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Abstract 
In real-life conditions, mismatch between development and 
test domain degrades speaker recognition performance. To 
solve the issue, many researchers explored domain adaptation 
approaches using matched in-domain dataset. However, 
adaptation would be not effective if the dataset is insufficient 
to estimate channel variability of the domain. In this paper, we 
explore the problem of performance degradation under such a 
situation of insufficient channel information. In order to 
exploit limited in-domain dataset effectively, we propose an 
unsupervised domain adaptation approach using Autoencoder 
based Domain Adaptation (AEDA). The proposed approach 
combines an autoencoder with a denoising autoencoder to 
adapt resource-rich development dataset to test domain. The 
proposed technique is evaluated on the Domain Adaptation 
Challenge 13 experimental protocols that is widely used in 
speaker recognition for domain mismatched condition. The 
results show significant improvements over baselines and 
results from other prior studies. 
Index Terms: unsupervised domain adaptation, domain 
mismatch, speaker recognition, autoencoder, denoising 
autoencoder 
 

1. Introduction 
The i-vector extraction paradigm, which utilizes the Universal 
Background Model (UBM) and total variability factor space, 
has sparked great interest in the field of speaker recognition 
due to its remarkable performance over the past few years [1]. 
The i-vector length normalization and Probabilistic Linear  
Discriminant  Analysis (PLDA) approaches have been 
employed to effectively score between test utterances and 
speaker models [2]–[6]. 

For best performance, the domain of the data used in 
system development should match the domain of the system 
that will be operated. In this case, if a dataset domain is 
matched with operation domain, it is called in-domain dataset; 
if it is mismatched, it is called out-of-domain dataset. Garcia-
Romero [7] found that training the UBM and total variability 
subspace on some types of domains have limited effects on 
performance improvement. Instead, the performance depends 
heavily on PLDA parameter estimation. By estimating PLDA 
parameters on large labeled in-domain dataset, the system 
could improve its performance and it performed almost as a 
system trained on the in-domain itself. 

However, large labeled in-domain datasets are not 
generally available or they are highly expensive to purchase. 

Thus, in practice, speaker recognition systems usually suffer 
performance degradation when applied to unknown domains. 
To be generally applicable, speaker recognition systems must 
overcome this performance limitation which comes from the 
insufficient information of in-domain. Solutions to domain 
mismatched condition proposed by others can be divided into 
two general scenarios depending on the particular information 
availability scenarios they are designed for. Both scenarios 
assume that a large out-of-domain dataset is available with 
speaker labels. 

Under the first scenario, corpus label is available for the 
out-of-domain dataset and in-domain dataset is not available. 
Although the system lacks in-domain information, the system 
can compensate for the domain mismatch by a corpus matched 
whitening transformation with a whitening library [8]. 
Furthermore, it also uses corpus dependent subspaces 
employing the techniques of Within-class Covariance 
Correction (WCC) [9] and Inter-Dataset Variability 
Compensation (IDVC) [10], [11],. 

Under the second scenario, an unlabeled in-domain dataset 
is available. However, it lacks speaker labels, so it cannot be 
used directly with the PLDA parameter estimation. Villalba 
[12] introduced a variational Bayesian approach for adapting 
PLDA models from out-of-domain datasets to in-domain. 
Garcia-Romero [13] introduced a clustering approach for 
unlabeled in-domain datasets that uses well-known 
Agglomerative Hierarchical Clustering (AHC) to estimate 
Within-speaker Covariance (WC) and Across-speaker 
Covariance (AC) with the PLDA model. In this approach, the 
estimated in-domain WC and AC are interpolated from out-of-
domain WC and AC [7], [13], [14]. Kanagasundaram [15] 
introduced another IDVC technique, called Inter-Dataset 
Variability (IDV), to capture the variability between out-of-
domain and in-domain. Furthermore, Rahman [16] proposed a 
Dataset-Invariant Covariance Normalization (DICN) approach 
which is similar to IDV, but this approach is more effective in 
compensation than IDV. Denoising Autoencoder (DAE) based 
approach also can be used. Autoencoder based domain 

 
Figure 1: Block diagram of speaker recognition system 
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adaptation is widely used in machine learning community 
[17]–[19] and also adopted already on speech processing area 
[20]–[22]. Recently Kudashev [23] proposed a DAE-based 
denoising and domain adaptation for speaker recognition.  

Prior studies on the second scenario assume that the in-
domain dataset is sufficiently resource-rich to estimate within-
speaker and across-speaker variability. However, if the in-
domain dataset lacks sufficient audio samples of each speaker 
to estimate within-speaker variability, the dataset cannot be 
effectively used for adaptation. This study explores the 
performance degradation in such a situation, insufficient 
channel information.  

Because the small set of in-domain dataset cannot be used 
directly to estimate PLDA parameters by lack of speaker 
information, there is a need for new approach. In this paper, 
the use of Autoencoder based Domain Adaptation (AEDA) is 
proposed in order to cope with insufficient channel 
information of in-domain dataset on second scenario. AEDA 
combines an Autoencoder (AE) with a DAE to adapt the 
resource-rich out-of-domain dataset utilizing in-domain 
dataset. Training the AE part uses both in-domain and out-of-
domain i-vectors and training the DAE part uses sparse 
reconstructed out-of-domain i-vectors using in-domain dataset 
dictionary. In this paper, the performance of this new approach 
is compared to conventional domain adaptation and 
compensation approaches. 

The rest of the paper is organized as follows. Sec. 2 
outlines the baseline speaker recognition system and describes 
domain mismatch conditions under insufficient channel 
information. Sec. 3 presents the proposed unsupervised 
domain adaptation approach, and Sec. 4 presents and analyzes 
the experimental results. Sec. 5 concludes the paper.  

 

2. Speaker Recognition in Mismatched 
Conditions 

2.1. Speaker Recognition System and Adaptation 

Fig.1 is a block diagram of the i-vector based speaker 
recognition system with the parameters needed for each 
process. The first block indicates the UBM and the second 
indicates the training total variability matrix T which takes 
advantage of a large out-of-domain dataset. The third block is 
the pre-processing step that satisfies the i-vector as a Gaussian 
modeling assumption of fourth block through whitening and 
length normalizing. The fourth block scores input utterances 
from the speaker model using the PLDA parameters. When 
adapting the system to in-domain, parameters of the third and 
fourth block must be estimated on the in-domain. 

2.2. Adaptation under Insufficient Channel Information 

We conducted experiments using Speaker Recognition 
Evaluation (SRE) and Switchboard (SWB) dataset which are 
widely used by in speaker recognition community. On this 
paper, SWB and SRE are considered as group of i-vector sets. 
The SWB set consists of all telephone calls from all speakers 
taken from SWB 1 and 2(phase 1 to 3), and SWB 2 Cellular 
phase 1 and 2. The SRE set is taken from the SRE 04, 05, 06 
and 08 collections. For domain mismatched condition, 
Domain Adaptation Challenge 13 (DAC13) experimental 
protocol is used [24]. DAC13 provides the list and i-vectors 
from SRE and SWB dataset that were used as table I. 

Additionally, DAC13 provided the SRE-1phn i-vector set, 
which is reduced set consisting of the i-vector from only 1 
telephone number per speaker. Since DAC13 established a 
benchmark for domain adaptation evaluation by setting SWB 
as the development out-of-domain dataset and SRE as the 
evaluation in-domain dataset, many studies explored domain 
mismatch issued. However, comparisons of performance 
under insufficient channel information have been inadequate. 

Table II shows the Equal Error Rate (EER) performance 
of the SRE10 c2-extended test [24] when the parameters are 
trained with different datasets using the framework presented 
in Fig. 1. System 1 can be considered as the desired 
benchmark when the in-domain dataset speaker label is known. 
System 2 is the baseline of the domain mismatched condition 
when the in-domain database is unlabeled. Systems 3 and 4 
are versions of systems 1 and 2, respectively on more 
challenging conditions. System 3 is adapted using a matched 
in-domain labeled dataset SRE-1phn which is subset of SRE. 
Note that, although system 3 is under domain matched 
conditions and system 4 is under mismatched conditions, 
system 4 shows better performance in EER than system 3. 
This is an interesting result and we believe that performance 
was degraded by insufficient channel information. The dataset 
‘SRE-1phn’ contains audio from only a single telephone 
number per speaker and use of such a poor phone number 
diversity hinders the effective estimation of within-speaker 
variability of in-domain. In this case, the conventional 
approaches [13], [14] that estimate within-speaker variability 
from in-domain unlabeled dataset would fail, in spite of 
perfect speaker label estimation, due to insufficient channel 
information. Singer [25] also tackled same issue and suggested 
dataset selection criteria to prevent this situation in advance. 

 

3. Proposed Unsupervised Domain 
Adaptation 

3.1. Autoencoder and Denoising Autoencoder 

AE is an artificial neural network for reconstructing their own 
input signal. DAE is the recent variant of the classical AE for 
reconstructing clean repaired inputs from corrupted input 
signals. Both encoders have an output layer featuring the same 
number of nodes as the input layer and one or more hidden 
layers connecting those input and output layers. The 

Table 1: i-vector Statistics in DAC 13 i-vector Dataset  

 SWB SRE SRE-1phn 
#spkrs 3114 3790 3787 
#calls 33039 36470 25640 

Avg. #calls/spkrs 10.6 9.6 6.77 
Avg. #phone_num/spkr 3.8 2.8 1 

 

Table 2: SRE10 Test using DAC13 i-vector set.  

System # UBM, T W,m WC,AC EER 
1 SWB SRE SRE 2.33 
2 SWB SRE SWB 5.70 
3 SWB SRE-1phn SRE-1phn 9.34 
4 SWB SRE-1phn SWB 5.66 
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nonlinearity of the encoder and decoder ensures feasibility of 
the denoising approach and shows promising results when 
searching for more robust features for speech enhancement 
[21]. This study uses AE and DAE, which contain a single 
hidden layer. 

3.2. Proposed Autoencoder-based Domain Adaptation 

In this paper, the idea of DAE is extended to AEDA by 
replacing denoising concept with domain adaptation. Suppose 
that there is autoencoder that adapts out-of-domain dataset to 
in-domain using only unlabeled in-domain dataset. Then, 
resource-rich out-of-domain dataset could be more useful for 
speaker recognition system than using unlabeled in-domain 
dataset that degrades performance due to insufficient channel 
information as discussed in Sec.2.B. This scheme is shown in 
Fig. 2 where in-domain i-vector set is Din and out-of-domain i-
vector set is Dout. Dout

 t  is adapted i-vector set from Dout. 
Fig. 3 depicts the proposed AEDA structure which 

combines AE and DAE with sharing decoder g. The AE part 
consists of the encoder fin and decoder g. the DAE part 
consists of the encoder fout and decoder g. The fin and fout 
encoders map both domain inputs to the hidden representation 
h as fin(xin)= σ(Winxin +bin) and fout(xout)=σ(Woutxout +bout) 
where σ is an element-wise non-linear activation function, 
such as a sigmoid function. Win and Wout are weight matrices 
∈ �

n×m where n is the number of hidden units and m is the 
number of input layer nodes. bin and bout are bias vectors ∈ �

n. 
The sharing decoder g maps the hidden representation h to in-
domain output Yin as g(h) = Wh+b where W∈ �

m×n and b∈
�

m are the decoder parameters. The objective function of the 
AE part is  
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where Xin is the in-domain inputs from Din. The objective  
function of the DAE part is  
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where Xout is out-of-domain inputs from Dout. Thus, the 
objective function of AEDA is formulated as follows: 
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Neither AE or DAE by itself can guarantee that the hidden 
layer represents the signals common to both domains. 
However, the shared decoder g forces the encoders fin and fout 
to represent the input signal as common to both domains. This 
constraint is the most significant part of AEDA because we 
actually do not have the in-domain input Xin that matches the 
out-of-domain input  Xout to estimate DAE part as in Eq. (2). 
In the visual object recognition area, Jhuo [26] has already 
demonstrated that out-of-domain samples can be transformed 
to the in-domain by linear reconstruction of in-domain 
samples. Thus, the in-domain i-vector X� in that matches Xout is 
created using sparse reconstruction to obtain a similar 
distribution to the in-domain i-vector set Din. This allows 
AEDA to be estimated using a sparsely reconstructed X� in . 
Although X� in  is not real in-domain data, the encoder fout 
ensures that the out-of-domain data maps to the common 
domain by the DAE part and g ensures that the common 
domain maps to in-domain by the AE part. Without loss of 
generality, the objective function of AEDA can be formulated 
as follows: 

22

,,
||)((~||||))((||min outoutinininingff

fgfg
outin

XXXX ��� .  (4) 

A sparse representation concept is used to estimate in-domain 
i-vector X� in . In essence, a signal is represented by a linear 
combination of a small number of basis functions, i.e. a 
dictionary [26]. Thus, the sparse reconstruction constraint 
ensures that the reconstructed output follows a similar 
distribution to the dictionary. X� in  can be sparsely 
reconstructed from the in-domain dictionary matrix Ωin.  

Km
Kin

���� R],...,[ 21 ���                  (5) 

where ωk is an i-vector from the in-domain dataset Din, K is 
the total number of i-vectors used as a dictionary and m is the 
dimension of the i-vector. The objective function for 
reconstruction is  

22 ||||||min j
in
jjin

j

	
	
	

��� y                   (6) 

where αj is a coefficient with K elements vector for 
reconstruction of the i-vector and yj

in=g(fout(xj
out)). Here xj

out is 
j-th i-vector from the out-of-domain dataset Dout which has J 
number of utterances in total. γ controls for the sparsity of αj. 
From Eq. (6) the in-domain i-vector set can be obtained as 

ΑX inin ��~                                           (7) 

where A is the series of αj for all j. To optimize AEDA, Eq. (2) 
should first be initialized by dataset Din and then Eq. (6) and 
Eq. (4) should be optimized in an iterative manner. Eq. (4) can 

 
Figure 2: AEDA approach to adapting out-of-domain dataset 
to in-domain dataset presented in 2-dimensional space: stars 
represent out-of-domain dataset and triangles represent in-
domain dataset. Red and blue represent speaker labels and 
white represents no label. 
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be optimized by gradient descent as is typical for AE or DAE 
[19]. Eq. (6) can be optimized by least angle regression [27]. 
 

4. Experiments and Results 

4.1. Experimental conditions 

For the experiments, DAC 13 i-vector set which consists of 
SRE and SWB as Table I is used for speaker recognition 
system as Fig.1. Whitening and length normalization are done 
by SRE-1phn. The number of eigenvoices of PLDA is set to 
400. 

Under the proposed AEDA approach, the 1500 i-vectors 
are selected (K=1500) randomly for the in-domain dictionary 
Ωin. The sparsity γ is set to 0.01 and 1000 nodes are used for 
the hidden layer. Finding the optimal parameters will be 
explored in a separate study. After constructing the AEDA, the 
SWB (out-of-domain) dataset is adapted to the SRE-1phn (in-
domain) dataset (using fout and g) and it is referred to as 
AEDA-SWB dataset in this paper. Performance is evaluated 
with the SRE10 test same as in Sec. 2, and the used metrics 
are EER and the minimum Detection Cost Functions as 
defined in SRE 2008 (DCF08) and 2010 (DCF10). 

4.2. Performance comparison to state-of-the-art 
techniques 

The systems’ performances according to the three indices are 
compared in Table III. Systems 3 and 4 are taken from Table 
II and used as the domain matched and mismatched baselines. 
State-of-the-art techniques from other studies are examined for 
comparison. For Garcia-Romero’s Interpolated approach [13] 
referred to as system 5 in Table III, the true speaker label is 
used for ideal case rather than clustering with AHC algorithm. 
Then, WC and AC from SWB and SRE-1phn are interpolated, 
as indicated in Table III by “SWB + SRE-1phn”. To obtain the 
best result, the interpolation parameters for WC and AC are 
set to 0.6 and 0.3 as in [14]. IDV and DICN performances are 
presented under systems 6 and 7, respectively. Linear 
Discriminant Analysis (LDA) is needed for both approaches 
and i-vectors are projected to 400 dimensional subspace. IDV 
and DICN approaches are applied on the out-of-domain i-
vector set and they are indicated as IDV-SWB and DICN-
SWB respectively. For comparison with prior Autoencoder-
based method, we developed DAE using out-of-domain 
dataset which has speaker label with 1300 nodes of single 
hidden layer as Kudashev’s approach [23] and examined as 
shown in system 8.  

Interpolated approach and the IDV approach show 
performance degradation under insufficient channel 
information, and even the domain mismatched system 4 shows 
better performance than these two approaches. While the 
performances of IDV and Interpolated approaches lie between 
those of the baseline systems 3 and 4, DICN and DAE show 
slight improvement over baselines. 

Using the proposed AEDA, in-domain adapted dataset 
AEDA-SWB can be created from a SWB dataset. This AEDA 
approach (systems 9) shows better performance than others for 
all metrics, especially EER, which is improved by 7% over the 
DAE approach and 20% over the system 4 baseline.  

4.3. Analysis 

Fig. 4 shows the impact of AEDA, which gives better 
performance than others. The 600-dim LDA is used to 
represent i-vectors for better discrimination between speakers. 
It is derived from each SWB, DAE-SWB and AEDA-SWB i-
vectors respectively and first 2-dim i-vector are shown in Fig. 
4. While both approaches increase cross-speaker variability, 
the AEDA maintains within-speaker variability at similar level. 
DAE, on the other hand, fails to maintain within-speaker 
variability and the speakers overlap each other. This analysis 
suggests that AEDA could adapt i-vectors from out-of-domain 
to in-domain successfully. 

 
Figure 4: i-vectors of first five speakers in the SWB dataset 
using 3 different techniques on first 2 dimension of LDA 
subspace. Different colors represent different speakers. 

5. Conclusions 
The recent studies on unsupervised domain adaptation showed 
performance degradation under insufficient channel 
information. In this paper, we proposed an AEDA technique 
which leverages out-of-domain information. In our study, only 
a small set of unlabeled in-domain i-vectors is used as a 
dictionary for sparse reconstruction. The proposed AEDA is 
trained using both out-of-domain and in-domain i-vector sets 
including a sparsely reconstructed in-domain i-vector set. 
From the experimental results of the SRE10 test, the system 
based on our proposed AEDA achieved better performance 
than other approaches. The experimental result demonstrated 
that, despite utilizing the dataset with insufficient channel 
information, the proposed AEDA approach achieves 
unsupervised domain adaptation effectively and allows the 
small set of in-domain dataset to be useful for in-domain 
speaker variability estimation. 
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Table 3: SRE10 evaluation result with DAC 13 Dataset when 
Unlabeled In-Domain Dataset is Available  

# Adaptation 
& Compensation WC,AC EER DCF10 DCF08 

3 - SRE-1phn 9.34 0.721 0.520 

4 - SWB 5.66 0.633 0.426 

5 Interpolated [13] SWB + SRE-
1phn 6.55 0.652 0.454 

6 IDV [15] IDV-SWB 6.15 0.676 0.476 

7 DICN [16] DICN-SWB 4.99 0.623 0.416 

8 DAE [23] DAE-SWB 4.81 0.610 0.398 

9 AEDA AEDA-SWB 4.50 0.589 0.362 
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