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ABSTRACT

In this work, we investigate mapping both natural language food
and quantity descriptions to matching USDA database entries. We
demonstrate that a convolutional neural network (CNN) model with
a softmax layer on top to directly predict the most likely database
matches outperforms our previous state-of-the-art approach of learn-
ing binary classification and subsequently ranking database entries
using similarity scores with the learned embeddings. The softmax
model achieves 97.3% top-5 USDA quantity and 91.1% food recall
over the full database, compared to only 70.0% quantity and 46.4%
food recall with a sigmoid model, where top-5 recall indicates the
percentage of test cases in which the correct quantity or food is in
the top-5 hits. Evaluated on 9,600 spoken meals over all foods, the
softmax model achieves 91.6% top-5 quantity and 80.1% food recall.
We also explore jointly learning both mappings with a single CNN
to boost quantity mapping, and improve food mapping by reranking
the food database entries using the predicted quantity matches.

Index Terms— Convolutional Neural Networks, Multitask
Learning, Crowdsourcing, Semantic Embeddings, Reranking

1. INTRODUCTION

Today many Americans are tracking their diet, often to lose weight
or to monitor specific nutrients, such as glucose levels for diabetics
or sodium intake for those with high blood pressure. However, exist-
ing diet tracking applications can be too time-consuming for many
users, requiring manually entering each eaten food one at a time and
scrolling through a long list of potential database matches. Our pro-
posed solution is a diet tracking application that uses speech and
language understanding technology to enable quick, intuitive diet
tracking; that is, a user simply speaks or types a natural language de-
scription of their meal, and our technology automatically determines
the most likely food database matches [1, 2, 3].

In our prior work, we investigated the problem of mapping natu-
ral language meal descriptions to their corresponding food database
entries. But this was limited to food matching, whereas we also need
to address the remaining challenge of mapping user-described quan-
tities to matching database quantity entries. This is a difficult prob-
lem because user descriptions are often very different from database
entries. For example, a user might say “a bowl” or “a handful,” but
these do not easily map to database quantities, such as cups or grams.
In a scenario where the user says, “a spoonful of peanut butter,” the
system should determine that the database food match is Peanut but-
ter, smooth style, with salt with the corresponding quantity 1 tbsp.
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Meal # Quantities # Foods # Diaries
Breakfast 616 1,477 33,317
Dinner 613 2,556 23,094
Salad 173 232 2,446

Sandwich 234 372 4,474
Smoothies 214 382 5,789
Pasta/Rice 366 1,262 12,715
Snacks 725 1,334 12,041

Fast Food 271 661 5,474
All Foods 1,562 5,156 99,350

Table 1. AMT data statistics, organized by meal.

In this paper, we tackle the quantity mapping problem by devel-
oping a new convolutional neural network (CNN) architecture that is
trained with a softmax layer on top to directly predict the most likely
database quantities, whereas our prior food mapping work used a
binary classification network to learn embeddings for each database
food entry, which were then ranked via cosine similarities at test
time. In addition, we explore multitask learning to jointly predict
both the matching food and quantity database entries given a single
input meal description. We show that by leveraging the close rela-
tionship between quantities and foods, we can use predicted quantity
matches to improve food ranking performance.

The remainder of the paper is organized as follows. First we
describe the data collection process for obtaining natural language
quantity descriptions and matching database entries. We then dis-
cuss the CNN architectures we explored and the multitask learning
paradigm, followed by experimental results and discussion. Finally,
we review related work and conclude with directions for future work.

2. DATA COLLECTION

Previously [4], we collected 31,712 meal descriptions and associated
USDA food database matches via crowd-sourcing with AmazonMe-
chanical Turk (AMT). In order to generate intuitive meal description
tasks, we partitioned the 5,156 database foods into eight meal cat-
egories, such as breakfast and dinner (see Table 1), and collected
over 99k food and quantity descriptions in total. To collect quan-
tity descriptions for our new work, we revised the AMT task such
that workers were told to select one quantity option from among all
the database quantity units available for a given food item. Then they
were instructed to describe this quantity naturally (e.g., two cups of ),
and in a separate textbox, to describe the food item (e.g., chopped
kale). To reduce biasing the language used by workers, we included
images of the food items along with the less natural USDA titles.

For our evaluation on speech data, we collected 9,600 spoken
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quantity mapping task, as an alternative approach to training a joint
multitask model, we used the best quantity softmax trained on all
data (since if we only used training data, then it could not accurately
predict quantities seen only in the test data) to rerank the predicted
foods. This boosts the top-1 food mapping performance on test data
for all meals except Fast Food (see Table 5). First, we predict the
top-5 USDA quantities. Then, we rerank the predicted USDA foods
that have at least one of the top-5 predicted quantities as a unit option
above those that do not. This gain indicates that we can leverage a
higher-performing task to improve a weaker, closely related task.

Meal Q Soft. MTL Q F Soft. Reranked F
Breakfast 89.6 88.7 80.4 81.5
Dinner 89.6 89.7 71.8 72.9
Salad 89.0 88.2 83.7 84.1

Sandwich 89.6 88.4 82.7 83.6
Smoothies 89.3 89.9 82.0 82.0
Pasta/Rice 90.0 90.1 66.5 67.4
Snacks 85.9 86.5 82.4 83.0

Fast Food 92.5 93.4 88.8 88.3
All Foods 86.6 86.3 70.3 71.1

Table 5. Top-1 recall for MTL Quantity and reranked Foods.

5. DISCUSSION

When users interact with our live nutrition system, we must ensure
the rankings generated by our food and quantity mappers at test time
are reasonable. To qualitatively evaluate the performance of our
CNN model, we observe that its predictions make sense intuitively.
For example, in the test meal description “I had a cup of milk and a
tablespoon of honey,” with the softmax model trained on Breakfast
data, the quantity ranking for milk is {cup, fl oz, quart} and {tbsp,
cup, packet (0.5 oz)} for honey, which matches commonsense.5

By inspecting the nearest neighbors of the learned USDA quan-
tity embeddings (see Table 6), we see that the Pasta Softmax model
(i.e., the complex softmax CNN trained on the Pasta meal category6)
is learning meaningful semantic representations of quantities, where
those of a similar unit are close to each other in vector space. We can
also determine what the 64 CNN filters over the embedded quanti-
ties learned by inspecting which tokens cause the filters to fire with
the highest activations. This analysis shows that filter 46 tends to
identify meat-related tokens (i.e., tenderloin, beef, loin, strip, steak,
pork, wagyu, roast, dried, and strips are the top-10 tokens in order of
descending filter response), while filter 53 picks out numbers (i.e.,
three, one, a, two, eight, five, four, six, twelve, and seven).

Quantity Neighbor 1 Neighbor 2 Neighbor 3
cup cup whole cup slices cup shredded
oz oz whole oz boneless oz serving 2.7 oz

serving 1/2 cup serving 1 cup cup slices cup whole

Table 6. Top-3 neighbors to three USDA quantities, based on Eu-
clidean distance of learned embeddings from a Pasta softmax model.

6. RELATEDWORK

Multitask learning (MTL) has been applied successfully to many
natural language processing (NLP) tasks. Collobert et al.’s early

5A pre-trained semantic tagger [3] identifies each food/quantity segment.
6In the deployed system, we would use the full Allfood Softmax model.

exploration of multitask learning involved jointly training a single
CNN like ours on several tasks: part-of-speech tagging, chunking,
named entity recognition, semantic role labeling (SRL), semantic
relation prediction, and language modeling (LM) [8]. They focus
specifically on SRL, while we care about both our tasks equally. Liu
et al. built a multitask deep neural network (DNN) that combined
two different tasks of multiple-domain query classification and in-
formation retrieval for web search ranking [9]. Similar to our work,
they embedded an input query into a lower-level shared semantic
representation used for the two different tasks at the top layer; how-
ever, they use a DNN while we employ a CNN.

Other work in MTL for NLP demonstrated an improvement in
sentence compression by incorporating two auxiliary tasks, com-
binatory categorical grammar (CCG) tagging and gaze prediction,
based on the intuition that longer reading time correlates with text
difficulty [10]; they showed that the cascaded architecture, where
auxiliary tasks are predicted at an inner layer, outperforms the model
where auxiliary tasks are predicted at the top layer. Luong et al. in-
vestigated MTL for neural machine translation with the sequence-to-
sequence model, with the surprising result that parsing (i.e., sharing
the encoder) and image caption generation (i.e., sharing the decoder)
both improve translation, despite the much smaller datasets [11].

Multi-task learning has also been applied to other fields, includ-
ing speech recognition and computer vision. Toshniwal et al. ex-
plored end-to-end speech recognition on the conversational Switch-
board corpus, demonstrating gains in character-based automatic
speech recognition (ASR) by adding supervision at lower layers in a
deep long short-term memory (LSTM) network with two lower-level
tasks [12]. In computer vision, Misra et al. proposed a novel cross-
stitch unit that combines CNNs for two tasks by automatically learn-
ing an optimal combination of shared and task-specific representa-
tions [13]. In addition, Wang et al. constructed a shared sub-network
with higher-level sub-networks for two image representations, in or-
der to achieve high accuracy from cross-image representations while
maintaining the efficiency of single-image representations [14].

Another area of work related to ours is that of learning joint
embeddings. Prior work used a margin-based hinge loss to rank
annotations given an image [15], learned a joint multimodal space
between images and captions for caption generation [16, 17], and
learned sentence or document embeddings [18]. Recently, CNNs
have also gained popularity among the NLP community, achieving
state-of-the art performance on text classification [19, 20, 21]. Fi-
nally, parallel CNNs [22, 23, 24], attention-based CNN (ABCNN)
models [25], and hierarchical ABCNNs [26] have been proposed for
sentence matching and machine comprehension.

7. CONCLUSION AND FUTURE WORK

In this paper, we expanded our prior work mapping natural language
meal descriptions to their corresponding USDA food database en-
tries to address the remaining challenge of mapping meal descrip-
tions to their associated quantity database hits. We have shown that
a new softmax CNN model outperforms our previous best sigmoid
CNN trained on a binary verification task, and achieves 91.6% top-5
quantity recall on a spoken test set of 9,600 meal descriptions over
the full USDA database. We investigated multitask learning to im-
prove quantity mapping, and demonstrated that we can leverage the
high recall of the quantity predictor to improve food ranking. In fu-
ture work, we will investigate contextual understanding to determine
whether the user has refined their meal description, and run a pilot
study with nutritionists’ patients. We may explore speech-to-speech
networks and input lattices to account for speech recognition errors.
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