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ABSTRACT

Current diarization algorithms are commonly applied to the
outputs of single non-moving microphones. They do not
explicitly identify the content of overlapped segments from
multiple speakers or acoustic events. This paper presents an
acoustic environment aware child-adult diarization applied
to the audio recorded by a single microphone attached to
moving targets under realistic high noise conditions. The
proposed system exploits a parallel deep neural network and
hidden Markov model based approach which enables tracking
of rapid turn changes in audio segments as well as capturing
the cross talk labels for overlapped speech. It outperforms the
state-of-the-art diarization systems without the need to prior
clustering or front-end speech activity detection. !

Index Terms— Speaker Diarization, Acoustic Scene
Analysis, Overlapped Speech, Deep Neural Networks

1. INTRODUCTION

Speaker diarization play an important role in speech tech-
nology. Broadcast news speaker diarization is composed
of 5 steps. First, non-speech regions are removed using
Viterbi decoding. Then, an acoustic segmentation followed
by a Hierarchical Agglomerative Clustering (HAC) splits
and then groups the signal into homogeneous parts accord-
ing to speakers and background [1]. Next, a Gaussian
Mixture Model (GMM) is trained for each cluster via the
Expectation-Maximization (EM) algorithm. The signal is
then re-segmented through a Viterbi decoding. The system fi-
nally performs another HAC, using the Cross-Likelihood Ra-
tio (CLR) [2] measure and GMMs trained with the Maximum
A Posteriori algorithm (MAP). Using this diarization routine,
several broadcast news and meeting diarization systems have
been proposed in the literature [3, 4]. Recently major im-
provements have been reported as a result of using i-vectors
[5], bottleneck features [6], Deep Neural Network (DNN)
models [7, 8], energy features [9, 10] and cluster-voting [11]
for different classification purposes. Such systems can be
applied as a preliminary step in Automatic Speech Recogni-
tion (ASR), when there is a need for localization of speaker

IThis work was conducted at CRSS-UTDallas with support from the
Univ. of Kentucky. Dr. Maryam Najafian was with CRSS-UTDallas when
this work was conducted. Dr. Maryam Najafian has since moved on to the
Computer Science & Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA, USA - najafian @ csail.mit.edu

5450

segment labels. Additionally, detection of speaker specific
segments enables various acoustic model adaptations for ASR
which leads to a higher accuracy [12, 13, 14].

The aim of this research is to identify whether at each
point in time the audio which is recorded by a moving target
(child) belongs to one of the following acoustic categories:
(1) primary child, (2) secondary child, (3) adult, (4) music,
(5) silence and (6) crowd noise. It relies on the informa-
tion captured at feature and acoustic level which helps with
identification of child from adult speech [15, 16], as well as
speech from non-speech. Robust speaker diarization is chal-
lenging in realistic audio environments due to time-varying
acoustic noise and overlapped speech occurred during the tar-
get’s movement, competing speakers, and reverberations.

This paper presents an asynchronous parallel DNN-HMM
based speaker diarization system in Section 3.1, a state-of-
the-art GMM-HMM diarization in Section 3.2, and a separate
Threshold Optimized Combo Speech Activity Detection (TO-
Combo-SAD) stage for both systems in Section 3.3. Section 4
compares the experimental results across these four systems,
and in Section 5 the main conclusions are summarized.

2. DATA DESCRIPTION

In this study we used 7.2 hours of labeled audio recording
gathered from 30 children wearing a recording unit within a
childcare center [17] which is larger than that of the study
carried out previously in [18, 19]. The labels are as follow-
ing: primary child: speech initiated by the child wearing the
recording unit; secondary child: speech originated by other
children and directed at the primary child within his/her close
proximity (around 4 feet); adult: speech originated by an
adult and directed at the primary child within his/her close
proximity; non-speech: the stream of (1) silence, (2) mu-
sic, and (3) crowd noise. The average turn duration in the
database is 1.7 seconds. From the manual labels, we esti-
mated that 33%, 24%, 23%, and 20% of our speech database
belongs to non-speech, adult speech, secondary child speech,
and primary child speech categories respectively. In our
experiments, to obtain unbiased evaluation results, we per-
formed 5-fold cross validation and divide the data into train-
ing, validation, and test sets such that no speaker appeared
simultaneously in training, validation, and test sets.
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Fig. 1: Diarization structure

3. SYSTEM DESCRIPTION

In this section we start by describing our proposed parallel
DNN-HMM based speaker independent diarization system.
Then, we present a state-of-the-art GMM-HMM based di-
arization toolkit which relies on the bottom-up clustering.

3.1. Proposed parallel DNN-HMM diarization

Figure 1 shows the a parallel array of six asynchronous HMM
based detectors for identification of different sources of audio
variability that might occur at overlapping time intervals. This
idea was first proposed by Nabiei et. al [20] at the University
of Birmingham for real-time overlapped human action recog-
nition purpose. At any point in time the parallel structure of
the detectors, enables successful detection of overlapping oc-
currences of six sources variability.

The Markov based acoustic modelling process, enables
capture of rapid changes by modelling the time varying struc-
ture of the audio signal, plus a mechanism to relate acoustic
feature vectors to Markov model states. The key process in
our HMM-based detector system relies on a Viterbi decoder.
Given a sequence of filter bank feature vectors Y the Viterbi
decoder finds the sequence of HMMSs M such that an approx-
imation to the probability p(M|Y") is maximized. Since Y is
fixed from Bayes’ rule this is equivalent to finding M such
that p(Y'|M)P(M) is maximized. Since, there is no con-
straint on the sequence of occurrences of the target and back-
ground the probability P (M) represents an open loop context
free target-background language model. Using this configura-
tion a single network is designed and the most probable path
through this network is found using Viterbi decoding [20].

As shown in Figure 2, during the training stage the HMM
set model parameters for each detector is trained separately
for each acoustic category. During the testing stage, the
Viterbi decoder unit uses the model network shown in Figure
3 to recognize occurrences of different acoustic categories
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within an utterance. Briefly, our Viterbi decoder works as
follows [21]: At each time ¢ the decoder receives a new
feature vector, y;. For each state ¢ of each of its HMMs, a
quantity (%) is calculated which can be thought of as an ap-
proximation to the probability of the best explanation of data
Y = yi,...,y¢ up to and including y; ending in state ¢ at time
t. Intuitively, if the decoder is for ‘primary child speech’ and
the i*" state corresponds to that, then (i) can be thought of
as the probability of the best explanation of data up to time ¢.
Formally « () is given by the recursion:

ey
2

where a;; is the probability of a transition from state j to
state ¢ and b;(y;) is the probability of the data y; given state
i. Note that the ‘preceding’ state j can be in the same HMM
as state ¢, or, if ¢ is an initial state, j can be the final state of
another HMM in the decoder. p;(i) provides a record from
which the best explanation of the data up to time ¢ in state ¢
can be recovered. The decoding network is represented by a
loop across the target and background acoustic models which
simply allows any model to follow any other model. Figure
3, shows the structure of the recognition network used in our
system. The insertion penalty is applied on the transition from
the end of one model to the start of the next.

As shown in Figure 3, each detector has a single N-state
complex left-to-right HMM for modeling one specific acous-
tic category and a five-state complex left-to-right background
HMM, which represents any data except those used by the
target model. The inputs to this detector are filter bank fea-
tures and the output detects whether the observed features be-
long to a specific acoustic class or they belong to the back-
ground model. All HMM states are associated with DNNs.

ay(i) = maxjoy—1(5)a;,:bi(ye)

pe(i) = argmaz;ps—1(j)a;,ibi(ye)



The pre-training of the DBN (i.e. Deep Belief Network, stack
of Restricted Boltzmann Machines (RBMs)) is completed,
using the Contrastive Divergence (CD) [22] algorithm with
1-step of Markov chain Monte Carlo sampling [23]. The
first layer and the following layers of RBMs are composed
of Gaussian-Bernoulli and Bernoulli-Bernouli units, respec-
tively. The generative pre-training of the DNNss is carried out
through training of a stack of RBMs. Pre-training provides a
better generalization from the training data, and helps prevent
falling into local minima during the fine-tuning [24].

After pre-training, a softmax layer, which contains all the
training state probabilities, is added on top of the stack of the
RBMs to form a pre-trained DNN. During the network fine-
tuning stage the network parameters are updated by applying
the error back-propagation and Stochastic Gradient Descent
(SGD) [25] algorithm. In order to perform the fine-tuning,
initially a GMM-HMM system needs to be trained on the fea-
ture vectors, with K’ GMMSs per state to provide a frame level
alignment which will be used for minimizing the per-frame
cross-entropy between the acoustic labels and the network
output. During the DNN fine-tune, per-frame cross-entropy
between the HMM state target posterior probabilities and net-
work output is minimized, using mini-batch SGD.

Our DNN-HMM system is built using Kaldi [26, 27, 28]
with the validation set data, the optimum number of states
N € {3,4,...,10} for each acoustic category HMM was em-
pirically established. Initially GMM-HMMs are trained on 39
dimensional mean/variance normalized MFCCs, with 6 Gaus-
sians per state. It results in the alignment of acoustic category
states to frames for the DNN-HMM system which has 13 di-
mensional mean/variance normalized Mel filterbank features,
spliced using a context of £10 frames. This network uses
sigmoid activation function, and 4 hidden layers (computed
empirically using the validation set). Each layer within the
network contains [ = 128 hidden units (neurones) which was
chosen from different values of I € {64, 128,256,512} em-
pirically. Also, the learning rate is set to be 0.008, and the
number of epochs in the pre-training process is set to be 5.

3.2. GMM-HMM based diarization using LIUM toolkit

In this section we describe the GMM based system designed
for our application using the LIUM speaker diarization toolkit
[29]. This diarization system is composed of acoustic BIC
segmentation followed by BIC [30] hierarchical agglomera-
tive clustering. The Universal Background Model (UBM) is
adapted (Maximum A Posteriori MAP) for each cluster. A
cluster is modeled by a GMM-HMM with 8 components. The
system uses a Normalized Cross Likelihood Ratio (NCLR
[31]) based on bottom-up clustering. Viterbi decoding is per-
formed to adjust the segment boundaries. Non-speech re-
gions are removed using GMMSs. A hierarchical clustering
for different acoustic classes is carried out over the clusters
generated by the Viterbi decoding. The primary child, sec-
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ondary child, adult classes are recognized by MAP adapting
the UBM to each of these classes. The inputs to this system
are 13 MFCCs with coefficient CO as energy completed by
delta coefficients. In order to identify and remove music, the
audio is segmented into speech and non-speech regions us-
ing a Viterbi decoding with 5 one state HMMs, comprising
of 1 model of silence, 2 models of speech (clean, over crowd
noise), 1 model of crowd noise, and 1 model of music.

3.3. TO-Combo-SAD speech and non-speech detection
prior to DNN/GMM based diarization

TO-Combo-SAD relies on several noise robust features that
are computed at a frame level for each audio segment and the
combined feature vectors are projected into a single dimen-
sion (by using Principal Component Analysis) for the speech
and non-speech discrimination task [32]. This feature is ef-
ficiently obtained from a linear combination of the voicing
measures, namely harmonicity, clarity, prediction gain, and
periodicity. In recent studies applying a separate stage of
SAD using these features was reported advantageous in clas-
sifying speech and non-speech segments using Parallel Linear
Discriminant Analysis (PLDA) classifier [18, 19]. In Section
4 we compare the effectiveness of this feature level approach
with GMM- and DNN-HMM based speech/non-speech clas-
sification stage introduced in Sections 3.1 and 3.2.

4. EXPERIMENTAL RESULTS AND DISCUSSION

The Diarization Error Rate (DER) in Equation 3, where F'A
is the total number of non-speech frames detected as speech,
M1S is the total number of speech frames detected as non-
speech, ERR is the total number of speech frames that were
detected as speech but recognized as incorrect classes, and
TOT is the total number of frames.

DER(%) = (FA+ MIS + ERR)  100/TOT 3)

The GMM-HMM diarization system is the baseline di-
arization system (Table 1). Our database was recorded in a
noisy childcare center environment, which explains why a
large number (18%) of secondary child data are falsely rec-
ognized as non-speech which contains a lot of distant child
speech in the background . Also due to generative nature of
GMM based system, a large number of classification errors
occurred between the non-speech and different speech classes
as well as the two primary and secondary child classes.

Table 2 compare the effectiveness of the (1) GMM, (2)
feature level TO-Combo-SAD, and (3) DNN based speech
and non-speech classification in four systems described in
section 3. In both B and C systems we use TO-Combo-SAD
at the first stage to discriminate between speech and non-
speech segments, and this results in 9.69% F' A and 16.96%
M ISS relative error reduction compared to the baseline sys-
tem A. System D comprises of unique recognizer for dif-



Table 1: Confusion matrix for baseline GMM-HMM diarization

Table 3: Confusion matrix for proposed DNN-HMM diarization

Baseline GMM-HMM (%) | Total|Adult|Prim.child|Sec.childNon-speach Proposed DNN-HMM (%) | Total|Adult|Prim.child|Sec.childNon-speach
error rate, section 3.2 error rate, section 3.1

Adult 17.45| - 3.04 5.45 8.95 Adult 10.22| - 1.86 3.77 4.59
Prim. child 21.90| 3.60 - 6.90 11.40 Prim. child 11.1]2.60 - 3.90 4.6
Sec. child 28.18/4.16 | 6.06 - 18.00 Sec. child 12.68/ 1.52| 2.62 - 8.56
Non-speech 30.57/10.38| 8.26 11.92 - Non-speech 21.30{7.28 | 5.38 8.61 -

Table 2: Percentage error rate for all four systems
CodesDescription Systems FA |[MISS|ERR|DER
Section 3.2 GMM-HMM (baseline) 22.08] 8.31 {5.97/36.38
Section 3.3 [TO-Combo-SAD + GMM-HMM]|19.94| 6.90 |5.7232.56
Section 3.3| TO-Combo-SAD + DNN-HMM [19.94| 6.90 |3.7530.59
Section 3.1 DNN-HMM 15.38| 3.94 |3.54(22.87

SIS

ferent non-speech events, such as crowd noise, music, and si-
lence as well as speech events, such as child and adult speech.
Next, we compare the effect of using TO-Combo-SAD prior
to DNN-HMM diarization in system C' with that of a parallel
DNN-HMM in system D for speech and non-speech classi-
fication. The results in Table 2 show that system D obtains
a further relative reduction of 22.86% F' A, 42.89% MISS,
25.23% DER compared to system C'.

A comparison between the confusion matrices for the
proposed parallel DNN-HMM and baseline GMM-HMM
diarization systems shows that using a discriminative rather
than a generative modeling approach has led to a total of
41.40%, 49.31%, and 52.34% relative error reduction for
adult, primary child, and secondary child classes (rows 2 to 4,
column 2 of Tables 1 and 3). Moreover, considerable relative
error reduction of 56.7% and 52.43% is obtained as a result of
a better discrimination between the secondary child and the
primary child and adult segments (row 3, columns 3 and 5).
In addition to that, a comparison between the speech classes
detected as non-speech (column 6) shows a major error rate
reduction of 48.73%, 59.64%, and 52.43% for adult, primary
and secondary child classes compared to the baseline.

All in all, the proposed system achieved high diarization
accuracy and it is capable of detecting overlapped speech.
Since there were not enough examples of overlapped speech
we were not able to train a separate model for the overlapped
speech in the GMM-HMM diarization baseline system. We
had a total of 14 minutes containing examples of overlapped
speech from the adult, primary and secondary classes. The
proposed DNN-HMM based system managed to identify the
different classes involved in overlapped speech with 64.7%
diarization accuracy. From these 35.3% DERs, the total
of 23.5% was due to miss classification of primary child
as secondary child and visa versa, the rest was due miss-
classification between adult and child classes.

5. CONCLUSIONS

This paper describes a parallel DNN-HMM based diarization
system for the data recorded from a moving target under a
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high noise condition. The proposed system attempts to ad-
dress five main challenges. The direct application of our sys-
tem is in diarization tasks containing overlapped speech from
multiple resources, under noisy condition, where the num-
ber of classes are known and each class represent a group of
speakers based on their age or distance from the microphone.

(1) The overlapped speech problem is addressed using a
parallel set of independent recognizers for each audio class
enables the system to identify whether the audio segment be-
longs to multiple classes (Sources of cross talk).

(2) The speech activity detection under high background
noise during child or adult speech segments is another main
challenge. This is addressed by allocating a unique model
with complex HMM structure to different non-speech classes
such as crowd noise, silence, and music. This has led to
major reduction in speech and non-speech miss-classification
(30.31% F A and 52.58% M IS error reduction).

(3) To track and detect rapid turn takings among speakers
we used parallel HMMs which are capable of detecting oc-
currences of different speech and non-speech events simulta-
neously; in addition to that our technique doesn’t rely on ex-
pensive agglomerative cluster merging and retraining which
is unable to effectively capture rapid speaker turn takings and
requires an additional stage of Viterbi alignment.

(4) To reduce the errors occurred during the feature mod-
eling stage, we used a discriminative rather than a generative
modelling strategy by replacing GMMs with DNNs during
the estimation of the HMM state output probabilities. Using
the proposed system has resulted in 37.11% relative DER re-
duction across all groups.

(5) Instead of relying on TO-Combo-SAD or other low
dimensional features (e.g. energy, zero-crossing rate, period-
icity and formant information) that don’t perform well under
high time varying crowd noise conditions, we use acoustic
level models of the non-speech distribution which can gener-
alize well after training. In a DNN-HMM based system using
a parallel speech vs non-speech recognizers rather that TO-
Combo-SAD has resulted in 25.24% relative DER reduction.
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