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Abstract

Research on “zero resource” speech processing focuses
on learning linguistic information from unannotated, or raw,
speech data, in order to bypass the expensive annotations re-
quired by current speech recognition systems. While most re-
cent zero-resource work has made use of only speech record-
ings, here, we investigate the use of visual information as a
source of weak supervision, to see whether grounding speech
in a visual context can provide additional benefit for language
learning. Specifically, we use a dataset of paired images and
audio captions to supervise learning of low-level speech fea-
tures that can be used for further “unsupervised” processing of
any speech data. We analyze these features and evaluate their
performance on the Zero Resource Challenge 2015 evaluation
metrics, as well as standard keyword spotting and speech recog-
nition tasks. We show that features generated with a joint audio-
visual model contain more discriminative linguistic information
and are less speaker-dependent than traditional speech features.
Our results show that visual grounding can improve speech rep-
resentations for a variety of zero-resource tasks.

1. Introduction

Unsupervised speech processing is a problem that has seen in-
creasing interest in recent years [1, 2], owing largely to the
expense of collecting the text annotations required to build
supervised speech recognition systems. While most recent
unsupervised speech processing work has used only speech
data [1, 3, 4], there has been some early work by Roy [5] that
considered both audio and visual modalities for language learn-
ing. This “sensor-based” language learning [2] framework uses
visual grounding to help constrain the language learning prob-
lem.

Recently, Harwath et al. have proposed a model that is able
to learn a latent audio-visual embedding space from pairs of
images and corresponding spoken descriptions [6]. Using this
weak form of contextual grounding, they demonstrate that the
embedding vector is able to learn word-like units [7]. Their re-
sults inspire us to examine whether the internal representations
learned by the speech processing component of their model are
effective for standard unsupervised speech processing tasks. In
this work, we take only the trained audio-processing branch of
this joint audio-visual model and use it to generate features from
other audio corpora (with no associated images) that have been
used to evaluate previous “zero-resource” research. This allows
us to make comparisons with speech-only representations on
these tasks, to assess the potential benefit of the audio-visual
latent representation for language learning.

As a preface to these downstream experiments, we perform
both qualitative and quantitative analyses of the features gener-
ated at each level of the network. Through these analyses, we
seek to understand the inner-workings of this audio-visual net-
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work - specifically, the nature of the receptive fields of the units
at each layer of the network and what kind of information (e.g.
phonetic, semantic, speaker) those units represent.

2. Prior Work

This paper directly follows from [6] and [7]. In those papers,
Harwath et al. trained two convolutional neural networks (one
for audio and one for images) to project images and their spoken
captions into the same embedding space. Using these embed-
dings, the authors were able to perform effective image search
and annotation [6], as well as discover clusters of word-like
units within the audio captions that correlate with specific vi-
sual concepts [7].

Our analysis of the audio-visual network is inspired by prior
work in computer vision; that field is largely reliant on convolu-
tional neural networks and has thus developed a variety of tech-
niques for analyzing their inner workings. We adopt the anal-
yses used by Zhou et al. [8], particularly their visualizations of
the receptive fields of individual units within a network.

We judge the usefulness of audio-visual features for down-
stream speech applications using pre-existing application and
evaluation code from three sources. First, we compare the
audio-visual features to submissions from the first track of the
2015 Zero Resource Challenge [9]. We compare against two
high-performing submissions from the Challenge - [10] and
[11]. Both models start by performing unsupervised term de-
tection using dynamic time-warping. This produces frame-level
alignments, which can then be split into pairs of aligned frames
that should contain the same linguistic information. Both [10]
and [11] develop neural network architectures designed to learn
arepresentation space which brings aligned frames together and
pushes unaligned frames apart.

The second level of downstream analysis performed here
is spoken term detection. We use the TIMIT keyword spotting
task introduced in [3]. In that work, Lee and Glass describe an
unsupervised Bayesian nonparametric model which segments
and clusters speech into phone-like units. The features they use
for keyword spotting are frame-level posteriorgrams over those
discovered units. That model continues to be the best perform-
ing fully unsupervised model applied to this task. However,
Harwath et al. [6] showed significantly improved performance
on this task with the addition of visual information.

Finally, we use the unsupervised speech recognition system
developed in [4] to evaluate the audio-visual features’ useful-
ness in a full speech recognition task. Kamper et al. [4] de-
velop a model that is similar to [3] but performs segmentation
and clustering of speech into word-like, rather than phone-like,
units. The authors judge their model’s performance with unsu-
pervised phone and word error rate metrics. Kamper et al. ex-
periment with both MFCC features and correspondence autoen-
coder (CAE) features [11]; their results suggest the potential of



this type of model but show the need for additional research to
produce usable unsupervised speech transcripts.

3. Data and Methods
3.1. Audio-Visual Model Architecture

In this section, we briefly describe the audio-visual model used
to generate features for experiments. The model is described in
more detail in [7].

The audio-visual model has two branches: one that pro-
cesses audio input, and one that processes images. The im-
age branch, an off-the-shelf VGG network [12] trained on la-
beled images, will not be discussed here. It is sufficient to note
that the output layer of the network is replaced by a fully con-
nected layer that projects the last activation layer into a 1024-
dimensional embedding space.

The input to the audio network is 40-dimensional log Mel
filterbank features computed with a 25ms window and 10ms
frame shift. The first layer of the network is a convolution over
a single frame. Each subsequent convolutional layer (for a total
of five) has an increasingly larger filter width. Each of these
convolutions is followed by a ReLU nonlinearity, and a max-
pool operation that halves the frame rate. The output of the
final layer is meanpooled over the entire utterance to form a
single 1024-dimensional embedding of each audio caption.

We compute the similarity between an image and a spoken
caption by taking the dot product of their embeddings. The net-
work is trained to maximize the similarity between matching
image/caption pairs while minimizing the similarity between
mismatched pairs. These mismatched pairs are generated by
randomly sampling one impostor image/caption pair for each
true image/caption pair in the training set.

3.2. Data

The audio-visual model was trained using a dataset of images
taken from the Places205 dataset [13], each paired with several
spoken captions collected via Amazon Mechanical Turk. See
[6] for additional data collection details. We use the Google
Speech API' to generate transcripts of the audio captions; we
do not have access to gold transcripts or alignments. We will
refer to this corpus as the Places dataset for the remainder of
this paper.

We evaluate our audio-visual features on two standard
speech corpora with no associated images: TIMIT [14] and the
Buckeye Corpus [15].

3.3. Feature Generation

For the experiments in this paper, we took the trained audio
branch of the audio-visual model, fixed the weights, and used it
to generate features for new audio which it had not seen during
training. We extract features after each convolution and nonlin-
earity in the model, resulting in five feature sets, labeled in order
from the lowest level of the hierarchy (AVNetl) to the highest
(AVNet5). These feature representations range in dimensional-
ity from 128 features to 1024 and in receptive field size from
25ms to almost 2 seconds.

For the feature analysis, keyword spotting experiments, and
Zero Resource Challenge evaluation, we directly used the fea-
tures extracted from the network. For unsupervised speech
recognition, all frames were first PCA-whitened.
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Figure 1: Filterbank features for TIMIT segments that most ac-
tivate three different neurons in the first AVNet layer. (a) sh, jh,
shyz, z(b)res nrr(c)l L w l-w, ow

Figure 2: Filterbank features for TIMIT segments that most ac-
tivate two different neurons in the second AVNet layer. (a) ae-tcl
(that), eh-tcl (that), ae-tcl (that), ae-pcl (aptitude), aa-tcl (can-
not) (b) eh-1 (hotels), aw (how), ao-1 (all), aa-1 (doll), ae-1 (al-
falfa).

4. Feature Analysis

Following [8], we visualize the activation pattern of an indi-
vidual unit in our network by looking at the speech segments
that most activate that unit. We use TIMIT for this analysis,
so that we can associate each segment with its corresponding
phoneme label(s). Figures 1 and 2 show the TIMIT speech seg-
ments that most activate three units from AVNetl and two units
from AVNet2, respectively.

In both cases, the similarities between the speech segments
associated with a given unit are clear from visual inspection.
The AVNetl units seem to select for a particular phoneme - of
the top 100 segments that activate each unit at this level, on
average 37.8 are instances of the same phoneme, and 61.4 are
from the same broad phone class. AVNet2 units have a larger
receptive field, and seem to select for a particular bi-phone. Of
the top 100 segments that activate each unit at this level, on
average 17.2 are instances of the same phoneme sequence, and
37.4 are from the same sequence of phone classes.

Figure 3 shows the three segments from the TIMIT data
that most activate one unit in the third layer. While these seg-
ments look quite different on immediate visual inspection, they
share many similarities. Each one starts with a vowel and strong
fricative, and they all end with the phoneme sequence “pcl-p-1-
iy”. At this layer, we can see that the network has learned to
be invariant to the way different speakers pronounce similar se-
quences of sounds.

Table 1 shows results of a quantitative analysis of the re-
ceptive fields of the units in the network, using the Places data.
At each level, we form a “cluster” for each unit by selecting
the 100 speech segments that most activate that unit. We assign
each cluster a speaker and word label based on the most com-
mon speaker or word in those 100 segments (ignoring common



Figure 3: Filterbank features for TIMIT segments that most ac-

D)

tivate one neuron in the third AVNet layer. (a) 'ow’, ’s’, 'pcl’,
'p’, r’, iy’ ([mjost pre[cincts]), (b) 'ax’, ’s’, 'ax’, 'pcl’, 'p’,

r’, iy’ (a supre[me]), (c) ’ih’, ’Z’, ’ix’, 'pcl’, 'p’, r’, iy’ (is
appre|[ciated]).

Table 1: Average word and speaker purity of the clusters com-
posed of the top 100 speech segments from the Places data that
activate each unit at a given layer of the network.

| Features | Speaker Purity | Word Purity |

AVNetl 0.269 0.045
AVNet2 0.212 0.052
AVNet3 0.134 0.129
AVNet4 0.112 0.198
AVNet5 0.101 0.207

stop-words). These labels can then be used to calculate speaker
and word purity. As Table 1 shows, units in the higher layers of
the network are less-speaker dependent (lower speaker purity)
and more representative of word-level information.

Based on these results, we can hypothesize that the lower
layers of the network should be useful for low-level tasks like
the Zero Resource Challenge evaluation, while higher-level fea-
tures may be more useful for keyword spotting and unsuper-
vised speech recognition.

5. Zero Resource Challenge
5.1. Evaluation

The first track of the Zero Resource Challenge is evaluated us-
ing a minimal pair ABX task inspired by a standard paradigm
used in psychophysics experiments. This task judges a feature
representation by computing, over a large dataset, the likelihood
that any given phoneme segment (X) is closer to another in-
stance of the same phoneme (A) than an instance of a different
phoneme (B). See [9] for full evaluation details.

The evaluation is divided into two conditions: within
speaker (where A, B, and X all come from the same speaker)
and across speaker (where A and B come from one speaker and
X from another). The default distance metric provided is cosine
distance, which we also use here.

5.2. Results

Table 2 shows results of the Zero Resource Challenge ABX
evaluation. Of the audio-visual features, the best results came
from the AVNet2 features. Both the AVNetl and AVNet2
features are better than filterbank features on both conditions,
while AVNet3 features are better than the filterbank features
on the across-speaker condition. This supports our hypothesis
that the use of visual information can reduce speaker effects and
make cross-speaker learning easier.

Despite these encouraging results, prior work using

Table 2: Results of 2015 Zero Resource Challenge ABX English
evaluation, by input feature type. Cosine distance was used with
all features.

| Features | Within | Across |
Filterbank 16.3 29.7
CAE [11] 13.5 21.1
ABNet [10] 12.0 17.9
AVNetl 15.8 26.9
AVNet2 14.4 23.5
AVNet3 20.2 27.8
AVNet4 27.6 34.8
AVNet5 35.1 40.0

CAE [11] and ABNet [10] models to generate features gener-
ated better results than our AV features. However, these models
both rely on term detection systems that find repeated patterns
in speech from simple MFCC features. While such experiments
are beyond the scope of this paper, the results presented in the
following section suggest that using audio-visual features as in-
put to those algorithms could improve term detection across
speakers, which could in turn improve the performance of the
CAE and ABNet features.

The features from AVNet4 and AVNet5 are significantly
worse than filterbank features on both the within-speaker and
across-speaker ABX tasks. This is not surprising: if these layers
are, in fact, representing higher-level linguistic information (and
perhaps even semantic information), we would expect them to
perform poorly on a phone-level discrimination task.

6. Keyword Spotting

For our first spoken term detection task, we use the AVNet fea-
tures on the TIMIT keyword spotting task defined in [3]. Har-
wath and Glass [6] reported results on this task using the first
layer of a similar AV network with a slightly different archi-
tecture. As in that work, we find that the AVNet features (in
this case, from AVNet2) are able to match prior work in terms
of search precision while significantly outperforming that prior
work in terms of equal error rate. Perhaps surprisingly, given
the prior demonstration of the ability to discover word clusters
using the high-level AVNet features [7], the higher layers of the
network are not at all useful for this task. However, Harwath
et al. [7] showed an ability to discover words associated with
visual concepts - in contrast, the words used for this keyword
spotting task are not visual.

We develop two keyword spotting tasks from the Places
dataset based on the hypothesis that the last layers of the net-
work will do a good job of representing words associated with
specific visual concepts, but will not effectively differentiate be-
tween non-visual words. For this task, we chose words that oc-
cur more than 15 times in the Places development set and more
than 10 times in the test set. For each keyword, we select the
first 15 instances from the development set as queries, so the
system will have equal exposure to all keywords in both sets.
Scores are calculated over all instances in the test set. Table 3
lists the words selected for these two tasks (as well as the key-
words from the TIMIT task for comparison).

Table 4 shows results in terms of precision at N (P@N) of
using the different AVNet features for keyword spotting tasks.
In accordance with our hypothesis, we find that the higher lay-



Table 3: Keywords for keyword spotting tasks.

Task | Keywords \
TIMIT

development, organizations, money, age,
artists, surface, warm, year, problem, chil-
dren

Places (non- | about, across, appears, background, bot-

visual) tom, different, everything, filled, fore-
ground, maybe, mostly, nearby, picture,
possibly, probably, several, something, un-
derneath, very, visible

Places building, cabinet, camera, classroom, con-

(visual) struction, flower, fountain, garden, hospi-

tal, mountain, outside, patio, people, rail-
road, river, subway, table, water, windmill,
window, woman, wooden

Table 4: Keyword spotting results. Average precision at N
(P@N) across all task keywords.

\ Task MFCC AV1 AV2 AV3 AV4 AV5 |

TIMIT 50.0 527 620 581 393 158
Non-visual 16.8 243 471 512 450 232
Visual 13.4 193 439 565 635 632

ers of the network are very effective for representing words as-
sociated with visual information but ineffective for non-visual
words. These results highlight the importance of the training
objective in determining how information is represented in the
network. They suggest that we might get improved results on
downstream tasks by adding a secondary objective to this net-
work - we want to use visual information to help learn relevant
invariances in speech, but we also want our the embeddings to
effectively represent all words in an utterance.

7. Unsupervised Speech Recognition
7.1. Model

For this evaluation, we borrow the unsupervised speech recog-
nition model developed in Kamper et al. [4]. Our main contri-
bution is to test the effectiveness of using audio-visual features
as input. We follow their lead on all of the parameter settings
except those outlined in the following paragraphs.

For MFCC features, as in [4], we used 13 dimensions per
frame and create fixed-length segment embeddings by down-
sampling the data to 10 frames per segment. Because of both
the high dimensionality of the audio-visual features and the fact
that higher AVNet layers cover larger windows of speech, we
pursued more aggressive downsampling at successively higher
layers: AVNetl was downsampled to 11 frames per segment,
AVNet?2 to nine, AVNet3 to seven, AVNet4 to five, and AVNet5
to three. For all audio-visual features, we reduced the covari-
ance scale of the discovered clusters to 1e — 5 (we used 1le — 3
for the MFCC features, as in [4]).

Finally, we replaced the initial iterations of acoustic model
sampling with a simpler k-means cluster assignment. We found
this to be more efficient for our higher-dimensional representa-
tions without reducing model performance.

7.2. Evaluation

As in Kamper et al. [4], we evaluate our unsupervised speech
recognition system on the Buckeye corpus. Kamper et al. [4]
focus on word error rate (WER); because we are not explicitly
hoping to discover word-level units, we also evaluate phone er-
ror rate (PER).

7.3. Results

Table 5: Unsupervised recognition results on the Buckeye cor-
pus, using the system described in [16].

\ Features | WER | PER | Num Segments |

MFCC | 86.2 | 71.2 24871

MFCC mindur | 83.6 | 76.1 15522
AVNetl | 85.0 | 73.0 22735
AVNet2 | 829 | 69.3 23135
AVNet3 | 82.0 | 69.9 20865
AVNet4 | 86.0 | 782 19836
AVNet5 | 91.7 | 93.0 18123

Table 5 shows unsupervised many-to-one WER and PER
using MFCC features or audio-visual features. The best over-
all WER comes from the AVNet3 features, while the best PER
comes from the AVNet2 features. Both AVNet2 and AVNet3
features improve on the MFCC results on both measures. While
Kamper et al. [4] were able to improve their results by imposing
a heuristic minimum segment duration, we are able to achieve
better results without such a constraint.

The most obvious effect of the minimum duration con-
straint is to force the model to discover a reduced number of
segments. The last column of Table 5 shows that we can pro-
duce a similar effect using subsequent layers of the audio-visual
model.

8. Conclusions

In this paper, we showed how information about speech is repre-
sented in a network trained to project audio captions into an em-
bedded feature space near their associated images. We saw that
units in the lowest layers are tuned to specific phonetic classes,
those in the middle layers are selective for both phonetic and
semantic information, and those at the highest layers are almost
exclusively semantic. Additionally, we showed a increase in
speaker-invariability as we move up through the network.

Along with these unit-level analyses, we explored the use
of these features for a variety of unsupervised speech process-
ing tasks. We showed specifically that the semantic nature of
the representations in the highest layers of the network ren-
der those features ill-suited for unsupervised speech processing
tasks, unless those tasks take specific advantage of those se-
mantics (e.g. spoken term detection for terms associated with
visual concepts). Nonetheless, the high-level semantic task for
which this network was trained is an effective means of learn-
ing phonetic representations and speaker invariance in the lower
levels of the network. We showed that these low-level features
are able to outperform baseline filterbank or MFCC features in
out-of-domain spoken term detection and unsupervised speech
recognition tasks. Overall, these results suggest that grounding
speech in a visual context can significantly improve the perfor-
mance of zero-resource speech processing.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

9. References

A. S. Park and J. R. Glass, “Unsupervised pattern discovery in
speech,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 16, no. 1, pp. 186—-197, 2008.

J. Glass, “Towards unsupervised speech processing,” in Informa-
tion Science, Signal Processing and their Applications (ISSPA),
2012 11th International Conference on. 1EEE, 2012, pp. 1-4.

C.-y. Lee and J. Glass, “A nonparametric bayesian approach to
acoustic model discovery,” in Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics: Long
Papers-Volume 1. Association for Computational Linguistics,
2012, pp. 40-49.

H. Kamper, A. Jansen, and S. Goldwater, “A segmental frame-
work for fully-unsupervised large-vocabulary speech recogni-
tion,” arXiv preprint arXiv:1606.06950, 2016.

D. K. Roy and A. P. Pentland, “Learning words from sights and
sounds: A computational model,” Cognitive science, vol. 26,
no. 1, pp. 113-146, 2002.

D. Harwath, A. Torralba, and J. Glass, “Unsupervised learning
of spoken language with visual context,” in Advances in Neural
Information Processing Systems, 2016, pp. 1858—1866.

D. Harwath and J. Glass, “Learning word-like units from joint
audio-visual analysis,” to appear ACL 2017; arXiv preprint
arXiv:1701.07481, 2017.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba,
“Object detectors emerge in deep scene cnns,” arXiv preprint
arXiv:1412.6856, 2014.

M. Versteegh, R. Thiolliere, T. Schatz, X.-N. Cao, X. Anguera,
A. Jansen, and E. Dupoux, “The zero resource speech challenge
2015.” in INTERSPEECH, 2015, pp. 3169-3173.

R. Thiolliere, E. Dunbar, G. Synnaeve, M. Versteegh, and
E. Dupoux, “A hybrid dynamic time warping-deep neural net-
work architecture for unsupervised acoustic modeling.” in INTER-
SPEECH, 2015, pp. 3179-3183.

D. Renshaw, H. Kamper, A. Jansen, and S. Goldwater, “A com-
parison of neural network methods for unsupervised representa-
tion learning on the zero resource speech challenge.” in INTER-
SPEECH, 2015, pp. 3199-3203.

K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learn-
ing deep features for scene recognition using places database,”
in Advances in neural information processing systems, 2014, pp.
487-495.

J. S. Garofalo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pal-
lett, and N. L. Dahlgren, “The darpa timit acoustic-phonetic con-
tinuous speech corpus cdrom,” Linguistic Data Consortium, 1993.

M. A. Pitt, L. Dilley, K. Johnson, S. Kiesling, W. Raymond,
E. Hume, and E. Fosler-Lussier, “Buckeye corpus of conversa-
tional speech (2nd release),” Columbus, OH: Department of Psy-
chology, Ohio State University, 2007.

H. Kamper, A. Jansen, and S. Goldwater, “Fully unsupervised
small-vocabulary speech recognition using a segmental bayesian
model.” 2015.



