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Abstract 
Recently in speaker recognition, performance degradation due 
to the channel domain mismatched condition has been actively 
addressed. However, the mismatches arising from language is 
yet to be sufficiently addressed. This paper proposes an 
approach which employs recursive whitening 
transformation to mitigate the language mismatched condition. 
The proposed method is based on the multiple whitening 
transformation, which is intended to remove un-whitened 
residual components in the dataset associated with i-vector 
length normalization. The experiments were conducted on 
the Speaker Recognition Evaluation 2016 trials of which the 
task is non-English speaker recognition using development 
dataset consist of both a large scale out-of-domain (English) 
dataset and an extremely low-quantity in-domain (non-English) 
dataset. For performance comparison, we develop a state-of-
the-art system using deep neural network and bottleneck 
feature, which is based on a phonetically aware model. From 
the experimental results, along with other prior studies, 
effectiveness of the proposed method on language mismatched 
condition is validated. 
Index Terms: speaker recognition, language mismatched 
condition, whitening transform 

1. Introduction 
Spoken language systems are usually developed and trained 
with out-of-domain dataset regardless of the target domain to 
which the system is applied.  This is because acquiring the in-
domain development dataset and its labels can be expensive or 
often impossible. Such resource imbalance between out-of-
domain and in-domain produces significant performance 
degradation on the system. Particularly on speaker recognition, 
it was explored by many researchers after Johns Hopkins 
University (JHU) hosted the Domain Adaptation Challenge 
2013 (DAC13) workshop to study about and find solutions to 
this issue [1] based on the i-vector approach which is state-of-
the-art in the field. Many successful methods have been 
explored to adapt or compensate the domain mismatched 
system hyper-parameters (universal background model, total 
variability matrix, within and across  covariance matrices) 
utilizing unlabeled in-domain dataset [2]–[5] or out-of-domain 
dataset only without any in-domain dataset [6]–[8]. 
Specifically, these studies explored channel domain 
mismatched problem according to DAC13 experimental 
protocol which defines development domain as mostly 
landline calls from the Switchboard (SWB) dataset and target 
domain as mostly cellular calls from the Speaker Recognition 
Evaluation 2010 (SRE10) dataset. 

In 2016, the National Institute of Standards and 
Technology (NIST) held periodic evaluation of speaker 
recognition systems, e.g. SRE16 and made the situation worse 
and more challenging. They focused on language mismatched 
condition with low-quantity in-domain unlabeled dataset. 
Language mismatched condition is set up by limiting the 
development dataset to be composed of a large English 
language dataset such as SWB, SRE and Fisher English with 
very small set of in-domain (non-English) unlabeled dataset 
while the evaluation dataset is spoken in Tagalog, Cantonese, 
Cebuano and Mandarin. Due to the language mismatch 
between development and target domain, posteriori probability 
of Universal Background Model (UBM) is not properly 
expected along the input utterances and eventually degrades 
performance of speaker recognition systems. Prior study have 
considered multilingual dataset augmentation [9] for language 
mismatched condition. However, application is possible only 
if sufficient in-domain dataset exists.  

In this paper, it is proposed recursive whitening 
transformation, a simple but powerful method to improve 
performance on language mismatched condition. Whitening 
transformation is an essential step for the state-of-the-art i-
vector based speaker recognition system. However, because of 
the mismatches between development and target domain, 
conventional target domain matched whitening transformation 
always contains un-whitened residual components on 
development domain i-vectors. Thus, recursive whitening 
transformation can be applied to remove the un-whitened 
residual components on development domain i-vector while 
target domain i-vector is preserved as whitened. 

To verify the proposed approach, experiments were 
conducted on SRE16 language mismatched condition using 
state-of-the-art i-vector extraction systems based on Gaussian 
Mixture Model (GMM), Deep Neural Network (DNN) and 
Bottleneck feature (BNF).  

2. Speaker Recognition in Language 
Mismatched Conditions 

2.1. Speaker recognition system and adaptation 

Fig.1 is a high level flow chart of the i-vector based speaker 
recognition system indicating the parameters required for each 
process. The first and second block can be estimated using a 
large source domain dataset. The third block is the pre-
processing step of the i-vector by whitening and length 
normalizing. The fourth block scores expectation of input 
utterances from the speaker model using the Probabilistic 
Linear Discriminant Analysis (PLDA) parameters Within-
speaker covariance (WC) and Across-speaker Covariance (AC) 
[10]–[12].  
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For best performance on domain mismatched condition, 
the domain of the data used in system development should 
match the domain of the system that will be applied to. 
Garcia-Romero [13] found domain for UBM and total 
variability have limited effects on performance improvement, 
and the performance depends heavily on the domain for length 
normalization, whitening transformation and PLDA parameter 
estimation. Thus, when adapting the system to a new domain, 
parameters of the third and fourth block must be estimated on 
the in-domain, e.g. target domain matched, dataset. 

 

 
Figure 1 : Block diagram of conventional speaker recognition system  
 

2.2. SRE16 and language mismatched condition 

The dataset for SRE 16 trials are collected from speakers 
residing outside North America and speaking Tagalog and 
Cantonese (referred as major language) and Cebuano and 
Mandarin (referred as minor language). While both major and 
minor language have small amount of utterances, especially, 
minor has extremely small quantity as below in Table 1. For 
minor and major language set, total 24,140 (4,828 targets and 
19,312 non-targets) and 1,986,728 (37,062 targets and 
1,949,666 non-targets) trials are composed between 
enrollment and test utterances, respectively. To set up 
language mismatched condition, the speaker recognition 
system was developed using an English language dataset 
including SWB, Fisher English and previous SRE datasets. 
Unlabeled datasets of minor and major language are free to 
use as in-domain dataset for domain adaptation and 
compensation although they were limited to a small quantity. 
Table 1 : Statistics of SRE16 evaluation dataset. 

Language 
set Category Labels 

Numbers of 

Utt. Spk. Calls 

Minor Enrollment Available 120 20 60 
Minor Test Available 1207 20 140 
Minor Unlabeled  X 200 20 200 
Major Enrollment Available 1202 201 602 
Major Test Available 9294 201 1408 
Major Unlabeled X 2272 X X 

 

2.3. Whitening transformation on domain mismatched 
condition and un-whitened residual components by 
language mismatch 

Whitening transformation is linear transformation that 
decorrelates a vector of random variables and forces all 
variance of dimension to unit variance, so that the covariance 
of transformed random variable becomes identity matrix. In 
domain mismatched condition, it is a common approach to get 
better performance by application of a whitening 
transformation matrix derived by in-domain dataset although it 
is unlabeled and small amount of audios are available [2]–[5]. 
If in-domain dataset is unavailable, sub-corpora label of out-
of-domain dataset could be used to compensate the domain 
mismatches [6]–[8]. 

Suppose, for SRE16 trials, x be i-vectors from the minor 
unlabeled, i.e. in-domain, dataset and have a precision matrix 
and mean of A and b, respectively. Also, let y be i-vectors 
from the SRE, i.e. out-of-domain, dataset and have a precision 
matrix and mean of C and d. Let z be the minor enrollment 
and test i-vectors which has E and g for precision matrix and 
mean. Purpose of whitening transformation is to whiten z and 
y for scoring and PLDA estimation, respectively. As prior 
studies, in-domain i-vector x can be used for deriving 
whitening transformation matrix. According to Cholesky 
whitening transformation, y and z can be whitened using A 
and b as below. 

)(' byy ��A                          (1) 

)(' bzz �� A .                        (2) 
 

Then the mean and covariance of y' and z' are 
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Because x and z is in-domain matched i-vector, it is assumed 
mean and covariance of z' would be 0 and identity matrix I. 
Although the out-of-domain y' is still remained as un-whitened 
because of domain mismatches, prior studies investigated y' is 
still effective to estimate PLDA parameters and tells y' is close 
to white rather than the original y. For maximum effectiveness, 
we use out-of-domain sub-corpora dataset to removing un-
whitened residual components in out-of-domain i-vector y'. 
Rather than relying on conventional single in-domain 
whitening transform, we propose recursive whitening 
transformation approach to remove the un-whitened residual 
components on language domain mismatched condition by 
using sub-corpora dataset for whitening transformation 
sequentially. 

3. Recursive whitening transformation 
A recursive whitening transformation can be performed by the 
below description with very small in-domain unlabeled dataset 
and large scale out-of-domain dataset. Let Si(j) and μi(j) be the 
i-th sub-corpora level, j-index sub-corpora precision matrix 
and mean vector. At each i level, closest sub-corpora Ji can be 
determined by maximum likelihood of target domain i-vector 
with the sub-corpora Gaussian models θij as below 
 

)|)((maxarg 1
),...,1(

iji
Kj

i fpJ θ��
�

�                 (5) 

where normal distribution θij=Ν(μi(j), Si(j)-1) and K is total 
number of sub-corpora at i level. fi-1(ω) is input i-vector that is 
recursively whitened at previous level as follows. 
 

� 	)()()()( 1 iiiiii JfJSf ��
� ��� �            (6) 

where η(∙) is length normalization function [14]. f0(ω) is initial 
i-vector whitened by in-domain dataset as conventional 
approach at section 2.3. 

For example, in visual, we explored SRE 16 minor 
language set using recursive whitening transformation. Sub-
corpora and its level of SRE 16 minor can be represented as 
below in Table 2. 

Super vector 
extraction

i-vector 
extraction

Whitening & 
Length Norm. PLDA

UBM

Labeled data needed

T W, m WC,AC

Using unlabeled data
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Table 2 : sub-corpora level of SRE 16 dataset 
Sub-corpora 

Level i 
Sub-corpora (sub-corpora index j) Recursively whitened  

i-vector at each level i 

0 Minor unlabeled dataset (1) f0(ω) 
1 SRE(1), SWB(2) f1(ω) 

2 
SRE04(1), SRE05(2), SRE06(3), 

SRE08(4), SRE10(5), SWB2 
p1~p3(6~8), SWB2 c1~c2(9,10) 

f2(ω) 

 

The i-vector was extracted speaker recognition system 
which was developed using out-of-domain dataset as section 
4.1.2. The distribution of original i-vector of minor enrollment 
and test dataset and contour of equal probability of other sub-
corpora distribution are shown at Figure 2. Using minor 
unlabeled dataset, it is possible to obtain the in-domain 
whitened i-vector as f0(ω) which is identical to the 
conventional in-domain whitening transformation result. 

 
Figure 2 : Projection of the minor test and enrollment i-vector ω on 3 
dataset PCA subspace (SRE, SWB, minor unlabeled). Ovals represent 
the equal probability contours of 2-d projection of the SRE, SWB and 
Minor unlabeled i-vectors. Scatter represents the distribution 

 

Next, we explored how the dataset is distributed after 
conventional whitening transformation. Figure 3 represents the 
whitened minor enrollment and test i-vector f0(ω) distribution 
including contour of SRE and SWB dataset. We could assume 
f0(ω) is white, but out-of-domain i-vector, e.g SRE and SWB, 
is not as described in Section 2.3. To remove the residual un-
whitened components on out-of-domain i-vectors, we could 
use the SRE dataset (J1=1) for whitening transformation again 
which is statistically close (by Eq. 5) to minor enrollment and 
test i-vectors f0(ω) to maintain its whitened property. 

 
Figure 3 : Projection of the minor test and enrollment i-vector f0(ω) on 
2 dataset PCA subspace (SRE, SWB) after whitening transform: The 
enrollment and test i-vector seems to match with SRE dataset. 

 

After recursive whitening transformation at sub-corpora 
level 1, distribution of minor enrollment and test i-vector f1(ω) 
and contour of SRE sub-corpora distribution which consists of 
SRE04~10 are shown in Figure 4. SRE08 dataset (J2=4) is the 
statistically closest sub-corpora dataset with enrollment and 
test i-vector f1(ω) distribution. Thus, it can be used as sub-
corpora at level 2 recursive whitening transformation to 

remove the un-whitened residual components in out-of-
domain while keeping minor enrollment and test i-vector f1(ω) 
in white. In the rest of the paper, the effectiveness of recursive 
whitening approach in SRE 16 performance measurement 
indices is investigated. 

 
Figure 4 : Projection of the minor test and enrollment i-vector f1(ω) on 
sub-corpora dataset PCA subspace (SRE 04~10) after whitening 
transformation twice: The enrollment and test i-vector seems almost 
whitened already 

4. Performance evaluation 

4.1. Experimental environment 

For training speaker recognition system on this paper, Mel-
Frequency Cepstral Coefficients (MFCC) is used to generate 
60 dimensional acoustic features. It is consisted of 20 cepstral 
coefficients including log-energy C0, then, it is appended with 
its delta and acceleration. For training of DNN based acoustic 
model, different configurations were adopt to generate 40 
ceptral coefficient without energy component for high 
resolution acoustic features (ASR-MFCC). For feature 
normalization, Cepstral Mean Normalization is applied with 3 
seconds-length sliding window. For performance comparison, 
four different approaches to extract i-vectors are developed as 
in further sections 4.1.1 to 4.1.4. All i-vector was extracted in 
600 dimension. After i-vector extraction and recursive 
whitening transformation, PLDA parameters were estimated 
using SRE04~10 dataset for scoring. The number of 
eigenvoices of PLDA is set to 400. 
 

4.1.1. GMM-UBM 
 

According to general i-vector extraction approach [15], i-
vector based speaker recognition system is developed as in 
Figure 1 based on GMM-UBM. For training of GMM-UBM 
and total variability matrix, SRE 04~10 and SWB phase2 1~3, 
cellular 1~2 dataset were used. 
 

4.1.2. DNN-UBM 
 

Fisher English was used for training of Time Delay Neural 
Network (TDNN) with ASR-MFCC feature. After training 
TDNN, the DNN-UBM is estimated on high resolution 
version of MFCC. SRE (04~10, part of 12) and Switchboard 
Dataset were used for training of DNN-UBM and total 
variability matrix [16], [17].  
 

4.1.3. Supervised-GMM-UBM (SGMM-UBM) 
 

Phonetically-aware Supervised GMM-UBM [16] was trained 
using posterior of TDNN network. Same dataset was used for 
GMM-UBM system to train Supervised GMM-UBM and total 
variability matrix. 
 

4.1.4. Bottleneck Feature based GMM-UBM (BNF-UBM) 
 

BNF features were extracted using DNN which contains 
bottleneck layer [18], [19]. DNN layer structure was set to 
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1500-1500-80-1500 with total 4 layer and MFCC features of 
all dataset was converted to BNF feature (80 dim) as [20]. 
After extracting BNF feature, it follows general GMM-UBM 
based i-vector extraction approaches as in Sec. 4.1.1 and the 
same dataset was used for GMM-UBM total variability matrix. 

4.2. Performance comparison on DNN-UBM system 

Performance was evaluated in terms of Equal Error Rate 
(EER), two minimum detection cost minDCF16-1 and 
minDCF16-2 with two different cost parameters which are 
newly determined in SRE16 evaluation plan [21]. The 
minCprimary cost is average of minDCF16-1 and minDCF16-2. 

Performance evaluation was performed on both minor and 
major languages on SRE 16 dataset as table 3 and 4. After 
recursive whitening transformation, the system shows 
considerably higher performance than the single whitening 
transformation approach. Level 1 recursive whitening provides 
16% and 3% improvement in EER, 11% and 6% 
improvements in minCprimary on minor and major trials. For 
level 2 recursive whitening, it is shown that similar 
performance is given as level 1 in EER, but it still shows slight 
improvements in cost indices. In addition, minor language 
trials show considerable performance improvement compared 
to major trials. This indicates that the recursive whitening 
approach is more effective when the in-domain dataset is too 
small to represent in-domain variability. While recursive  
whitening transformation shows clear improvements on 
performance evaluation, the conventional domain 
compensation techniques such as IDVC [6], DICN [4] that 
could be applied on this language mismatched condition did 
not show notable improvements on all indices.  

 

Table 3 : Performance evaluation on SRE16 minor language 
(Cebuano and Mandarin) using recursive whitening transformation 

 
Sub-corpora for whitening Compen

-sation EER minDCF16-1 minDCF16-2 minCprimary 
Level 0 Level 1 Level 2 

Conventional 
(Level 0 
recursive 

whitening) 

Minor   - 21.02 0.8217 0.8598 0.8407 

Minor   IDVC 21.10 0.8223 0.839 0.8306 

Minor   DICN 21.08 0.8193 0.8722 0.8457 

Level 1 
recursive 
whitening 

Minor SRE  - 17.48 0.7358 0.7556 0.7457 

Minor SRE  IDVC 17.01 0.7198 0.7504 0.7351 

Minor SRE  DICN 17.33 0.7204 0.7518 0.7361 

Level 2 
recursive 
whitening 

Minor SRE SRE-08 - 17.92 0.7085 0.7447 0.7266 

Minor SRE SRE-08 IDVC 17.21 0.7123 0.7474 0.7298 

Minor SRE SRE-08 DICN 17.33 0.7233 0.7465 0.7349 
 

Table 4 : Performance evaluation on SRE16 major language (Tagalog 
and Cantonese) using recursive whitening transformation 

 
Sub-corpora for whitening Compen

-sation EER DCF01 DCF02 minCprimary 
Level 0 Level 1 Level 2 

Conventional 
(Level 0 
recursive 

whitening) 

Minor   - 14.10 0.7601 0.8342 0.7971 

Minor   IDVC 14.02 0.7547 0.8294 0.7920 

Minor   DICN 14.13 0.7261 0.8044 0.7652 

Level 1 
recursive 
whitening 

Minor SRE  - 13.66 0.7201 0.7766 0.7483 

Minor SRE  IDVC 13.74 0.7057 0.7571 0.7314 

Minor SRE  DICN 13.61 0.7215 0.7764 0.7489 

Level 2 
recursive 
whitening 

Minor SRE SRE-08 - 13.56 0.7224 0.7786 0.7505 

Minor SRE SRE-08 IDVC 13.60 0.7029 0.7572 0.7301 

Minor SRE SRE-08 DICN 13.63 0.7203 0.7772 0.7488 

4.3. Performance comparison on multiple system  

For additional analysis, performance was evaluated to verify 
the proposed approach with multiple state-of-the-art i-vector 
extraction systems that were reported in prior studies [22]. In 
this evaluation, symmetric normalization (S-norm) is adopted 
for score normalization [23]. For S-norm, unlabeled dataset of 
minor and major were used as imposter utterances for minor 
and major trials, respectively. For calibration and fusion, 
simple linear calibration and fusion were conducted by 
Bosaris Toolkit [24]. Performance was evaluated in minCprimary 
as well as its actual detection cost actCprimary with constant 
threshold as in the SRE16 evaluation plan [21] 

From results provided in Table 5, BNF-UBM shows worst 
performance although we followed best configuration as [20]. 
On both conventional and proposed approach, it is interesting 
that UBM based on phonetically aware model such as DNN, 
supervised GMM and BNF does not have advantages on 
language mismatched condition although it was reported that 
high performance is provided with language matched 
condition. This indicates that the phonetically aware model is 
not effective on language mismatched condition. All system 
shows average 13% improvement in all indices after recursive 
whitening approach is adopted and DNN-UBM shows best 
performance on both minimum and actual detection costs.  

 

Table 5 : Performance evaluation on SRE16 minor language 
(Cebuano and Mandarin) on multiple i-vector extraction system using 
recursive whitening transformation 

i-vector Extraction 
System Name 

Conventional (level 0) Level 1 recursive whitening 

EER minCprimary actCprimary EER minCprimary actCprimary 

GMM-UBM 21.91 0.8068 0.8271 18.93 0.7155 0.7293 
DNN-UBM 21.21 0.8267 0.8428 19.12 0.6862 0.7043 

SGMM –UBM 21.23 0.8099 0.8426 20.05 0.7251 0.7461 
BNF-UBM 23.94 0.8973 0.9215 20.19 0.7557 0.7824 

Fusion of 4 sub-systems 17.01 0.7179 0.7313 15.67 0.6478 0.6727 

5. Conclusion 
Whitening and length normalization is common and essential 
component of state-of-the-art speaker recognition system. An 
alternative approach, recursive whitening transformation, is a 
relatively simple process allowing conventional i-vector 
extraction systems to deal with the language mismatch 
between development and target domain dataset. By recursive 
whitening transformation, the i-vectors of out-of-domain 
development dataset get whitened gradually to remove un-
whitened residual component while i-vector of in-domain 
target dataset is maintained as whitened. In the experiments on 
language mismatched condition, the proposed approach 
indicates its robust performance especially on the challenging 
condition where in-domain dataset is extremely small. In 
addition, we validated our approach on several state-of-the-art 
i-vector extraction systems with the language mismatched 
condition. It is claimed that recursive whitening 
transformation is an effective pre-processing step for i-vector 
and there are possibilities in future studies to conduct 
compensation on i-vector feature space.  
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