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ABSTRACT

In this paper, we develop an end-to-end automatic speech
recognition (ASR) model designed for a common low-
resource scenario: no pronunciation dictionary or phonemic
transcripts, very limited transcribed speech, and much larger
non-parallel text and speech corpora. Our semi-supervised
model is built on top of an encoder-decoder model with atten-
tion and takes advantage of non-parallel speech and text cor-
pora in several ways: a denoising text autoencoder that shares
parameters with the ASR decoder, a speech autoencoder that
shares parameters with the ASR encoder, and adversarial
training that encourages the speech and text encoders to use
the same embedding space. We show that a model with this
architecture significantly outperforms the baseline in this
low-resource condition. We additionally perform an ablation
evaluation, demonstrating that all of our added components
contribute substantially to the overall performance of our
model. We propose several avenues for further work, not-
ing in particular that a model with this architecture could
potentially enable fully unsupervised speech recognition.
Index Terms: speech recognition, low-resource, end-to-end,
semi-supervised learning

1. INTRODUCTION

While speech recognition technology has improved rapidly
in recent years, it remains out of reach for the majority of
the world’s languages. In many of these so-called “low-
resource” languages, the data necessary to train a traditional
speech recognition system is simply not available. In partic-
ular, training an acoustic model - a key part of a traditional
speech recognition system - requires resources like pronunci-
ation dictionaries that are often non-existent or prohibitively
expensive to acquire. The need to produce these resources
for every language of interest does not scale to the goal of
making speech recognition universally available.

Recent end-to-end neural network models have, in part,
solved this problem: they have eliminated the need for pro-
nunciation dictionaries. Instead of expertly crafted linguis-

tic knowledge, they rely on word-level speech transcripts that
can be produced with reasonable accuracy by a native speaker
with minimal training. In return for this reduced need for
linguistic expertise, however, these systems typically require
hundreds up to many thousands of hours of transcribed speech
for training. While these data are easier to collect than those
needed to train an acoustic model, this process still does not
scale to new languages with minimal existing resources.

In this paper, we extend end-to-end models to smaller
ASR corpora by focusing on a low-resource paradigm that
is common to many languages but has not received much
research attention: a small amount of transcribed speech
along with much larger corpora of non-parallel speech and
text. Both text and speech data are widely available on the
Internet; while there is much prior work using large text cor-
pora to improve ASR performance [1], the potential uses of
untranscribed speech, especially for end-to-end models, have
gone largely unexplored. We believe that this paradigm of
semi-supervised ASR presents a clear path towards making
ASR technology available in many currently underserved
languages.

Here, we introduce a novel neural network architecture
for this task, supplementing an end-to-end speech recogni-
tion model with additional components that effectively take
advantage of non-parallel speech and text. In addition to an
encoder-decoder ASR model, we train a text autoencoder that
shares parameters with the ASR decoder and a speech autoen-
coder that shares parameters with the ASR encoder. We ex-
plicitly tie these together with adversarial training to encour-
age the speech and text encoders to share the same hidden
embedding space. We demonstrate significant performance
improvements over a baseline end-to-end model trained on
the same data. We also analyze the factors contributing to
those improvements.

This work borrows many of its ideas from recent work
in machine translation which demonstrated that sequence-to-
sequence neural network models can be trained without paral-
lel data [2, 3]. Our model does not have some of the features
that allowed those models to be trained in a fully unsuper-
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vised fashion, but has the potential to enable ASR without
transcribed speech with some modifications. While we do not
explore this possibility here, we intend to pursue it in future
work.

2. PRIOR WORK

On very large speech recognition tasks, end-to-end neural
network ASR models have recently overtaken traditional
models, which we define here as separately trained acous-
tic and language models which are combined in a hidden
Markov model (HMM)[4]. Despite these recent advances,
end-to-end models lag far behind traditional models in the
low-resource space. Rosenberg et al. [5] compared a tra-
ditional HMM-DNN system against both CTC-based[6]
and attention-based[7, 8] end-to-end models on eight low-
resource languages, each with 40 hours of training data, and
found that the traditional model outperformed both end-to-
end architectures across all languages. The uses of additional
text and speech data for low-resource ASR have also been ex-
plored in the context of traditional ASR models (see [1] and
[9] respectively) but have seen limited research for end-to-end
models.

The low-resource scenario explored in this paper closely
resembles the one used in two recent papers from Tjandra
et al.[10, 11]. In those papers, the authors train both speech
recognition and text-to-speech (TTS) systems with their small
transcribed speech corpus. They then use the ASR system
to turn untranscribed speech into a synthetic training set for
their TTS model. Similarly, they create a training set for
the ASR model from stand-alone text using their TTS sys-
tem. These synthetic datasets are used to further train their
models; the new models are then iteratively used to gener-
ate better synthetic training data. As in our paper, Tjandra
et al. [11] create a semi-supervised corpus from the Wall
Street Journal speech recognition corpus[12] - treating a por-
tion of the original dataset as ‘parallel’ and the remainder as
‘non-parallel’. Using this method, Tjandra et al. achieve re-
markable results: their semi-supervised model closes 73% of
the gap between the character error rate of their low-resource
baseline and high-resource topline results.

While these results are encouraging, the fact that the non-
parallel speech and text come from the same dataset means
that they are not truly independent from each other. In our ex-
periments, we enforce independence between the non-parallel
speech and text by ensuring that there is no overlap between
the underlying utterances used for each modality. This cre-
ates a more difficult task, but one that must be addressed for
real-world low-resource scenarios.

Our work also shares many features with recent work
in unsupervised machine translation (MT). Both [2] and [3]
start with a common architecture for end-to-end supervised
MT and add components to allow for unsupervised training.
Specifically, non-parallel texts in the source and target lan-

guages are used to train separate encoder-decoder sequence to
sequence autoencoder models. Adversarial training (see [13]
for an overview) is used to push the hidden representations in
the two different encoders to use the same embedding space.
Thus, a decoder trained only as part of an autoencoder in
the target language can also decode the outputs of the source
language encoder.

The success of these unsupervised MT models relies on a
key observation: word embedding spaces tend to have similar
structure across languages [14]. Conneau et al. [15] use this
fact to learn an unsupervised mapping from the embedding
space of one language to the embedding space of the other,
then use that mapping to learn a dictionary. This dictionary
can then be used to seed the training of a fully unsupervised
MT system. We construct a similar model but use a small
corpus of transcribed speech to seed the training of a semi-
supervised ASR system.

While we do not experiment with fully unsupervised ASR
here, this model architecture should support such experimen-
tation in the future. In that sense, our work shares some goals
with recent efforts in zero resource speech processing, specif-
ically the Zero Resource Challenge [16]. That work is more
theoretical than practical: its goal is to explore what can be
learned about speech from speech only. Some of that work
suggests an eventual path towards unsupervised speech recog-
nition [17, 18], but so far no paradigm exists for connect-
ing the speech domain to the text domain in an unsupervised
way, given that the Challenge focuses on systems trained from
speech only. Through our use of both speech and text corpora,
we see a clear path from our work to a future fully unsuper-
vised speech recognition system.

3. MODEL ARCHITECTURE

Fig. 1: Semi-supervised ASR model architecture. Speech-
to-text model is outlined in bold; text autoencoder is shaded
blue; speech autoencoder is shaded red; discriminator for ad-
versarial training is shaded green.
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The architecture of our semi-supervised speech recogni-
tion model is shown in Figure 1. The components of the core
speech recognition system are outlined in bold. These com-
ponents are trained together, end-to-end, using transcribed
speech. Our model also contains a de-noising text autoen-
coder, shown in blue, which shares the baseline decoder and
is trained in an unsupervised fashion using only text. The
speech autoencoder is shown in red - it shares the baseline en-
coder and is trained from untranscribed speech. Finally, our
model has a classifier, colored green, used as a discriminator
for adversarial training of the outputs of the speech and text
encoders. Each component of this system - the speech-to-text
model, the text autoencoder, the speech autoencoder, and the
adversarial training - is described in detail below.

3.1. Baseline ASR Model

Our baseline speech recognition model is a sequence-to-
sequence neural network model composed of a speech en-
coder and a text decoder with attention. The model is almost
identical to the Listen, Attend, and Spell (LAS) model de-
scribed in [7] and is also very similar to the model from
[8].

As in [7], our speech encoder is a recurrent neural network
with four layers. The first is a bi-directional long short-term
memory (bLSTM) layer [19]. The three subsequent layers are
pyramidal bLSTM layers [7], each of which downsamples its
input sequence by a factor of two. The encoder takes as input
a sequence of simple acoustic features and outputs a sequence
of hidden representations, one for every eight input frames.

The architecture of our text decoder also follows the
model described in [7]. At its core, it is a recurrent neural
network with two LSTM layers. At each time-step, the de-
coder takes as input the previous character in the sequence
(or a special ‘start’ token at the first time-step) and outputs a
probability distribution over the next character. It also takes
as input a context vector, created by a trainable attention
mechanism from the previous hidden state of the decoder, the
previous context vector, and the output sequence from the en-
coder. This type of attention mechanism was first introduced
in the machine translation context in [20] and its use in ASR
is explained more fully in [7] and [8].

The speech-to-text model is trained end-to-end to maxi-
mize the log likelihood of the correct character sequence dur-
ing training. During inference, we use beam search decod-
ing [21] to find a high-likelihood transcription of each text
utterance. There is a well-known discrepancy between maxi-
mum likelihood training and decoding: during decoding, the
ground truth sequence of characters is not available and char-
acters sampled from the output distribution are instead fed
to the model. To mitigate this effect, we sometimes input a
sampled character rather than the ground truth character dur-
ing training. As in [7], we use a fixed 10% sampling rate,
meaning that 10% of the input characters to the decoder dur-

ing training are sampled from the output distribution of the
decoder at the previous time-step.

3.2. Text Autoencoder

The text autoencoder has three components, shown in blue
in Figure 1: a noise model, an encoder and a decoder. The
decoder is shared with the speech-to-text model described in
the previous section - training this autoencoder also trains the
parameters of our ASR decoder.

The text encoder takes one-hot character encodings as in-
put. It is composed of a single embedding layer [22] - to
convert these inputs to character vectors - followed by two
bLSTM layers. As a character autoencoder is a relatively
trivial learning task, we add noise to the input before feed-
ing it the encoder, following [2]. While Lample et al. [2] both
delete words and shuffle their order when adding noise for
unsupervised MT, we empirically found that deleting charac-
ters but not shuffling them was most effective here. We drop
characters with probability p = 0.2. The text autoencoder is
trained with the same end-to-end maximum likelihood objec-
tive as the speech recognition model, with the same sampling
procedure.

3.3. Speech Autoencoder

The speech autoencoder is shown in red in Figure 1. Speech
requires a different autoencoder architecture than text, be-
cause the speech signal contains both linguistic and non-
linguistic information. The outputs of the ASR encoder
should contain only linguistic information, but we also need
to capture the non-linguistic information in order to train
an autoencoder. As in [23], we build a hierarchical autoen-
coder: one encoder to capture the aspects of the signal that
change over time (namely, linguistic content), and one en-
coder to capture the utterance-level properties of the signal
(non-linguistic characteristics). Here, our original ASR en-
coder serves that first purpose, and a global speech encoder
serves the second purpose. The output of the global encoder
is appended to the output of the original speech encoder at
every time step.

Our global encoder is a convolutional neural network
(CNN) [24] with three layers. Each layer has a convo-
lution, batch normalization, rectified linear unit (ReLU)
non-linearities, and max-pooling. The first layer performs
convolution in frequency, the next two perform convolution
in time. The layers look at increasingly larger segments of
speech - from a single frame at the lowest layer to 45 frames
at the highest. The last layer pools over the entire utterance
to generate a single utterance-level representation vector.

The speech decoder is a simple feed-forward neural net-
work with two leaky ReLU layers and a linear layer on top. It
takes as input a single vector - a concatenation of the output
from the global encoder and a single output from the ASR en-
coder - and generates eight frames of output speech features.
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These are scored against the eight frames of input speech fea-
tures that produced the given ASR encoder output.

The speech autoencoder is trained end-to-end using
smoothed L1 loss, an element-wise loss which equals the
L1 loss when the difference between the output and the label
is greater than one and equals the L2 loss when that difference
is less than one.

3.4. Adversarial Training

Adversarial training [13] is a technique originally developed
for training generative models to produce examples whose
distribution matches a ground-truth data distribution. In the
standard case, an adversarial model has two components - a
generator and a discriminator - which are trained alternately.
The discriminator is trained to differentiate between examples
from the data distribution and outputs from the generator. The
generator is trained to ‘trick’ the discriminator and generate
examples that the discriminator will score as likely to have
come from the data distribution.

Here, we instead use adversarial training to encourage the
outputs of the speech and text encoders to share an embed-
ding space: we have two generators (the encoders) and no
data distribution. While there are a number of ways to poten-
tially modify the original adversarial ‘game’ for our scenario,
we chose to treat the output of the text encoder as the data
distribution. We theorize that this will further encourage the
outputs of the speech encoder to contain only linguistic in-
formation. This adversarial training can be performed with
all available text and speech data, as it does not assume any
parallelism.

In our model, the discriminator is a simple feed-forward
network with two fully-connected layers. It takes as input
a single vector, and outputs a single real-valued score in the
interval [0, 1]. The discriminator is trained using binary cross-
entropy loss to assign high scores to output vectors generated
by the text encoder and low scores to those generated by the
speech encoder. We use label smoothing, as recommended in
[25].

4. DATA AND TOOLS

For all experiments in this paper, we use the Wall Street Jour-
nal (WSJ) corpus, a standard speech recognition benchmark
with many comparable results available in the literature [12].
For training, we use the SI284 set, which consists of 81 hours
of read speech; each utterance is a single spoken sentence
from the Wall Street Journal newspaper. This training cor-
pus includes 37.4K utterances, spread across 284 speakers.
We use the standard dev93 and eval92 sets for validation and
test, respectively - all reported results are on the eval92 set.
For results that incorporate a language model, we use the text
corpus that accompanies the WSJ speech recognition corpus.

For our semi-supervised experiments, we divide the train-
ing data by powers of two, selecting the utterances so that all
284 speakers are represented in all training corpora. In partic-
ular, we present results from three semi-supervised conditions
- 2.5, 5, and 10 hours of transcribed speech, representing ap-
proximately 1/8th, 1/16th, and 1/32nd of the original corpus,
respectively. In all semi-supervised experiments, we use all
speech from the original training corpus and a 37.4K sentence
subset of the language model training text as our non-parallel
speech and text datasets. We ensure no overlap between the
text of the ASR training corpus and our non-parallel text cor-
pus.

The speech input to our model is log-Mel filterbank fea-
tures, with 40 filters per 25ms frame, calculated at a 10ms
frame rate. We normalize all text to contain only alphanu-
meric characters, along with a ‘SPACE’ symbol and comma,
period, and apostrophe symbols. While it is non-standard, we
remove the ‘<NOISE>’ tags from all speech transcripts for
compatibility with the language model text, which does not
include such tags.

All recurrent layers in all components have 256 units.
Character embeddings have 128 units. The discriminator
also has 256 units per layer. The convolutional layers in the
global speech autoencoder have 32, 64, and 256 filters and
kernels of size (36, 1), (1, 5), and (1, 3). All have a stride of
one. The first convolutional layer pools over three frames,
the second over five inputs (15 frames), and the third over the
entire utterance. We use batches of size 32 for discriminator
training and 16 for all other training. For optimization, we
use stochastic gradient descent (SGD) with momentum [26]
and a learning rate of 0.2. We stop training when performance
on the validation set stops improving. For all results, we use
a beam of size 20 during decoding.

For language model experiments, we used a 3-gram word-
level language model. As in [8], we compose the language
model finite state transducer (FST) with a lexicon that spells
out each vocabulary word, to produce a character-level lan-
guage model that can be incorporated into the beam search de-
coding. Again following [8], we use a language model weight
of 0.5 and word bonus of 1 when decoding with a language
model.

Our model was implemented in PyTorch [27], based
in part on the OpenNMT machine translation toolkit [28].
Speech features were computed using Kaldi [29]. The lan-
guage model was produced using the Kaldi WSJ recipe.

5. RESULTS AND DISCUSSION

Our main results are in Figure 2. We compare our a base-
line attention-based ASR model (blue) with our proposed
architecture (green and red). All three model architectures
were trained separately on 2.5, 5, and 10 hours of transcribed
speech. The semi-supervised model (red bar) also our larger
non-parallel corpus for the autoencoders and adversarial
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Fig. 2: Word error rate (WER) by model architecture and
hours of transcribed training data. The red and green bars both
represent the results of our proposed architecture. The semi-
supervised model (red) uses our larger non-parallel dataset in
addition to the transcribed speech.

training.
The baseline results denoted by the blue bars show clearly

the impact of limited training data size. Trained on the full
WSJ set, this baseline model achieves a word error rate
(WER) of 16.6 and character error rate (CER) of 5.8, in line
with previously reported similar models (for example, [8]
reports a WER of 18.0). Using only 10 hours of transcribed
speech degrades that performance to a WER of 39.5 and CER
of 16.1. With only 2.5 hours of training data, the baseline
model barely learns anything, resulting in a WER of 96.4 and
CER of 83.0.

When trained on the same data as the baseline model,
our architecture (green bars) produces improved results in all
training conditions. We see significant additional improve-
ments through the use of the extra non-parallel data, as shown
by the red bars. The impact of this semi-supervised training
is highest when the least parallel training data is available;
with 10 hours of transcribed speech, the improvements due to
semi-supervised training are modest.

We perform an ablation study to understand which com-
ponents of our model have the most impact on performance.
These results are in Table 1. All models used for this table
were trained with 2.5 hours of transcribed speech. In addition
to the three models from 2, we experiment with two semi-
supervised models that each have a single feature of the com-
plete model removed. We did not experiment with removing
the text autoencoder because it is so integral to the model:
without the text autoencoder, we cannot perform adversarial
training or make any use of the additional text data.

The first three rows of Table 1 mirror the left-hand side
of Figure 2. The fourth row shows that removing the speech

Table 1: Ablation results. All models were trained on 2.5
hours transcribed speech.

WER CER
Baseline model 96.4 83.0
Proposed model:

with transcribed speech only 87.4 62.0
with parallel and non-parallel data 64.6 34.6

without speech autoencoder 69.0 42.0
without adversarial training 93.3 67.0

autoencoder degrades the performance of our model some-
what, but still allows for a significant improvement over the
baseline. We use a relatively simple speech decoder here, and
plan to experiment with more complex models in future work,
which we hope will elicit further gains.

The final row of Table 1 shows that removing the adver-
sarial training sharply reduces the performance of our model,
demonstrating that having a shared embedding space for the
outputs of the speech and text encoders is critical. Without
adversarial training, the text corpus is still used to expose the
decoder to a wider range of possible sentences, which likely
accounts for the small improvement over the baseline using
this model.

(a) Baseline model

(b) Proposed model with no non-parallel data

(c) Proposed semi-supervised model

(d) Proposed semi-supervised model
without adversarial training

Fig. 3: Attention weights during decoding for WSJ utterance
443c040c. The ground truth transcript is: THE ERROR WAS
BY THE AMERICAN STOCK EXCHANGE.
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In order to further understand the improvements generated
by the use of our model architecture, we inspect the attention
mechanism during decoding. Figure 3 illustrates the activity
of the attention mechanism during decoding of the same test
sentence by four different models. In each subfigure, the y-
axis represents the outputs from the speech encoder - one for
every 8 frames, or 80ms, of speech - while the x-axis repre-
sents outputs from the decoder. The lowest weights are shown
in blue, while the highest are shown in yellow.

When the baseline model is trained on only 2.5 hours of
speech, the attention mechanism has the same weights at all
time-steps (Figure 3a) - it has not learned anything about the
correspondence between speech and text. When our proposed
model architecture is trained with the same data, however, the
attention mechanism has clearly learned quite a bit, as shown
in Figure 3b.

Incorporating additional non-parallel data - as in Figure
3c - allows our model to learn more confident alignments be-
tween speech and text. However, when we remove the adver-
sarial training (Figure 3d), the model struggles to find the cor-
respondence between speech and text. The adversarial train-
ing is essential to this method of incorporating additional text
data into ASR training.

Our final set of experiments compares our model with a
more traditional method of incorporating additional text data:
the inclusion of an external language model during decoding.
These results are in Figure 4 - the original results from Figure
2 are shown in lighter colors with the corresponding language
model results superimposed on top. For reference, our base-
line model trained on the full WSJ corpus achieves a WER of
10.5 when combined with a language model, in comparison
to the WER of 10.8 reported in [8].

Fig. 4: Word error rate (WER) by model architecture and
hours of transcribed training data. The red and green bars
both represent the results of our proposed architecture. The
semi-supervised model (red) uses the full WSJ dataset as non-
parallel text and speech.

As would be expected based on the behavior of the atten-
tion mechanism, the baseline model trained on 2.5 hours of
transcribed speech does not improve when combined with a
language model, while the semi-supervised model does. We
get significant improvement with a language model on all
model trained on either five or ten hours of transcribed speech;
the improvement is greater - both relative and absolute - for
all semi-supervised models compared to the baseline. Impor-
tantly, the gains achieved through our method of incorporat-
ing text data are complimentary with the gains due to the lan-
guage model.

Somewhat surprisingly, adding a language model signif-
icantly hinders the performance of our model architecture
trained on 2.5 hours of transcribed speech with no non-
parallel data. On further inspection, we find that the language
model overwhelms the speech recognition model in this case.
Finding the optimal parameters to balance these models is
beyond the scope of this paper, but the issue is an important
one for our suggested low-resource scenario and warrants
further research.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an effective model for semi-
supervised ASR with limited transcribed speech and larger,
separate speech and text corpora. We have also shown that
our model architecture can be beneficial for fully supervised
ASR in very low-resource scenarios.

This paper represents initial experimentation with the
use of this class of model architecture for speech recogni-
tion. The ASR literature suggests a range of possible adjust-
ments to the model that could yield improvements in future
work: attention windowing[8], joint CTC and attention-based
decoding[30], decoder pre-training[31], and many more.

We are also eager to further analyze the performance of
this model, especially the nature of the shared text and speech
embedding space at its center. Additionally, we hope to ex-
plore how the properties of this embedding space (as well
as our overall performance) change with the use of subword
units[32] rather than characters for the input text.

This model architecture also has the potential for fully un-
supervised training, which we are eager to explore in future
work. In particular, we are hopeful that this model in com-
bination with the speech chain model from Tjandra et al.[11]
could prove effective for fully unsupervised speech recogni-
tion.
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