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ABSTRACT

A crucial step in task-oriented dialogue systems is tracking
the user’s goal over the course of the conversation. This
involves maintaining a probability distribution over possible
values for each slot (e.g., the food slot might map to the
value Turkish), which gets updated at each turn of the
dialogue. Previously, rule-based methods were applied to
dialogue systems, or models that required hand-crafted se-
mantic dictionaries mapping phrases to those that are similar
in meaning (e.g., area might map to part of town).
However, these are expensive to design for each domain, lim-
iting the generalizability. In addition, often a spoken language
understanding (SLU) component precedes the dialogue state
update mechanism; however, this leads to compounded errors
as the output from one module is passed to the next. Instead,
more recent work has explored deep learning models for di-
rectly updating dialogue state, bypassing the need for SLU
or expert-engineered rules. We demonstrate that a novel con-
volutional neural architecture without any pre-trained word
vectors or semantic dictionaries achieves 86.9% joint goal
accuracy and 95.4% requested slot accuracy on WOZ 2.0.

Index Terms— Convolutional Neural Networks, Dia-
logue State Tracking, Word Vectors, Semantic Dictionaries

1. INTRODUCTION

Spoken dialogue systems have gained popularity recently
with the rise of personal intelligent assistants such as Siri and
Cortana. These systems can be divided into two categories:
chatbots that simply entertain the user through fun conver-
sation, and task-oriented dialogue systems that accomplish
a goal for the user, such as making a restaurant reservation
or booking a flight. The standard approach for task-oriented
dialogue typically follows a pipeline of steps, starting with
intent detection (i.e., determining the user’s goal), followed
by spoken language understanding (SLU) of the user utter-
ance to determine precisely what the user is requesting. For
example, the user’s intent may be to book a restaurant, for
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which the relevant semantic tag values would be Chinese
for the food slot, and centre for the area slot. Subse-
quently, the user’s goal is updated based on the output of the
SLU component, the next system action is selected via the
predicted user goal, and finally the system responds accord-
ing to the chosen action (see Fig. 1 for the standard system
pipeline).
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Fig. 1. The typical flow of a dialogue system, with spoken
language understanding followed by dialogue state tracking.

In such a framework, however, there are several draw-
backs. First, the SLU component is an intermediate step be-
tween the user query and updating the state of the dialogue
(i.e., revising the current prediction for the user’s goal) [1, 2,
3], which may cause errors to accumulate further down the
pipeline. Recent approaches avoid this by eliminating the in-
termediate SLU and directly tracking the state of the dialogue,
given the user utterance [4, 5]. In addition, prior approaches
often relied on hand-crafted features, such as semantic dic-
tionaries that map words to synonyms of each other (e.g.,
area may map to part of town), or even entirely rule-
based dialogue systems. Current approaches explore end-to-
end neural models for dialogue management instead [6, 7].

In this work, we examine the WOZ 2.0 written dataset for
restaurant booking dialogues [8, 9], where the task is to pre-
dict the state of the dialogue at each turn. In particular, the
dialogue state consists of the user’s goal at that turn, which
is composed of a set of slots that the user is either request-
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User: Is there any place here in the centre
that serves corsica food?
food centre
System: What price range are you looking for?
User: Any price range will do.
food corsica; area centre;
price dontcare
System: There are no restaurants available matching your
criteria. Would you like to try a different area,
price range, or food type?
User: Are there any restaurants in the centre
that serves North American type of food?
food north_american; area centre;
price dontcare
System: Yes. The gourmet burger kitchen serves north
american food and is located in the centre part of the city.
Would you like their location?
User: Can I get the phone number?
centre;

corsica; area

food north_american; area
price dontcare;
requested phone
System: The phone number for gourmet burger kitchen
is 01223 312598.
User: Thank you. Good bye.

north_american; area
price

food centre;

dontcare

Table 1. Example WOZ 2.0 dialogue snippet, with the cor-
responding slots specified by the user at each turn. Note that
midway through the dialogue, the user changes the goal food
slot value from corsica to north_american.

ing (e.g., “What is the phone number?” would indicate the
requested slot phone) or informing the system (e.g., “I want
Turkish food,” which maps the informable slot food to the
value Turkish). This requires keeping track of the history
of the conversation, as well as the context from the previous
system response, as illustrated in Table 1.

The approach we take in this work is a deep learning
model, specifically a convolutional neural network (CNN)
architecture for tracking the user’s goal at each turn in a
restaurant booking dialogue. We show that without relying
on any semantic dictionaries or pre-trained word vectors, our
model is competitive with state-of-the-art, achieving 86.9%
joint goal accuracy and 95.4% requestable slot accuracy.

2. RELATED WORK

CNNs for NLP Many researchers in the natural language
processing (NLP) community are currently exploring con-
volutional neural networks (CNNs) for processing text. In
question answering, recent work showed improvements using
deep CNN models for text classification [10, 11, 12], follow-
ing the success of deep CNNs for computer vision [13, 14]. In
other work, paralle]l CNNs predict the similarity of two input
sentences by computing a word similarity matrix between the
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Slot-Value \

Food=Cheap
Area=Centre
Rating=High

Synonyms ‘

[affordable, budget, low-cost, low-priced, ...]
[center, downtown, central, city centre, ...]
[best, high-rated, highly rated, top-rated, ...]

Table 2. Example rephrasings for three slot-value pairs in a
semantic dictionary for restaurant booking.

two sentences as input to a CNN [15, 16, 17]. Attention-based
CNNs were applied to sentence matching [18] and machine
comprehension [19], as well as for mapping natural language
meal descriptions to their corresponding entries in a food
database [20, 21, 22, 23, 24, 25].

Dialogue State Tracking Traditionally, spoken dialogue
systems relied on separately trained components for spoken
language understanding (SLU) and dialogue state tracking.
The SLU component would identify slot-value pairs from the
speech recogition output, which would be passed to the state
tracking module to update the belief state [26, 2]. However,
this pipeline of steps would accumulate errors, as the SLU
component often would not have the necessary context to ac-
curately predict the slot values. Thus, belief tracking research
shifted to jointly predicting slot-value pairs and updating the
dialogue state [27, 28].

Typically, these jointly trained SLU and dialogue state up-
dating models rely on a delexicalization-based strategy, which
translates various instantiations of slot and value mentions
in the user utterance into generic labels; this approach re-
quires hand-crafted semantic dictionaries in order to perform
the mapping from specific wordings to generic slot-value la-
bels. Prior work by Henderson et al. fed delexicalized user
utterances into a recurrent neural network, which output a dis-
tribution over slot values [29]. However, delexicalizing the in-
put requires a manually defined semantic dictionary that maps
from slot-value pairs to all possible text forms, or synonyms
(see Table 2 for examples of slot-value pair synonyms).

To avoid this reliance on hand-crafted semantic dictio-
naries, Mrksic et al. recently demonstrated the ability of
their Neural Belief Trackers (NBT) [6] to match the perfor-
mance of delexicalization-based models, without requiring
any hand-crafted semantic dictionaries, as well as the ability
to significantly outperform such models when the semantic
resources are not available. However, these Neural Belief
Trackers still require pre-trained word vectors tailored to
retain semantic relationships. While our work is similar to
theirs in that we both leverage CNNs for dialogue state track-
ing, our work, on the other hand, does not rely on pre-trained
word vectors, and directly predicts matching slot values in-
stead of doing binary classification for each slot-value pair;
in contrast, the NBT is trained to learn representations of
user utterances and slot-value pairs that are used for binary
classification (i.e., whether or not a given slot-value pair is
mentioned in the user utterance).

In addition, Zhong et al.’s state-of-the-art work has ex-



plored deep learning methods for dialogue state tracking, but
with recurrent (instead of convolutional) self-attentive en-
coders [7], and again considers each slot-value pair one at a
time, while we predict the matching slot value from among
all options simultaneously. Their self-attentive RNN model
encodes user utterances, system actions, and each slot-value
pair under consideration, but again relies on pre-trained Glove
word embeddings [30], and character embeddings, while our
model does not require any pre-trained embeddings. Finally,
Rastogi et al. also feed delexicalized utterances into their
multi-domain deep learning model for state tracking [31].

3. CNN DIALOGUE STATE TRACKER

The goal of our work is to accurately update the current belief
state of the dialogue by predicting, at each turn, the correct
slot values specified by the user, specifically for a restaurant
booking task. There are two types of slots: informable (i.e.,
the user is providing information about the type of restau-
rant they want, such as the cuisine), and requestable (i.e., the
user is asking for information about the restaurant, such as
the telephone number),' as shown in Table 3 which enumer-
ates all possible informable and requestable slots, as well as
the number of values available for each slot. Since the in-
formable slots are also requestable, the system must differen-
tiate whether the user is providing or requesting information.
In addition, there is an imbalance of data, since the Food in-
formable slot has many possible values, whereas Area and
Pricerange have fewer than 10, and some slot-value pairs
appear more often than others in the training data.’

| Slot [ Type | Num Values |
Food Informable, Requestable 75
Area Informable, Requestable 7
Pricerange | Informable, Requestable 4
Name Requestable N/A
Address Requestable N/A
Phone Requestable N/A
Postcode Requestable N/A
Signature Requestable N/A

Table 3. All possible informable and requestable slots.

As discussed in Section 2, prior work has either used
hand-crafted features and semantic dictionaries for dialogue
state tracking with delexicalization, or neural models relying
on pre-trained semantic word vectors, while ours does not.

Below, we describe in detail our novel convolutional neu-
ral dialogue state tracker, with two variants: one model with
a binary sigmoid output layer indicating the presence of each
requestable slot (Fig. 3), and another separately trained model

Uhttp://camdial.org/ mh521/dstc/downloads/handbook.pdf
Note that requestable-only slots (e.g., address) do not have values that
can be specified by the user, since the user is requesting the value.
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for each informable slot (Fig. 2) with a softmax output layer
to predict the slot value. We also discuss two post-processing
techniques for boosting performance to illustrate the impor-
tance of error analysis for gaining insight into why a system
is underperforming and finding a solution based on human in-
tuition about the task. Thus, we combine deep learning mod-
els with expert knowledge into a hybrid approach in order to
overcome the limitations of purely neural methods.

3.1. Informable Slot Models

As shown in Fig. 2, we separately trained a model for each of
the informable slots (i.e., Food, Area, and Pricerange).’
Each model is composed of an embedding layer (which is
not pre-trained, and is learned during training), into which we
fed the user utterance concatenated with the previous system
response as the input &, where x is composed of the sequence
of learned word vectors for the input tokens wy, w1, ..., Wy,.
The input had two options, chosen via the development set:*

1. The user utterance concatenated with the full system re-
sponse, omitting the system response if the user utter-
ance starts with “no” (i.e., correcting the system), and
using only the final question asked by the system.

The user utterance concatenated with all the slots re-
quested by the system (i.e., in its dialogue act).

This is followed by a single convolutional layer with max-
pooling to get a representation r of the embedded input a:

r = maxpool(ReLU(ConvlD(x)))) (1)
Finally, a feed-forward layer with a softmax on top is used to
directly predict the probability of all possible slot values:

o =softmax(Wr +b) (2)
where W is a learned weight matrix and b is a bias term in the
final feed-forward layer.

3.2. Requestable Slot Model

The requestable slot model is also a CNN (shown in Fig. 3),
but with a separate binary sigmoid output layer for each pos-
sible requestable slot (see Table 3), instead of one softmax
layer on top, as in the informable slot models. The input to
this model is the first option we tried for the informable slot
models (i.e., the user utterance concatenated with the full sys-
tem response, omitting the system response if the user says
“no,” and using only the final question asked by the system).

3We also tried jointly training all the slots, but found that separately train-
ing the models boosts performance over a single jointly trained model.
4Separately processing the user utterance and system response was worse.
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Fig. 2. The CNN architecture for separately trained models for each of the informable slot types.
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Fig. 3. The CNN architecture for the requestable slot model.

3.3. Hybrid Deep Learning and Knowledge-Based Method

While neural network models are incredibly powerful and
have demonstrated success over prior state-of-the-art ap-
proaches in many fields, including computer vision, speech
recognition, and natural language processing, there are still
limitations to using these models that are often referred to as
“black boxes.” In our work, we simply feed the raw user utter-
ance and system response into the model, which then outputs
predicted slot-value pairs, requiring no manual feature engi-
neering, pre-trained word vectors, or semantic dictionaries.
However, this can make it difficult to interpret why the model
behaves the way it does, and may limit performance since
the model does not inherently have common-sense knowl-
edge about the real world, or in this case, the restaurant
booking task. Thus, by manually investigating test exam-
ples where the system made prediction errors, we are able
to boost the model’s performance by guiding it in the right
direction based on expert knowledge of the task and dataset.
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Such an approach is illustrative of a hybrid between deep
learning without any manual feature engineering, and ex-
pert knowledge-based systems, which we use to address the
limitations of the purely neural model.

3.3.1. Post-Processing Techniques to Boost Performance

1. Delexicalization of the input to the model is common
practice on dialogue state tracking tasks. In our work,
we take a different approach, and perform string match-
ing of slot values as a post-processing step to correct
for any omitted slots (e.g., if some slot values were not
seen in training), after the model makes its predictions.

We also check whether any slots that were requested by
the system in a given turn (as specified by the system’s
dialogue act) were not predicted by that slot’s model
(i.e., the top value was None). If so, we add the next-
highest predicted value for that slot to the goal state.

3.4. Implementation Details

We pad the input to 51 tokens (i.e., the maximum length of the
concatenated user utterances and system responses seen dur-
ing training). The input 64-dimension embedding layer is fol-
lowed by a 1D convolution with 64 filters spanning windows
of three tokens, with a rectified linear unit (ReLLU) activation
and dropout of probability 0.2. Each network is trained to
predict the matching one-hot label array given the input user
utterance; that is, the softmax is trained to predict 1 for each
slot-value pair that is specified by the user, and 0 for all others.
For the separately trained models, we add a None value for
each slot type, and assign this value a 1 for each example that
does not contain the specified slot type. The model is trained
with the Adam optimizer [32] on binary cross-entropy loss.



The setup is the same for the requestable slot model, with a
threshold of 0.5 at test time for each requestable slot.

We tune several threshold hyperparameters on the devel-
opment set: at the start of a dialogue, we use a threshold of
0.5 for a predicted slot value when adding new slots to the
goal state, while a higher threshold of 0.9 is best for adding
new slots during the dialogue, and an even higher threshold
of 0.99 for updating the value of slots already in the state. In
addition, we set a threshold of 0.2 that must be exceeded in
order to add slots requested by the system’s dialogue act. Fi-
nally, the best input for the Area slot (and for all slots in the
Sim-GEN movie booking task in Section 4.1) is the full sys-
tem response concatenated with the user input, while the best
input for the WOZ Pricerange and Food slots is the user
utterance concatenated with the system’s requested slots.

4. EXPERIMENTS

4.1. Datasets

For our experiments, we report results on the WOZ 2.0
dataset,’ in which Turkers assumed the role of the system or
user in dialogues similar to those used in the 2nd Dialogue
State Tracking Challenge (DSTC2).® so we can compare
our performance to that of state-of-the-art approaches on a
standard dialogue system benchmark. This task involves
restaurant booking, where the user specifies his or her goal
as a set of informable and requestable slots, as described in
Section 3. The WOZ data is written, not spoken, requir-
ing semantic understanding rather than robustness to speech
recognition errors. Our final model is trained on the full train-
ing and development set, with hyperparameters tuned on the
development set, and is evaluated on the test utterances. To
demonstrate our model’s generalization capability, we also
evaluate on the Sim-GEN dataset of conversations between
an agent and a simulated user for buying movie tickets [33].

4.2. Metrics

As is commonly used in dialogue state tracking experiments,
we report results on two slot tracking metrics:

e Goals: the proportion of dialogue turns where all the
user’s informable slots (i.e., search goal constraints)
were correctly identified.

e Requests: the proportion of dialogue turns where all
the user’s requestable slots were correctly identified.
4.3. Results

As seen in Fig. 4, our CNN model without semantic dictio-
naries or pre-trained word vectors, achieved 86.9% goal ac-
curacy and 95.4% requests accuracy on the held-out WOZ

Shttp://mi.eng.cam.ac.uk/ nm480/woz_2.0.zip
Shttp://camdial.org/ mh521/dstc/
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2.0 dataset. In Fig. 5, our CNN outperforms the state-of-the-
art hierarchical LSTM for jointly tracking dialogue state and
predicting system actions [34] on the Sim-GEN movies data.

Ours 86.995‘4

a0 ronges, 19 T '
e it 1) '
Delexicalized + Semantic Dict [ 5/ 6
oeeccalied ™

0 20 40 60 80 100

M Requests (per-turn requestable slot accuracy)

M Goals (per-turn informable slot accuracy)

Fig. 4. Goal and request accuracy of our model compared
to a strong delexicalization baseline and two state-of-the-art
neural methods: NBT (Neural Belief Tracker) and GLAD
(Global-Locally Self-Attentive Dialogue State Tracker).

soint [ —96.5
mime | — 75

Date 98'949_3

Theater Name | o0

Movie
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B Ours Mliuetal., ‘18

Fig. 5. Accuracy of our model, as compared to the state-of-
the-art [34] on slots in the Sim-GEN movies dataset.

4.4. Ablation Study

Here we show the importance of the two post-processing tech-
niques discussed in Section 3.3 that combine the deep learn-
ing model with expert knowledge based on error analysis.
As shown in Table 4, the biggest gain in performance on the
WOZ dataset is from exact string matching of slot values in
the user utterance, and the best overall model is achieved by
using both techniques. We also note that there is no gain from
applying these techniques to the Sim-GEN movies dataset.
We see examples of errors made by the model on WOZ
in Table 5, where due to synonyms such as “expensively” and
“upscale” for “expensive,” the model is unable to recognize
out-of-vocabulary words that have similar meaning. In addi-
tion, the user correction for the area slot in the third exam-
ple, where the user specifies “anywhere,” is challenging since
the system asks about the “centre” of town. Finally, under-
standing that the user wants a “cheap” restaurant if they are
“close to broke” requires advanced commonsense reasoning.



| Model | WOZ Goals | Sim-GEN Goals |

| Best | 869 | 96.5 |
w/o technique 1 76.6 96.5
w/o technique 2 82.6 96.5
w/o technique 1 or 2 72.7 96.5

Table 4. Goal development set accuracy of our model, on
WOZ and Sim-GEN, without the two post-processing tech-
niques in Section 3.3: 1) exact string matching of slot values
in the user utterance, and 2) adding the slot value with highest
predicted probability for slots requested by the system.

User: Hello, I'm looking for a nice restaurant
with vegetarian food.
True: food vegetarian
Pred: food vegetarian; price expensive
User: Hi, I want a Tuscan restaurant that’s expensively priced.
True: food = tuscan;price expensive
Pred: food cheap
System: No such results found. Would you like me to
search for any Mediterranean restaurants in the centre?

vegetarian; price

User Utterance | Top-3 Nearest Neighbors

phone number and phone number
whats phone number
phone number please

uh any

ah any

any range
um chinese food
what about thai food
romanian food

any

chinese food

Table 6. Top-3 nearest neighbors for three test user utter-
ances, using Euclidean distance on the model’s learned em-
beddings (i.e., after convolving and maxpooling the input).

ters in the requestable slots model. As shown in Table 7, some
filters appear to be identifying requestable slots (e.g., post-
code, post, center), whereas others are focused specifically on
finding different types of food (e.g., caribbean, indian, etc.).

Table 5. Examples of incorrect slot-value predictions made
by the system due to the lexical variation used by Turkers in
the WOZ 2.0 dataset, which requires semantic understanding.

4.5. Qualitative Analysis

To investigate whether our model is learning semantically
meaningful embeddings after passing the input user utterance
through the convolutional layer followed by maxpooling,
we used Euclidean distance to identify the top-n nearest
neighbor embedded utterances to several utterances selected
from the held-out test set (note that we are focusing on the
model trained to predict requestable slots for the purposes of
this analysis). In Table 6, we see that the nearest neighbor
embeddings are indeed similar in meaning to the query user
utterance (e.g., “any’’ is most similar to the learned vectors for
“uh any” and “ah any”), and “chinese food” is most similar to
the learned embedding for “um chinese food”), as expected.
To further understand the behavior of our neural network
model and illustrate that is interpretable, rather than simply
a black box, we also extracted the top-10 tokens that had the
highest activations when passed through the learned CNN fil-
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User: Is there a Lebanese place anywhere around? l CNN Filter ‘ Top-10 Tokens ‘
True: food = lebanese;area = dontcare; 11 caribbean, indian, type, food, bistro, serve,
price = dontcare something, thai, singaporean, romanian
Pred: food = lebanese;area = centre; 13 european, canapes, indian, bistro, japanese,
price = dontcare caribbean, world, persian, italian, british
User: I like Persian but I'm close to broke. 16 postcode, post, center, thank, restaurant,
True: food = persian;price = cheap then, i, need, could, uh
Pred: food = persian 19 phone, telephone, does, their, the, is,
System: I will search for the most nearby English restaurant. south, east, i, in
User: It should be an upscale English restaurant. 50 code, expensive, type, moderate, serving,
True: food = english;price = expensive kind, any, my, anything, cheap
Pred: food = english

Table 7. Top-10 highest activation tokens for several learned
CNN filters, where filters 11 and 13 isolate cuisines, and fil-
ters 16, 19, and 50 focus on three types of requestable slots:
postcode, phone, and pricerange, respectively.

5. CONCLUSION

We have demonstrated that our novel convolutional architec-
ture that directly predicts a user’s goal slots during a task-
oriented dialogue in the restaurant booking domain, given the
user utterance and system response, achieves 86.9% joint goal
accuracy and 95.4% requested slots on the WOZ 2.0 test set,
without any semantic dictionaries or pre-trained word vectors.

In future work, we plan to extend our approach to other
domains, such as student-advisor and Ubuntu user datasets in
the recently launched DSTC7 challenge,” and to predict not
only the user’s goal, but the next system response. In addition,
we plan to modify our model so as to handle the noisy ASR
test set of DSTC2—this may require tricks such as summing
the scores from each ASR hypothesis, applying word dropout,
and learning character n-gram embeddings, as in [7].

http://workshop.colips.org/dstc7/index.html
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