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ABSTRACT

In this paper, we experiment with the recently introduced sub-
word regularization technique [1] in the context of end-to-end
automatic speech recognition (ASR). We present results from
both attention-based and CTC-based ASR systems on two
common benchmark datasets, the 80 hour Wall Street Journal
corpus and 1,000 hour Librispeech corpus. We also introduce
a novel subword beam search decoding algorithm that signifi-
cantly improves the final performance of the CTC-based sys-
tems. Overall, we find that subword regularization improves
the performance of both types of ASR systems, with the reg-
ularized attention-based model performing best overall.

Index Terms— automatic speech recognition, subword
units, beam search, CTC, attention

1. INTRODUCTION

Within the field of automatic speech recognition (ASR), de-
termining the correct scale of units to use at various stages
in the recognition pipeline is a key research area. The idea
of finding and using a vocabulary of “subword units” - se-
quences of one-or-more phonemes or characters - has been
explored extensively in the context of traditional HMM-based
state-dependent acoustic models [2, 3] and has become in-
creasingly common at the output of end-to-end deep neural
network models, such as connectionist temporal classification
(CTC) and attention-based models [4, 5, 6]. For recent end-
to-end ASR models, subword units are most often discovered
using the byte pair encoding (BPE) technique [7], which was
originally developed for machine translation.

Subword regularization [1] is a more recent technique
for both discovering and using subword units that has been
shown to produce large gains (sometimes several BLEU
points) over high-quality machine translation baselines that
use BPE. Rather than deterministically splitting every word
into subword units, subword regularization involves learning
a probabilistic model over subword units and sampling a new
segmentation for every word each time it appears.

In this paper, we apply subword regularization to ASR,
where it has not previously been tested. We focus on end-to-

end ASR, exploring both CTC-based models and attention-
based models. While the original subword regularization ex-
periments on machine translation suggest its general useful-
ness with attention-based models, this paper is the first at-
tempt to combine subword regularization with CTC.

In addition to these experiments, we develop a modified
beam search algorithm to improve the performance of CTC
models with subword regularization. Our subword beam
search algorithm combines the likelihoods of different seg-
mentations of the same word during decoding, thus finding
the most likely word sequence rather than the most likely
sequence of subword units. We show that the performance of
CTC models drops drastically with increased subword reg-
ularization when standard beam search is used, but that our
algorithm completely erases these losses.

2. SUBWORD REGULARIZATION

Subword regularization [1] is based on a simple unigram lan-
guage model (LM). Given a vocabulary of subword units,
such a model is easy to train, and Viterbi search can effi-
ciently find the best segmentation for any word according
to that model. Alternatively, segmentations can be sampled
from the language model. Kudo [1] introduced a technique
for joint learning of the unigram LM and a vocabulary of a
desired size. The vocabulary always includes all of the single
characters in the alphabet, so that there will never be out-of-
vocabulary words. This technique starts with the set of the
most frequent strings in the corpus, a set much larger than the
desired vocabulary size. Given this seed vocabulary, the LM
is computed. Kudo then computes the “loss” associated with
each unit - the reduction in the overall likelihood of the corpus
if that unit were to be left out. The LM is then re-estimated us-
ing the 80% of subword units with the highest associated loss.
This process is repeated until the appropriate vocabulary size
is reached.

Once the LM and vocabulary are fixed, we can sample a
segmentation from the following multinomial distribution:

P (xi|X) ∼=
p(xi)

α∑n
j=1 p(xj)

α
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where n is the number of n-best segmentations used to ap-
proximate the true distribution and α is a smoothing parame-
ter. α = 0 creates a uniform distribution, while larger settings
of α move closer to the Viterbi segmentation. Kudo uses the
forward-filtering and backward-sampling algorithm [8] for
exact sampling from all possible segmentations. All experi-
mental results in this paper use this setting.

We make some minor modifications to the technique de-
scribed in [1]: in addition to specifying a desired vocabulary
size, we specify the maximum subword length in characters,
which is easily implemented by only considering subwords
up to that length in the seed vocabulary. In [1], subwords
do not cross word boundaries, but each space is included as
part of the following word. We treat all spaces as stand-alone
characters, not included in any subword units.

3. SUBWORD BEAM SEARCH DECODING

Prefix beam search decoding is a beam search algorithm
specifically designed for use with CTC models [9]. It is a
dynamic programming algorithm in which we step through
time, keeping the n prefixes with the highest cumulative prob-
ability at each step. The probability of outputting a prefix p
by time t given input sequence x is:

p(p|x, t) = γ(pb, t) + γ(pn, t)

where γ(pb, t) is the probability of outputting prefix p by
time t such that the blank label is output at time t. Simi-
larly, γ(pn, t) is the probability of outputting prefix p by time
t such that a non-blank label is output at time t.

In our updated decoding algorithm, which we call sub-
word prefix beam search decoding, we add an extra parameter
to our definition of γ, such that γ(pn, z, t) is the probability
of outputting prefix p by time t such that a non-blank label of
length z is output at time t. With these new γ definitions, we
then redefine our prefix probability as:

p(p|x, t) = γ(pb, t) +

M∑
z=1

γ(pn, z, t)

where M is the maximum subword unit length in our vocab-
ulary. Note that this algorithm reduces to the original beam
search algorithm when all units are single characters. The
updated algorithm is shown in Algorithm 1.

On line 10 of Algorithm 1, to find out if p ends in the
label k, we need to maintain a mapping from each label k
to its constituent characters. We can then check if the last z
characters in p match the characters that make up k.

In standard prefix beam search, the γ definitions match
the forward variables in the forward-backward CTC training
algorithm, described in detail in [9]. Our updated γ vari-
ables match the forward variables in the modified forward-
backward training algorithm used in Gram CTC [10], de-
scribed in more detail in the following section.

Algorithm 1 Subword Prefix Beam Search Decoding
1: P = {}
2: for t=1 to T do
3: for all labels k ∈ A do
4: z = labelLength[k]
5: for all prefixes p ∈ P do
6: p∗ = p+ k
7: P.add(p∗)
8: if k == blank then
9: γ(pb, t) += ytk ∗ p(p, t− 1)

10: else
11: if p ends in k then
12: γ(pn, z, t) += ytk ∗ γ(pn, z, t− 1)
13: γ(p∗

n, z, t) += ytk∗[p(p, t−1)−γ(pn, z, t−1)]
14: else
15: γ(p∗

n, z, t) += ytk ∗ p(p, t− 1)
16: end if
17: end if
18: end for
19: end for
20: sortedP = sort(P )
21: P = topNPrefixes(sortedP, n)
22: end for

4. PRIOR WORK

The idea of finding and using a vocabulary of subword units
is a longstanding one within ASR. These units were origi-
nally necessary to avoid the out-of-vocabulary (OOV) prob-
lem with traditional acoustic and pronunciation models [2, 11,
3]. More recent character-based end-to-end models [12] do
not have an OOV problem, but researchers have still found
advantages to using a larger vocabulary of subword units as
opposed to characters.

The subword units used with end-to-end ASR models
are typically discovered using byte pair encoding (BPE) [7],
which learns a subword vocabulary from a text corpus that
can be used to deterministially segment any word. BPE units
have been shown to improve ASR performance when used
with attention-based systems [5, 13], CTC-based systems [4],
and hybrid attention-CTC models [6]. This prior work shows
a consistent trend of small improvements due to subword
units, with the best performance coming with relatively small
vocabularies of 300 or 500 units. These papers also show
more improvement to attention-based and hybrid models than
to CTC models.

An alternative method of training CTC-based ASR mod-
els with subword units, called “Gram CTC,” was introduced
in [10]. During Gram CTC training, the CTC loss marginal-
izes over all possible correct transcripts formed by using an
combination of subword units. For example, the word “OF”
could be produced either by individually outputting the char-
acters “O” and “F” or by outputting the unit “OF”. This is
closely related to our decoding method, which similarly con-
siders all possible segmentations of the same word sequence.
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Liu et al. [10] also use Gram CTC as a subword unit discov-
ery method, starting with all possible subwords up to a given
length and then iteratively selecting the units most often used
by their trained model during greedy decoding.

5. DATA AND METHODS

5.1. Data

We did experiments using the Wall Street Journal Corpus[14]
and the Librispeech1 corpus. For WSJ, we used the full
SI284 training set (80 hours), the dev93 set for validation,
and eval92 for testing. All results are on eval92. We nor-
malize all text to contain only alphanumeric characters, along
with a ‘SPACE’ symbol. For Librispeech, we used the full
1,000h training set, combined the clean and “other” dev sets
for validation, and report separate results on the clean and
other test sets. Word-level n-gram language models for both
datasets were trained on the accompanying text corpora; we
use a 3-gram LM for librispeech and a 4-gram LM for WSJ.

5.2. ASR Models

5.2.1. Attention-based Model

Our attention-based ASR model architecture comes from the
Listen, Attend, and Spell model [12]. It’s an encoder-decoder
model with an MLP attention mechanism [15]. The encoder
has four layers: the first is a bi-directional LSTM layer, the
three subsequent layers are pyramidal bLSTM layers [12],
each of which downsamples its input sequence by a factor
of two. The decoder has two LSTM layers. All recurrent lay-
ers have 256 units each; the embedding layer in the decoder
has 64 units. During training, we use a fixed sampling rate of
10% in the decoder [12].

This model is trained end-to-end to maximize the log like-
lihood of the correct label sequence during training. We use
stochastic gradient descent (SGD) with momentum for op-
timization. During inference, we use beam search decod-
ing [16]. We perform beam search with a beam size of five
on the validation set to determine the best performing epoch,
then report results of decoding the test set with beam size 20,
if not otherwise specified. Decoding with an n-gram language
model was implemented using WFSTs, following [17]. We
use a language model weight of 0.5 and character-level bonus
of 1.0 to encourage longer outputs.

5.2.2. CTC-based Model

For CTC-based ASR, we use a variant of the DeepSpeech2
model [18]. This model stacks several different types of neu-
ral network layers - two convolutional layers with tanh non-
linearities, followed by five GRU layers of 800 units each, a

1http://www.openslr.org/12/

clean other
Segmentation α WER (+ LM) WER (+ LM)
Character 11.9 (8.3) 31.1 (24.4)
Unigram, 200, ≤ 3 ∞ 11.9 (8.1) 30.5 (23.1)

2 12.3 (7.4) 30.4 (22.0)
1 12.4 (7.7) 30.2 (22.5)

0.5 13.8 (8.9) 31.8 (24.6)
Unigram, 500, ≤ 4 ∞ 11.7 (8.2) 29.9 (23.0)

2 12.6 (7.8) 29.9 (21.7)
1 12.1 (8.0) 29.4 (22.4)

0.5 12.4 (9.7) 30.7 (25.3)

Table 1. Results from the CTC model on the Librispeech
dataset. α is the regularization parameter for segmentation
sampling; α =∞ denotes the Viterbi segmentation.

fully-connected layer, and a softmax layer - all of which are
trained jointly with the CTC loss function [19].

We again use SGD with momentum for optimization and
use the same procedure as above for validation and testing.
When decoding with a language model, we use a language
model weight of 0.8 and word-level bonus of 1.0.

5.3. Software

Our attention-based ASR model was built with the OpenNMT
toolkit2, with some minor modifications. The CTC model
used the deepspeech.pytorch3 codebase, which uses ctcde-
code4 for beam search decoding5. Subword regularization
was performed with Google’s sentencepiece tokenizer6.

6. RESULTS AND ANALYSIS

Table 1 shows the results of subword regularization with the
CTC model on the Librispeech dataset. α is the regulariza-
tion parameter; α = ∞ means we sampled the deterministic
best segmentation for each word. All results shown used the
subword prefix beam search algorithm, which is identical to
regular beam search in the character segmentation case and
was consistently the same or slightly better than regular beam
search on the unregularized subword models. Overall, using
subwords units is as good as or better than using characters,
and subwords have a bigger impact on the “other” test set.
Without an LM, subword regularization gives additional im-
provement on the “other” test set but worsens performance
on the clean test set. This result are in line with the finding in
[1] that subword regularization improves model robustness on
out-of-domain test sets. In combination with an LM, subword
regularization improves performance on both test sets.

2https://github.com/OpenNMT/OpenNMT-py/
3https://github.com/SeanNaren/deepspeech.pytorch
4https://github.com/parlance/ctcdecode
5Updated code available at https://github.com/jdrex/ctcdecode
6https://github.com/google/sentencepiece
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WER sWER
Segmentation α (no LM) (no LM) (+ LM)
Character 19.8 19.8 16.1
Unigram, 100, ≤ 2 ∞ 20.0 20.0 15.1

10 19.8 19.5 14.1
5 19.4 18.8 14.0
2 22.0 19.5 14.8
1 28.5 20.6 15.5

0.5 37.9 22.0 15.7

Table 2. Results from the CTC model on the WSJ dataset.
WER denotes results using the standard prefix beam search
algorithm; sWER results use our updated algorithm.

Table 2 has results of subword regularization of the CTC
model on the WSJ dataset. Here, we show WER using both
the standard prefix beam search algorithm (“WER”) and our
subword prefix beam search algorithm (“sWER”). The lower
the regularization parameter, the worse the standard beam
search algorithm performs, and thus the bigger the impact of
our modified algorithm. CTC is generally known to produce
highly “peaked” output distributions, but as we further reg-
ularize our model by lowering the α parameter, our model
becomes “torn” between multiple possible options at some
timesteps. The outputs are still quite peaked, with most of
the probability mass placed on the two or three most likely
outputs per frame, but this change is enough to cause a large
degradation in beam search performance.

Both the problem created by these less peaked distribu-
tions and the solution provided by our beam search algorithm
can be demonstrated with a simple example of one of the most
frequently misspelled words in the standard beam search out-
put of the highly regularized models: the word “FOR.” This
word is frequently covered by the outputs at two subsequent
frames, the first of which is undecided between outputting
“F” and “FO” while the second is undecided between “R” and
“OR”. In the standard beam search case, there are four possi-
ble, distinct paths across these two frames: F-R, FO-R, F-OR,
and FO-OR. If the model is almost evenly split between its
two choices on both frames, these four paths each have close
to the same likelihood. Frequently, F-R or FO-OR is the most
likely combination, leading to an output error. Subword pre-
fix beam search, however, collapses FO-R and F-OR into a
single hypothesis (as both produce the word FOR), and the
word is thus always recognized correctly.

As in Table 1, Table 2 shows improvement due to sub-
word regularization both with and without an LM. In this
case, we see a larger improvement (both absolute and rela-
tive) to the subword-based models than the character-based
baseline from the addition of the LM.

Table 3 shows the results of subword regularization with
the attention-based model on the WSJ dataset. Overall, the
attention-based model performs better than the CTC-based

WER
Segmentation α No LM + LM
Character 16.0 12.4
Unigram, 100 units, ≤ 2 ∞ 16.0 12.1

1 14.1 10.7
0.5 14.2 11.6
0.2 14.3 11.5

Unigram, 200 units, ≤ 4 ∞ 15.1 11.8
1 14.0 10.7

0.5 14.3 11.1
0.2 14.8 11.0

Table 3. Results from the encoder-decoder model with atten-
tion on the WSJ dataset.

one on the WSJ dataset. As in previous work, we find that
the use of subword units is more impactful with the attention-
based model than the CTC model. Additionally, we see that
subword regularization produces larger improvements over
the Viterbi segmentation when used with the attention-based
model than when used with CTC.

We analyzed the attention-based beam search and found
that the majority of the beams contained the same final hy-
pothesis. For example, out of 20 beams, there were, on
average, only 2.19 unique outputs from our model with 100
units and α = 0.5. Unlike with CTC, we cannot collapse
multiple beams during decoding because of the recurrent
attention-based decoder. Instead, we implemented a sim-
ple post-processing where we add up the probabilities of all
beams with the same recognition hypothesis and return the
overall best hypothesis, but found that this had negligible
impact on the results.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we tested subword regularization with both
CTC-based and attention-based ASR models. We were con-
sistently able to find a subword setting that out-performed the
character baseline. When used with our novel subword pre-
fix beam search decoding algorithm, subword regularization
added additional benefit to the CTC model on the WSJ dataset
and the other Librispeech test set. The biggest improvement
was to the attention-based model, where subword regular-
ization produced significant gains above the unregularized
subword model.

In future work, we hope to expand upon the experiments
presented here with a direct comparison between Gram CTC
and subword regularization. This will show the relative mer-
its of considering multiple segmentations of each word during
training and decoding. We are also hopeful that subword pre-
fix beam search decoding will improve the Gram CTC-trained
model as it improved the CTC models used here.
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