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Abstract

As a continuation of our efforts towards tackling the problem of
spoken Dialect Identification (DID) for Arabic languages, we
present the QCRI-MIT Advanced Dialect Identification System
(QMDIS). QMDIS is an automatic spoken DID system for Di-
alectal Arabic (DA). In this paper, we report a comprehensive
study of the three main components used in the spoken DID
task: phonotactic, lexical and acoustic. We use Support Vector
Machines (SVMs), Logistic Regression (LR) and Convolutional
Neural Networks (CNNs) as backend classifiers throughout the
study. We perform all our experiments on a publicly available
dataset and present new state-of-the-art results. QMDIS dis-
criminates between the five most widely used dialects of Arabic:
namely Egyptian, Gulf, Levantine, North African, and Modern
Standard Arabic (MSA). We report ⇡ 73% accuracy for system
combination. All the data and the code used in our experiments
are publicly available for research.
Index Terms: Spoken Dialect Identification, Arabic, Phono-
tactic, Acoustic, Lexical, Logistic Regression, Support Vector
Machine, Convolutional Neural Network

1. Introduction

The task of Dialect identification (DID) consists of classifying
a given spoken utterance into one of the many dialects spoken
in a particular language. DID is similar to the more general
problem of language identification (LID). DID is more chal-
lenging than LID because of the small and subtle differences
between the various dialects of the same language. A good DID
system can be used to extract dialectal data from the speech
database to train dialect specific acoustic models for speech-
to-text transcription. A DID system built using Deep Learning
models such as Convolutional Neural Networks (CNNs) can be
used to generate dialect codes (embeddings) that can be used
for dialect adaptation of Neural Network acoustic models for
Automatic Speech Recognition (ASR). The aforementioned ap-
proach is similar to using speaker codes (i-vectors) for speaker
adaptation of acoustic models while building an ASR system
[1].

Although the problem of LID is far from solved, the field of
spoken LID has flourished in the past decade and great advance-
ments have been made in this direction. The three methods pro-
posed in literature for LID are Lexical, Phonotactic and Acous-
tic. Lexical and Phonotactic approaches capture the n-gram
word (or character) and phone statistics respectively from the
word and phone transcripts. The transcripts are generated using
a speech-to-text transcription system and one or more phone
recognizers. The n-gram statistics are then used to construct
a Vector Space Model of spoken utterances, where each utter-
ance is represented as a vector encoding its n-gram word (or
character) or phone statistics. A classifier such as SVM is then

used to find a decision boundary in the n-gram Vector Space
[2]. Acoustic methods work with low-level acoustic features
such as Mel Frequency Cepstral Coefficients (MFCCs), Shifted
Delta Cepstral Coefficients (SDCs) [3] and prosody [4]. The
acoustic features are modeled using Gaussian Mixture Mod-
els (GMMs) and the popular i-vector modeling framework [5].
Other approaches such as using frame-by-frame phone poste-
riors (PLLRs) [6] as features for LID and non-negative factor
analysis (NFA) for GMM weight decomposition and adaptation
have also been explored [7] .

In this work, we continue our investigation on Arabic DID.
The Arabic language can be broadly divided into five major di-
alects; namely Egyptian (EGY), Gulf (GLF) or Arabian Penin-
sula, Levantine (LAV), Modern Standard Arabic (MSA) and
North African (NOR) or Maghrebi. As argued in [2], there are
sufficient differences between the various Arabic dialects such
that they can be treated as different languages, and the problem
is similar to that of LID. We make the same assumption in this
paper. We present a comprehensive study of the three methods
for spoken DID: lexical & phonotactic (§ 3) and acoustic (§ 2),
focusing on Acoustic and Lexical methods. Inspired by the suc-
cessful use of Convolutional Neural Networks (CNNs) for text
classification [8] and acoustic modeling [9, 10], we extend our
previous work [2] by investigating the applicability of CNNs to
directly map the raw acoustic features to the corresponding di-
alect, unlike the traditional latent variable modeling approach,
popularly known as the i-vector framework. We present the re-
sults of our investigation in § 4.2

2. Acoustic Methods for Spoken DID

2.1. Input Features

We parametrize the speech signal by extracting Mel-frequency
cepstral coefficients (MFCCs) per 25 ms sliding window over
the speech signal, having a 10 ms overlap. The MFCC fea-
ture vector is enriched using shifted delta cepstral coefficients
(SDCs) [3]. We use the configuration 7-1-3-7 for extracting the
MFCC-SDC features, similar to the one used in [11]. The afore-
mentioned approach gives us a sequence of feature vectors for
each spoken utterance, which is fed as input to the CNN. We use
Kaldi [12], a publicly available Automatic Speech Recognition
toolkit for feature extraction.

2.2. Convolutional Neural Network

Recently [11], encouraging results have been reported when us-
ing Deep Learning Methods directly on raw acoustic features
for Spoken LID. In this work, we use a CNN as a mapping func-
tion from raw acoustic features (MFCC-SDC) to corresponding
dialects.

We experiment with two CNN architectures: 1) A simple
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CNN (CNN A) with one convolution layer followed by global
max pooling [13] along the time axis and a fully connected hid-
den layer that gives the final speech representation. The repre-
sentation is then fed to a softmax layer which outputs the final
prediction.

2) A more complex CNN (CNN B), with three convolution
layers. The first two layers are followed by Max Pooling oper-
ation, while the third layer is followed by Global Max Pooling.
The third convolution layer is followed by a fully connected
hidden layer with dropout to get the final representation. The
final representation is fed to a softmax layer that outputs the fi-
nal prediction. The architecture is same as used in [10] for the
purpose of encoding the spoken utterance into a fixed vector
representation.

Figure 1: CNN B: CNN acting on 56 dimensional MFCC-SDC
features. Architecture inspired by [10]

Learning: During the learning phase, we tune the
hyper-parameters of CNN A and CNN B using 5-fold cross-
validation. Cross-validation is performed on the training dataset
and the final evaluation is conducted on the test set.

Hyper-parameters for CNN A are: 1) Number of filters in
the convolution layer (nb filters), 2) filter size (filter length), 3)
number of hidden units (h) in the fully connected layer (f

c

) and
4) f

c

dropout (f
c

drop). We perform a grid search over the
possible parameter values and the optimal values in our case
are: nb filters: 1024, filter length: 4, h: 1024 and f

c

drop: 0.2
Hyper-parameters for CNN B are: 1) the convolution layers

setting given by {f1, f2, f3 : nb1, nb2, nb3}, where f
i

is the
filter size in the convolution layer i and nb

i

is the number of
corresponding filters. 2) The number of neurons on the fully
connected layer, h. We fix the pool length and stride to be 4
and 2 respectively for the max pooling operation. The optimal
parameter values for CNN B is are: {2, 4, 4 : 32, 64, 128} and
h: 256, found using 5-fold cross-validation.

2.3. Baseline: I-vector

We use the i-vector system as a comparison with the CNN
dialect classifier. I-vectors are extracted using the standard
pipeline [2]. First, we extract the bottleneck feature (BNF) rep-
resentations from the MFCC representation by using a Deep
Neural Network (DNN) based ASR system. Details about the
DNN and the BNF extraction are given in our previous work [2]
and we do not repeat them here due to space constraints.

The BNF are fed into the i-vector modeling framework.
It consists of building a Universal Background Model (UBM)

GMM on a large amount of speech data represented using
BNFs. GMM-UBM’s mean and variance statistics give a gen-
eral picture of the data spread in the high dimensional Vector
Space. The UBM mean supervector is is adapted to each utter-
ance. This update information is encoded in a low-dimensional
latent vector known as an i-vector. In this work, the GMM-
UBM model has 2048 Gaussian components, MFCC features
are extracted using a 25 ms window and the i-vectors are 400
dimensional. For more details we refer to our previous work
[2]. We also perform Linear Discriminant Analysis (LDA)
and Within-Class Co-variance Normalization (WCCN), the two
commonly used post-processing operations that are shown to
improve the DID/LID performance [5].

The resulting i-vectors are input to a discriminative classi-
fier. Here, we experiment with Support Vector Machine (SVM)
and Logistic Regression (LR) as the two backend classifiers.
Hyper-parameters for the SVM are distance from the hyper-
plane (C) and penalty. The optimal values are: C : 0.01 and
penalty: l2. For LR, the learning rate (↵) for the Stochastic Gra-
dient Descent algorithm and penalty are the hyper-parameters.
The optimal values are: ↵: 0.001 and penalty: l1. Hyper-
parameters are tuned using 5-fold CV. The search method used
to find the hyperparameters is grid-search.

3. Lexical & Phonotactic Methods

3.1. Feature Extraction

The feature extraction steps consist of extracting the phone se-
quence, and phone duration statistics from three recognizers
trained on Arabic language. We conduct an experiment with
a grapheme based lexicon (setup (1)), as well as pronunciation
rules from the literature by El-Imam et al. [14] (setup (2)), and
Biadsy et al. [15] under a setup presented by Hanai et al. [16]
(setup (3)). Set up (1) uses a grapheme lexicon and its Gaus-
sian Mixture Model (GMM) based acoustic models are trained
on 1200 hours of Arabic broadcast speech. For more details
see the system description in [17]. Set ups (2) and (3) were
trained using 70 hours of GALE Broadcast Conversation. In
setup (2), the lexicon was generated after diacratizations of the
words in the transcript using the MADA+TOKAN Toolkit 3.2
with SAMA 3.1 [18], and the phone level transcriptions are ex-
tracted using a GMM based acoustic model. In setup (3), we
generated pronunciations of these diacratized words according
to linguistic based pronunciation rules developed by Biadsy et
al. [15], and the phone level transcriptions are extracted us-
ing a GMM based acoustic model. We use a repetition mech-
anism such that phones with longer duration are represented
by longer sequences. We estimated the mean, M , and stan-
dard deviation, S, of the phone durations, D, in the dev set. If
D < M �↵S the phone, W , will be repressed as a single unit.
If M � ↵S < D < M the phone, W , will be shown as two
units, WW . If M < D < M + �D, the phone will be shown
as three unites, WWW , else it will be shown as four consec-
utive phones WWWW . Here, ↵ and � are weight values that
are trained from the dev set. Here, ↵ and � are weight values
that are trained from the dev set (10% split of the training set
(§ 4.1)).

Word sequences are extracted using a state-of-the-art Ara-
bic speech-to-text transcription system built as part of the Multi-
Genre Broadcast Challenge (MGB-2) [19]. The system is a
combination of a Time Delayed Neural Network (TDNN), a
Long Short-Term Memory Recurrent Neural Network (LSTM)
and Bidirectional LSTM acoustic models, followed by 4-gram
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and Recurrent Neural Network (RNN) language model rescor-
ing. Our system uses a grapheme lexicon during both training
and decoding. The acoustic models are trained on 1200 hours
of Arabic broadcast speech. We also perform data augmentation
(speed and volume perturbation) which gives us three times the
original training data. For more details see the system descrip-
tion paper [17].

3.2. Convolutional Neural Network

We borrow the recent ideas on sentence classification from the
Natural Language Processing (NLP) community [8, 20], and
investigate their applicability on word and phone sequence clas-
sification obtained using a speech transcriber.

We experiment with two CNN architectures for word se-
quence classification: 1) Word-CNN, which is same as the Sim-
ple CNN (CNN A) used for acoustic modeling (§ 2). Instead
of an acoustic feature vector, we have input from the word em-
bedding layer and 2) Char-CNN (Fig 2) that has a number of
parallel convolution layers [21]. Each convolution layer can be
seen as projecting the input sequence into a character n-gram
Vector Space, where n is the size of the filter in the convolution
layer and the number of such vector spaces is given by the num-
ber of filters. Filter settings for Char-CNN is given by: {f1, f2,
f3, . . ., f

k

: nb1, nb2, nb3, . . ., nb
k

}, which refers to k parallel
convolutions with filter sizes {f

i

}
i=1 to k

with corresponding
filters, {nb

i

}
i=1 to k

.

Figure 2: Character CNN

Learning: Hyper-parameters for the word-CNN are: 1)
Word Embedding dimensions (embedding dims), 2) size of the
filter in the convolution layer (filter length), 3) number of filters
(nb filters), 4) number of neurons (h) in the fully connected (f

c

)
layer and 5) f

c

dropout. The optimal parameters found using 5-
fold CV are: embedding dims: 64, filter length: 8, nb filters:
256, h: 256 and f

c

dropout: 0.2.
Hyper-parameters for the char-CNN are: 1) Char (or phone)

embedding dimensions (embedding dims), 2) filter setting ({f1,
f2, f3, . . ., f

k

: nb1, nb2, nb3, . . ., nb
k

}) , 3) number of neurons
(h) in the fully connected (f

c

) layer and 4) f
c

dropout. The
optimal parameters for Char-CNN found using 5 fold CV are:
filter setting: {1, 2, 3, 4, 5, 6, 7, 8, 9: 50, 50, 100, 100, 100, 100,
100, 100, 100}, embedding dims: 128, h: 512 and f

c

dropout:
0.2.

We fix the embedding layer dropout to 0.2, batch size to 64

and training epochs to 20 for both word-CNN and char-CNN.

3.3. Baselines

We train LR and SVM classifiers on n-gram bag-of-words fea-
ture representations to use as baselines. Linear classifiers with
bag-of-word features have been shown to outperform more
complex architectures for the task of Arabic DID [22].

Hyper-parameters for the SVM are distance from the hyper-
plane (C), penalty and n-gram range. The optimal values for
word n-grams are: C : 0.01, penalty: l2 and n-gram range:
1-3 and for character n-grams are: C : 0.001, penalty: l2 and
n-gram range: 2-11. For LR, the learning rate (↵) for the SGD
algorithm, penalty and n-gram range are the hyper-parameters.
For word-based features, the optimal values are: ↵: 0.0001
penalty: l1 and n-gram range: 1-5 and for character n-gram
features, the optimal values are: ↵: 0.001 penalty: l2 and n-
gram range: 1-7 Hyper-parameters are tuned using 5-fold CV
and grid-search

4. Experiments

4.1. Data Corpus

We use the publicly available Arabic Dialect Identification cor-
pus used in vardial2017[23]. Table 1 gives the details about
the corpus. Training is used for system development and the
test set is used for final system evaluation. The training set is
a mix of in-domain and out-of-domain data collected from the
youtube Arabic channels and Aljazeera news channel’s official
dialectal speech database, while the test set is extracted from
the Aljazeera news channel. More details about the corpus can
be found here[24].

Table 1: Data Corpus. # training & test sentences, # words,
speech duration (Dur.) in hours

Training Test

Sent. Dur. Words Sent. Dur. Words

EGY 5k 23.4 87k 302 2 11.6k
GLF 4.7k 21.9 67.9k 250 2.1 12.3k
LAV 4.9k 20.6 63.3k 334 2 10.9k
MSA 4.2k 23.8 82.4k 262 1.9 13k
NOR 4.9k 20.4 47.1k 344 2.1 10.3k

Tot. 15524 110.1 347.5k 1492 10.1 58.1k

4.2. Results

Acoustic Methods: Table 2 presents the DID performance of
the acoustic methods. The performance is not competitive with
the i-vector modeling framework, but the combination of a CNN
system with the i-vector system gives us performance improve-
ments.

Lexical & Phonotactic Methods: Table 3 gives DID per-
formance when using lexical methods. Systems built using
word and character n-gram features are complimentary and their
combination gives us performance improvements. Although the
word-CNN and char-CNN are not able to beat the linear classi-
fiers, the results are comparable. Combination of CNN systems
with n-gram features based system gives further improvements.

Table 4 presents the DID performance using the Phono-
tactic methods. We experiment with three types of phone se-
quences generated by the transcription system using grapheme
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Table 2: DID Results for Acoustic Methods.

Accuracy

Model ID Cross Val Test set

CNN A (§ 2.2) A1 0.65 0.47
CNN B (§ 2.2) A2 0.70 0.51
LR (i-vec 400d) B1 0.86 0.63
SVM (i-vec 400d) C1 0.85 0.63
LR (i-vec + LDA + WCCN) D1 0.87 0.66
SVM (i-vec + LDA + WCCN) F1 0.88 0.67
A2 + D1 + F1 E

acoustic

- 0.69

Table 3: DID Results for Lexical Methods.

Accuracy

Model ID Cross Val Test set

LR (word 5-gram) A1 0.65 0.59
SVM (word 3-gram) B1 0.64 0.56
Word-CNN C1 0.63 0.57
A1+ B1 + C1 E1 - 0.61
LR (char 9-gram) D1 0.66 0.58
SVM (char 11-gram) F1 0.67 0.59
Char-CNN G1 0.65 0.55
D1 + F1 + G1 E2 - 0.62
E1 + E2 E

lex

- 0.64

based lexical (setup (1)), MADA (setup (2)), and Biadsy pro-
nunciation (setup (3)) rules, based on phone n-gram sequences,
as well as phone sequences in which individual phones are re-
peated based on the phone duration (Rep. Phone Sequence).

Table 4: DID Results for Phonotactic Methods.

System Test Acc

Phone sequence + Char-CNN setup (1) 0.56
Rep. Phone Seq. + Char-CNN setup (1) 0.57
Phone sequence + Char-CNN setup (2) 0.58
Rep. Phone Seq. + Char-CNN setup (2) 0.57
Phone sequence + Char-CNN setup (3) 0.57
Rep. Phone Seq. + Char-CNN setup (3) 0.58

Final Combination: Performing score averaging of the
output scores of the best lexical, E

lex

, and acoustic system,
E
acoustic

, for DID gives us an accuracy of 73% on the test set.

5. Discussion

Looking at the confusion matrix it can be inferred that Gulf is
the most confused dialect, most often with Levantine (LAV) and
Modern Standard Arabic (MSA). The second most confused di-
alect is North African, most often with Levantine. It can be
inferred that it is difficult to distinguish among the following
three dialects; Gulf, Levantine and North African.

We hypothesize that the reason our DID system performs
worst in case of Gulf and North African dialects is due to code
switching[25], where the same speaker alternates between two
dialects in the context of a single conversation. We perform
a further investigation into the error patterns for utterances of
different duration. Assuming that the speech is spoken in a sin-
gle dialect, the DID accuracy should increase as the duration
of the speech utterances increases. Gulf and North African do

Figure 3: DID Confusion Matrix for the final combined system.

not follow the aforementioned pattern (See Fig 4), unlike other
dialects. This leads us to believe that there is code switching
in the spoken utterances of these two dialects which make them
the two most difficult dialects to recognize.

Figure 4: DID accuracy over 10-30 seconds bins.

6. Conclusions

In this paper, we present a comprehensive performance study
of Spoken DID methods for the Arabic language. Along with
investigating the traditional methods for DID such as i-vector
and n-gram lexical features in a linear classifier, we also inves-
tigate the feasibility of using Convolutional Neural Networks
for direct mapping of acoustic and lexical features to one of the
five dialects. For our future work, we would continue our inves-
tigation into approaches that can directly map the raw acoustic
waveform to the corresponding dialects. In particular, we would
explore Long Short-Term Memory RNN to make dialect pre-
dictions per frame. The frame by frame prediction would also
give us a picture of code switching between dialectal speech
and MSA. Another line of research worth exploring is the effect
of adding dialectal data collected from sources such as Youtube
and radio podcasts during the classifier training.
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