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ABSTRACT

This paper introduces a new localization method called SVD-
PHAT. The SVD-PHAT method relies on Singular Value De-
composition of the SRP-PHAT projection matrix. A k-d tree
is also proposed to speed up the search for the most likely
direction of arrival of sound. We show that this method per-
forms as accurately as SRP-PHAT, while reducing signifi-
cantly the amount of computation required.

Index Terms— Sound Source Localization, SRP-PHAT,
SVD-PHAT, Direction of Arrival

1. INTRODUCTION

Distant speech processing is a challenging task, as the target
sound source is usually corrupted by noise from the envi-
ronment and is degraded by reverberation [1]. Beamforming
methods are often used as a preprocessing step to enhance
the corrupted speech signal using multiple microphones.
Many beamforming methods, such as Delay and Sum (DS),
Geometric Source Separation (GSS) [2] and Minimum Vari-
ance Distortionless Response (MVDR) [3], require the target
source direction of arrival (DOA). Sound source localization
consists in estimating this DOA, and often relies on Multi-
ple Signal Classification (MUSIC) [4] or Steered-Response
Power Phase Transform (SRP-PHAT) [5] methods.

MUSIC is based on Standard Eigenvalue Decomposi-
tion (SEVD-MUSIC), and was initially used for narrowband
signals, then adapted to broadband signals to make localiza-
tion robust to additive noise [6]. The latter method however
assumes that the target signal is more powerful than noise.
To cope with this limitation, MUSIC based on Generalized
Eigenvalue Decomposition (GEVD-MUSIC) handles scenar-
ios when noise is more powerful than the signal of interest
[7]. Alternatively, MUSIC based on Generalized Singular
Value Decomposition (SVD-MUSIC), reduces the computa-
tional load of GEVD-MUSIC and improves DOA estimation
accuracy [8]. However, all MUSIC-based methods require
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performing online eigenvalue or singular value decomposi-
tions, which involve a significant amount of computations,
and make real-time processing more challenging.

SRP-PHAT computes the Generalized Cross-Correlation
with Phase Transform (GCC-PHAT) between each pair of mi-
crophones [9]. The exact SRP-PHAT solution involves frac-
tional Time-Difference of Arrival (TDOA) delays, and re-
quires a significant amount of computation. The Fast Fourier
Transform (FFT) is thus often used to speed up the computa-
tion of GCC-PHAT, which makes this method appealing for
real-time applications [10, 11]. However, using the FFT re-
stricts the transform to discrete TDOA values, which reduces
localization accuracy. Interpolation [12, 13, 14], fractional
delay estimation [15] and fractional Fourier transform [16]
attempt to overcome the FFT discretization drawback. More-
over, searching for sound source involves a significant amount
of computations when scanning the 3D-space. Stochastic re-
gion contraction [17], hierarchical search [18, 19, 20] and
vectorization [21] are proposed to speed up scanning, but are
usually restricted to a 2D surface.

In this paper, we propose a new method inspired from
the original SRP-PHAT approach, called SVD-PHAT. The
objective is to reduce the amount of computations typically
involved in the exact SRP-PHAT, while preserving its accu-
racy. The proposed technique relies on SVD to generate a
transform related to the matrix geometry that maps the ini-
tial observations to a smaller subspace. This subspace is then
searched with a k-d tree, which returns the estimated DOA.

2. SRP-PHAT

SRP-PHAT relies on the TDOA estimation for all pairs of
microphones (for an array with M microphones, there are
P = M(M −1)/2 possible pairs). The TDOA (in sec) corre-
sponds to the difference between the distance from the source
sq ∈ R3 to microphone i at position ri ∈ R3, and the distance
between the same source and another microphone j at posi-
tion rj ∈ R3, divided by the speed of sound in air c ∈ R+ (in
m/sec). Since all signals are discretized in time, it is also con-
venient to express the TDOA in terms of samples by adding
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the sample rate (fS ∈ R+) in the expression, as shown in (1).

τq,i,j =
fS
c

(‖sq − ri‖2 − ‖sq − rj‖2) (1)

where ‖. . .‖2 stands for the Euclidean norm.
In most microphone array configurations, the array aper-

ture is small compared to the distance between the source and
the array, such that the farfield assumption holds. In this case,
(1) can be formulated as in (2).

τq,i,j =
fS
c

(rj − ri) ·
sq
‖sq‖2

(2)

Let xm[n] be the signal of microphone m in the time do-
main. The expression X l

m[k] ∈ C is obtained with a Short
Time Fourier Transform (STFT) with a sine window, where
N ∈ N and ∆N ∈ N stand for the frame and hop sizes in
samples, respectively, and k ∈ N ∩ [0, N/2] and l ∈ N stand
for the frequency bin and frame indexes, respectively. For
clarity, the frame index l is omitted in this paper without loss
of generality. The normalized cross-spectrum for each pair
of microphones (i, j) (where i 6= j) corresponds to the ex-
pression Xi,j [k] ∈ C in (3). The operators {. . . }∗ and | . . . |
stand for the complex conjugate and the absolute value, re-
spectively.

Xi,j [k] =
Xi[k]Xj [k]∗

|Xi[k]||Xj [k]|
(3)

In the frequency domain, the TDOA τq,i,j leads to the co-
efficient Wq,i,j [k] ∈ C in (4) according to SRP-PHAT beam-
forming.

Wq,i,j [k] = exp
(
2π
√
−1kτq,i,j/N

)
(4)

For each potential source position located at sq , SRP-
PHAT returns an energy value expressed by Yq ∈ R, where
<{. . . } extracts the real part.

Yq = <


M∑
i=1

M∑
j=(i+1)

N/2∑
k=0

Wq,i,j [k]Xi,j [k]

 (5)

The estimated direction of arrival (DOA) of sound corre-
sponds to the position denoted by sq̄ , where q̄ is obtained in
(6). Moreover, the scalar Yq̄ is often used to discriminate a
valid sound source from backgroud noise.

q̄ = arg max
q

{Yq} (6)

Computing Yq for q ∈ N ∩ [1, Q] as in (6) involves a
complexity order ofO(QPN), and searching for the best po-
tential source results in (6) leads to a O(Q) search. When
the number of points to scan (Q) gets large, the SRP-PHAT
involves numerous computations, which makes the method
less suitable for real-time applications. The proposed SVD-
PHAT method described in the next section aims to alleviate
this limitation.

3. SVD-PHAT

To define the SVD-PHAT method, it is convenient to start
from SRP-PHAT expressed in matrix form. We define the
vector X ∈ CP (N/2+1)×1 in (7), which concatenates all nor-
malized cross-spectra previously introduced in (3).

X =
[
X1,2[0] X1,2[1] · · · XM−1,M [N/2]

]T
(7)

Similarly, the matrix W ∈ CQ×P (N/2+1) holds all the
SRP-PHAT coefficients:

W =

 W1,1,2[0] W1,1,2[1] · · · W1,M−1,M [N/2]
...

...
. . .

...
WQ,1,2[0] WQ,1,2[1] · · · WQ,M−1,M [N/2]


(8)

Finally, the vector Y ∈ CQ×1 stores the SRP-PHAT en-
ergy for all Q potential sources and is obtained from the fol-
lowing matrix multiplication:

Y =
[
Y1 . . . YQ

]T
= <{WX} (9)

As mentionned for SRP-PHAT, this matrix multiplication
is computationally expensive when there are numerous po-
tential source positions to scan. To cope with this limita-
tion, we propose to perform Singular Value Decomposition
on the matrix W, where U ∈ CQ×K , S ∈ CK×K and
V ∈ CP (N/2+1)×K , as shown in (10).

W ≈ USVH (10)

where {. . . }H stands for the Hermitian operator.
The parameter K ∈ N ∩ ]0,Kmax], where the upper

bound Kmax = max{Q,P (N/2 + 1)}, is chosen to ensure
accurate reconstruction of W, according to the condition in
(11), where the user-defined parameter δ is a small positive
value that models the tolerable reconstruction error. The op-
erator Tr{. . . } stands for the trace of the matrix.

Tr {SST } ≥ (1− δ) Tr {WWH} (11)

The vector Z ∈ CK×1 results from the projection of the
observations X in the K-dimensions subspace:

Z = VHX (12)

The matrix D ∈ CQ×K is obtained in (13) and can be
decomposed in a set of Q vectors Dq ∈ C1×K :

D = US =
[
DT

1 DT
2 . . . DT

Q

]T
(13)

The index of the most likely DOA obtained in (6) now
corresponds to:

q̄ = arg max
q

{<{Dq · ZH}} (14)
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One way to find the correct value of q in (14) consists in
computing every Yq for q ∈ N ∩ [1, Q], and then finding the
index q that leads to the maximum value, which obviously
involves a significant amount of computations, as the com-
plexity order is linear (O(Q)). It is therefore relevant to look
for an alternate cost function that would allow a more efficient
search. For all values of q, the expressions ‖Dq‖2 are almost
identical (when the reconstruction meets condition in (11) for
a small value of δ) , but do not necessary equal to 1. We thus
define the new vectors D̂q = Dq/‖Dq‖2 and the normalized
vector Ẑ = Z/‖Z‖2. With ‖D̂q‖22 = 1 and ‖Ẑ‖22 = 1, the
dot product can therefore be expressed as follows:

<{Dq · ZH} = 1− 1

2
‖D̂q − ẐH‖22 (15)

and thus maximizing (14) now corresponds to minimizing
‖D̂q − ẐH‖22. This minimization can be done by computing
‖D̂q − ẐH‖22 for all values of q and finding q that leads to the
minimum value, but this brings us back to the linear complex-
ity order O(Q) as in (14). Fortunately, the new formulation
based on sum of squares becomes a nearest neighbor search
problem, which can be solved efficiently using a k-d tree [22].

Algorithm 1 summarizes the offline configuration per-
formed prior to processing and the online computations. The
real-time performances are independent of the computation-
ally expensive SVD and tree construction since these are
done offline. During online processing, computing the vector
Z involves a complexity order of O(KPN) and the k-d tree
search exhibits on average a complexity O(logQ) [22].

Algorithm 1 SVD-PHAT

Offline:
1: Generate W from (1), (4), and (8).
2: Perform SVD and obtain U, S and V, with K chosen

according to condition in (11).
3: Generate the normalized vectors D̂q from Dq in (13).
4: Build a k-d tree for all D̂q .

Online:
1: Generate X from the STFT coefficients as in (7).
2: Compute Z with (12) and generate ẐH .
3: Find q̄ using the k-d tree search.
4: Find Yq̄ with the corresponding row of W in (9).

4. RESULTS

The parameters for the experiments are summarized in Table
1. The sample rate fS captures all the frequency content of
speech, and the speed of sound c corresponds to typical indoor
conditions. The frame sizeN analyzes segments of 16 msecs,
and the hop size ∆N provides a 50% overlap. The potential
DOA are represented by equidistant points on a unit sphere

generated recursively from a tetrahedron, for a total of 2562
points, as in [11].

Table 1. SVD-PHAT Parameters

fS c N ∆N Q

16000 343.0 256 128 2562

We investigate three different microphone array geome-
tries: a 1-D linear array, a 2-D planar array and a 3-D array.
The microphones exact xyz-positions are given in cm in Table
2 and the geometries are shown in Fig. 1.

Table 2. Positions (x,y,z) of the microphones in cm

Mic 1-D 2-D 3-D
1 (0, 0,−5.0) (0, 0, 0) (0, 0, 0)

2 (0, 0,−3.3) (5, 0, 0) (−5, 0, 0)

3 (0, 0,−1.7) (2.5, 4.3, 0) (5, 0, 0)

4 (0, 0, 0) (−2.5, 4.3, 0) (0,−5, 0)

5 (0, 0, 1.7) (−5.0, 0, 0) (0, 5, 0)

6 (0, 0, 3.3) (−2.5,−4.3, 0) (0, 0,−5)

7 (0, 0, 5.0) (2.5,−4.3, 0) (0, 0, 5)

Simulations are conducted to measure the accuracy of the
proposed method. The microphone array and the target source
are positionned randomly in a 10m x 10m x 3m rectangular
room. For each configuration, the room reverberation is mod-
eled with Room Impulse Responses (RIRs) generated with
the image method [23], where the reflection coefficients are
sampled randomly in the uniform interval between 0.2 and
0.5. Sound segments from the TIMIT dataset are then con-
volved with the generated RIRs. Diffuse white noise is added
on each channel, for a signal-to-noise ratio (SNR) that varies
randomly between 0dB and 30dB. A total of 1000 different
configurations are generated for each microphone array.

We vary δ to analyze its impact on the accuracy of lo-
calization, measured as Root Mean Square Error (RMSE).
For the 1-D linear array, localization can only provide a posi-
tion on 180◦ arc. The 3-D position from the 2562 points unit
sphere is therefore mapped to an arc:

f1(s) = [cos(g(s)), 0, sin(g(s))] (16)

where

g(s) = atan2

{
s|z,

√
(s|x)2 + (s|y)2

}
(17)

For the 2-D planar array, localization returns a position on
a half-sphere, and thus every point is mapped to the positive
hemisphere as follows:

f2(s) = [s|x, s|y, |s|z|] (18)
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Fig. 1. Geometries of the microphone arrays in xyz-coordinates (dimensions are given in cm)

Finally, for the 3-D array, the localization result can span
the full 3-D space, such that the mapping function corre-
sponds to identity:

f3(s) = s (19)

The RMSE between the estimated DOA (sq̄) for all frames
for a given room configuration and speech signal is summed
and weighted with the energy Yq , and then compared with the
theoretical DOA defined by s0. The mathematical expression
corresponds to (20), where α = {1, 2, 3} for 1-D, 2-D and
3-D arrays, respectively.

RMSEα =

∥∥∥∥∑ fα(sq̄)Yq̄∑
Yq̄

− fα(s0)

∥∥∥∥
2

(20)

Figure 2a shows the difference between the RMSE from
SVD-PHAT and SRP-PHAT (denoted as ∆RMSE), with re-
spect to the δ parameter. As expected, when δ increases, the
reconstruction error gets significant and this reduces the ac-
curacy of localization for SVD-PHAT. It is interesting to note
that the 2-D planar array shows the largest increase in RMSE.
Figure 2b shows the value of theK parameter as a function of
δ. Note how theK value is smaller when the array spans only
one or two dimensions, as expected since the transfer function
between DOAs are more correlated. The gain in performance
is mostly due to the reduction from a matrix multiplication
with Q rows in (9) to a matrix multiplication with K rows in
(12). Figure 2c therefore shows the gain Q/K as a function
of δ.

It is reasonable to define δ = 10−5 as the RMSE between
SRP-PHAT and SVD-PHAT is almost identical. With this
configuration, the gain Q/K reaches 320, 53 and 36 for 1-D,
2-D and 3-D arrays, which is considerable, and demonstrates
the superiority of SVD-PHAT over SRP-PHAT in terms of
computational requirements, while preserving the same accu-
racy.

5. CONCLUSION

This paper introduces a new localization method named SVD-
PHAT. This technique can perform with the same accuracy as
SRP-PHAT, while reducing significantly the amount of com-
putations.
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(a) Difference between the Root Mean Square Error of SVD-PHAT and the
exact SRP-PHAT – smaller is better.
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(b) Value of the variable K (the rank of the decomposition) for the pro-
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(c) Performance gain of SVD-PHAT when compared to exact SRP-PHAT
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Fig. 2. Performance of the proposed SVD-PHAT method with
respect to the exact SRP-PHAT method. Results are presented
for the 1-D linear array (red), the 2-D planar array (blue) and
the 3-D array (green).

In future work, we will investigate multiple source local-
ization with SVD-PHAT. It would also be interesting to intro-
duce binary time-frequency mask, which could reduce even
more the amount of computations. The method could also be
extended to deal with speed of sound mismatch, the near-field
effect and microphone position uncertainty.
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