktAbhm

(and their book) is segmented into w+ktAb+hm. We pose segmentation as a
ranking problem, where the ranker attempts to rank possible segmentations
of a word. The segmenter uses SVMrank [49] with a linear kernel to determine
the best segmentation for each word. We used a linear kernel with a trade-off
factor between training errors and margin equal to 100 (parameters tuned
on offline experiments carried out over a development set). The ranker uses
a dense vector of features which is able to generalize well beyond the cases
that are observed during training. Additionally, decoding using SVMRank is
computationally efficient as it involves simple vector multiplication, where
speed is highly desirable in processing large amounts of data. We also ex-
perimented with using CRF-based sequence labeling [50], and our SVMRank

approach yields better segmentation results with higher speed. Further, we

7https://www.nist.gov/programs-projects/machine-translation

9

conducted offline experiments to compare our approach to bidirectional Long
Short Term Memory (bi-LSTM) over CRF and the results were comparable.
It was trained on parts 1 (v. 4.1), 2 (v. 3.1), and 3 (v. 2) of the Penn Arabic
Treebank (ATB) [51]. Instead of testing the segmenter on a subset of ATB
(which may lead to artificially-high results due to its limited lexical diver-
sity), we tested our segmenter on a corpus of seventy WikiNews articles from
2013 and 2014 [48]. It contains 18, 300 manually-segmented and POS tagged
words from articles on seven domains: politics, economics, health, science
and technology, sports, arts, and culture.8

Table 1 reports on the segmentation accuracy of Farasa and compares
it to that of Madamira [52] —a popular state-of-the-art system— on the
WikiNews corpus. The performance of the Farasa segmenter is competitive.

3.3. Farasa Part-of-Speech Tagger

Our Arabic part-of-speech tagger uses the simplified PATB tag set pro-
posed by [50]. Table 2 includes the tags. The POS tagger attempts to find the
optimal tag for each clitic produced by the segmenter, as well as determining
the gender (masculine or feminine) and number for nouns and adjectives (sin-
gular, dual, or plural). Like the segmenter, the POS tagger uses SVMRank

to find the best tag for each clitic. We decided to adopt SVMRank for POS
tagging for the reasons mentioned earlier for segmentation. Additionally,
our SVMRank outperforms a CRF sequence labeling model [50] and is on par
with using a bi-LSTM model [53]. Thus we construct a feature vector for
each possible POS tag for each clitic. We supply these vectors to SVMRank

indicating which vector should be ranked the highest given the weights. We
then used SVMRank [49] to learn feature weights. As for the segmenter, we
used a linear kernel with a trade-off factor between training errors and mar-
gin equal to 100 (parameters tuned on offline experiments carried out over
a development set). All possible POS tags for a clitic are scored using the
classifier, and the POS with the highest score is picked.

Given a sentence composed of the clitics c−n . . . c0 . . . cm, where c0 is the
current clitic and its proposed POS tag, we train the classifier using the fol-
lowing features, computed by maximum-likelihood estimation on our training
corpus:

• p(POS | c0) and p(c0 | POS).

8The corpus is available at https://github.com/kdarwish/Farasa.

10

Task—System Farasa Madamira
Segmentation 98.9% 98.8%
POS tagging 94.9% 95.3%

Table 1: Accuracy of segmentation and POS tagging for Farasa and Madamira.

• p(POS | c−i . . . c−1) and p(POS | c1 . . . cj) | i, j ∈ [1, 4].

• p(POS | c−iPOS
. . . c−1POS

) and p(POS | c1POS
.cjPOS

); i, j ∈ [1, 4].
Since we don’t know the POS tags of these clitics a priori, we estimate
the conditional probability as∑

p(POS | c−ipossible POS
. . . c−1possible POS

) .

For example, if the previous clitic could be a NOUN or an ADJ, then
p(POS | c−1) = p(POS | NOUN) + p(POS | ADJ).

If the clitic is a stem, we also compute the following features:

• p(POS | stem template). Arabic words are typically derived from a
closed set of roots that are placed in so-called stem templates to gen-
erate stems. For example, the root ktb can be fit in the template CCAC

to generate the stem ktAb (book). Stem templates may conclusively
have one POS tag (e.g., yCCC is always a verb) or favor one tag over
another (e.g., CCAC is more likely a NOUN than an ADJ).

• p(POS | prefix) and p(POS | suffix). Some prefixes and suffixes
restrict the possible POS tags for a stem. For example, a stem preceded
by DET is either a NOUN or an ADJ.

• p(POS | prefix, prev word prefix), p(POS | prev word suffix) and
p(POS | prev word POS). Arabic has agreement rules for noun phrases
and idafa constructs (Noun+Noun relation) that cover definiteness,
gender, and number. Both these features help capture agreement indi-
cators.

In case we could not compute a feature value during training (e.g., a clitic was
never observed with a given POS tag), the feature value is set to ε = 10−10.
If the clitic is a prefix or a suffix, stem-specific features are assigned the same
ε value.

11

POS Description POS Description
ADV adverb ADJ adjective
CONJ conjunction DET determiner
NOUN noun NSUFF noun suffix
NUM number PART particles
PREP preposition PRON pronoun
PUNC punctuation V verb
ABBREV abbreviation CASE alef of tanween fatha
FOREIGN non-Arabic as well as

non-MSA words
FUT PART future particle “s”

prefix and “swf”

Table 2: Part-of-speech tag set of Farasa.

In order to improve efficiency and reduce the choices the classifier needs
to pick from, we employ some heuristics that restrict the possible POS tags
to be considered by the classifier: (i) If the clitic is a number (composed
of digits or spelled in words), restrict to “NUM”. (ii) If all the characters
are Latin, restrict to “FOREIGN”. (iii) If it is a punctuation mark, restrict
to “PUNCT”. (iv) If the clitic is a stem and we can figure out the stem-
template, restrict to POS tags that have been seen for that stem-template
during training. (v) If the clitic is a stem, restrict to POS tags that have
been seen during training, given the prefixes and suffixes of the word.

We trained the POS tagger using the same partitions of the ATB that
we used for the segmenter (cf. Section 3.2). Table 1 shows the accuracy of
our POS tagger on the WikiNews dataset [48] and compares it to Madamira.
Madamira edges Farasa by 1.6%. A manual inspection on a random sam-
ple of 100 errors showed that 54% of the miss-classifications come from the
confusion between adjectives and nouns, whereas 13% are between verbs and
nouns. Errors in the preliminary segmentation step cause 21% of the POS
mistakes. In such cases, any assigned POS would be incorrect. Table 3 lists
the observed error types (covering 95% of errors) including examples.

The POS tagger also assigns gender and number tags to nouns and ad-
jectives. This module is carried over from the Qatara POS tagger [50] and
uses the random forest classifier from Weka [54]. The classifier generated 10
trees, with 5 attributes for each tree with unlimited depth, and was trained
using 8,400 randomly selected unique nouns and adjectives from ATB. The
classifier uses the following features: (i) stem template; (ii) stem template
length; (iii) POS tag; (iv) attached suffix(es); (v) whether the word ends with

12

Error Type % Example
ADJ → NOUN 29 “Al<ElAm Albdyl” (alternative media)

“Albdyl” recognized as NOUN
NOUN → ADJ 25 “m$AryE wykymAnyA” (Wikimania projects)

“wykymAnyA” recognized as ADJ
Segment Error 21 “blgp AlbAyvwn” instead of “Al+bAyvwn”

(in Python language)
V → NOUN 10 “hw Elm AlErbyp” (he taught Arabic)

“Elm” recognized as NOUN (science)
Function words 7 “mnhA” (from it) recognized as ADJ
NOUN → V 3 “k$f Avry” (archaeological discovery)

“k$f ” recognized as V (discovered)

Table 3: POS tagging error types and examples; covering 95% of the errors.

a feminine marker (“At” or “p”); (vi) tags that were obtained from a large
word list that was extracted from the Modern Arabic Language Dictionary;9

(vii) the 2-gram language-model probability that the word is preceded by
masculine or feminine demonstrative articles; and (viii) whether the word
appears in a gazetteer of proper nouns that have associated gender tags.10

For testing, 20-fold cross validation was used. The average accuracy for
gender and number classification were 95.6% and 94.9% respectively [50].

3.4. Farasa Constituency Parser

The Farasa constituency parser is an in-house re-implementation of the
Epic parser [55]; the best-performing Arabic parser in the SPMRL 2013 mul-
tilingual constituency parsing shared task [56]. The parser uses a CRF model
trained on features derived from the Farasa POS tagger. In compliance with
the ATB segmentation, we attached determiners and noun suffixes to the
stems. For each clitic, we obtain the information provided by the POS tag-
ger, namely the POS, gender, number, whether the clitic has a determiner,
and whether the clitic ends with ta-marbouta —the feminine singular noun

9http://www.sh.rewayat2.com/gharib/Web/31852/
10We crawled the gazeteer from a list of Palestinian high school graduates including

names and genders and Arabic Wikipedia articles (snapshot from September 28, 2012)
that have English equivalents and belong to the Wikipedia categories containing the words
‘person’, ‘birth’, and ‘death’ if it has gender information.

13

POS Dev set Test set
Farasa Parser golden 79.70 77.01
Farasa Parser Farasa 76.94 76.34
EPIC Parser golden 78.89 78.75

Table 4: F1-measure for the Farasa parser compared to the EPIC parser on the SPMRL
2013 shared task dataset. The values are for sentences of all lengths using the evalb
evaluation script provided by the shared task.

suffix. Given such information, the parser generates surface features for
each clitic c0. Some of these features include the leading and trailing letters
in a clitic. The parser uses the leading n letters in the clitic as features
(n ∈ [1, 5]). For example, given the clitic AlktAb (the book), these features
would be {A,Al,Alk,Alkt,AlktA}. Similarly, the parser uses the trailing
l letters in each clitic as features, (l ∈ [1, 5]). A constraint is placed on
the leading and trailing letters: the resulting sequence needs to occur 100+
times in the training data. Furthermore, the parser considers span features,
where a span is a bracketed sub-tree (e.g., “(NP (NOUN AlktAb))”). The
span features include the span’s first word, last word, and length; the words
before and after the span; split point feature; and span shape feature. To
ensure a well-formed nested tree, the parser deduces a minimal probabilis-
tic context-free grammar (PCFG). The parser depends primarily on surface
features (i.e. derived only from the clitics in the sentence) to provide context
and deep syntactic cues.

Depending primarily on the surface features gives the parser two advan-
tages. Firstly, it greatly simplifies the structural components of the parser,
which would not affect the parser’s efficiency since so many deep syntactic
cues have surface manifestations. Secondly, it allows for an easy adaptation
to new languages.

We used the SPMRL 2013 shared task dataset [57] considering the same
training/dev/test partitions for evaluation. In our first experiment, we used
the original gold POS tags from the dataset. In our second experiment, we
use the segmentation and POS tagging as generated by Farasa. Table 4
compares Farasa (with the two setups) and the Epic parser [55]. Although
the Farasa parser is a re-implementation of EPIC, the obtained results dif-
fer. Farasa parser when trained with the same dataset as the EPIC parser
outperforms it on the dev set, but lags behind on the test with a 1.74 drop
in F1 measure. When using the Farasa segmenter and POS tagger to tag

14

words instead of the gold tags we observe a drop of 2.76 and 0.67 for the dev
and test sets respectively. The drop can be attributed to tagging errors that
are propagated to the parser. However, the drop of 0.67 on the test is an
affordable cost for the automation process.

As aforementioned, the Farasa tools are trained on the news genre written
in Modern Standard Arabic (MSA), whereas Web forums commonly contain
texts written in informal or Dialectal Arabic (DA). Farasa recognizes most of
the dialectal words as out of vocabulary (OOV), which affects negatively POS
tagging, NER, and syntactic parsing. For a sample of 100 random questions
and answers from the Altibbi question-and-answering medical forum,11 we
found that 20% of questions contain at least one dialectal word while answers
are written in MSA by professional doctors. In this domain, we found that
the majority of the DA words are function words, whereas content words and
terms, such as diseases and body parts, are written in MSA. At the semantic
level, this is less important compared to the effect at the syntactic level.

A small degradation in accuracy in Arabic QA systems may occur when
using Farasa, designed for MSA, when dealing with DA. Nevertheless, as our
results in Section 6 show, this degradation is not important.

4. Kernels for Question Re-Ranking

Now we focus on the re-ranking step of cQA, having as input a query
question and a set of question-answer pairs, previously retrieved from a Web
forum (cf. Section 2.2). Let Q and A be the set of questions and answers
(passages) from the forum, respectively. Let q be a new question. Our task
is to model a scoring function, r : Q×Q×A → R, which reranks k question–
answer pairs, 〈ρ, α〉, where ρ ∈ Q, α ∈ A, with respect to their relevance to
q. Please note that Q×A = D, which we used in other sections for a more
compact reference. We design our scoring function as:

r(q, ρ, α) = ~w · φ(q, ρ, α) . (1)

We can use implicit representations in kernel-based machines, e.g., SVMs,
by expressing ~w as

~w =
n∑
i=1

τiyiφ(qi, ρi, αi) , (2)

11http://www.altibbi.com; this is the source of the corpus we use in this research.

15

where n is the number of training examples, τi are weights, yi are the example
labels (Relevant and Irrelevant), and φ(qi, ρi, αi) is the representation of the
question pairs. This leads to the following scoring function:

r(q, ρ, α) =
n∑
i=1

τiyiφ(q, ρ, α) · φ(qi, ρi, αi) (3)

=
n∑
i=1

τiyiK
(
〈q, ρ, α〉, 〈qi, ρi, αi〉

)
,

where the kernel K(·, ·) intends to capture the similarity between pairs of
objects constituted by the query and the retrieved question answer pairs.
To any φ() whose codomain is finite corresponds a kernel function K(x, x′),
defined on the input space such that ∀x, x′, K(x, x′) = φ(x) · φ(x′) [58]. We
used three types of representations: parse trees, features derived from word
embeddings (word2vec), and text similarity metrics. We combine them as
follows:

K
(
〈q, ρ, α〉, 〈qi, ρi, αi〉

)
= φtk(q, ρ) · φtk(qi, ρi) (4)

+ φw2v(q, ρ, α) · φw2v(qi, ρi, αi) (5)

+ φbow(q, ρ, α) · φbow(qi, ρi, αi) . (6)

4.1. Tree kernels

We define Eq. (4) as follows

φtk(q, ρ) · φtk(qi, ρi) = TK(t(q, ρ), t(qi, ρi)) + TK(t(ρ, q), t(ρi, qi)) , (7)

where TK is a tree-kernel function; e.g., the SubSet Tree (SST) Kernel [59],
which measures the similarity between trees. This way, we do not need to
extract syntactic feature vectors from the text pairs (i.e., engineering φtk is
unnecessary). We just need to apply TKs to the pairs of syntactic trees,
which provides a score representing the structural similarity. We opt for
the state-of-the-art TK model proposed by Severyn and Moschitti [60] and
previously used for question ranking in cQA by Barrón-Cedeño et al. [61]
and Romeo et al. [62]. As described in Eq. (4), we apply TKs to pairs of
questions rather than questions with their answers.

The function t(x, y) in Eq. (7) is a string transformation method that
returns the parse tree from the text x —the tree computed with Farasa—

16

what

are symptoms

depression

in

children and adolescents

what

symptoms depression

q: 	á�

�
®ë@QÖÏ @ð ÈA

	
®£B@ øYË H. A

J
�
J» B@

	
�@Q«@ ù

ë AÓ

(What are the symptoms of depression in children and adolescents?)

ρ: H. A

J
�
J» B@

	
�@Q«

@ AÓ

(What are depression symptoms?)

Figure 3: Constituency trees of two questions connected by REL links. The questions
correspond to ids 200430 and 47524 in the CQA-MD corpus [15] (cf. Section 6.1).

further enriching it with the REL tags computed with respect to the syntactic
tree of y [60]. The REL tags are added to the terminal nodes of the tree of
x: a REL tag is added whenever a terminal node of the parse tree of x
matches a word in y. Typically, REL tags are also propagated to the parent
and grandparent nodes (i.e., up to 2 levels). Figure 3 shows the syntactic
tree of a query and one of its associated forum questions. The dashed red
arrows indicate a matching between words of the two questions, e.g., Does
treatment or effect, whereas the blue arrows are drawn when entire noun
phrases or clauses are (partially) matched, i.e., REL-NP or REL-WHNP.

17

Metric Details
String similarity

Greedy string tiling [64] Considering a minimum matching length of 3.
Longest common subsequence [65] Both standard and normalized by the first

string.
Longest common substring [66] Based on generalized suffix trees.

Lexical similarity
Jaccard coefficient [67] Over stopworded [1, . . . , 4]-grams.
Word containment [68] Over stopworded [1, . . . , 2]-grams.
Cosine Over stopworded [1, . . . , 4]-grams.

Over [1, . . . , 4]-grams.
Over [1, . . . , 3]-grams of part of speech.

Syntactic similarity
PTK [59] Similarity between shallow syntactic trees.

Table 5: Overview of string, lexical, and syntactic similarity measures.

The tree nodes are augmented with the REL tag to mark the connection
between the constituents of the two syntactic trees.

4.2. Representation with Embeddings and Similarity Metrics

Equations (5) and (6) convey a combination of distributional, lexical, and
morphosyntactic information from the texts.

To generate the vector φw2v(q, ρ, α), we use word vectors obtained with
the word2vec tool [63], which is trained (with default settings) on the raw
corpus provided with the Arabic cQA task. We compute features that cap-
ture similarity between q and ρ, and between q and α, in the following way.
First, we generate a vector representation for every sentence in q, ρ, and α,
by averaging the word vectors in the sentence (excluding stopwords). Then,
we find the two most similar sentences in q and ρ, determined by the cosine
similarity between their vector representations, and concatenate their vector
representations. We repeat the process for q and α and use their two most
similar sentence vectors. Finally, we also find the two most similar word
vectors between q and ρ (and between q and α), according to the cosine
similarity, and add them to the feature representation.

The features in φbow(q, ρ, α) from Eq. (6) are obtained using three kinds
of text similarity measures applied between q and ρ, and between q and α:
string, lexical, and syntactic. They are included in Table 5.

Our combination of kernels and their corresponding representations is

18

coded in a binary SVM [69].12 This formulation combines two of the best
models presented at SemEval 2016 Task 3 [27, 42, 71] (cf. Section 6.1).

5. Text Selection based on Neural Networks

As shown in Section 2, several neural network approaches have been suc-
cessfully applied to QA tasks. Unfortunately, question retrieval in cQA is
heavily affected by a large amount of noise and a rather different domain,
which make it difficult to effectively use out-of-domain embeddings to pre-
train neural networks. Figure 4 illustrates some of the difficulties in cQA
questions: long greetings and introductions, spelling errors, and incorrect
or missing punctuation marks. Correct grammar and usage of punctuation
marks is important for sentence splitting and syntactic parsing. This proba-
bly prevented the participants to SemEval tasks from achieving satisfactory
results with such models [15]. Inspired by [72], in [62] we tried to exploit
neural models using their top-level representations for the (q, ρ) pair and fed
them into the TK classifier. Nevertheless, this combination proved to be
ineffective as well.

Instead of trying to combine the models, we use neural networks to
identify the most important pieces of text in both q and ρ. We use an
LSTM [73, 74], augmented with an attention mechanism. LSTMs have
proven to be useful in a number of language understanding tasks. Recently
Rocktäschel, et al. [75] adapted an attentional LSTM model [76] to textual
entailment, and a similar model has been applied to cQA [77]. We follow the
same setup of the latter (Section 5.1). Then, we use the attention weights
for our text selection algorithm, which aims at removing subtrees containing
useless or noisy information (Section 5.2).

5.1. Learning Word Importance with LSTM

The main idea of learning the importance of words for a task is to use the
data and labels about the task itself. Given a pair (q, ρ), we learn two serial
LSTM models: LSTMq reads the word vectors of q, one by one, and records
the corresponding memory cells and hidden states; the final memory cell is
used to initialize LSTMρ, which reads the word vectors of ρ.

12Binary SVMs showed comparable results to SVMrank [70].

19

Figure 4: Example of forum question with long greetings and introductions, spelling errors,
and missing punctuation marks. The most relevant part of the question is underlined.

Formally, an LSTM computes the hidden representation for input xt with
the following iterative equations:

it = σ(Wxixt +Whiht−1 +Wmimt−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wmfmt−1 + bf)

mt = ft �mt−1 + it � tanh(Wxmxt +Whmht−1 + bm)

ot = σ(Wxoxt +Whoht−1 +Wmomt + bo)

ht = ot � tanh(mt)

where σ is the sigmoid function, � is element-wise multiplication, and i, f ,
o, and m are input, forget, output, and memory cell activation vectors. The
crucial element is the memory cell m that is able to store and reuse long
term dependencies over the sequence. The W matrices and b bias vectors are
learned during training.

The final hidden state of LSTMρ, ~hρ,N , is used as a feature vector to feed
a multi-layer perceptron (MLP) with one hidden layer, followed by a softmax
classifier. The objective function is the cross-entropy objective over binary
relevant/irrelevant target labels.

Given the hidden states produced by LSTMq, we compute a weighted
representation of q:

~hq =
L∑
i=1

βi~hq,i , (8)

where ~hq,i are the hidden states corresponding to the words of q, and the
attention weights βi are computed as:

βi =
exp(a(~hq,i,~hρ,N))∑L
j=1 exp(a(~hq,j,~hρ,N))

. (9)

20

1 Function PruneTree (T , th);
Input : a tree T;

a pruning threshold th;
Output: a pruned version of T

2 pruneNode(root(T), th);

3 Function pruneNode (o, th);
4 if |children(o)| > 0 then
5 for ch ∈ children(o) do
6 pruneNode(ch, th);
7 end
8 if |children(o)| = 0 && !REL Node(o)) then
9 remove (o, T);

10 end

11 else
12 if o.weight < th && !REL Node(o)) then
13 remove (o, T);
14 end

15 end

Algorithm 1: Function PruneTree for pruning a tree according to attention

weights.

Here a() is parameterized as a MLP with one hidden layer and a tanh non-

linearity [75]. The input to the MLP is then a concatenation of ~hq and ~hρ,N .
Intuitively, βi assigns a higher weight to words in q if they are useful

for determining the relation to ρ. As we will see, these attention weights
turn out to be useful for selecting important parts of the questions for the
TK models. Note also that the attention here is one-sided —only on q. In
practice, we train another model, with attention on ρ, and use its weights as
well.

5.2. Parse Tree Pruning based on Neural Networks

Our tree-pruning approach to text selection is illustrated in Algorithm 1.
Its main idea is to filter out the leaf nodes of the parse tree corresponding
to words associated with weights lower than a user-defined threshold, where
the word weights are provided by Eq. (9). The most important step of
Algorithm 1 is the recursive function pruneNode, which is initially invoked

21

for the root node of the tree. Function pruneNode checks whether the node
n is a leaf (Line 4) and then applies the appropriate strategy: (i) for non-
leaf nodes, pruneNode is invoked for the children of o, then o is removed if
all of its children are removed and (ii) a leaf node is removed if its weight
is lower than the user-defined threshold, th. REL-tagged nodes are never
removed, regardless of their weight. Different thresholds determine different
percentages of pruned nodes, and we explore various thresholds as part of
our experiments.

6. Evaluation of Question Re-Ranking Models

In this section, we aim at analyzing the impact of the different repre-
sentation components in the cQA question re-ranking task. Section 6.1 de-
scribes the experimental settings. Section 6.2 illustrates the experimental
methodology. Our experiments evaluate four aspects: (i) the impact of the
NLP processors, (ii) the performance of kernels on vectorial features and tree
kernels used in isolation, (iii) the performance of kernel combinations, and
(iv) the impact of text selection using tree pruning. We analyze and discuss
the results in Section 6.3.

6.1. Evaluation Framework

We perform our experiments using the evaluation framework released
in the SemEval 2016 Task 3-D [15]. The framework consists of a corpus
in Arabic from the medical domain —the CQA-MD corpus— and a set of
evaluation metrics. Nakov et al. [15] queried different Web forums to build
up a collection of query questions linked to a set of 30 candidate forum
questions–answer pairs. The outcome: a total of 45, 164 question–answer
forum pairs attached to one of 1, 531 query questions. The relevance of each
ρ ∈ D was manually annotated by means of crowdsowrcing considering three
labels: Direct if ρ contains a direct answer to q; Related if ρ covers some of
the aspects asked by q; and Irrelevant if ρ and q are unrelated. An ideal
ranking should place all direct and relevant ρ ∈ D on top, followed by the
irrelevant pairs. Table 6 shows some statistics of the dataset. The answer
associated with each of the 30 forum questions was provided by a professional
physician and it is considered correct.

22

Category Train Dev Test Total

Questions 1,031 250 250 1,531
QA Pairs 30,411 7,384 7,369 45,164
– Direct 917 70 65 1,052
– Related 17,412 1,446 1,353 20,211
– Irrelevant 12,082 5,868 5,951 23,901

Table 6: Statistics about the CQA-MD corpus (borrowed from [15]).

The official evaluation measure is Mean Average Precision (MAP); a stan-
dard evaluation metric in information retrieval computed as

MAP =

∑|Q|
1 AveP (q)

|Q|
, (10)

where Q is the set of test questions and AveP is the average precision value
for each query, computed as

AveP (q) =

∑|Dq |
k=1 (P (k)× rel(k))

|{relevant documents}|
, (11)

where |Dq| is the number of retrieved pairs in the ranking, rel(k)=1 if ρ at
position k is relevant, and P (k) is computed as

P (k) =
|{relevant documents} ∩ {retrieved documents}|k

k
; (12)

that is, the size of the intersection between relevant and retrieved documents
up to rank k divided by k.

6.2. Experiments and Methodology

Our experiments address the question re-ranking stage in the architecture
for community question answering (cf. Section 2). That is, given a query
q, re-rank a collection of related question–answer pairs in Dq. In order to
do that, we stick to the same training/development/test partition defined
by Nakov et al. [15] for the SemEval 2016 cQA challenge. Regarding the
implementation of the models, for the word2vec representations, we trained
the embeddings on 26M words of unsupervised data, provided together with
the CQA-MD corpus.

We designed four follow-up experiments of increasing complexity:

23

Submission Dev. Test
1 [42] SLS 47.31 45.83
2 [27] ConvKN 42.67 45.50
3 [44] RDI team — 43.80
4 [45] QU-IR — 38.63
5 [78] UPC USMBA — 29.09

Random Baseline — 29.79

Table 7: MAP scores of the official submissions to the SemEval 2016 Task 3-D. In addition
we report MAP values for the development set of our systems.

Experiment 1: Impact of NLP Processors. Our first experiment uses only a
tree-kernel SVM on parse trees. The difference between our two runs is that
we either use Farasa or Stanford’s [1] technology to generate the parse-tree
representations. This allows for an implicit comparison of these two parsers.

Experiment 2: Isolated Models. We perform tests on our three re-ranking
models in isolation. Beside the tree-kernel SVM on parse trees from Experi-
ment 1, we experiment with a linear-kernel SVM on word2vec and similarity
representations and with the attentional LSTM neural network.

Experiment 3: Kernel Combination. We combine two SVM kernels on dif-
ferent features: tree kernels on the parse trees and the linear kernel on the
word2vec and similarity representations.

Experiment 4: Tree Pruning. We explore different thresholds to prune the
parse trees on the basis of the LSTM attention weights before learning the
scoring function with an SVM. Specifically, we perform experiments combin-
ing tree kernels with the linear kernel on word2vec and similarity features.

6.3. Results and Discussion

In order to provide a more comprehensive perspective of our experimental
results, Table 7 reports the MAP values obtained by the participant systems
on the test set of SemEval 2016 Task 3-D. It should be noted that we de-
signed both the two top systems, SLS and ConvKN. The first one was based
on a committee of four different systems using different embedding versions
as well as methods for filtering the initial word representation, whereas the
second applied tree kernels and similarity metrics. In this paper, we only
used one system from SLS, corresponding to our linear kernel, which per-
forms relatively more stably with respect to both development and test sets.

24

 36

 37

 38

 39

 40

 41

0.001 0.01 0.05 0.1 0.2

M
A

P

SST λ parameter

Farasa
Stanford

(a) On dev.

 35

 35.5

 36

 36.5

 37

 37.5

 38

0.001 0.01 0.05 0.1 0.2

M
A

P

SST λ parameter

Farasa
Stanford

(b) On test.

Figure 5: MAP as a function of the λ parameter of the SST kernel. We compare the
performance of our tree-kernel model when the parse-tree representation is built with
either Farasa or Stanford.

Although committees are rather effective and typically produce higher ac-
curacy than a single system, they tend to obscure the contribution of the
different representations, which are the main target of our study.

It is worth noting that the test set results in Table 7 are obtained by
models trained on the training data merged with the development set. Thus,
such results are generally higher than those we obtain in this paper on the
test set, where we only use the training set for learning all our models. We
preferred this approach for our experiments so that we can better compare
the results between development and test sets and, at the same time, have a
faster training and test processing.

6.3.1. Experiment 1: Impact of NLP Processors.

As a way to compare Farasa and Stanford parsers, we ran a set of ex-
periments in which the only difference was the processor used to gener-
ate the trees. We used an SVM with C = 1 and the normalized SST
kernel [79] as TK in Eq. (7) with the following values for the parameter
λ = {0.001, 0.01, 0.05, 0.1, 0.2}, which provide different weights to subtrees
of different size. Changing λ, we can emphasize different portions of the
parse trees and thus carry out a more systematic comparison between the
parsers.

Figure 5 shows the MAP evolution for the two models, with respect to
the λ parameter of the kernel. The highest MAP values on development

25

Model Dev. Test
Linear-kernel SVM on Word2vec and sims. 44.94 40.73
Tree-kernel SVM on Farasa Parse trees 42.53 40.87
NN (attention on q) 34.85 33.40
NN (attention on ρ) 37.47 35.09

Table 8: MAP performance for our ranking models when applied in isolation on the
development and test partitions.

(39.93) and test (38.49) sets are obtained when using Farasa. In such cases
the increment with respect to Stanford is of 1.44 and 0.88 MAP points,
respectively. This is an interesting result as it is in line with our linguistic
expert of Arabic who, analyzing some of the trees generated on our data by
both parsers, observed a better quality of the Farasa POS-tagger than the
one used in the Stanford parser. This different quality also affects chunk
definition and their dependencies. It seems that using the entire structure of
the parse tree allows TKs to benefit from an overall better quality of Farasa
parser to produce better rankings.

6.3.2. Experiment 2: Isolated Models.

Table 8 shows the performance of our ranking models when applied in
isolation. The linear- and the tree-kernel models perform on par with each
other on the test set, both obtaining competitive results. Still, they lie behind
the top 2 systems included in Table 7, at MAP values of ∼ 40.8 on the test
set.

As aforementioned, the neural network does not reach a competitive per-
formance, maybe due to the small amount of data available for training.
However, this is not the only contribution the network model can provides
as we can use its weights for text selection.

6.3.3. Experiment 3: Kernel Combination.

The first row of Table 9 reports the performance of the combination of the
tree kernel on parse trees built with Farasa and the linear kernel on word2vec
and similarity features. Note that the combination improves over tree kernel
and linear kernel in isolation. With respect to our previous systems, i.e., SLS
and ConvKN, we got lower values for the test set: as previously pointed out,
(i) SLS is a combination of four different systems; and (ii) in this paper, we
only use the training data, whereas we trained SLS and ConvKN on both
the training and development sets to obtain the test set results.

26

Model Dev. Test
Tree-kernel (no pruning) + Word2vec and sims. 46.58 41.09
Tree-kernel (pruning ratio 0.74) + Word2vec and sims. 46.78 41.93
Tree-kernel (pruning ratio 0.82) + Word2vec and sims. 46.01 42.20

Table 9: MAP performance for our ranking models when applied in combination and
after pruning. The latter was applied with two different thresholds, 0.74 and 0.82, which
obtained the highest MAP on development and test sets, respectively.

 20

 40

 60

 80

 100 Dev
Test

 200

 350

 500

 650

 800

 950

P
re

d
.
ti
m

e
 (

m
in

)
L
e
a
rn

.
ti
m

e
 (

m
in

)

Train

 40

 41

 42

 43

 44

 45

 46

 47

0.0 0.05 0.12 0.20 0.31 0.42 0.54 0.65 0.74 0.82 0.92

M
A

P

Ratio of nodes pruned

Dev
Test

Figure 6: Experiments with pruned trees. From top to bottom the plots show the predic-
tion time, the learning time and MAP as a function of the ratio of pruned nodes.

6.3.4. Experiment 4: Tree Pruning.

While combining feature vectors and tree kernels improves the MAP
scores in our experiments, the use of tree kernels has a negative impact on
the running time. Thus, we prune parse trees as described in Section 5.2.

In this experiment, we evaluate the combination of the linear kernel on
word2vec and similarity features with the SST kernel over syntactic trees.
Both kernels are not normalized. The top two plots show prediction and
learning time (in minutes) as a function of the ratio of pruned nodes. As
expected both learning and prediction times decrease roughly linearly with
respect to the number of pruned tree nodes.

27

The plot at the bottom shows the corresponding MAP values, again as
a function of the ratio of pruned nodes. Rather than decreasing due to the
reduced representation, the MAP scores increase, reaching 46.78 (+0.20 with
respect to no pruning) on the development set and 42.20 (+1.11) on the test
set. This occurs because our pruning model manages to filter out irrelevant
fragments from the trees. For instance, discarding the phrase “in children
and adolescents” in Figure 3 would allow a model to better determine that
the two questions are practically equivalent.

The threshold maximizing MAP on the development set is the one corre-
sponding to 0.74 pruning ratio (see second line of Table 9). Its MAP score on
the test set is 41.93 (+0.84) and the learning and prediction times decrease
from 887 to 295 minutes and from 98 to 20 minutes, respectively, with respect
to the unpruned data. This means that learning and prediction processes are
3 and 4.9 times faster than the kernel combination without pruning.

7. Conclusions

Recently, community-driven question answering in websites (cQA) has
seen a renewed interest both from natural language processing and informa-
tion retrieval researchers. Most work in cQA has been carried out for the
English language, resulting in a lack of techniques and resources available to
deal with other languages, such as Arabic. Motivated by this aspect, in this
paper we addressed the problem of cQA in an Arabic forum. In particular,
we focused on the task of question re-ranking: given a newly-posted ques-
tion, retrieve equivalent or similar questions already in the forum. If similar
questions have been addressed in the past, the users can quickly obtain an
answer to their question.

In order to deal with the necessary processing of the Arabic texts, for
the first time, we introduced some components of our in-house pipeline of
Arabic NLP tools called Farasa. This includes a segmenter, a POS tagger,
a named entity recognizer, a dependency parser, a constituency parser, and
a diacritizer. We integrated Farasa into our cQA architecture using the
UIMA-based framework. This way, we could extract effective features, such
as lexical and syntactic information from Arabic text, and feed them into our
machine learning models. Our evaluation on a realistic collection of forum
questions in the medical domain allowed us to test Farasa’s capabilities when
dealing with a real-world application.

28

In particular, we addressed the task of question re-ranking as a binary
classification problem, where each example represents a pair {user-question,
forum-question}. We proposed an effective combination of tree kernels built
on top of the constituency parse trees provided by Farasa and Arabic word
embeddings based on neural networks. This combination allowed for better
capturing the semantic relatedness between two short pieces of text, i.e.,
questions and pairs of questions and answers, and achieved state-of-the-art
performance for Arabic question re-ranking.

Additionally, we designed models for selecting meaningful text in order to
reduce noise and computational cost. For this purpose, we applied long short-
term memory neural networks to identify the best subtrees in the syntactic
parsing of questions, which are then used in our tree-kernel-based ranker. We
combined the text selection approach with word embeddings based on neural
networks, boosting the performance. With thorough experiments we showed
that (i) syntactic information is very important for the question ranking task,
(ii) our model combining tree kernels, word embeddings and neural networks
for text selection is an effective approach to fully exploit advanced Arabic
linguistic processing and (iii) our reranker based on tree kernels can be used
to implicitly evaluate the performance of different syntactic parsers.

Finally, our UIMA pipeline for Arabic NLP as well as for cQA will be
made available to the research community.

Acknowledgements

This research was performed by the Arabic Language Technologies (ALT)
group at the Qatar Computing Research Institute (QCRI), HBKU, part of
Qatar Foundation. It is part of the Interactive sYstems for Answer Search
(Iyas) project, which is developed in collaboration with MIT-CSAIL.

References

[1] S. Green, C. D. Manning, Better Arabic Parsing: Baselines, Evalua-
tions, and Analysis, in: Proceedings of the 23rd International Confer-
ence on Computational Linguistics, COLING ’10, Association for Com-
putational Linguistics, Stroudsburg, PA, USA, 394–402, URL http:

//dl.acm.org/citation.cfm?id=1873781.1873826, 2010.

[2] T. Strzalkowski, S. Harabagiu (Eds.), Advances in Open Domain Ques-
tion Answering, Springer Netherlands, 2008.

29

[3] A. Ezzeldin, M. Shaheen, A Survey of Arabic Question Answering: Chal-
lenges, Tasks, Approaches, Tools, and Future Trends, in: Proceedings
of The 13th International Arab Conference on Information Technology
(ACIT 2012), 1–8, 2012.

[4] P. Rosso, A. Lyhyaoui, J. Peñarrubia, M. Montes y Gómez, Y. Benajiba,
N. Raissouni, Arabic–English Question Answering, in: Proc. of Infor-
mation Communication Technologies Int. Symposium (ICTIS), Tetuan,
Morocco, June, 2005.

[5] M. S. Brini W., Ellouze M., B. H. L., An Arabic Question-Answering
System for Factoid Questions, in: IEEE International Conference on
Natural Language Procesing and Knowledge Engineering (IEEE NLP-
KE’09), Dalian, China, 1–7, 2009.

[6] H. Abdelbaki, M. Shaheen, ARQA High-Performance Arabic Question
Answering System, in: Arab Academy for Science and Technology and
Maritime Transport, Alexandria, Egypt, 2011.

[7] H. A. Kanaan G., A New Question Answering System for the Arabic
Language, American Journal of Applied Sciences 6 (4) (2009) 797–805.

[8] Y. Benajiba, Arabic Question Answering, Master’s thesis, Technical
University of Valencia, Spain, 2007.

[9] L. Abouenour, On the Improvement of Passage Retrieval in Arabic Ques-
tion/Answering (Q/A) Systems, in: International Conference on Appli-
cation of Natural Language to Information Systems, Springer, 336–341,
2011.

[10] O. Trigui, H. Belguith, P. Rosso, DefArabicQA: Arabic Definition Ques-
tion Answering System, in: Workshop on Language Resources and Hu-
man Language Technologies for Semitic Languages, 7th LREC, Valletta,
Malta, 40–45, 2010.

[11] H. M. Al Chalabi, Question Processing for Arabic Question Answering
System, Ph.D. thesis, The British University in Dubai, 2015.

[12] M. Silberztein, NooJ: a Linguistic Annotation System for Corpus Pro-
cessing, in: Proceedings of HLT/EMNLP on Interactive Demonstra-
tions, Association for Computational Linguistics, 10–11, 2005.

30

[13] Z. Salem, J. Sadek, F. Chakkour, N. Haskkour, Automatically Finding
Answers to” Why” and” How to” Questions for Arabic Language, in: In-
ternational Conference on Knowledge-Based and Intelligent Information
and Engineering Systems, Springer, 586–593, 2010.

[14] M. Potthast, A. Barrón-Cedeño, B. Stein, P. Rosso, Cross-Language
Plagiarism Detection, Language Resources and Evaluation (LRE) 45 (1)
(2011) 45–62, ISSN 1574-020X, doi:\bibinfo{doi}{http://dx.doi.org/10.
1007/s10579-009-9114-z}.

[15] P. Nakov, L. Màrquez, A. Moschitti, W. Magdy, H. Mubarak, a. Freihat,
J. Glass, B. Randeree, SemEval-2016 Task 3: Community Question An-
swering, in: [81], 525–545, URL http://www.aclweb.org/anthology/

S16-1083, 2016.

[16] Y. Cao, H. Duan, C.-Y. Lin, Y. Yu, H.-W. Hon, Recommending
Questions Using the Mdl-based Tree Cut Model, in: Proceedings of
the 17th International Conference on World Wide Web, WWW ’08,
ACM, New York, NY, USA, ISBN 978-1-60558-085-2, 81–90, doi:
\bibinfo{doi}{10.1145/1367497.1367509}, URL http://doi.acm.org/

10.1145/1367497.1367509, 2008.

[17] H. Duan, Y. Cao, C.-Y. Lin, Y. Yu, Searching Questions by Identifying
Question Topic and Question Focus, in: [87], 156–164, 2008.

[18] G. Zhou, L. Cai, J. Zhao, K. Liu, Phrase-based translation model for
question retrieval in community question answer archives, in: Proceed-
ings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume 1, Association for
Computational Linguistics, 653–662, 2011.

[19] P. Koehn, F. J. Och, D. Marcu, Statistical Phrase-based Transla-
tion, in: Proceedings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on Human
Language Technology - Volume 1, NAACL ’03, Association for Com-
putational Linguistics, Stroudsburg, PA, 48–54, doi:\bibinfo{doi}{10.
3115/1073445.1073462}, URL http://dx.doi.org/10.3115/1073445.

1073462, 2003.

31

[20] J. Jeon, W. B. Croft, J. H. Lee, Finding Similar Questions in Large
Question and Answer Archives, in: Proceedings of the 14th ACM Inter-
national Conference on Information and Knowledge Management, Bre-
men, Germany, 84–90, 2005.

[21] K. Wang, Z. Ming, T.-S. Chua, A Syntactic Tree Matching Approach to
Finding Similar Questions in Community-based QA Services, in: Pro-
ceedings of the 32nd international ACM SIGIR conference on Research
and development in information retrieval, ACM, 187–194, 2009.

[22] C. dos Santos, L. Barbosa, D. Bogdanova, B. Zadrozny, Learning Hybrid
Representations to Retrieve Semantically Equivalent Questions, in: [86],
694–699, 2015.

[23] M. Franco-Salvador, S. Kar, T. Solorio, P. Rosso, UH-PRHLT at
SemEval-2016 Task 3: Combining lexical and semantic-based features
for community question answering, Proceedings of SemEval 16 (2016)
814–821.

[24] T. Joachims, Training Linear SVMs in Linear Time, in: [88], 217–226,
2006.

[25] R. Navigli, S. P. Ponzetto, BabelNet: The Automatic Construction,
Evaluation and Application of a Wide-Coverage Multilingual Semantic
Network, Artificial Intelligence 193 (2012) 217–250.

[26] C. F. Baker, H. Sato, The FrameNet Data and Software, in: K. Fu-
nakoshi, S. Kübler, J. Otterbacher (Eds.), ACL 2003, 41st Annual Meet-
ing of the Association for Computational Linguistics, Companion Vol-
ume to the Proceedings, 7-12 July 2003, Sapporo Convention Center,
Sapporo, Japan, The Association for Computer Linguistics, 161–164,
URL http://www.aclweb.org/anthology/P03-2030, 2003.

[27] A. Barrón-Cedeño, G. Da San Martino, S. Joty, A. Moschitti, F. Al-
Obaidli, S. Romeo, K. Tymoshenko, A. Uva, ConvKN at SemEval-2016
Task 3: Answer and Question Selection for Question Answering on Ara-
bic and English Fora, in: [81], 896–903, URL http://www.aclweb.org/

anthology/S16-1138, 2016.

[28] S. Filice, D. Croce, A. Moschitti, R. Basili, KeLP at SemEval-2016 Task
3: Learning Semantic Relations between Questions and Answers, in:

32

[81], 1116–1123, URL http://www.aclweb.org/anthology/S16-1172,
2016.

[29] S. Filice, G. Castellucci, D. Croce, G. Da San Martino, A. Moschitti,
R. Basili, KeLP: a Kernel-based Learning Platform in Java, in: Pro-
ceedings of the workshop on Machine Learning Open Source Software:
Open Ecosystems, International Conference of Machine Learning, Lille,
France, 2015.

[30] J. Jeon, W. B. Croft, J. H. Lee, S. Park, A Framework to Predict the
Quality of Answers with Non-Textual Features, in: Proceedings of the
29th ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval - SIGIR ’06, ACM Press, New York, New York, USA,
228, 2006.

[31] E. Agichtein, A. Gionis, C. Castillo, G. Mishne, D. Donato, Find-
ing High-Quality Content in Social Media with an Application to
Community-based Question Answering, in: In Proceedings of WSDM,
2008.

[32] M. Surdeanu, M. Ciaramita, H. Zaragoza, Learning to Rank Answers
on Large Online QA Collections, in: [87], 719–727, 2008.

[33] Q. H. Tran, V. Tran, T. Vu, M. Nguyen, S. Bao Pham, JAIST: Com-
bining multiple features for Answer Selection in Community Question
Answering, in: [83], 215–219, 2015.

[34] Y. Hou, C. Tan, X. Wang, Y. Zhang, J. Xu, Q. Chen, HITSZ-ICRC:
Exploiting Classification Approach for Answer Selection in Community
Question Answering, in: [83], 196–202, 2015.

[35] M. Nicosia, S. Filice, A. Barrón-Cedeño, I. Saleh, H. Mubarak, W. Gao,
P. Nakov, G. Da San Martino, A. Moschitti, K. Darwish, L. Màrquez,
S. Joty, W. Magdy, QCRI: Answer Selection for Community Question
Answering - Experiments for Arabic and English, in: [83], 203–209, 2015.

[36] S. Joty, A. Barrón-Cedeño, G. Da San Martino, S. Filice, L. Màrquez,
A. Moschitti, P. Nakov, Global Thread-level Inference for Comment
Classification in Community Question Answering, in: Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing,

33

Association for Computational Linguistics, Lisbon, Portugal, 573–578,
URL http://aclweb.org/anthology/D15-1068, 2015.

[37] G. Zhou, T. He, J. Zhao, P. Hu, Learning Continuous Word Embedding
with Metadata for Question Retrieval in Community Question Answer-
ing, in: [86], 250–259, 2015.

[38] Z. Ji, F. Xu, B. Wang, B. He, Question-Answer Topic Model for Ques-
tion Retrieval in Community Question Answering, in: Proceedings of
the 21st ACM international conference on Information and Knowledge
Management, ACM, 2471–2474, 2012.

[39] K. Zhang, W. Wu, H. Wu, Z. Li, M. Zhou, Question Retrieval with High
Quality Answers in Community Question Answering, in: Proceedings of
the 23rd ACM international conference on Information and Knowledge
Management (CIKM 2014), 371–380, 2014.

[40] P. Nakov, L. Màrquez, W. Magdy, A. Moschitti, J. Glass, B. Randeree,
SemEval-2015 Task 3: Answer Selection in Community Question An-
swering, in: [83], 2015.

[41] E. Agichtein, D. Carmel, D. Harman, D. Pelleg, Y. Pinter, Overview of
the TREC 2015 LiveQA Track, in: TREC, 2015.

[42] M. Mohtarami, Y. Belinkov, W.-N. Hsu, Y. Zhang, T. Lei, K. Bar,
S. Cyphers, J. Glass, SLS at SemEval-2016 Task 3: Neural-based Ap-
proaches for Ranking in Community Question Answering, in: [81], 828–
835, URL http://www.aclweb.org/anthology/S16-1128, 2016.

[43] Y. Belinkov, A. Barrón-Cedeño, H. Mubarak, Answer Selection in Ara-
bic Community Question Answering: A Feature-Rich Approach, in:
Proceedings of the Second Workshop on Arabic Natural Language Pro-
cessing, Association for Computational Linguistics, Beijing, China, 183–
190, URL http://www.aclweb.org/anthology/W15-3223, 2015.

[44] A. Magooda, A. Gomaa, A. Mahgoub, H. Ahmed, M. Rashwan,
H. Raafat, E. Kamal, A. A. Sallab, RDI at SemEval-2016 Task 3: RDI
Unsupervised Framework for Text Ranking, in: [81], 822–827, 2016.

34

[45] R. Malhas, M. Torki, T. Elsayed, QU-IR at SemEval-2016 Task 3:
Learning to Rank on Arabic Community Question Answering Forums
with Word Embedding, in: [81], 866–871, 2016.

[46] N. Schneider, B. Mohit, K. Oflazer, N. A. Smith, Coarse Lexical Se-
mantic Annotation with Supersenses: An Arabic Case Study, in: Pro-
ceedings of the 50th Annual Meeting of the Association for Compu-
tational Linguistics: Short Papers - Volume 2, ACL ’12, Association
for Computational Linguistics, Stroudsburg, PA, USA, 253–258, URL
http://dl.acm.org/citation.cfm?id=2390665.2390726, 2012.

[47] A. Abdelali, K. Darwish, N. Durrani, H. Mubarak, Farasa: A Fast and
Furious Segmenter for Arabic, in: [80], 11–16, 2016.

[48] K. Darwish, H. Mubarak, Farasa: A New Fast and Accurate Ara-
bic Word Segmenter, in: N. C. C. Chair), K. Choukri, T. Declerck,
S. Goggi, M. Grobelnik, B. Maegaard, J. Mariani, H. Mazo, A. Moreno,
J. Odijk, S. Piperidis (Eds.), Proceedings of the Tenth International
Conference on Language Resources and Evaluation (LREC 2016), Eu-
ropean Language Resources Association (ELRA), Paris, France, ISBN
978-2-9517408-9-1, 1070–1074, 2016.

[49] T. Joachims, Training Linear SVMs in Linear Time, in: [88], 217–226,
2006.

[50] K. Darwish, A. Abdelali, H. Mubarak, Using Stem-Templates to Im-
prove Arabic POS and Gender/Number Tagging, in: [85], 2926–2931,
URL http://www.lrec-conf.org/proceedings/lrec2014/pdf/335_

Paper.pdf, 2014.

[51] M. Maamouri, A. Bies, T. Buckwalter, W. Mekki, The Penn Arabic
Treebank: Building a Large-Scale Annotated Arabic Corpus, in: NEM-
LAR conference on Arabic language resources and tools, vol. 27, 466–
467, 2004.

[52] A. Pasha, M. Al-Badrashiny, M. T. Diab, A. El Kholy, R. Eskander,
N. Habash, M. Pooleery, O. Rambow, R. Roth, MADAMIRA: A Fast,
Comprehensive Tool for Morphological Analysis and Disambiguation of
Arabic, in: [85], 1094–1101, 2014.

35

[53] K. Darwish, H. Mubarak, A. Abdelali, M. Eldesouki, Arabic POS Tag-
ging: Dont Abandon Feature Engineering Just Yet, WANLP 2017 (co-
located with EACL 2017) (2017) 130.

[54] L. Breiman, Random Forests, Machine learning 45 (1) (2001) 5–32.

[55] D. L. W. Hall, G. Durrett, D. Klein, Less Grammar, More Features, in:
Proceedings of the 52nd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on
Natural Language Processing, 228–237, 2014.

[56] A. Björkelund, Ö. Çetinoğlu, R. Farkas, T. Mueller, W. Seeker,
(Re) Ranking Meets Morphosyntax: State-of-the-Art Results from the
SPMRL 2013 Shared Task, in: [84] (2013) 135–145.

[57] D. Seddah, R. Tsarfaty, S. Kübler, M. Candito, J. Choi, R. Farkas,
J. Foster, I. Goenaga, K. Gojenola, Y. Goldberg, et al., Overview of
the SPMRL 2013 Shared Task: Cross-Framework Evaluation of Parsing
Morphologically Rich Languages, in: [84], 146–182, 2013.

[58] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Ma-
chines and Other Kernel-based Learning Methods, Cambridge Univer-
sity Press, 1 edn., 2000.

[59] A. Moschitti, Efficient Convolution Kernels for Dependency and Con-
stituent Syntactic Trees, in: Proceedings of the 17th European Confer-
ence on Machine Learning, ECML ’06, Springer-Verlag Berlin Heidel-
berg, Berlin, Germany, 318–329, 2006.

[60] A. Severyn, A. Moschitti, Structural Relationships for Large-scale
Learning of Answer Re-Ranking, in: Proceedings of the 35th Interna-
tional ACM SIGIR Conference on Research and Development in In-
formation Retrieval, SIGIR ’12, Portland, OR, ISBN 978-1-4503-1472-
5, 741–750, doi:\bibinfo{doi}{10.1145/2348283.2348383}, URL http:

//doi.acm.org/10.1145/2348283.2348383, 2012.

[61] A. Barrón-Cedeño, G. Da San Martino, S. Romeo, A. Moschitti, Select-
ing Sentences versus Selecting Tree Constituents for Automatic Question
Ranking, in: [82], 2515–2525, 2016.

36

[62] S. Romeo, G. Da San Martino, A. Barrón-Cedeño, A. Moschitti, Y. Be-
linkov, W.-N. Hsu, Y. Zhang, M. Mohtarami, J. Glass, Neural Attention
for Learning to Rank Questions in Community Question Answering, in:
[82], 1734–1745, 2016.

[63] T. Mikolov, W.-t. Yih, G. Zweig, Linguistic Regularities in Continuous
Space Word Representations, in: Proceedings of the 2013 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT ’13, At-
lanta, GA, USA, 746–751, URL http://www.aclweb.org/anthology/

N13-1090, 2013.

[64] M. Wise, YAP3: Improved Detection of Similarities in Computer Pro-
gram and Other Texts, in: Proceedings of the Twenty-seventh SIGCSE
Technical Symposium on Computer Science Education, SIGCSE ’96,
New York, NY, ISBN 0-89791-757-X, 130–134, doi:\bibinfo{doi}{10.
1145/236452.236525}, URL http://doi.acm.org/10.1145/236452.

236525, 1996.

[65] L. Allison, T. Dix, A Bit-string Longest-common-subsequence Algo-
rithm, Inf. Process. Lett. 23 (6) (1986) 305–310, ISSN 0020-0190, URL
http://dl.acm.org/citation.cfm?id=8871.8877.

[66] D. Gusfield, Algorithms on Strings, Trees, and Sequences Computer
Science and Computational Biology, Cambridge University Press, 1997.

[67] P. Jaccard, Étude comparative de la distribution florale dans une portion
des Alpes et des Jura, Bulletin del la Société Vaudoise des Sciences
Naturelles 37 (1901) 547–579.

[68] C. Lyon, J. Malcolm, B. Dickerson, Detecting Short Passages of Similar
Text in Large Document Collections, in: Proceedings of the Conference
on Empirical Methods in Natural Language Processing, EMNLP ’01,
Pittsburgh, PA, 118–125, 2001.

[69] T. Joachims, Making Large-scale Support Vector Machine Learning
Practical, in: B. Schölkopf, C. J. C. Burges, A. J. Smola (Eds.), Ad-
vances in Kernel Methods, MIT Press, Cambridge, MA, USA, ISBN
0-262-19416-3, 169–184, URL http://dl.acm.org/citation.cfm?id=

299094.299104, 1999.

37

[70] T. Joachims, Optimizing Search Engines Using Clickthrough Data, in:
Proc. KDD, 133–142, 2002.

[71] Y. Belinkov, M. Mohtarami, S. Cyphers, J. Glass, VectorSLU: A Con-
tinuous Word Vector Approach to Answer Selection in Community
Question Answering Systems, in: [83], URL http://www.aclweb.org/

anthology/S15-2038, 2015.

[72] K. Tymoshenko, D. Bonadiman, A. Moschitti, Convolutional Neural
Networks vs. Convolution Kernels: Feature Engineering for Answer Sen-
tence Reranking, in: [80], 1268–1278, 2016.

[73] S. Hochreiter, J. Schmidhuber, Long Short-Term Memory, Neural com-
putation 9 (8) (1997) 1735–1780.

[74] A. Graves, A.-r. Mohamed, G. Hinton, Speech Recognition with Deep
Recurrent Neural Networks, in: Proceedings of ICASSP, 6645–6649,
2013.

[75] T. Rocktäschel, E. Grefenstette, K. M. Hermann, T. Kočiskỳ, P. Blun-
som, Reasoning about Entailment with Neural Attention, in: Interna-
tional Conference on Learning Representations, 2016.

[76] D. Bahdanau, K. Cho, Y. Bengio, Neural Machine Translation by Jointly
Learning to Align and Translate, arXiv preprint arXiv:1409.0473 .

[77] W. Hsu, Y. Zhang, J. R. Glass, Recurrent Neural Network Encoder with
Attention for Community Question Answering, CoRR abs/1603.07044,
URL http://arxiv.org/abs/1603.07044.

[78] Y. El Adlouni, I. Lahbari, H. Rodŕıguez, M. Meknassi, S. O. El Alaoui,
UPC-USMBA at SemEval-2016 Task 3: UPC-USMBA participation in
SemEval 2016 Task 3, Subtask D: CQA for Arabic, in: [81], 2016.

[79] M. Collins, N. Duffy, Convolution Kernels for Natural Language, in:
T. G. Dietterich, S. Becker, Z. Ghahramani (Eds.), NIPS, MIT Press,
625–632, 2001.

[80] Proceedings of the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Tech-
nologies, Association for Computational Linguistics, San Diego, CA,
2016.

38

[81] Proceedings of the 10th International Workshop on Semantic Evalu-
ation, SemEval ’16, Association for Computational Linguistics, San
Diego, CA, 2016.

[82] Proceedings of the 26th International Conference on Computational Lin-
guistics, COLING 2016, Osaka, Japan, 2016.

[83] Proceedings of the 9th International Workshop on Semantic Evaluation,
SemEval 2015, Association for Computational Linguistics, Denver, CO,
2015.

[84] Fourth Workshop on Statistical Parsing of Morphologically Rich Lan-
guages, SPMRL ’13, Association for Computational Linguistics, Seattle,
WA, 2013.

[85] Proceedings of the Ninth International Conference on Language Re-
sources and Evaluation, LREC 2014, European Language Resources As-
sociation (ELRA), 2014.

[86] Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on
Natural Language Processing, ACL-HLT ’15, Association for Computa-
tional Linguistics, Beijing, China, 2015.

[87] Proceedings of the 46th Annual Meeting of the Association for Compu-
tational Linguistics and the Human Language Technology Conference,
ACL-HLT ’08, Association for Computational Linguistics, Columbus,
OH, 2008.

[88] Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’06, ACM, New York,
NY, 2006.

39

