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ABSTRACT

The performance of automatic speech recognition (ASR) systems
can be significantly compromised by previously unseen conditions,
which is typically due to a mismatch between training and testing
distributions. In this paper, we address robustness by studying do-
main invariant features, such that domain information becomes
transparent to ASR systems, resolving the mismatch problem.
Specifically, we investigate a recent model, called the Factorized
Hierarchical Variational Autoencoder (FHVAE). FHVAEs learn to
factorize sequence-level and segment-level attributes into different
latent variables without supervision. We argue that the set of la-
tent variables that contain segment-level information is our desired
domain invariant feature for ASR. Experiments are conducted on
Aurora-4 and CHiME-4, which demonstrate 41% and 27% absolute
word error rate reductions respectively on mismatched domains.

Index Terms— robust speech recognition, factorized hierarchi-
cal variational autoencoder, domain invariant representations

1. INTRODUCTION

Recently, neural network-based acoustic models [1, 2, 3] have
greatly improved the performance of automatic speech recognition
(ASR) systems. Unfortunately, it is well known (e.g., [4]) that ASR
performance can degrade significantly when testing in a domain
that is mismatched from training. A major reason is that speech
data have complex distributions and contain information about not
only linguistic content, but also speaker identity, background noise,
room characteristics, etc. Among these sources of variability, only
a subset are relevant to ASR, while the rest can be considered as a
nuisance and therefore hurt the performance if the distributions of
these attributes are mismatched between training and testing.

To alleviate this issue, some robust ASR research focuses on
mapping the out-of-domain data to in-domain data using enhancement-
based methods [5, 6, 7], which generally requires parallel data from
both domains. Another popular strategy is to train an ASR system
with as large, and as diverse a dataset as possible [8, 9]; however,
this strategy is not feasible when the labeled data are not available
for all domains. Alternatively, robustness can also be achieved by
training using features that are domain invariant [10, 11, 12, 13, 14].
In this case, we would not have domain mismatch issues, because
domain information is now transparent to the ASR system.

In this paper, we consider the same highly adverse scenario as
in [4], where both clean and noisy speech are available, but the
transcripts are only available for clean speech. We study the use
of a recently proposed model, called Factorized Hierarchical Vari-
ational Autoencoder (FHVAE) [15], for learning domain invariant

ASR features without supervision. FHVAE models learn to factorize
sequence-level attributes and segment-level attributes into different
latent variables. By training an ASR system on the latent variables
that encode segment-level attributes, and testing the ASR in mis-
matched domains, we demonstrate that these latent variables con-
tain linguistic information and are more domain invariant. Compre-
hensive experiments study the effect of different FHVAE architec-
tures, training strategies, and the use of derived domain features on
the robustness of ASR systems. Our proposed method is evaluated
on Aurora-4 [16] and CHiME-4 [17] datasets, which contain arti-
ficially corrupted noisy speech and real noisy speech respectively.
The proposed FHVAE-based feature reduces the absolute word error
rate (WER) by 27% to 41% compared to filter bank features, and
by 14% to 16% compared to variational autoencoder-based features.
We have released the code of FHVAEs described in the paper.1

The rest of the paper is organized as follows. In Section 2, we in-
troduce the FHVAE model and a method to extract domain invariant
features. Section 3 describes the experimental setup, while Section 4
presents results and discussion. We conclude our work in Section 5.

2. LEARNING DOMAIN INVARIANT FEATURES

2.1. Modeling a Generative Process of Speech Segments

As mentioned above, generation of speech data often involves many
independent factors, which are however unseen in the unsupervised
setting. It is therefore natural to describe such a generative process
using a latent variable model, where a latent variable z is first sam-
pled from a prior distribution, and a speech segment x is then sam-
pled from a distribution conditioned on z. In [18], a convolutional
variational autoencoder (VAE) is proposed to model such process;
by assuming the prior to be a diagonal Gaussian, it is shown that the
VAE automatically learns to model independent attributes regarding
generation, such as the speaker identity and the linguistic content,
using orthogonal latent subspaces. This result provided a mecha-
nism of potentially learning domain invariant features for ASR by
discovering latent variables that do not contain domain information.

2.2. Extracting Domain Invariant Features from FHVAEs

The generation of sequential data often involves multiple indepen-
dent factors operating at different scales. For instance, the speaker
identity affects the fundamental frequency (F0) at the utterance level,
while the phonetic content affects spectral characteristics at the seg-
ment level. As a result, sequence-level attributes, such as F0 and

1https://github.com/wnhsu/FactorizedHierarchicalVAE

5614978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



volume, tends to have a smaller amount of variation within an ut-
terance, compared to between utterances, while the other attributes,
such as spectral contours, tend to have similar amounts of variation
within and between utterances.

Based on this observation, FHVAEs [15] formulate the genera-
tive process of sequential data with a factorized hierarchical graph-
ical model that imposes sequence-dependent priors and sequence-
independent priors to different sets of latent variables. Specifically,
given a dataset D = {X(i)}Mi=1 consisting of M i.i.d. sequences,
where X

(i)
= {x(i,n)}N

i

n=1 is a sequence of N (i) segments (sub-
sequence), a sequence X of N segments is assumed to be gener-
ated from a random process that involves latent variables Z1 =

{z(n)1 }Nn=1, Z2 = {z(n)2 }Nn=1, and µ2 as follows: (1) an s-vector
µ2 is drawn from a prior distribution pθ(µ2) = N (µ2|0,σ2

µ2
I);

(2) N i.i.d. latent segment variables {z(n)1 }Nn=1 and latent se-
quence variables {z(n)2 }Nn=1 are drawn from a sequence-indepen-
dent prior pθ(z1) = N (z1|0,σ2

z1I) and a sequence-dependent
prior pθ(z2|µ2) = N (z2|µ2,σ

2
z2I) respectively; (3) N i.i.d.

speech segments {x(n)}Nn=1 are drawn from a condition distribu-
tion pθ(x|z1, z2) = N (x|fµ

x

(z1, z2), diag(fσ2
x

(z1, z2))), whose
mean and diagonal variance are parameterized by neural networks.
The joint probability for a sequence is formulated in Eq. 1:
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Based on this formulation, µ2 can be regarded as a summarization
of sequence-level attributes for a sequence, and z2 is encouraged
to encode sequence-level attributes for a segment that are similar
within an utterance. Consequently, z1 encodes the residual segment-
level attributes for a segment, such that z1 and z2 together provide
sufficient information for generating a segment.

Since exact posterior inference is intractable, FHVAEs introduce
an inference model q�(Z

(i)
1 ,Z
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2 ,µ
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2 |X(i)

) as formulated in Eq. 2
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from which we observe that inference of z

(i,n)
1 and z

(i,n)
2 only

depends on the corresponding segment x

(i,n); in particular, the
posteriors, q�(z1|x, z2) = N (z1|gµz1

(x, z2), diag(gσ2
z1
(x, z2)))

and q�(z2|x) = N (z2|gµz2
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z2
(x))), are approxi-

mated with diagonal Gaussian distributions whose mean and di-
agonal variance are also parameterized by neural networks. On
the other hand, q�(µ

(i)
2 ) is modeled as an isotropic Gaussian,

N (µ

(i)
2 |gµµ2

(i),σ2
µ̃2

I), where gµµ2
(i) is a trainable lookup table

of the posterior mean of µ2 for each training sequence. Estimation
of µ2 for testing sequences can be found in [15].

As pointed out in [4], nuisance attributes regarding ASR, such
as speaker identity, room geometry, and background noise, are gen-
erally consistent within an utterance. If we treat each utterance as
a sequence, these attributes then become sequence-level attributes,
which would be encoded by z2 and µ2. As a result, z1 encodes
the residual linguistic information and is invariant to these nuisance
attributes, which is our desired domain invariant ASR feature.

2.3. Training FHVAE and Preventing S-Vector Collapsing

As in other generative models, FHVAEs aim to maximize the
marginal likelihood of the observed dataset; due to the intractability
of the exact posterior, FHVAEs optimize the segment variational
lower bound, L(θ, �;x(i,n)

), which is formulated as follows:
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Notice that if the µ2 are the same for all utterances, an FHVAE
would then degenerate to a vanilla VAE. To prevent µ2 from
collapsing, we can add an additional discriminative objective,
log p(i|z(i,n)2 ), that encourages the discriminability of z2 regard-
ing which utterance the segment is drawn from. Specifically, we
define it as log pθ(z

(i,n)
2 |gµµ2

(i)) − log

∑M
j=1 pθ(z

(i,n)
2 |gµµ2

(j)).
By combining the two objectives with a weighting parameter α, we
obtain the discriminative segment variational lower bound:

Ldis(θ,φ;x(i,n)
) = L(θ,φ;x(i,n)

) + α log p(i|z(i,n)
2 ). (3)

3. EXPERIMENT SETUP

To evaluate the effectiveness of the proposed method on extracting
domain invariant features, we consider domain mismatched ASR
scenarios. Specifically, we train an ASR system using a clean set,
and test the system on both a clean and noisy set. The idea is that one
would observe a smaller performance discrepancy between different
domains if the feature representation is more domain invariant. We
next introduce the datasets, as well as the model architectures and
training configurations for the experiments.

3.1. Dataset

We use Aurora-4 [16] as the primary dataset for our experiments.
Aurora-4 is a broadband corpus designed for noisy speech recogni-
tion tasks based on the Wall Street Journal (WSJ0) corpus [19]. Two
microphone types, clean/channel are included, and six noise types
are artificially added to both microphone types, which results in four
conditions: clean(A), channel(B), noisy(C), and channel+noisy(D).
We use the multi-condition development set for training the VAE and
FHVAE models, because the development set contains both noise
labels and speaker labels for each utterance, which are used in Exp.
Index 5, while the training set only contains speaker labels. The
ASR system is trained on the clean train si84 clean set and
evaluated on the multi-condition test eval92 set.

To verify our proposed method on a non-artificial dataset, we
repeat our experiments on the CHiME-4 [17] dataset, which con-
tains real distant-talking recordings in noisy environments. We use
the original 7,138 clean utterances and the 1,600 single channel real
noisy utterances in the training partition to train the VAE and FH-
VAE models. The ASR system is trained on the original clean train-
ing set and evaluated on the CHiME-4 development set.

3.2. VAE/FHVAE Setup and Training

The VAE is trained with stochastic gradient descent using a mini-
batch size of 128 without clipping to minimize the negative vari-
ational lower bound plus an L2-regularization with weight 10−4.
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Setting WER (%) WER (%) by Condition
Exp. Index Feature #Layers #Units α Seq. Label Avg. A B C D

1

FBank - - - - 65.64 3.21 61.61 51.78 82.39
z 1/1 256/256 - - 44.79 4.22 38.16 36.11 59.63
z 1/1 512/256 - - 40.31 4.35 33.83 34.43 53.77
z1 1/1 256/256 10 uttid 26.58 4.54 19.28 20.85 38.50

2
z1 1/1 256/256 10 uttid 26.58 4.54 19.28 20.85 38.50
z1 2/2 256/256 10 uttid 25.54 4.11 16.90 20.62 38.58
z1 3/3 256/256 10 uttid 24.30 4.91 15.44 22.83 36.63

3
z1 1/1 128/128 10 uttid 34.66 5.06 26.70 25.39 49.09
z1 1/1 256/256 10 uttid 26.58 4.54 19.28 20.85 38.50
z1 1/1 512/512 10 uttid 26.97 5.32 18.18 23.13 40.01

4

z1 1/1 256/256 0 uttid 33.30 4.86 25.67 25.46 46.97
z1 1/1 256/256 5 uttid 30.55 4.63 22.66 23.33 43.96
z1 1/1 256/256 10 uttid 26.58 4.54 19.28 20.85 38.50
z1 1/1 256/256 15 uttid 29.92 5.01 20.82 24.79 44.03
z1 1/1 256/256 20 uttid 32.64 5.57 25.48 24.53 45.66

5
z1 1/1 256/256 10 uttid 26.58 4.54 19.28 20.85 38.50
z1 1/1 256/256 10 noise 32.27 4.33 23.89 28.96 45.86
z1 1/1 256/256 10 speaker 34.95 4.39 27.27 32.22 48.20

6 z1 1/1 256/256 10 uttid 26.58 4.54 19.28 20.85 38.50
z1-µ2 1/1 256/256 10 uttid 43.61 5.08 42.47 27.55 53.85

Table 1. Aurora-4 test eval92 set word error rate of acoustic models trained on different features.

The Adam [20] optimizer is used with β1 = 0.95, β2 = 0.999,
& = 10

−8, and initial learning rate of 10−3. Training is terminated
if the lower bound on the development set does not improve for 50
epochs. The FHVAE is trained with the same configuration and op-
timization method, except that the loss function is replaced with the
negative discriminative segment variational lower bound.

Seq2Seq-VAE [4] and Seq2Seq-FHVAE [15] architectures with
LSTM units are used for all experiments. We let the latent space of
the VAEs contain 64 dimensions. Since the FHVAEmodels have two
latent spaces, we let each of them be 32 dimensional. Other hyper-
parameters are explored in our experiments. Inputs to VAE/FHVAE,
x, are chunks of 20 consecutive speech frames randomly drawn from
utterances, where each frame is represented as 80 dimensional fil-
ter bank (FBank) energies. To extract features from the VAE and
FHVAE for ASR training, for each utterance, we compute and con-
catenate the posterior mean and variance of chunks shifted by one
frame, which generates a sequence of new features that are 19 frames
shorter than the original sequence. We pad the first frame and the last
frame at each end to match the original length.

3.3. ASR Setup and Training

Kaldi [21] is used for feature extraction, decoding, forced align-
ment, and training of an initial HMM-GMM model on the origi-
nal clean utterances. The recipe provided by the CHiME-4 chal-
lenge (run gmm.sh) and the Kaldi Aurora-4 recipe are adapted by
only changing the training data being used. The Computational Net-
work Toolkit (CNTK) [22] is used for neural network-based acous-
tic model training. For all experiments, the same LSTM acoustic
model [23] with the architecture proposed in [24] is applied, which
has 1,024 memory cells and a 512-node projection layer for each
LSTM layer, and 3 LSTM layers in total.

Following the training setup in [25], LSTM acoustic mod-
els are trained with a cross-entropy criterion, using truncated
backpropagation-through-time (BPTT) [26] to optimize. Each

BPTT segment contains 20 frames, and each mini-batch contains 80
utterances, since we find empirically that 80 utterances has similar
performance to 40 utterances. A momentum of 0.9 is used starting
from the second epoch [3]. Ten percent of the training data is held
out as a validation set to control the learning rate. The learning
rate is halved when no gain is observed after an epoch. The same
language model is used for decoding for all experiments.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we report the experimental results on both datasets,
and provide insights on the outcome. Table 1 and 2 summarize the
results on Aurora-4 and CHiME-4 respectively. For both tables, dif-
ferent experiments are separated by double horizontal lines and in-
dexed by the Exp. Index on the first column. The second column,
Feature, refers to the frame representations used for training ASR
models. The third to the sixth column explains the model config-
uration and the discriminative training weight for VAE or FHVAE
models. We separate the encoder and decoder parameters by “/” in
the third and the fourth column. Averaged and by-condition word
error rate (WER) are shown in the rest of the columns.

4.1. Baseline

We start with establishing Aurora-4 baseline results trained on differ-
ent types of feature representations, including (1) FBank, (2) latent
variable, z, extracted from the VAE, and (3) latent segment variable,
z1, extracted from the FHVAE. Because each FHVAE model has
two encoders, to have a fair comparison between VAE and FHVAE
models, we also consider a VAEmodel with 512 hidden units at each
encoder layer. The results are shown in Table 1 Exp. Index 1. As
mentioned, condition A is the matched domain, while conditions B,
C, and D are all mismatched domains.

FBank degrades significantly in the mismatched conditions, pro-
ducing between 49% to 79% absolute WER increase. On the other
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Setting WER (%) WER (%) by Noise Type
Exp. Index ASR Feature #Layers #Units α Seq. Label Clean Noisy BUS CAF PED STR

1
FBank - - - - 19.37 87.69 95.56 92.05 78.77 84.37
z 1/1 512/256 - - 19.47 73.95 70.10 91.45 64.26 69.99
z1 1/1 256/256 10 uttid 19.57 67.94 71.96 79.37 59.32 61.11

2
z1 1/1 256/256 10 uttid 19.57 67.94 71.96 79.37 59.32 61.11
z1 2/2 256/256 10 uttid 19.73 62.44 71.28 71.86 52.46 54.18
z1 3/3 256/256 10 uttid 19.52 60.39 69.13 66.24 51.22 54.96

Table 2. CHiME-4 development set word error rate of acoustic models trained on different features.

hand, both VAE and FHVAE models improve the performance in the
mismatched domains by a large margin, with only a slight degrada-
tion in the matched domain. In particular, the features learned by the
FHVAE consistently outperform the VAE features in all mismatched
conditions by 14% absolute WER reduction.

We believe that this experiment verifies that FHVAEs can suc-
cessfully retain domain invariant linguistic features in z1, while en-
code domain related information into z2. In contrast, as the results
suggests, VAEs encode all the information into a single set of latent
variables, z, which still contain domain related information that can
hurt ASR performance on the mismatched domains.

4.2. Comparing Model Architectures

We next explore the optimal FHVAE architectures for extracting do-
main invariant features. In particular, we study the effect of the num-
ber of hidden units at each layer and the number of layers. Results
of each variant are listed in Table 1 Exp. Index 2 and Exp. Index
3 respectively. Regarding the averaged WER, the model with 256
hidden units at each layer and in total three layers achieves the low-
est WER (24.30%). Interestingly, if we break down the WER by
condition, it can be observed that increasing the FHVAE model ca-
pacity (i.e. increasing number of layers or hidden units) helps reduc-
ing the WER in the noisy condition (B), but deteriorates channel-
mismatching condition (C) above 256 hidden units and 2 layers.

4.3. Effect of FHVAE Discriminative Training

Speaker verification experiments in [15] suggest that discriminative
training facilitates factorizing segment-level attributes and sequence-
level attributes into two sets of latent variables. Here we study the
effect of discriminative training on learning robust ASR features,
and show the results in Table 1 Exp. Index 4. When α = 0, the
model is not trained with the discriminative object. While increas-
ing the discriminative weight from 0 to 10, we observe consistent
improvement in all 4 conditions due to better factorization of seg-
ment and sequence information; however, when further increasing
the weight to 20, the performance starts to degrade. This is because
the discriminative object can inversely affects the modeling capacity
by constraining the expressibility of the latent sequence variables.

4.4. Choice of Sequence Label

A core idea of FHVAE is to learn sequence-specific priors to model
the generation of sequence-level attributes, which have a smaller
amount of variation within a sequence. Suppose we treat each utter-
ance as one sequence, then both speaker and noise information be-
longs to sequence-level attributes, because they are consistent within
an utterance. Alternatively, we consider two FHVAE models that
learn speaker-specific priors and noise-specific priors respectively.

This can be easily achieved by concatenating sequences of the same
speaker label or noise label, and treating it as one sequence used for
FHVAE training. We report the results in Table 1 Exp. Index 5.

It may at first seem surprising that utilizing supervised informa-
tion in this fashion does not improve performance. We believe that
concatenating utterances actually discards some useful information
with respect to learning domain invariant features. FHVAEs use la-
tent segment variables to encode attributes that are not consistent
within a sequence. By concatenating speaker utterances, noise in-
formation is no longer consistent within sequences, and would thus
be encoded into latent segment variables; similarly, latent segment
variables would not be speaker invariant in the other case.

4.5. Use of S-Vector

Lastly, we study the use of s-vectors, µ2, derived from the FHVAE
model, which can be seen as a summarization of sequence-level at-
tributes of an utterance. We apply the same procedure as i-vector
based speaker adaptation [27]: For each utterance, we first estimate
its s-vector, and then concatenate s-vectors with the feature repre-
sentation of each frame to generate the new feature sequence.

Results are shown in Table 1 Exp. Index 6, from which we ob-
serve a significant degradation of WER that is similar to those of
the VAE models. This is reasonable because z1 and µ2 in combi-
nation actually contains similar information as the latent variable z
in VAE models, and the degradation is due to the mismatch between
the distributions of µ2 in the training and testing sets.

4.6. Verifying Results on CHiME4

In this section, we repeat the baseline and the layer experiments on
the CHiME-4 dataset, in order to verify the effectiveness of the FH-
VAE and the optimality of the FHVAE architecture on a non-artificial
dataset. The results are shown in Table 2. From Exp. Index 1, we
see that the same trend applies to the CHiME-4 dataset, where the
latent segment variables from the FHVAE outperform those from the
VAE, and both latent variable representations outperform FBank fea-
tures. For the FHVAE architectures, a 7% absolute WER decrease is
achieved by increasing the number of encoder/decoder layers from 1
to 3, which is also consistent with the trends we saw on Aurora-4.

5. CONCLUSION AND FUTURE WORK

In this paper, we conduct comprehensive experiments on studying
the use of FHVAE models domain invariant ASR features extrac-
tors. Our feature demonstrates superior robustness in mismatched
domains compared to FBank and VAE-based features by achieving
41% and 27% absolute WER reduction on Aurora-4 and CHiME-4
respectively. In the future, we plan to study FHVAE-based augmen-
tation methods similar to [4].
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