
Scalable Factorized Hierarchical Variational Autoencoder Training

Wei-Ning Hsu, James Glass

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
{wnhsu,glass}@mit.edu

Abstract
Deep generative models have achieved great success in unsupervised
learning with the ability to capture complex nonlinear relationships be-
tween latent generating factors and observations. Among them, a fac-
torized hierarchical variational autoencoder (FHVAE) is a variational
inference-based model that formulates a hierarchical generative process
for sequential data. Specifically, an FHVAE model can learn disentan-
gled and interpretable representations, which have been proven useful
for numerous speech applications, such as speaker verification, robust
speech recognition, and voice conversion. However, as we will elabo-
rate in this paper, the training algorithm proposed in the original paper is
not scalable to datasets of thousands of hours, which makes this model
less applicable on a larger scale. After identifying limitations in terms
of runtime, memory, and hyperparameter optimization, we propose a
hierarchical sampling training algorithm to address all three issues. Our
proposed method is evaluated comprehensively on a wide variety of
datasets, ranging from 3 to 1,000 hours and involving different types
of generating factors, such as recording conditions and noise types. In
addition, we also present a new visualization method for qualitatively
evaluating the performance with respect to the interpretability and dis-
entanglement. Models trained with our proposed algorithm demonstrate
the desired characteristics on all the datasets.
Index Terms: unsupervised learning, speech representation learning,
factorized hierarchical variational autoencoder

1. Introduction
Unsupervised learning can leverage large amounts of unlabeled data to
discover latent generating factors that often lie on a lower dimensional
manifold compared to the raw data. A learned latent representation from
speech can be useful for many downstream applications, such speaker
verification [1], automatic speech recognition [2], and linguistic unit
discovery [3, 4]. A factorized hierarchical variational autoencoder (FH-
VAE) [5] is a variational inference-based deep generative model that
learns interpretable and disentangled latent representation from sequen-
tial data without supervision by modeling a hierarchical generative pro-
cess. In particular, it has been demonstrated that an FHVAE trained on
speech data learns to encode sequence-level generating factors, such as
speaker and channel condition, into one set of latent variables, while en-
coding segment-level generating factors, such as phonetic content, into
another set of latent variables. The ability to disentangle latent factors
has been beneficial to a wide range of tasks, including domain adapta-
tion [6], conditional data augmentation [7], and voice conversion [5].

However, the original FHVAE training algorithm proposed in [5]
does not scale to datasets of over hundreds of thousands of utterances,
making it less applicable to real world settings, where an unlabeled
dataset of such size is common. This limitation is mainly due to the
following issues: (1) the inference model of the sequence-level latent
variable, and (2) the design of the discriminative objective. To be more
specific, the original training algorithm reduces the complexity of in-
ferring sequence-level latent variables by maintaining a cache, whose
number of entries equals the number of training sequences. In addi-
tion, the discriminative objective, which encourages disentanglement,
requires computing a partition function that sums over the entries in that
cache. The two facts combined lead to significant scalability issues.

In this paper, we propose a hierarchical sampling algorithm to ad-
dress these issues. In addition, a new method for qualitatively evaluat-
ing disentanglement performance based on a t-Distribution Stochastic

Neighbor Embedding [8] is also presented. The proposed training algo-
rithm is evaluated on a wide variety of datasets, ranging from 3 to 1,000
hours and involving many different types of generating factors, such as
recording conditions and noise types. Experimental results verify that
the proposed algorithm is effective on all sizes of datasets and achieves
desirable disentanglement performance. The code is available on-line.1

2. Limitations of Original FHVAE Training
In this section, we briefly review the factorized hierarchical variational
autoencoder (FHVAE) model and discuss the scalability issues of the
original training objective.

2.1. Factorized Hierarchical Variational Autoencoders

An FHVAE [5] is a variant of a VAE that models a generative pro-
cess of sequential data with a hierarchical graphical model. Let
X = {x(n)}Nn=1 be a sequence of N segments. An FHVAE
assumes that the generation of a segment x is conditioned on a
pair of latent variables, z1 and z2, referred to as the latent seg-
ment variable and the latent sequence variable respectively. While
z1 is generated from a global prior, similar to those latent variables
in a vanilla VAE, z2 is generated from a sequence-dependent prior
that is conditioned on a sequence-level latent variable, µ2, named
the s-vector. The joint probability of a sequence is formulated as:
p(µ2)

∏N
n=1 p(x

(n)|z(n)1 ,z
(n)
2)p(z

(n)
1)p(z

(n)
2 |µ2). With this for-

mulation, an FHVAE learns to encode generating factors that are con-
sistent within segments drawn from the same sequence into z2. In con-
trast, z1 captures the residual generating factors that changes between
segments.

Since computing the true posteriors of Z1 = {z(n)1 }Nn=1,

Z2 = {z(n)2 }Nn=1, and µ2 are intractable, an FHVAE intro-
duces an inference model, q(Z1,Z2,µ2|X), and factorizes it as:
q(µ2|X)

∏N
n=1 q(z

(n)
1 |x(n),z

(n)
2)q(z

(n)
2 |x(n)). We summarize in

Table 1 the family of distributions an FHVAE adopts for the genera-
tive model and the inference model. All the functions, fµx , fσ2

x
, gµz1 ,

gσ2
z1

, gµz2 , and gσ2
z2

, are neural networks that parameterize mean and

variance of Gaussian distributions.

Table 1: Family of distributions adopted for FHVAE generative and
inference models.

generative model
p(µ2) N (0, I)
p(z1) N (0, I)
p(z2|µ2) N (µ2, σ2

z2
I)

p(x|z1,z2) N (fµx (z1,z2), diag(fσ2
x

(z1,z2)))

inference model
q(µ2|X) N (

∑N
n=1 gµz2 (x(n))/(N + σ2

z2
), I)

q(z1|x,z2) N (gµz1 (x,z2), diag(gσ2
z1

(x,z2)))

q(z2|x) N (gµz2 (x), diag(gσ2
z2

(x)))

1https://github.com/wnhsu/ScalableFHVAE

Interspeech 2018
2-6 September 2018, Hyderabad

1462 10.21437/Interspeech.2018-1034

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1034.html

2.2. Original FHVAE Training

In the variational inference framework, since the marginal likelihood of
observed data is intractable, we optimize the variational lower bound,
L(p, q;X), instead. We can derive a sequence variational lower bound
of X based on Table 1. However, this lower bound can only be op-
timized at the sequence level, because inferring of µ2 depends on an
entire sequence, and would become infeasible ifX is extremely long.

In [5] the authors proposed replacing the maximum a posterior
(MAP) estimation of µ2’s posterior mean for training sequences with
a cache hµµ2

(i), where i indexes training sequences. In other words,
the inference model for µ2 becomes q(µ2|X(i)) = N (hµµ2

(i), I).
Therefore, the lower bound can be re-written as:

L(p, q;X(i)) =
N(i)∑

n=1

L(p, q;x(i,n)|hµµ2
(i)) + log p(hµµ2

(i))

(1)

L(p, q;x(i,n)|hµµ2
(i)) = Eq(z1,z2|x(i,n))[log p(x(i,n)|z1,z2)]

− Eq(z2|x(i,n))[DKL(q(z1|x(i,n),z2)||p(z1))]

−DKL(q(z2|x(i,n))||p(z2|hµµ2
(i))). (2)

We can now sample a batch at the segment level to optimize the follow-
ing variational lower bound:

L(p, q;x(i,n)) = L(p, q;x(i,n)|hµµ2
(i)) +

1

N(i)
log p(hµµ2

(i)).

(3)
Furthermore, to obtain meaningful disentanglement between z1

and z2, it is not desirable to have constant µ2 for all sequences; oth-
erwise, for each segment, swapping z1, z2 would lead to the same ob-
jective. To avoid such condition, the following objective is added to
encourage µ2 to be discriminative between sequences:

log p(i|z̄(i,n)2) := log
p(z̄

(i,n)
2 |µ̄(i)

2)
∑M
j=1 p(z̄

(i,n)
2 |µ̄(j)

2)
, (4)

where M is the total number of training sequences, z̄(i,n)2 =

gµz2 (x(i,n)) denotes the posterior mean of z2, and µ̄(i)
2 = hµµ2

(i)
denotes the posterior mean of µ2. This additional discriminative objec-
tive encourages z2 from the i-th sequence to be not only close to µ2 of
the i-th sequence, but also far from µ2 of other sequences. Combining
this discriminative objective and the segment variational lower bound
with a weighting parameter, α, the objective function that an FHVAE
maximizes then becomes:

Ldis(p, q;x(i,n)) = L(p, q;x(i,n)) + α log p(i|z̄(i,n)2), (5)

referred to as the discriminative segment variational lower bound.

2.3. Scalability Issues

The original FHVAE training addressed the scalability issue with re-
spect to sequence length by decomposing a sequence variational lower
bound into sum of segmental variational lower bounds over segments.
However, here we will show that this training objective is not scalable
with respect to the number of training sequences.

First of all, the original FHVAE training maintains an M -entry
cache, hµµ2

(·), that stores the posterior mean of µ2 for each training
sequence. The size of this cache scales linearly in the number of training
sequences. Suppose z2 are 32-dimensional 32-bit floating point vectors
as in [5]. If the number of training sequences is on the order of 108, the
cache size would grow to about 10 GB and exhaust the memory of a
typical commercial GPU (8 GB). Even worse, when computing the gra-
dient given a batch of training segments, we need to maintain a tensor
of size (bs, |θ|), where bs is the segment batch size, and |θ| is the total
number of trainable parameters involved in the computation of the ob-
jective function. Since the computation of the discriminative objective
involves the entire cache, hµµ2

(·), the gradient tensor is of size at least
bs times larger than the cache. With a batch size of 256, a dataset with
105 sequences can exhaust the GPU memory during training.

Second, the denominator of the discriminative objective,∑M
i=1 p(z̄

(i,n)
2 |µ̄(j)

2), marginalizes over a function of posterior mean

Figure 1: Histogram of log
∑M
i=1 p(z̄

(i,n)
2 |µ̄(j)

2) with respect to dif-
ferent M ∈ {101, 102, 103, 104, 105}. Distributions shift by roughly
a constant when M increases by 10 times, implying the denominator
scales proportionally to M .

of µ2 of all training sequences, which increases the computation time
proportionally to the number of sequences for each training step.

Third, from the hyperparameter optimization point of view, the dis-
tribution of the denominator,

∑M
i=1 p(z̄

(i,n)
2 |µ̄(j)

2), also changes with
respect to the number of training sequences. Specifically, the expected
value of this terms scales roughly linearly in M , as shown in Figure 1.
Such behavior is not desirable, because the α parameter that balances
the variational lower bound and the discriminative objective would need
to be adjusted according to M .

3. Training with Hierarchical Sampling
In order to utilize the discriminative objective, while eliminating the
memory, computation, and optimization issue induced by a large train-
ing set, we need to control the size of the cache as well as the denom-
inator summation in the discriminative objective. Both of these can be
achieved jointly with a hierarchical sampling algorithm.

Given a dataset of M training sequences, we maintain a cache
of only K entries, where K is a dataset independent hyperparam-
eter, named the sequence batch size. We optimize an FHVAE model
by repeating the following procedure until the convergence criterion is
met: (1) Sample a batch of K sequences from the entire training set.
(2) Reset each entry of the cache, hµµ2

(k), with the MAP estimation,
∑Ñ(k)

n=1 gµz2 (x̃(k,n))/(Ñ(k) + σ2
z2

), where Ñ(k) is the number of
segments in the k-th sampled sequence, and x̃(k,n) is the n-th segment
of the k-th sampled sequence, for k = 1, . . . ,K. (3) Sample Bseg
batches of segments sequentially from the K sampled sequences. Each
batch of segments is used to estimate the discriminative segmental vari-
ational lower bound for optimizing the parameters of f∗, g∗, and hµµ2
as before. The only difference is that the denominator of the discrimi-
native object now sums over theK sampled training sequences, instead
of the entire set of M training sequences. We list the pseudo code in
Algorithm 1.

We refer to the proposed algorithm as a hierarchical sampling al-
gorithm, because we first sample at the sequence level, and then at the
segment level. The size of the cache is then controlled by the sequence
batch size K, instead of the number of training sequences M . The
algorithm can also be viewed as iteratively sampling a sub-dataset of
K sequences and running the original training algorithm on it. Com-
pared with the proposed algorithm, the original training algorithm can
be regarded as a “flat” sampling algorithm, where we sample segments
from the entire pool, so it is therefore necessary to maintain a cache of
M entries. The proposed algorithm introduces an overhead associated
with reseting the cache whenever a new batch of sequences is sampled.
However, this cost can be amortized by increasing the number of seg-
ment batches Bseg , for each batch of sequences.

4. Experimental Setup
We evaluate our training algorithm on a wide variety of datasets, rang-
ing from 3 to 1,000 hours, including both clean and noisy, close-talking
and distant speech. In this section, we describe the datasets, and intro-
duce FHAVE models and their training configurations.

1463

Algorithm 1 Training with Hierarchical Sampling

Input: {X(i)}Mi=1: training set; K: sequence batch size; bs: seg-
ment batch size; Bseg : number of segment batches; f∗/g∗: de-
coders/encoders; hµµ2

: cache of K entries; Optim: gradient descent-
based optimizer
1: while not converged do
2: sample a batch of K training sequences, {X̃(k)}Kk=1
3: for k = 1 . . .K do
4: hµµ2

(k)←∑N(k)

n=1 gµz2 (x̃(k,n))/(N + σ2
z2

)
5: end for
6: for 1 . . . Bseg do
7: sample segments {x̃(kb,nb)}bsb=1 from {X̃(k)}Kk=1

8: ldis(b)← − log
p(gµz2 (x̃(kb,nb))|hµµ2

(kb))
∑K
k=1 p(gµz2 (x̃(kb,nb))|hµµ2

(k))

9: lgen(b)← −L(p, q; x̃(kb,nb))

10: loss←∑bs
b=1(lgen(b) + α · ldis(b))/bs

11: f∗, g∗, hµµ2
← Optim(loss, {f∗, g∗, hµµ2

})
12: end for
13: end while
14: return f∗, g∗

𝑥" … 𝑥$%

𝜇𝒛(|𝒙
𝜎𝒛(|𝒙
$ 𝒛,$

𝑥"
𝒛,$

…

𝜇𝒛-|𝒙,𝒛(
𝜎𝒛-|𝒙,𝒛(
$ 𝒛,"

𝒛,"
𝒛,$

…

𝜇/-|𝒛,-,𝒛,(
𝑥$%
𝒛,$

𝜎/-|𝒛,-,𝒛,(
$

𝒛,"
𝒛,$

𝜇/(0|𝒛,-,𝒛,(

𝜎/(0|𝒛,-,𝒛,(
$

𝒛$	𝑒𝑛𝑐𝑜𝑑𝑒𝑟

𝒛"	𝑒𝑛𝑐𝑜𝑑𝑒𝑟
𝒙	𝑑𝑒𝑐𝑜𝑑𝑒𝑟

𝒙

Figure 2: The proposed FHVAE architecture consists of two encoders
(orange and green) and one decoder (blue). x = [x1, · · · , x20] is a
segment of 20 frames. Dotted lines in the encoders denote sampling
from parametric distributions.

4.1. Datasets

Four different corpora are used for our experiments, which are
TIMIT [9], Aurora-4 [10], AMI [11], and LibriSpeech [12]. TIMIT
contains broadband 16kHz recordings of phonetically-balanced read
speech. A total of 3,696 utterances (3 hours) are presented in the train-
ing partition based on the Kaldi [13] recipe, where sa utterances are ex-
cluded. In addition, manually labeled time-aligned phonetic transcripts
are available, which we use to study the disentanglement performance
between phonetic and speaker information achieved by FHVAE models.

Aurora-4 is another broadband corpus designed for noisy speech
recognition tasks, based on the Wall Street Journal corpus (WSJ0) [14].
Six different types of noise are artificially mixed with clean read speech
of two different microphone types, amounting to a total of 4,620 utter-
ances (10 hours) for the development set. Following the training setup
in [5], we train our FHVAE models on the development set, because the
noise and channel information on the training set is not available.

The AMI corpus consists of 100 hours of meeting recordings,
recorded in three different meeting rooms with different acoustic prop-
erties, and with multiple attendants. Multiple microphones are used for
each session, including individual headset microphones (IHM), and far-
field microphone arrays. IHM and single distant microphone (SDM)
recordings from the training set are mixed to form a training set for
the FHVAE models, including over 200,000 utterances according to the
segmentation provided in the corpus.

The largest corpus we evaluate on is the LibriSpeech corpus, which
contains 1,000 hours of read speech sampled at 16kHz. This corpus is
based on the LibriVox’s project, where world-wide volunteers record
public domain texts to create free public domain audio books.

4.2. Training and Model Configurations

Speech segments of 20 frames, represented with 80-dimensional log
Mel-scale filter bank coefficients (FBank), are used as inputs to FH-
VAE models. We denote each segment with x = [x1, · · · , x20]. The
variance of z2’s prior is set to σ2

z2
= 0.25, and the dimension of z1

and z2 are both 32. Figure 2 illustrates the detailed encoder/decoder ar-
chitectures of the proposed FHVAE model. The conditional mean and
variance predictor for each variable (i.e., z1, z2, and x) shares a com-
mon stacked LSTM pre-network, followed by two different single-layer
affine transform networks, µ∗ and σ2

∗ , predicting the conditional mean
and variance respectively. Specifically, a stacked LSTM with 2 layers
and 256 memory cells are used for all three pre-networks, illustrated in
Figure 2 with blocks filled with dark colors. Affine transform networks
of z1 and z2 encoders take as input the output from the last time step
of both layers, which sums to 512 dimension. As for the x decoder,
the affine transform network takes as input the LSTM output of the last
layer from each time step t, and predicts the probability distribution of
the corresponding frame p(xt|z1,z2). The same sampled z̃1 and z̃2
from the posterior distributions are concatenated and used as input for
the LSTM decoder at each step. Sampling is done by introducing aux-
iliary input variables for the reparameterization trick [15], in order to
keep the entire network differentiable with respect to the objective.

FHVAE models are trained to optimize the discriminative segment
variational lower bound with α = 10. We set sequence batch size
K = 2000 for TIMIT and Aurora-4, and K = 5000 for the others.
Adam [16] with β1 = 0.95 and β2 = 0.999 is used to optimize all
models. Tensorflow [17] is used for implementation. Training is done
for 500,000 steps, terminating early if the segmental variational lower
bound on a held-out validation set is not improved for 50,000 steps.

5. Results and Discussions
5.1. Time and Memory Complexity

One feature of our proposed training algorithm is to control memory
complexity. We found that a training set with over 100,000 sequences
would exhaust a single 8GB GPU memory when using the original
training algorithm. Hence, it was not feasible for the AMI and the Lib-
riSpeech corpus, while the proposed algorithm does not suffer from the
same problem. Another feature of hierarchical sampling is to control the
time complexity of computing the discriminative loss. To study how se-
quence batch size affects the optimization step (line 8 in Algorithm 1),
we evaluate the processing time of that step by varying K from 20 to
20,000 and show the results in Table 2.

We can observe that when K ≤ 2000, the time complexity of
computing the discriminative loss is fractional compared to computing
the variational lower bound. However, when K > 2000, the increased
computation time grows proportional to the sequence batch size, so that
computation of the discriminative loss starts to dominate the time com-
plexity. In practice, given a new encoder/decoder architecture, we can
investigate the computation overhead resulting from the discriminative
loss using such a method, and it is possible to determine some K that
introduces negligible overhead for optimization.

Table 2: Processing time of the optimization step with different sequence
batch size K.

K 10 100 1000 2000 5000 10000 20000
Time (ms) 84 84 86 87 103 147 230

5.2. Evaluating Disentanglement Performance

To examine whether an FHVAE is successfully trained, we need to in-
spect its performance at disentangling sequence-level generating fac-
tors (e.g. speaker identity, noise condition, and channel condition) from
segment-level generating factors (e.g. phonetic content) in the latent
space. For quantitative evaluation, we reproduce the speaker verifica-
tion experiments in [5]. The FHVAE model trained with hierarchical
sampling achieves 1.64% equal error rate on TIMIT, matching the per-
formance of the original training algorithm (1.34%). In the following
sections, we proceed with two qualitative evaluation methods.

1464

TIMIT Aurora-4 AMI LibriSpeech

t-SN
E Projected z

1
t-SN

E Projected z
2

Figure 3: Scatter plots of t-SNE projected z1 and z2 with models trained on TIMIT/Aurora-4/AMI/LibriSpeech. Each point represents one segment.
Different colors are used to code segments of different labels with respect to the generating factor shown at the title of each plot.

5.2.1. t-SNE Visualization of Latent Variables

We start with selecting a batch of labeled segments (x, y), where y de-
notes the values of the associated generating factors, for example y =
(phone-id, speaker-id). We then infer z1 and z2 of these segments, and
project them separately to a two-dimensional space using t-Distributed
Stochastic Neighbor Embedding (t-SNE) [8]. Each generating factor is
used to color-code both projected z1 and z2. Successful disentangle-
ment would result in segments of the same sequence-level generating
factors forming clusters in the projected z2 space but not in the pro-
jected z1 space, and vice versa.

For all four datasets, speaker label, a sequence-level generating
factor, is available for each segment. Since time-aligned phonetic tran-
scripts are available for TIMIT, it is also possible to derive phone labels,
which is a segment-level generating factor. Following [18], we further
reduce the 61 phonemes to three phonetic subsets: sonorant (SON), ob-
struent (OBS), and silence (SIL) for better color-coding. In addition,
noise types can be obtained for Aurora-4, and microphone types can be
obtained for AMI, which are both sequence-level generating factors.

Results of t-SNE projections for models trained on each dataset
are shown in Figure 3, where each point represents one segment. It
can be observed that in each of the projected z2 spaces, segments of
the same sequence-level generating factors (speaker/noise/channel) al-
ways form clusters. When segments are generated conditioned on mul-
tiple sequence-level generating factors, as in Aurora-4 and AMI, the
segments actually cluster hierarchically. In contrast, the distribution of
projected z1’s does not vary between different values of these generat-
ing factors, which implies that z1 does not contain much information
about them. Opposite phenomenon can be observed from the phone
category-coded plots, where segments belonging to the same phonetic
subset cluster in the projected z1 space, but not in the projected z2
space. These results suggest that FHVAEs trained with hierarchical
sampling can achieve desirable disentanglement for these conditions.

5.2.2. Reconstructing Re-combined Latent Variables

Given two segments, xA and xB , we sample a segment xC ∼
p(x|z̃A1 , z̃B2), where z̃A1 is a sampled latent segment variable condi-
tioned on xA, and z̃B2 is a sampled latent sequence variable condi-
tioned on xB . With a successfully trained FHVAE, xC should exhibit
the segment-level attributes of xA, and the sequence-level attributes of
xB . Due to space limitations, we only show results of the model trained
on the AMI corpus in Figure 4. Eight segments are sampled for xA, as
shown in the upper right corner of the figure. Among these segments,
the four leftmost ones are close-talking while the rest are far-field, and
the first, second, fifth, and sixth from left are female speakers while the
rest are males. For xB , three segments of different sequence-level gen-
erating factors are sampled, as shown on the left half of the figure. The
segments used to infer z̃B2 are highlighted in red boxes; we show the
surrounding frames of those segments to better illustrate how sequence-
level generating factors affect realization of observations.

Samples of xC generated by re-combining latent variables are
shown in the lower right corner of the figure. It can be clearly ob-

female
close-talking

male
close-talking

female
far-field

!" !# !$!" !# !$

!" !# !$

(red boxes) !"#$!"%&

!"#$!"%&

Figure 4: Results of decoding re-combined latent variables. A segment
in the xC block is generated conditioned on the latent segment variable
of a segment in the block xA of the same column, and conditioned on
the latent sequence variable of a red-box highlighted segment in the
block xB of the same row.

served that xC presents the same sequence-level generating factors as
xB ,2 whose latent sequence variable xC conditions on. Meanwhile,
the phonetic content of xC stays consistent with xA,3 whose latent
segment variable xC conditions on. The clear differentiation of gener-
ating factors encoded in each sets of latent variables again corroborates
the success of our proposed algorithm in training FHVAE models.

6. Conclusions and Future Work
In this paper, we discuss the scalability limitations of the original FH-
VAE training algorithm in terms of runtime, memory, and hyperparam-
eter optimization, and propose a hierarchical sampling algorithm to ad-
dress this problem. Comprehensive study on the memory and time com-
plexity, as well as disentanglement performance verify the effectiveness
of the proposed algorithm on all scales of datasets, ranging from 3 to
1,000 hours. In the future, we plan to extend FHVAE applications, such
as ASR domain adaptation [7] and audio conversion [5] to larger scales.

2In these images, harmonic spacing is the clearest cue for funda-
mental frequency differences. Far-field recordings tend to have lower
signal-to-noise ratios, which results in blurrier images.

3Phonetic content can usually be determined by the spectral enve-
lope, and relative position of formants.

1465

7. References
[1] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,

“Front-end factor analysis for speaker verification,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 19,
no. 4, pp. 788–798, 2011.

[2] S. Tan and K. C. Sim, “Learning utterance-level normalisation
using variational autoencoders for robust automatic speech recog-
nition,” in Spoken Language Technology Workshop (SLT), 2016
IEEE. IEEE, 2016, pp. 43–49.

[3] J. F. Drexler, “Deep unsupervised learning from speech,” 2016.

[4] W.-N. Hsu, Y. Zhang, and J. Glass, “Learning latent representa-
tions for speech generation and transformation,” in Interspeech,
2017, pp. 1273–1277.

[5] ——, “Unsupervised learning of disentangled and interpretable
representations from sequential data,” in Advances in Neural In-
formation Processing Systems, 2017.

[6] W.-N. Hsu and J. Glass, “Extracting domain invariant features by
unsupervised learning for robust automatic speech recognition,”
in Acoustics, Speech and Signal Processing (ICASSP), 2018 IEEE
International Conference on. IEEE, 2018.

[7] W.-N. Hsu, Y. Zhang, and J. Glass, “Unsupervised domain adap-
tation for robust speech recognition via variational autoencoder-
based data augmentation,” in Automatic Speech Recognition and
Understanding (ASRU), 2017 IEEE Workshop on. IEEE, 2017.

[8] L. Van Der Maaten, “Accelerating t-sne using tree-based algo-
rithms.” Journal of machine learning research, vol. 15, no. 1, pp.
3221–3245, 2014.

[9] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S.
Pallett, “DARPA TIMIT acoustic-phonetic continous speech cor-
pus CD-ROM. NIST speech disc 1-1.1,” NASA STI/Recon techni-
cal report n, vol. 93, 1993.

[10] D. Pearce, “Aurora working group: Dsr front end lvcsr evaluation
au/384/02,” Ph.D. dissertation, Mississippi State University, 2002.

[11] J. Carletta, “Unleashing the killer corpus: experiences in creating
the multi-everything ami meeting corpus,” Language Resources
and Evaluation, vol. 41, no. 2, pp. 181–190, 2007.

[12] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,” in
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE
International Conference on. IEEE, 2015, pp. 5206–5210.

[13] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The kaldi speech recognition toolkit,” in IEEE 2011 workshop
on automatic speech recognition and understanding, no. EPFL-
CONF-192584. IEEE Signal Processing Society, 2011.

[14] J. Garofalo, D. Graff, D. Paul, and D. Pallett, “Csr-i (wsj0) com-
plete,” Linguistic Data Consortium, Philadelphia, 2007.

[15] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[16] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[17] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A
system for large-scale machine learning.” in OSDI, vol. 16, 2016,
pp. 265–283.

[18] A. K. Halberstadt, “Heterogeneous acoustic measurements and
multiple classifiers for speech recognition,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1999.

1466

