The JHU-MIT System Description for NIST SRE18

Jesiis Villalba', Nanxin Chen', David Snyder"?, Daniel Garcia-Romero?,
Alan McCree?, Gregory Sell?, Jonas Borgstrom®, Fred Richardson?,
Suwon Shon*, Frangois Grondin®, Réda Dehak®, L. Paola Garcia-Perera’,
Pedro A. Torres-Carrasquillo®, Najim Dehak!

!Center for Language and Speech Processing, Johns Hopkins University, Baltimore, MD, USA

2Human Language Technology Center of Excellence, Johns Hopkins University, Baltimore, MD, USA

3 MIT Lincoln Laboratory, Lexington, MA, USA
4 MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
° LSE-EPITA, Villejuif, France

{jvillalba, bobchennan, dsnyder, dgromero, alan.maccree, gsell, paola.garcia, ndehak3}@ jhu.edu,

{jonas.borgstrom, frichard, ptorres}@ll.mit.edu,

{swshon, fgrondin}@mit.edu, reda.dehak@gmail.com

Abstract

This document represents the SRE18 system description for the
joint effort of the teams at JHU-CLSP, JHU-HLTCOE, MIT
Lincoln Labs., MIT CSAIL and LSE-EPITA. All the developed
systems consisted of Neural network/i-vector embeddings with
some flavor of PLDA back-end. The systems were tailored
to the video (VAST) condition or to the telephone condition
(CMN?2). For VAST, the primary system was a fusion of a 16
kHz TDNN x-vector, 16 kHz factorized TDNN x-vector, 8 kHz
TDNN x-vector and 8 kHz ResNet34-Attention embedding. For
CMN?2, the primary was a fusion of two TDNN x-vectors and
ResNet34-Attention embedding. For development in the VAST
condition, we used the SITW eval core-multi dataset where
we obtained Cprimary=0.105. For telephone, we used the
SRE18 dev CMN2 where we obtained Cprimary=0.256. The
contrastive submissions included the best single system (JHU-
HLTCOE, SITW Cp=0.137, CMN2 Cp=0.312); and the best fu-
sions of 1, 2, 3,... systems from the JHU-CLSP-MIT sub-team.

1. Introduction

The JHU-MIT submission is the joint effort of the teams at
Johns Hopkins CLSP and HLTCOE, MIT Lincoln Laboratory
(MIT-LL), MIT CSAIL and LSE-EPITA. We worked as two
sub-teams until the final part of the evaluation:
¢ JHU-HLTCOE.
e JHU-CLSP-MITLL: JHU-CLSP, MIT-LL, MIT CSAIL
and LSE-EPITA.

All the systems developed for this evaluation consisted of a
neural network or i-vector embedding followed by some form
of PLDA classifier with or without score normalization. More
in detail, all systems followed these steps:

1. Acoustic feature extraction (MFCC).
Voice activity detection.
Diarization (SITW/VAST data).

Embedding extraction.

DA A N

LDA dimensionality reduction.

6. Centering, whitening and length normalization.
7. PLDA log-likelihood ratio evaluation.

8. Adaptive score-normalization (all system used AS-Norm
unless said otherwise).

9. Fusion/calibration.

We explored several types of DNN embeddings: deep
TDNN x-vectors [1, 2], factorized TDNN [3] x-vector, ResNet
with LDE [4] or multi-head attention pooling. We developed
systems at 16 kHz and at 8 kHz. We found that fusing 8 kHz
and 16 kHz systems was beneficial for the video condition. We
adapted the back-ends to the video (VAST) condition or to the
telephone condition (CMN2). For VAST, the primary system
was a fusion of a 16 kHz TDNN x-vector, 16 kHz factorized
TDNN x-vector, 8 kHz TDNN x-vector and 8 kHz ResNet34-
attention embedding. For CMN?2, the primary was a fusion of
two TDNN x-vectors and ResNet34-attention embedding. The
contrastive submissions included: the best single system (JHU-
HLTCOE); and the best fusion of 1, 2, 3,... systems from the
JHU-CLSP-MIT sub-team.

2. Training datasets
2.1. Individual datasets
The datasets used for training included:

* Switchboard phasel-3 and cellular1-2.
e NIST SRE04-10 as prepared by the SRE16 Kaldi

recipe’.
NIST SRE12 telephone data (SRE12-tel).

e NIST SRE12 phonecalls recorded through far-field mi-
crophone (SRE12-micphn). We did not use interviews
to avoid dealing with the interviewer removal.

* MIXERG6 telephone phonecalls (MX6-tel).
¢ MIXERG6 microphone phonecalls (MX6-micphn).

https://github.com/kaldi-asr/kaldi/blob/
master/egs/srel6/v2

* VoxCeleb 142: original distributions of VoxCeleb 1 and
2. Speakers that overlap with SITW were removed.

* VoxCelebCat 1+2: the original distribution of VoxCeleb
split each video into multiple short excerpts. We con-
catenated all excerpts from the same video into one file.
This makes the dataset more appropriate for PLDA train-
ing and also helps to balance the weight of each video in
the embedding training.

e SITW-dev-core: single speaker segments from the
Speakers in the Wild development set.

e SITW-dev-test-diarized. Segments obtained from diariz-
ing the SITW dev test set.

* SRE18-dev-unlabeled: This was used for PLDA adapta-
tion and score normalization in the SRE18 CMN2 con-
dition.

* SREI18-dev-VAST-diarized: SRE18 VAST development
set. For enrollment segments we used diarization marks
provided by the organizer. For the test segments, we used
the segments obtained by our diarization system. This
was used for centering adaptation and score normaliza-
tion in the SRE18 VAST condition.

2.2. JHU-CLSP-MITLL Training data

The dataset combinations used in the systems from the JHU-
CLSP-MITLL team were:

e CLSP-Train-8k: This was used to train DNN and i-
vector embeddings at 8 kHz. This set included Switch-
board, SRE04-10, SRE12-tel, SRE12-micphn, MX6-
tel, MX6-micphn, VoxCelebCat and SITW-dev-core.
Databases originally at 16 kHz were downsampled to 8
kHz. Recordings shorter than 4 seconds and speakers
with less than 8 recordings were discarded. This dataset
contained 735018 utterances from 12872 speakers.

* CLSP-Train-8k-phn: This was used to train x-vectors at
8 kHz. This set is the same used in the SRE16 Kaldi
recipe and includes Switchboard, SRE04-10, MX6-tel,
MX6-micphn. It contained 211034 recordings from
5139 speakers.

e CLSP-Train-16k: This was used to train DNN and i-
vector embeddings at 16 kHz. This set included SRE12-
micphn, MX6-micphn, VoxCelebCat and SITW-dev-
core. It contained 436815 recordings from 7936 speak-
ers.

¢ CLSP-PLDA-tel-8k: This was used to train back-ends
for the CMN2 condition with embeddings extracted at 8
kHz. It consisted of SRE04-10-telephone-only, SRE12-
tel, and MX6-tel. It contained 175116 recordings from
4585 speakers.

e CLSP-PLDA-vid: This was used to train back-ends for
embeddings extracted at 16 kHz for both VAST and
CMN2 condition; and for 8 kHz VAST condition. It con-
sisted of VoxCelebCat and SITW-dev-core. It contained
418711 recordings from 7304 speakers.

e SITW-dev-diar: This was used to center the SITW
data. It consists of SITW-dev-core and SITW-dev-test-
diarized. It consisted of 4447 recordings.

e SITW-SREI18-dev-diar: This was used for score normal-
ization in the VAST condition. It consisted of SITW-dev-
core SITW-dev-test-diarized; and SRE18-dev-VAST di-
arized. It consisted of 4516 recordings.

The Train and PLDA datasets were augmented with re-
verberation using impulsional responses from RWCP sound
scene database, the 2014 REVERB challenge database and the
Aachen impulse response database (AIR)?. After that, we added
noises from the MUSAN corpus®. Thus, augmented signals
contained noise and reverberation at the same time. The number
of augmented segments was around twice the size of the origi-
nal dataset. We combined the original data and the augmented
data so the total dataset was around 3x the original size.

2.3. JHU-HLTCOE Training data

This section describes the training data used by the JHU-
HLTCOE team for the 8 kHz and 16 kHz x-vector systems. The
x-vector systems themselves are described in Section 6.2.

2.3.1. 8 kHz System

The 8 kHz x-vector DNN was trained on Switchboard, SRE04-
10, and VoxCelebCat. In total, there are 13,136 speakers in
this dataset, with 1,314,442 utterances prior to augmentation.
After removing utterances with less than 4 seconds of speech (as
determined by the Kaldi energy VAD described in Section 5.1)
and applying data augmentation, the amount of training data
increased to 5,208,831 utterances. All 16 kHz recordings were
downsampled to 8 kHz using SoX.

The backend was trained on SRE04-10. This consists of
4,263 speakers with 49,694 utterances before augmentation and
110,944 utterances after augmentation. SRE18-dev-unlabeled
was used for adaptation. See Section 7.2.2 for details on the
backend.

2.3.2. 16 kHz System

The 16 kHz x-vector DNN was trained on augmented VoxCele-
bCat. This originally contained 1,236,567 from 7,185 speak-
ers. After augmentation and the removal of any utterance with
less than 4 seconds of speech (as determined by the Kaldi en-
ergy VAD) the amount of training data increased by 6 times to
7,419,402.

The backend was trained on augmented VoxCeleb. This
provides 7,162 speakers. Augmentation doubles the amount
of utterances from 155,113 utterances before augmentation to
305,113 afterwards. The SITW-dev and SRE18-dev-VAST-
diarized were used for adaptation. See Section 7.2.1 for a de-
scription of the backend.

2.3.3. Data Augmentation

To augment an utterance, we randomly pick from one of the
following strategies:

e Reverb: Artificially reverberate via convolution with
simulated RIRs from the AIR dataset

e Music: A single music file (without vocals) is randomly
selected from MUSAN, trimmed or repeated as neces-
sary to match duration, and added to the original signal
(5-15dB SNR).

¢ Noise: MUSAN noises are added at one second inter-
vals throughout the recording (0-15dB SNR).

* Babble: Three to seven speakers are randomly picked
from MX6-micphn, summed together, then added to the
original signal (13-20dB SNR)

Zhttp://www.openslr.org/resources/28
3http://www.openslr.org/resources/17

¢ Codec: If the file is from VoxCelebCat, simulate GSM
AMR phone encoding®

2.4. MIT-CSAIL Training data

A total 359,463 utterances from 11,900 speakers are used for the
MIT-CSAIL team. At first, 258,655 utterances came from SRE
04, 05, 06, 08, 10 and MIXER®6, Voxcelebl development, Vox-
celeb2 development and Switchboard dataset for training Neu-
ral Network to extract 512 dimensions x-vector. For Voxcelebl
and 2 datasets, utterances from the same audio file were con-
catenated into a single wav file. Augmentation using MUSAN
noise dataset was also done on the training set and randomly se-
lected 150k utterances. The utterances which are shorter than 5
seconds after removing silence and speakers which have fewer
than 8 utterances were filtered out from the training .dataset. Fi-
nally, total 359,463 utterances from 11,900 speakers are used
for training the x-vector network. A different subset of the
dataset was used for the back-end of the system.

3. Development datasets

The development datasets were used to train fusion and calibra-
tion; and measure performance.

For the VAST condition, we found the development set
provided by the organization too small to provide reliable per-
formance estimation (only 270 trials). Also, there were only
around 2-3 false alarm errors at the Pr = 0.05 operating point
so we thougth that calibrating with that data was risky. Thus,
we decided to use the SITW eval core-multi condition because
we thought that it would be similar to the VAST condition since
it also consists of speech from video and it also requires diariza-
tion in the test side. However, we found that training calibration
on SITW wasn’t helpful to obtain good calibration on the VAST
dev set. Inspection of the VAST dev score distributions showed
that VAST target scores were similar to the SITW target scores,
but VAST non-targets were higher than SITW non-targets. We
were able to partially fix this problem by using the VAST dev
set for embedding centering and adaptive score normalization.
Finally, we decided to train fusion and calibration on SITW and
didn’t risk to do it on VAST.

For the CMN2 condition, we used the dev set provided by
the organizers.

4. Acoustic features

Both conditions, VAST and CMN2, were evaluated with 8 kHz
and 16 kHz systems. When using 8 kHz systems, 16 kHz
datasets were downsampled to 8 kHz. When using 16 kHz sys-
tems SRE18 CMN2 were usampled with low-pass filter inter-
polation using SoX°.

The JHU-CLSP-MITLL team used 23 dimension MFCC
(23 Mel filters) for x-vector systems at 8§ kHz; and 40 dimension
MFCC (40 filters) for x-vectors at 16 kHz. The JHU-HLTCOE
team used 23 dimension MFCCs (with 23 Mel filters) for the
8 kHz x-vector system, and 30 dimension MFCCs (with 30
Mel filters) for the 16 kHz x-vector system. For embeddings
based on 2D convolutions (ResNet34), we used 23 log-Mel fil-
ter banks and 40 log-Mel filter banks for 8 kHz and 16 kHz
respectively. The 8 kHz i-vector system used 23 MFCC with

“http://www.3gpp.org/ftp/Specs/archive/26_
series/26.073/26073-800.zip
Ssox.sourceforge.net

first and second derivatives. Features were short-time centered
before silence removal with a 3 seconds sliding window.

5. Voice activity detection
5.1. Kaldi energy VAD

The Kaldi energy VAD makes frame-level decisions, classify-
ing a frame as speech or non-speech based on the average log-
energy in a given window. This VAD was used by all JHU-
CLSP-MITLL systems for all the training data (8 kHz and 16
kHz); for all the telephone test data; and for the SITW/VAST
data with 8 kHz embeddings and the ResNet-LDE 16 kHz sys-
tem. The JHU-HLTCOE systems also used this VAD for all
training and test data.

5.2. MITLL VAD

The speech activity detection (SAD) system was trained as part
of the single-channel speech enhancement system in [5]. As
discussed in [5], the enhancement system outputs frame-level
speech activity posterior probabilities, along with frequency-
dependent posteriors. The raw frame-level posteriors were then
decoded using the forward-backward algorithm, and a hard
threshold was applied. Finally, short durations of active or in-
active speech were removed to promote contiguous segments in
the final SAD transcription.

The enhancement system was trained by creating a paral-
lel corpus of noisy and reverberant speech, similar to the recipe
discussed in [5]. However, only speech from the SRE10 corpus
was used to create the clean target signals. The noisy and re-
verberant signal versions were simulated by applying room im-
pulse responses and noisy signals from the RIR-NOISES and
MUSAN corpora.

The JHU-CLSP-MITLL 16 kHz x-vector systems used this
VAD on the SITW and VAST data.

5.3. MIT-CSAIL VAD

The Kaldi energy based VAD was used for the telephone
speech, CMN2. For the VAST set, we applied unsuper-
vised clustering based VAD to detect musical background noise
which confuses the energy based VAD. This VAD approach re-
lies on the hypothesis that speech is dominant on average, but
that noise can be dominant sporadically in time. The power
spectral density (PSD) frames are first computed with a Short-
Time Fourier Transform (STFT) for the entire test utterance. A
singular value decomposition (SVD) is then performed on these
PSD frames. The PSD frames are then projected on the left sin-
gular vectors associated with the largest singular values (which
number is set empirically), to produce PPSD, which stands for
Projected PSD. The log of the energy of each PPSD frame is
then computed, and the resulting observations are split into two
classes using k-means. The frames belonging to the class with
the highest energy level are then considered as speech. This
approach is therefore fully unsupervised, but is only applicable
offline as it requires the full test utterance.

6. Embeddings
6.1. JHU-CLSP x-vectors

We tried two different architectures for x-vector embeddings [1,
2]. The first one is the TDNN used in [2], which is also the
default in Kaldi recipes. Table 1 summarizes this network ar-
chitecture. Each feature frame is processed by a sequence of

Table 1: Baseline TDNN x-vector architecture

Layer Layer Type Context Size
1 TDNN-ReLLU t-2:t4+2 512
2 TDNN-ReLU 2, t, t42 512
3 TDNN-ReLU t-3, t, t+3 512
4 Dense-ReLU t 512
5 Dense-ReLU t 1500
6 Pooling (mean+stddev) Full-seq 2x1500
7 Dense(Embedding)-ReLLU 512
8 Dense-ReLU 512
9 Dense-Softmax Num. spks.
P(l[X;)
$
_ fem
Batch Normalization
I 1
Rectified Linear Unit J H
‘.7‘* Y)
Weight matrix M L
(0 ®
Semi- orthogonal
Weight matrix N .
.

Figure 1: Factorized TDNN x-vector architecture.

Table 2: Factorized TDNN x-vector architecture

Layer Layer Type Context Context Skip conn. Size Inner
factorl factor2 from layer size

1 TDNN-ReLU t-2:t42 512

2 F-TDNN-ReLU t2,t t, t+2 1024 256
3 F-TDNN-ReLU t t 1024 256
4 F-TDNN-ReLU t-3,t t, t+3 1024 256
5 F-TDNN-ReLU t t 3 1024 256
6 F-TDNN-ReLU t3,t tt+3 1024 256
7 F-TDNN-ReLU t-3,t tt+3 2.4 1024 256
8 F-TDNN-ReLU t3,t tt+3 1024 256
9 F-TDNN-ReLU t t 4,6,8 1024 256
10 Dense-ReL.U t t 2048

11 Pooling (mean+stddev) full-seq 2x2048

12 Dense-ReLU 512

13 Dense-ReLU 512

14 Dense-Softmax N. spks.

Table 3: Extended TDNN x-vector architecture

Layer Layer Type Context Size

1 TDNN-ReLU t-2:t+2 512

2 Dense-ReLU t 512

3 TDNN-ReLU t-2, t, t+2 512

4 Dense-ReLU t 512
5 TDNN-ReLU t-3,t, t+3 512

6 Dense-ReLU t 512

7 TDNN-ReLU t-4,t, t+4 512

8 Dense-ReLLU t 512

9 Dense-ReLU t 512
10 Dense-ReLU t 1500
11 Pooling (mean-+stddev) Full-seq 2x1500
12 Dense(Embedding)-ReLU 512
13 Dense-ReLU 512
14 Dense-Softmax Num. spks.

time-delay layers. The pooling layer computes mean and stan-
dard deviation of the TDNN output over time to obtain a unique
representation per recording. The Pooling layer output is pro-
jected to a lower dimension to obtain the speaker embedding.
The output of the network are posterior probabilities for the
training speakers it can be trained by minimizing a categorical
cross-entropy objective.

For the second x-vector architecture, we replaced the pre-
pooling layers by a factorized TDNN (F-TDNN) with skip con-
nections [3]. Figure 1 depicts this network. The F-TDNN re-
duces the number of parameters of the network by factorizing
the weight matrix of each TDNN layer into the product of two
low-rank matrices. The first of those factors is constrained to be
semi-orthogonal. It is assumed that the semi-orthogonal con-
strain will help to assure that we do not lose information when
projecting from the high dimension to the low-rank dimension.

The authors of the original paper found that; instead of
factorizing the TDNN layer into a convolution times a feed-
forward layer; it is better to factorize the layer into two convo-
lutions with half the kernel size. For example, instead of using
a kernel with context (-2, 0, 2) in the first factor of the layer and
0 context in the second factor, it is better to use a kernel with
context (-2,0) in the first factor and a kernel with context (0, +2)
in the second factor.

As in other architectures like ResNet [6], we introduced
skip connections. This means that some layers receive as in-
put, not only the previous layer but also the output from other
prior layers. The prior layers were concatenated to the input of
the current layer, instead of added like in ResNet. This allows to
make the network deeper by alleviating the vanishing gradient
problem. According to [3], the best option is to create skip con-
nections between the low-rank interior layers of the F-TDNN.

Table 2 summarizes the layers in our F-TDNN x-vector.

In summary, we had five x-vector embeddings:

¢ x-vector-8k-v1: 8 kHz TDNN x-vector trained on CLSP-
Train-8k-phn data.

x-vector-8k-v3: 8 kHz TDNN x-vector trained on CLSP-
Train-8k data.

x-vector-8k-v4: 8 kHz F-TDNN x-vector trained on
CLSP-Train-8k data.

x-vector-16k-vl: 16 kHz TDNN x-vector trained on
CLSP-Train-16k data.

E ={e1, - -ec}

Encoded Vector

mzwt—uc/\ Wye

’ Residuals

|

Dictionary Components

‘ ‘ Assign Weights ‘

Variable-length Input

= A{pr, o ped
{z1,22,-- 2L}

Figure 2: LDE pooling layer [4].

¢ x-vector-16k-v2: 16 kHz F-TDNN x-vector trained on
CLSP-Train-16k data.

6.2. JHU-HLTCOE x-vectors

For the evaluation we used an extended version of the TDNN
in [2], which is the default architecture in the public Kaldi
recipes. Table 3 summarizes the extended network (E-TDNN)
architecture. The two main differences are a slightly wider tem-
poral context of the TDNN (due to the addition of layer 7), and
interleaving dense layers in between the convolutional layers
(equivalent to the 1x1 convolutions used in computer vision ar-
chitectures). This architecture has been found to greatly out-
perform the baseline TDNN in the SITW and SRE16 bench-
marks. The network outputs posterior probabilities for the train-
ing speakers and it was trained by minimizing a categorical
cross-entropy. The x-vector is extracted from layer 12 prior to
the ReLU non-linearity.

We trained 2 systems based on this architecture. One using
8 kHz data for the CMN2 task, and another using the 16 kHz
data for VAST task. For the 8 KHz system the number of train-
ing speakers was 13136 and the total number of parameters was
approximately 13 million (only 6 million of them are needed to
extract x-vectors). The 16 kHz system was trained with 7185
speakers and the number of parameters was 8 million (4 million
for extracting the x-vector).

6.3. JHU-CLSP ResNet-LDE/Att embeddings

The ResNet-LDE is an evolution of the x-vector system where
the TDNN layers are replaced by a residual network with 2D
convolutions (ResNet34) [6] and the pooling layer is replaced
by a Learnable dictionary encoding (LDE) layer [7, 4].

The original x-vector framework assumes that the frame-
level TDNN representations before pooling are uni-modal.
Thus, to pool those representations, we just compute their mean
and standard deviation. Meanwhile, the LDE pooling assumes
that frame level representations are distributed in C' clusters and
it learns a dictionary with the centers of those clusters. This is
essentially the same as we do in the GMM-i-vector paradigm.
The component posteriors are obtained as,

exp(—se ||xt — prel|* + be)
S5 exp(—se ||xe — pel|” + be)

)]

Wt,c =

where s. is an isotropic precision; and b. includes the log-
weight and log-normalizing constant of the Gaussian. The bias
term was not included in the original paper but we found that it
slightly improves the results.

Then, we compute an embedding per component

. S we e (% — pe)
- T
Zt=1 Wt,c

and we concatenate the embeddings for all the components e =
(ef,...,el)T. This embedding has the same role as the super-
vector in GMM-i-vectors. This super-vector is projected to a
lower dimension to obtain the final embedding. This projection
has the same role as the total variability matrix in i-vectors.

We also used a variant of LDE that normalizes the compo-
nent posteriors to sum up to one in the time dimension, instead
of doing it in the Gaussian component dimension,

c=1,...,C ()

€c

exp(—se [|xt — pell)
Sey exp(—se [|xe — pel])

This is known as multi-head attention. Euclidean norm is used
instead of squared Euclidean distance since sometimes we ob-
served better convergence.

Instead of using categorical cross-entropy for training, we
used angular softmax loss [8]. Angular softmax loss has
stronger requirements for correct classification when m > 2
(integer that controls the angular margin), which generates an
angular classification margin between embeddings of different
classes [4, 9]. For angular softmax training we used pretrained
model from the original softmax loss as initialization.

In summary, we had three ResNet-LDE/Att embeddings:

 resnet-8k-v1: 8 kHz ResNet-Att trained on CLSP-Train-

8k with angular margin m = 2.
¢ resnet-8k-v2: 8 kHz ResNet-Att trained on CLSP-Train-
8k with angular margin m = 3.

e resnet-16k-vl: 16 kHz ResNet-LDE trained on CLSP-
Train-8k with angular margin m = 2.

3

Wt,e =

6.4. LSE-EPITA i-vectors

The LSE-EPITA used a GMM-UBM i-vectors based system.
The system is based on a UBM with 2048 full covariance matrix
Gaussian components and 600 dimensional i-vectors. It was
trained on the CLSP-Train-8k dataset.

6.5. MIT-CSAIL x-vectors

TDNN architecture was slightly modified based on the public
Kaldi recipes for training the x-vector system: xvec-8k-CSAIL.
First, we removed the Relu activation on the second last layer
and extract embeddings from the last hidden layer [10]. Based
on this architecture, we trained two different x-vector system
by using original segmented Voxceleb dataset and concatenated
Voxceleb dataset for the same video. Since the performance
is better on the concatenated version, we only contributed the
better system. Different VAD was applied to the VAST and
SITW dataset as described in section 5.3 but used the same x-
vector system to extract speaker embeddings.

7. Back-ends
7.1. JHU-CLSP back-end

The JHU-CLSP back-end consisted of LDA, centering, whiten-
ing, length normalization and generative Gaussian SPLDA. We

tuned different back-ends for the SITW/VAST condition and the
CMN?2 condition.

7.1.1. SITW/VAST

For SITW/VAST, we trained LDA, centering, whitening and
SPLDA on the CLSP-Train-vid data. LDA dimension was 200
and SPLDA had 150 eigenvoices. In the dev/eval phase SITW
was centered on SITW-dev-diar. Meanwhile, the centering for
the VAST was MAP adapted from SITW-dev-diar to SRE18-
dev-VAST-diar with relevance factor r = 14.

As there may be several speakers in the test segment, we
used diarization to obtain several speaker clusters. We scored
the enrollment segment against all the test segment clusters and
selected the maximum score.

Although, we obtained better results on SITW without
score-normalization, we observed better alignment between
SITW and VAST dev score distributions by using score normal-
ization. Thus, we thought that, using score-normalization, we
would obtain a better calibrated system on the evaluation data
also. We used adaptive S-Norm with SITW-SRE18-dev-diar as
cohort. For SITW, we selected the 500 top cohort segments.
For VAST, we selected the top 120 cohort segments. When ap-
plying the score normalization on the VAST dev we have target
trials in the cohort score matrices that we don’t want to use to
compute the normalizing parameters. We assumed that the top
7 segments were target speakers and don’t use them to perform
the normalization.

7.1.2. CMN?2

For CMN2, for systems at 8 kHz we trained LDA, centering,
whitening and SPLDA on the CLSP-Train-tel-8k dataset. For
systems at 16 kHz, we used the CLSP-PLDA-vid—essentially
because we didn’t want to upsample all the SRE telephone data—

When processing CMN2 data SRE18 unlabeled/dev/eval
we used the centering computed on the SRE18 unlabeled data.
We also adapted the SPLDA to the SRE18 unlabeled data in two
steps. First, we adapted SPLDA using the telephone numbers in
the meta-data as speaker labels. Second, we used the adapted
SPLDA to compute the scores to do agglomerative hierarchi-
cal clustering (AHC) of the SRE18 unlabeled segments and ob-
tain new speakers labels. The number of speakers for AHC
was tuned based on the SRE18 CMN2 dev Cprimary. In both
steps, we adapted from the original out-of-domain SPLDA. The
within-class and across-class covariances of the adapted model
were a weighted sum of the out-of-domain Sy, and in-domain
Sin covariances,

Sadapt = aSin + (1 - a)sout 4

with o = 0.6.

We used adaptive S-Norm using SRE18 unlabeled as co-
hort. We used the top 400 cohort segments to compute the nor-
malization parameters of each trial.

7.2. JHU-HLTCOE back-end

We used different back-ends for the SITW/VAST condition and
the CMN2 condition.

7.2.1. SITW/VAST

For this task, we use a generative PLDA backend. Before scor-
ing, the x-vectors are centered, projected to 200 dimensions

using LDA, and length-normalized. LDA and PLDA is es-
timated using the augmented VoxCeleb described in Section
2.3.2. When scoring against SITW or VAST data, the x-vectors
are centered on SRE18-dev-VAST and augmented VoxCeleb
(each is equally weighted). Score normalization is performed
using the top 10% of cohorts from the combination of SITW-
dev-test and SRE18-dev-VAST-diarized. Note that, when we
score the SRE18 dev data, we remove the largest 30 scores from
the score-normalization, as they are likely from target speakers.

Since there may be multiple speakers in the test recordings,
we first perform diarization as described in Section 9.2. For a
given trial, we compute the PLDA scores between the enroll-
ment recordings and all speakers discovered in the test record-
ing after diarization. The maximum PLDA score is used as the
score for that trial.

7.2.2. CMN?2

For this task we used the generative Heavy Tailed PLDA (HT-
PLDA) classifier described in [11]. The HT-PLDA training data
was pre-processed by centering and whitening, but no length-
normalization was applied [12]. We used a speaker subspace
of dimension 150 and v = 20. When processing the CMN2
unlabeled/dev/eval data, we used the centering computed on the
SRE18 unlabeled data and the whitening from the HT-PLDA
training set.

We performed unsupervised domain adaptation by cluster-
ing the CMN2 unlabeled data (we used the clusters estimated
by JHU-CLSP) and adapting the within-class and across-class
covariances using the interpolation method described in [13].
We set the interpolation parameter v = 0.2. We used adaptive
S-Norm using the SRE18 unlabeled data as cohort. We used the
top 20% segments to compute the normalization parameters of
each trial.

7.3. MIT Lincoln Laboratory back-end

For this back-end, i-vector preprocessing
(LDA/centering/whitening) was the same as in the JHU-
CSLS back-end. Discriminative PLDA was trained using the
Newton Method to minimize the log loss of verification trials.
By diagonalizing the across-class and within-class covariance
matrices as a pre-processing step, the training process only
updated the diagonal elements of the covariances matrices,
helping to avoid over-fitting. The D-PLDA system performed
domain adaptation by extending the cost function to include
trails from the CMN2 unlabeled development set. In the
absence of true speaker labels for this set, telephone labels
were instead assumed to convey accurate speaker information.
The D-PLDA training set included data from the NIST SRE04-
SRE10, augmented with with noise and reverberation, as well
as the SRE18 development set, resulting in approximately 6B
training trials.

7.4. MIT-CSAIL back-end

For CMN2, we used SRE18 development unlabeled set for cen-
tering. Then centered x-vector projected into 200dimension us-
ing LDA trained on SRE telephone (04-10, only telephone part)
dataset. PLDA has 150 eigenvoices and trained using same en-
tire dataset for training x-vector(SRE + Voxceleb). Adaptive S-
norm was used for score normalization using SRE18 unlabeled
set.

For SITW/VAST, we used Voxceleb 1 and 2 for center-
ing the x-vector. LDA and PLDA were trained using SRE(04-

10) plus its Augmentation and Voxceleb concatenated version
respectively. Adaptive S-norm was applied using SITW and
SRE18 development VAST set.

8. Fusion and Calibration

Fusion and Calibration was performed using linear logistic re-
gression with the Bosaris toolkit [14]. To select the best fusion
combination, we implemented a greedy fusion scheme. First,
we calibrate all the systems and select the best one given the
lowest actual cost. We fix that as the best system and evaluate all
the two system fusions that include the best system. Thus, we
select the best fusion of two systems. We fix those two system
and then add a third system, and so on. To reduce the chances
of over-fitting, in each step, we prioritize fusions with only pos-
itive weights.

For VAST, we trained fusion/calibration on SITW eval-core
multi on operating point Pr = 0.05. For CMN2, we trained on
SRE18 dev CMN?2 set on in operating point P = 0.01. Al-
though the average operating point for CMN2 is Pr = 0.075,
we decided to use a higher target prior to have more false alarm
errors and obtain a more robust calibration.

9. Diarization
9.1. JHU-CLSP diarization

For diarization of the SITW multi and VAST test data, we used a
similar setup to the Kaldi x-vector callhome diarization recipe °,
which is based on [15].

We used of the 16 kHz F-TDNN x-vector (x-vector-16k-
v2), to compute embeddings using a sliding window with 1.5
seconds of frame-length and 0.75 seconds of frame-shift. We
obtained sliding window embeddings for VAST, SITW and
VoxCelebCat without augmentation. We used VoxCeleb x-
vectors to train LDA dimensionality reduction to 120, centering
and PLDA. We scored all x-vectors in a given recording against
each other and applied AHC on the score matrix. We tuned
the stopping threshold for AHC to optimize performance SITW
eval core and core-multi sets.

We assumed that the target speaker would have a signifi-
cant amount of speech in the test segment. For that reason, we
discarded all the speaker clusters with less than 10 seconds du-
ration unless all clusters in the segment are shorter than that.

9.2. JHU-HLTCOE diarization

We perform speaker diarization on the VAST and SITW test
recordings due to the possibility of multiple speakers. The di-
arization is based on the callhome_diarization Kaldi recipe as
well as [16] and uses x-vectors with PLDA and agglomerative
hierarchical clustering (AHC).

We use the 16 kHz DNN from Section 6.2 to extract x-
vectors. For an utterance in the test data, x-vectors are extracted
from 1.5 second segments with a 0.75 second shift. The PLDA
backend consists of centering, whitening and length normaliza-
tion, followed by scoring. All components (mean, whitening,
and PLDA model) are trained on 250,000 three second segments
extracted from the augmented VoxCeleb recordings. Once an
affinity matrix of PLDA scores is obtained for a test recording,
the segments are clustered using AHC. In order to eliminate the
need for a tuned AHC stopping threshold, we assume that there

Shttps://github.com/kaldi-asr/kaldi/tree/
master/egs/callhome_diarization/v2

are never more than K speakers in an utterance, and perform
clustering K times, with exactly k& € {1,2,..., K} clusters
each time we perform clustering. The product of this diariza-
tion strategy is a set of w ways to partition a recording
of up to K speakers. Each of these potential speakers are then
scored against the enrollment recordings, as described in Sec-
tion 7.2.1. In this work, we assume that there are at most X = 3
speakers in a recording.

10. Individual systems

Table 4 presents the results of the individual systems on SITW
and VAST. Table 5 presents the results of the individual systems
on SRE18 CMN2.

The HLTCOE systems were the best performers in each one
of the conditions.

All the JHU-CLSP-MITLL systems (xvec, resnet, ivec)
used Kaldi energy VAD unless they have the label llvad which
indicates that they used the MITLL VAD. All the JHU-CLSP-
MITLL systems used JHU-CLSP back-end unless they have
llbe label which means that they used MITLL back-end. All
systems used AS-Norm unless they have the label nosn.

11. Submissions

Table 6 summarizes the fusions in our primary and contrastive
submissions. We submitted:

* Primary: Best reasonable fusion of 3-4 DNN embedding
systems. We thought that including more systems would
lead to over-fitting.

e JHU-HLTCOE: Best single system.

* JHU-CLSP-MIT: Best fusion of 1, 2, 3, ... systems. This
will allow us to measure the gain the we obtain each time
that we add a new system to the fusion.

e JHU-CLSP-MIT no-vid-snorm: Systems without AS-
Norm on the VAST condition. This will allow us to as-
sess whether we were right when we decided that system
with AS-Norm would be better calibrated on VAST.

Table 7 presents the results of our submissions on SITW
and VAST. Table 8 presents the results of our submissions on
SRE18 CMN2.

12. Computation resources

Processing times were measured in Intel(R) Xeon(R) CPU ES5-
2680 v2 @ 2.80GHz. Most of the processing time is dedicated
to the embedding extraction. MFCC, VAD and back-end pro-
cessing time are negligible comparison. For the VAST case,
we need to add the time needed to extract x-vector with sliding
window for diarization.

13. References

[1] David Snyder, Daniel Garcia-Romero, Daniel Povey, and
Sanjeev Khudanpur, “Deep Neural Network Embed-
dings for Text-Independent Speaker Verification,” in
Proceedings of the 18th Annual Conference of the In-
ternational Speech Communication Association, INTER-
SPEECH 2017, Stockholm, Sweden, aug 2017, pp. 999—
1003, ISCA.

[2] David Snyder, Daniel Garcia-Romero, Gregory Sell,
Daniel Povey, and Sanjeev Khudanpur, “X-Vectors : Ro-

—

—_

—

Table 4: Individual systems results on SITW/VAST

System SITW EVAL CORE SITW EVAL CORE-MULTI SRE18 DEV VAST
EER MinCp ActCp EER MinCp Act Cp EER MinCp ActCp
COE-16k 1.99 0.138 0.141 226 0.135 0.137 3.7 0.337 0.498
xvec-16k-v1-llvad 3.4 0.185 0.188 3.86 0.191 0.191 3.7 0.337 0.424
xvec-16k-v2-llvad 1.89 0.124 0.126 233 0.135 0.137 7 0.37 0.498
resnet-16k-v1 216 0.136 0.142 2.63 0.145 0.146 3.7 0.226 0.424
xvec-8k-v1 5.21 0.278 0.284 5.6 0.287 0.287 11.11 0.3 0.691
xvec-8k-v3 358 0.197 0202 393 0.206 0.207 7.41 0.296 0.535
xvec-8k-v4 2.6 0.15 0.158 294 0.161 0.162 7 0.263 0.42
resnet-8k-v1 2.71 0.154 0.159 3.12 0.164 0.164 5.76 0.148 0.383
resnet-8k-v2 269 0.154 0.162 299 0.165 0.166 4.12 0.267 0.267
xvec-8k-CSAIL 4.6 0.274 0275 6.18 0.321 0.321 10.7 0.407 0.605
ivec-8k 822 0384 0393 8.67 0.386 0.387 18.52 0.486 0.568
xvec-16k-v2-llvad-nosn 1.61 0.12 0.122 2.01 0.133 0.134 453 0.309 0.309
resnet-16k-v1-nosn 1.94 0.129 0.131 241 0.141 0.142 3.7 0.267 0.424
xvec-8k-v4-nosn 216 0.146 0.15 2.61 0.157 0.158 3.7 0.337 0.815
resnet-8k-v2-nosn 2.3 0.158 0.164 2.7 0.165 0.165 3.7 0.416 0.741

Table 5: Individual system results on CMN2.

Systems SRE18 DEV CMN2
EER MinCp ActCp
COE-8k 4.55 0.298 0.312
xvec-16k-v1 12.03 0.719 0.725
xvec-16k-v2 9.13 0.642 0.645
resnet-16k-v1 9.53 0.579 0.601
xvec-8k-v1 7.2 0.505 0.51
xvec-8k-v3 5.76 0.384 0.392
xvec-8k-v4 5.19 0.345 0.357
resnet-8k-v1 4.86 0.351 0.363
resnet-8k-v2 5.46 0.326 0.34
resnet-8k-v2-l1lbe-nosn 5.64 0.319 0.337
xvec-8k-CSAIL 6.12 0.404 0.42
ivec-8k 10.37 0.664 0.685

bust DNN Embeddings for Speaker Recognition,” in Pro-
ceedings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing, ICASSP 2018, Al-
berta, Canada, apr 2018, pp. 5329-5333, IEEE.

Daniel Povey, Gaofeng Cheng, Yiming Wang, Ke Li,
Hainan Xu, Mahsa Yarmohamadi, and Sanjeev Khudan-
pur, “Semi-Orthogonal Low-Rank Matrix Factorization
for Deep Neural Networks,” in Proceedings of the 19th
Annual Conference of the International Speech Commu-
nication Association, INTERSPEECH 2018, Hyderabad,
India, sep 2018.

Weicheng Cai, Jinkun Chen, and Ming Li, “Exploring the
Encoding Layer and Loss Function in End-to-End Speaker
and Language Recognition System,” in Odyssey 2018 The
Speaker and Language Recognition Workshop, Les Sables
d’Olonne, France, jun 2018, pp. 74-81, ISCA.

Bengt J Borgstrom, Michael S Brandstein, and Robert B
Dunn, “Improving Statistical Model-Based Speech En-
hancement with Deep Neural Networks,” in IWAENC,
2018.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

[

[10] Suwon Shon, Hao Tang, and James Glass,

Sun, “Deep Residual Learning for Image Recognition,”
dec 2015.

[7] Weicheng Cai, Zexin Cai, Xiang Zhang, Xiaoqi Wang,

and Ming Li, “A Novel Learnable Dictionary Encoding
Layer for End-to-End Language Identification,” in 2018
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Calgary, Canada, apr 2018,
pp. 5189-5193, IEEE.

[8] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhik-

sha Raj, and Le Song, “SphereFace: Deep Hyper-
sphere Embedding for Face Recognition,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR). jul 2017, vol. 2017-Janua, pp. 6738-6746, IEEE.

Zili Huang, Shuai Wang, and Kai Yu, “Angular Soft-
max for Short-Duration Text-independent Speaker Verifi-
cation,” in Interspeech 2018, Hyderabad, India, sep 2018,
pp. 3623-3627, ISCA.

“Frame-
level Speaker Embeddings for Text-independent Speaker
Recognition and Analysis of End-to-end Model,” in IEEE
Spoken Language Technology Workshop (SLT), 2018.

[11] Anna Silnova, Niko Briimmer, Daniel Garcia-Romero,

David Snyder, and Luk4S Burget, “Fast Variational
Bayes for Heavy-tailed PLDA Applied to i-vectors and x-
vectors,” in Interspeech 2018, Hyderabad, India, 2018,
pp. 72-76.

[12] Daniel Garcia-Romero and Carol Y. Espy-Wilson, “Anal-

ysis of I-vector Length Normalization in Speaker Recog-
nition Systems,” in Proceedings of the 12th Annual Con-
ference of the International Speech Communication Asso-
ciation, Interspeech 2011, Florence, Italy, aug 2011, pp.
249-252, ISCA.

[13] Daniel Garcia-Romero, Alan McCree, Stephen H Shum,

Niko Brummer, and Carlos Vaquero, “UNSUPERVISED
DOMAIN ADAPTATION FOR I-VECTOR SPEAKER
RECOGNITION,” in Proceedings of Odyssey 2014 - The
Speaker and Language Recognition Workshop, Joensuu,
Finland, jun 2014, number June, pp. 260-264, ISCA.

Table 6: Submission system fusion summary.

Submission

VAST

CMN2

Primary

xvec-16k-v2-1lvad + xvec-8k-v4 + COE-16k + resnet-8k-v2

COE-8k + resnet-8k-v2-llbe-nosn + xvec-8k-v3

JHU-HLTCOE Best

COE-16k

COE-8k

JHU-CLSP-MIT Bestl
JHU-CLSP-MIT Best2
JHU-CLSP-MIT Best3
JHU-CLSP-MIT Best4
JHU-CLSP-MIT Best5
JHU-CLSP-MIT Best6

xvec-16k-v2-llvad
+ xvec-8k-v4
+ resnet-8k-v2
+ resnet-16k-v1
+ xvec-8k-v1
+ xvec-16k-v1-llvad

resnet-8k-v2-1lbe-nosn
+ xvec-8k-v4
+ resnet-8k-v1
+ xvec-8k-CSAIL
+ xvec-8k-v3
+ ivec-8k

JHU-CLSP-MIT Bestl no-vid-snorm
JHU-CLSP-MIT Best4 no-vid-snorm

xvec-16k-v2-1lvad-nosn
+ resnet-8k-v2-nosn + xvec-8k-v4-nosn +
resnet-16k-v1-nosn

resnet-8k-v2-1lbe-nosn
+ xvec-8k-v4 + resnet-8k-v1 +
xvec-8k-CSAIL

Table 7: Submission systems results on SITW/VAST

Submission SITW EVAL CORE SITW EVAL CORE-MULTI SRE18 DEV VAST
EER MinCp ActCp EER MinCp Act Cp EER MinCp ActCp

Primary 1.53 0.097 0.098 1.82 0.105 0.105 3.7 0.305 0.465
JHU-HLTCOE Best 1.99 0.138 0.141 2.26 0.135 0.137 3.7 0.337 0.498
JHU-CLSP-MIT Bestl 1.89 0.124 0.126 2.33 0.135 0.137 7 0.37 0.498
JHU-CLSP-MIT Best2 1.75 0.101 0.102 2.03 0.111 0.112 4.12 0.337 0.424
JHU-CLSP-MIT Best3 1.71 0.1 0.1 2 0.109 0.11 3.7 0.305 0.502
JHU-CLSP-MIT Best4 1.56 0.098 0.099 1.9 0.107 0.108 37 0.3 0.387
JHU-CLSP-MIT Best5 1.5 0.094 0.094 1.83 0.103 0.104 37 0.263 0.461
JHU-CLSP-MIT Best6 1.5 0.09 0.091 1.79 0.1 0.101 3.7 0.222 0.498
JHU-CLSP-MIT Bestl no-snorm 1.61 0.12 0.122 2.01 0.133 0.134 4.53 0.309 0.309
JHU-CLSP-MIT Best4 no-snorm 1.29 0.093 0.097 1.65 0.107 0.107 37 0.305 0.465

Table 8: Submission systems results on CMN2.

Submission SRE18 DEV CMN2
EER MinCp ActCp
Primary 4.09 0.249 0.256
JHU-HLTCOE Best 4.55 0.298 0.312
JHU-CLSP-MIT Bestl 5.64 0.319 0.334
JHU-CLSP-MIT Best2 4.65 0.281 0.291
JHU-CLSP-MIT Best3 4.4 0.283 0.285
JHU-CLSP-MIT Best4 4.24 0.272 0.279
JHU-CLSP-MIT Best5 4.25 0.273 0.276
JHU-CLSP-MIT Best6 4.24 0.275 0.277

[14] Niko Brummer and Edward De Villiers, “The BOSARIS
Toolkit: Theory, Algorithms and Code for Surviving the
New DCF,” in NIST SREI11 Speaker Recognition Work-

shop, Atlanta, Georgia, USA, dec 2011, pp. 1-23.

[15] Daniel Garcia-Romero, David Snyder, Gregory Sell,
Daniel Povey, and Alan Mccree, “Speaker Diarization
Using Deep Neural Network Embeddings,” in Proceed-
ings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2017, New Or-

leans, LA, USA, mar 2017, pp. 4930-4934, IEEE.

[16] Gregory Sell, David Snyder, Alan Mccree, Daniel Garcia-
Romero, Jesds Villalba, Matthew Maciejewski, Vimal

Manohar, Najim Dehak, Daniel Povey, Shinji Watanabe,

Table 9: Computational resources.

System Real time factor ~ Memory (GB)
TDNN x-vector 16 1.5
F-TDNN x-vector 3.5 3
E-TDNN x-vector 7 2
ResNet34 embedding 26.3 0.2
DNN i-vector 100 1.5
F-TDNN x-vector for diar. 5 3

and Sanjeev Khudanpur, “Diarization is Hard: Some
Experiences and Lessons Learned for the JHU Team in
the Inaugural DIHARD Challenge,” in Proceedings of
the 19th Annual Conference of the International Speech
Communication Association, INTERSPEECH 2018, Hy-
derabad, India, sep 2018, pp. 2808—-2812.

