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Abstract

In this paper, we demonstrate that our convolutional neu-
ral network (CNN) approach to selecting the next best sys-
tem response in a spoken dialogue system is competitive on
the recently released 7th Dialogue System Technology Chal-
lenge (DSTC7). Our CNN model outperforms the strong dual
LSTM encoder baseline, placing us in 11th place out of 20
participants on the first subtask of the Advising dataset in
track one, where the goal is to select the next best response
given the previous dialogue history between a student and the
advisor, who are discussing the best courses for the student to
enroll in. We show that our learned CNN filters identify se-
mantically meaningful categories of tokens, such as greetings
and course names, illustrating the interpretability of convolu-
tional models for dialogue response generation.

Introduction
With the rise of conversational agents such as Siri1 and Cor-
tana,2 dialogue systems that interact with people through
spoken language are becoming more and more popular. Typ-
ically, however, these commercial products are still heav-
ily rule-based. With the abundance of data and more pow-
erful computation available to us today, we can apply in-
creasingly powerful models to machine learning problems.
In particular, neural networks have been shown to outper-
form prior state-of-the-art statistical models in computer vi-
sion and speech recognition, and can learn to handle raw in-
put without requiring any manual feature engineering. Thus,
we propose applying neural methods to spoken dialogue sys-
tems, allowing the models to handle raw natural language
internally, with minimal pre-processing required.

The standard pipeline of steps in a spoken dialogue sys-
tem is shown in Fig. 1, where the user query (either written
or spoken) is fed through an automatic speech recognizer if
it is spoken, and the text of the query is sent to the language
understanding component. In this component, the semantic
tagging step involves isolating slots and corresponding slot
values (e.g., in a flight booking system, the departure
city slot may have the value Boston). The database re-
trieval then looks up the relevant information (e.g., flights)
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1https://www.apple.com/siri
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Figure 1: A standard pipeline for a spoken dialogue system,
where the input spoken user query is passed to an automatic
speech recognizer to generate its text, and the generated text
or the input textual user query is sent to the language un-
derstanding component for pre-processing and semantic tag-
ging. Then, the information is passed to the dialogue man-
ager to update the state of the dialogue and predict the next
action the system should take to generate a desired response.

from a knowledge base. This information is passed to the
dialogue manager, which updates the state of the dialogue
(i.e., the user’s goals, which are usually represented as a set
of slots and matching slot values) and determines the next
action the system should take, such as asking a followup
question about the user’s preferred departure time.

In this paper, we focus on the final response generation
step, taking the user’s query and dialogue history as the only
input, completely bypassing the language understanding and
dialogue management components. Therefore, the model is
trained fully end-to-end, with only two inputs: the previous
two utterances in a dialogue between a student and the advi-
sor, and a candidate utterance for the next system response.
Given a set of 100 possible response candidates, the goal is
to select the next best response based on the dialogue history
(see Table 1 for an example partial dialogue). We evaluate
our convolutional neural network approach, which does not
require any manual feature engineering or semantic dictio-
naries, on the recently released 7th Dialogue System Tech-
nology Challenge (DSTC7), focusing in particular on sub-
task one of the Advising dataset in track one.3

3https://ibm.github.io/dstc7-noesis/public/index.html



The challenge provides five subtasks: 1) selecting the next
response from among 100 candidates, 2) selecting the next
response from 120,000 responses, 3) selecting the next re-
sponse and its paraphrases from among 100 candidates, 4)
selecting the next response from among 100 candidates that
may not contain the correct response, and 5) selecting the
next response from among 100 candidates and incorporating
the provided external knowledge. We demonstrate that our
convolutional neural encoder places 11th out of 20 partici-
pants on the first subtask, with a Recall@50 score of 82.4%.

Advisor: Hello Mingyang! Are you doing well?
Student: Hi advisor. I’m doing alright. I would like
some advice on which courses to take next semester.

Student: My interested area is Software Development
and Intelligent system.

Advisor: you have three choices namely, EECS481
Software Engineering, EECS492 Introduction

to Artificial Intelligence, and EECS 381
Object Oriented and Advanced Programming.

Student: how many difficulty levels do
these classes have?

Advisor: EECS381 is not easy
Advisor: any thoughts about that?

Student: What time does the course occur?
I like afternoon classes and will find something else

if it’s scheduled too early.
Advisor: EECS351 is after lunch. The others are before.

EECS481 is from nine to ten thirty and EECS492
is from ten thirty to twelve.

Table 1: Example DSTC7 dialogue snippet, between a stu-
dent and the advisor. 100 candidate responses are provided,
and the system must choose the correct response, given the
conversation history: “481 is the early morning and is quite
similar to EECS381, so you might want to skip it.”

Related Work
CNNs for Sentence Matching
In our work, we use CNNs to learn a shared embedding
space for input student and advisor utterances in a conversa-
tion about selecting the best courses for the student. Recent
work (Adi et al. 2016) has analyzed the relative strengths
of various other sentence embeddings, including averag-
ing word vectors learned with the continuous-bag-of-words
method (Mikolov et al. 2013), LSTM auto-encoders (Li, Lu-
ong, and Jurafsky 2015), and skip-thought vectors based on
gated recurrent units (GRU) (Kiros et al. 2015). Our ap-
proach differs from these in that we use a CNN, as in related
work on learning semantic vector embeddings of natural lan-
guage meal logs and food database items (Korpusik, Collins,
and Glass 2017b; 2017a; Korpusik and Glass 2018a), rather
than recurrent networks, and we learn the vectors through a
domain-specific task for predicting whether a candidate sys-
tem response is a good match for previous utterances.

Similar work in learning joint embeddings for two differ-
ent modalities or languages have explored a margin-based

contrastive loss, which would be interesting to compare
against our binary verification cross-entropy loss. For rank-
ing annotations given an image, prior work directly incorpo-
rated the rank into the model’s loss function, along with a
hinge loss between true and false annotation samples (We-
ston, Bengio, and Usunier 2011); similarly, a margin-based
loss was used to learn a joint multimodal space between
images and captions for caption generation (Karpathy and
Fei-Fei 2015; Harwath, Torralba, and Glass 2016), and
sentence/document embeddings were learned through a
multilingual parallel corpus with a noise-contrastive hinge
loss ensuring non-aligned sentences were a certain margin
apart (Hermann and Blunsom 2014). Other related work pre-
dicted the most relevant document given a query through
the cosine similarity of jointly learned embeddings based on
bag-of-words term frequencies (Huang et al. 2013).

Many researchers are now exploring CNNs for natural
language processing (NLP). For example, in question an-
swering, recent work has shown improvements using deep
CNN models for text classification (Conneau et al. 2017;
Zhang, Zhao, and LeCun 2015; Xiao and Cho 2017) fol-
lowing the success of deep CNNs for computer vision.
Whereas these architectures take in a simple input text ex-
ample and predict a classification label, our task takes in
two input sentences and predicts whether they match. In
work more similar to ours, parallel CNNs predict the sim-
ilarity of two input sentences. While we process each in-
put separately, others first compute a word similarity matrix
between the two sentences (like an image matrix of pixels)
and use the matrix as input to one CNN (Pang et al. 2016;
Wang, Mi, and Ittycheriah 2016; Hu et al. 2014).

Attention-based CNN (ABCNN) models have also been
proposed for sentence matching. The ABCNN (Yin et al.
2016) combines two approaches: applying attention weights
to the input representations before convolution, as well as
after convolution but before pooling. Our method is similar,
but we compute dot products (our version of the attention
scheme) with the max-pooled high-level vector representa-
tion of the dialogue history. Hierarchical ABCNN applies
cosine similarity attention between CNN representations of
a query and each sentence in a document for machine com-
prehension (Yin, Ebert, and Schütze 2016). Thus, the atten-
tion comes after pooling across the input, whereas we com-
pute the dot products between each token in the candidate
system response, and the learned vector representing the pre-
vious utterances in the dialogue.

Dialogue State Tracking
We evaluate our system on the 7th Dialogue System Tech-
nology Challenge, which has been a premier research com-
petition for dialogue systems since its inception in 2013. The
seventh challenge focuses on end-to-end dialogue tasks, in
order to explore the issue of applying end-to-end technolo-
gies to dialogue systems in a pragmatic way, while previ-
ous challenges focused on Dialogue State Tracking (DST),
or tracking the user’s goal over time. Traditionally, spo-
ken dialogue systems relied on separately trained compo-
nents for spoken language understanding (SLU) and dia-
logue state tracking. The SLU component would identify



Figure 2: The strong baseline dual encoder LSTM network
for predicting the next best system response.

slot-value pairs from the speech recognition output, which
would be passed to the state tracking module to update the
belief state (Thomson and Young 2010; Wang and Lemon
2013). However, this pipeline of steps would accumulate er-
rors, as the SLU component often would not have the neces-
sary context to accurately predict the slot values. Thus, be-
lief tracking research shifted to jointly predicting slot-value
pairs and updating the dialogue state (Henderson, Thomson,
and Young 2014b; Sun et al. 2014).

Typically, these jointly trained SLU and dialogue state
updating models rely on a delexicalization-based strategy,
which translates various instantiations of slot and value men-
tions in the user utterance into generic labels. Prior work by
Henderson et al. fed delexicalized user utterances into a re-
current neural network, which output a distribution over slot
values (Henderson, Thomson, and Young 2014a). However,
delexicalizing the input often requires a manually defined
semantic dictionary that maps from slot-value pairs to all
possible text forms, or synonyms.

To avoid this reliance on hand-crafted semantic dictio-
naries, Mrksic et al. recently demonstrated the ability of
their Neural Belief Trackers (NBT) (Mrkšić et al. 2016)
to match the performance of delexicalization-based models,
without requiring any hand-crafted semantic dictionaries, as
well as the ability to significantly outperform such models
when the semantic resources are not available. In addition,
Zhong et al.’s state-of-the-art work has explored deep learn-
ing methods for dialogue state tracking, with recurrent self-
attentive encoders (Zhong, Xiong, and Socher 2018). Their
self-attentive RNN model encodes user utterances, system
actions, and each slot-value pair under consideration. Ras-
togi et al. also fed delexicalized utterances into their multi-
domain deep learning model for state tracking (Rastogi,
Hakkani-Tür, and Heck 2017), and Korpusik et al. took a
similar approach, but without using pre-trained word vectors
or delexicalization (Korpusik and Glass 2018b).

Models
Baseline Dual LSTM Encoder
We compare our model to a strong baseline—the dual long
short-term memory (LSTM) (Hochreiter and Schmidhuber
1997) encoder (Lowe et al. 2015). The inspiration for this

model is the sequence-to-sequence (seq2seq) (Sutskever,
Vinyals, and Le 2014) approach often applied to machine
translation, where an encoder (usually a recurrent model,
such as an LSTM) encodes the input sentence in the source
language, and an LSTM decoder is fed the encoded repre-
sentation to generate the sentence in the target language.

The LSTM encoder works as follows (see Fig. 2).4 Each
token in the dialogue history is fed through an embedding
layer (initialized with Glove (Pennington, Socher, and Man-
ning 2014)), followed by a recurrent layer, to yield an en-
coded vector representation of the context, De. Likewise,
each token in a candidate response is fed through an em-
bedding layer and a recurrent layer, generating the encoded
representation Ce. This is done for each of the 100 candidate
responses, and the similarity of each candidate response with
the dialogue context is computed using a learned similarity
matrix M , via the matrix multiplication DeMCi

e, where i
refers to the index of the candidate response. Each of these
similarity scores is fed through a final softmax layer to gen-
erate probabilities of each candidate response. The whole
model is trained with cross-entropy loss.

Convolutional Encoder
Our approach is similar to that of the dual LSTM encoder,
but with the differences that: (i) we use a convolutional
neural network (CNN) instead of the LSTM, (ii) we only
feed the last two utterances into the context encoder rather
than the full dialogue history, which would likely require at-
tention over all the previous utterances in order to ensure
the most important information from the most recent utter-
ances is not lost among the full dialogue history, as shown
in related work on multi-turn dialogue (Wu et al. 2016;
Zhou et al. 2018), and (iii) we compare against each candi-
date response one at a time with a sigmoid layer instead of a
softmax over all candidates. Our motivation for using convo-
lutional rather than recurrent models is they train faster, and
are more easily interpretable by inspecting which tokens for
each learned filter have the highest activation.

As shown in Fig. 3, the model is composed of two inputs:
one input layer for the previous two utterances in the conver-
sation, concatenated together, and another input layer for a
candidate advisor response. Each of the two inputs is first to-
kenized using spaCy,5 lowercased, and padded with zeros to
a fixed length of 50 tokens. Each candidate system response
is fed through a shared word embedding layer (note that we
do not use pre-trained word vectors in the system we sub-
mitted to the challenge, although we have since compared
to pre-training with Glove (Pennington, Socher, and Man-
ning 2014) and word2vec (Mikolov, Chen, and Dean ) on the
validation set), and is max-pooled to generate a single 256-
dimension vector representation of the dialogue context. At
the same time, the dialogue history is fed through the 64-
dimension shared word embedding layer and a 1-dimension
convolutional layer of 256 filters spanning a window of three
tokens with a rectified linear unit (ReLU) activation. Dur-

4http://www.wildml.com/2016/07/deep-learning-for-chatbots-
2-retrieval-based-model-tensorflow/

5https://spacy.io



Figure 3: The CNN architecture for predicting whether a given candidate system response is the correct match for the previous
two utterances in the dialogue between a student and their advisor.

ing training, this is followed by a dropout of probability 0.1,
and batch normalization (Ioffe and Szegedy 2015). Follow-
ing the input encoding step, a dot product is performed with
the candidate response vector and each 256-dimension CNN
output of the dialogue history. Mean-pooling is then per-
formed across these dot products to produce a single scalar
value, which we force to be between zero and one with a
final sigmoid layer. We train the model with binary cross-
entropy and the Adam optimizer (Kingma and Ba 2014).

Convolutional Ensemble
In the convolutional encoder described above, the final rank-
ing of the candidate responses is generated by computing
the sigmoid output probability for each response. We experi-
mented with ensembling several randomly initialized convo-
lutional models, and found that an ensemble of seven models
(six with 256-dimension embeddings and learned CNN fil-
ters, and one with 128 dimensions instead), performed best,
while the best individual model was the CNN with 256 di-
mensions. We also found that ensembling by summing the
ranked indices predicted by individual models performed
better on the development set than averaging the predicted
probability scores for each candidate response.

Experiments
In the 7th Dialogue System Technology Challenge
(DSTC7) (Yoshino et al. 2018), the goal is to predict the
next utterance in the dialogue, given the previous utterances

in the dialogue history. There are two corpora—the Ubuntu
corpus (Kummerfeld et al. 2018), which is based on chat
logs from the Ubuntu channels, and Advising data that sim-
ulates a discussion between a student and an academic ad-
visor. We focus on the Advising data, where the purpose
of the dialogue is to guide the student to pick the courses
that best fit their curriculum, as well as personal preferences
about time, difficulty, and area of interest. These conversa-
tions were collected by asking students at the University of
Michigan to play the role of both the student and the advi-
sor, using provided personas. The statistics of the data for
the first subtask are shown in Table 2.

min max mean median
History length 1 41 9.2 8

Utterance length 1 384 10.3 9
Candidate answer length 1 384 12.4 10

Table 2: The Advising dataset’s statistics for subtask 1.

For our experiments, we focus on the first subtask, in
which there are 100 candidate responses for each dialogue
snippet, where only one is the correct match, and the others
are distractors. We evaluate performance with the Recall@n
metric, where R@n indicates how often the model ranked
the correct response among the top-n. The second metric we
use for evaluation is the mean reciprocal rank (MRR), which
is the average of the reciprocal ranks (i.e., the multiplicative



inverse of the rank of the first correct answer) of results for
a sample of candidate responses Q:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(1)

To select the best model, we evaluated individual CNNs,
as well as ensembles, on the validation set for Advising sub-
task 1 (see Table 3), and compared against the dual LSTM
encoder baseline. In Table 4, we show the Recall and MRR
scores of our system on the two held-out test sets for the Ad-
vising subtask 1. Our ensemble of seven convolutional en-
coders outperforms the dual LSTM encoder baseline, plac-
ing us in 11th place for this subtask, and ranked 13 out of 20
total participants in the first track of the DSTC7 challenge.

Model R@1 R@10 R@50
Dual LSTM Encoder 6.20 36.0 80.0

Single CNN (meanpool) 3.43 27.2 97.9
Single CNN (maxpool) 10.9 46.3 97.2

2-CNN Ensemble 11.1 48.0 97.2
3-CNN Ensemble 11.8 47.5 97.4
4-CNN Ensemble 12.0 46.7 97.0
5-CNN Ensemble 12.2 46.3 97.0
6-CNN Ensemble 12.4 46.9 97.0
7-CNN Ensemble 12.6 46.9 97.0
8-CNN Ensemble 12.4 46.9 97.0

Single CNN (Glove) 12.2 50.3 98.3
Single CNN (word2vec) 14.8 47.5 97.0

Table 3: We report the recall for several methods on the
validation dataset for Advising subtask 1. Optimizing for
R@1, we select the 7-CNN ensemble for the final evalua-
tion (since at the time of submission, we were not using pre-
trained word embeddings). With more than 7 CNNs, perfor-
mance starts dropping. Note that with mean-pooling instead
of max-pooling over the candidate response, recall is lower.

Model Data R@1 R@10 R@50 MRR
CNN Ensemble Test 1 20.6 54.8 82.4 32.3
CNN Ensemble Test 2 8.8 32.0 72.8 16.9

Table 4: We report recall and mean reciprocal rank (MRR)
for our CNN on the two test sets for Advising subtask 1.

Analysis
Since one common critique of neural network models is that
they are mysterious “black boxes,” we analyze the learned
CNN filters in order to make the model’s behavior more in-
terpretable. Specifically, we identify which tokens in the de-
velopment set yield the highest activation for each of the
learned CNN filters, as in related work (Korpusik and Glass
2017; Korpusik et al. 2016; 2014), and manually inspect
these top-10 highest activation tokens to determine whether
there is an intuitive pattern. In Table 5, we can see that fil-
ter 1 seems to identify greetings (e.g., “hello” and “hi”), fil-
ter 11 picks out tokens where the student thanks the advisor

and ends the dialogue (e.g., “thanks” and “goodbye”), filter
144 isolates tokens related to course names (e.g., “operating
system” and “eecs”), and filters 185 and 209 seem to iden-
tify tokens related to personal preferences such as time and
workload (e.g., “difficult” and “morning”).

CNN Filter Top-10 Tokens
1 ‘hello’, ‘for’, ‘hi’, ‘today’, ‘?’,

‘afternoon’, ‘full’, ‘doing’, ‘one’, ‘in’
11 ‘thankful’, ‘for’, ‘goodbye’, ‘,’,

‘thanks’, ‘!’, ‘thank’, ‘.’, ‘bye’, ‘will’
144 ‘system’, ‘operating’, ‘482’, ‘heard’,

‘really’, ‘any’, ‘calc’, ‘eecs’, ‘last’, ‘have’
185 ‘programming’, ‘difficult’, ‘light’,

‘course’, ‘in’, ‘workload’, ‘take’,
‘load’, ‘junior’, ‘computing’

209 ‘morning’, ‘light’, ‘class’, ‘in’, ‘relatively’,
‘semester’, ‘prefer’, ‘a’, ‘like’, ‘which’

Table 5: Top-10 activated tokens for learned CNN filters.

In addition, we inspect the errors made by our best system
(i.e., the ensemble of CNNs) on the validation set to deter-
mine 1) whether the mistakes seem reasonable, and 2) to
come up with ideas for improving performance. In Table 6,
we see that the system is confused by out-of-vocabulary
words (i.e., <UNK>) that were unseen during training. One
approach for handling this better in future work is to use let-
ter trigrams or character-based embeddings, rather than full
word embeddings. We also note that in the second example,
the student thanks the advisor, and the predicted responses
all seem reasonable (e.g., “you’re welcome”). In the third
example mistake, where the system is unable to compare
two courses, the limitation is that our system does not use
the full conversation history, but only the previous two ut-
terances. In this scenario, it would help the system to know
that “they” refers to courses EECS370 and EECS280. The
final mistake requires a deeper semantic understanding than
our system is capable of currently—the correct response re-
quires commonsense reasoning that by registering for the
class, the student can observe firsthand the professor’s style,
and the predicted responses make sense, but illustrate that
the system does not realize “it” refers to courses rather than
the professor (e.g., “it has a high degree of easiness”).

Conclusion
In this paper, we have demonstrated that a CNN encoder out-
performs a strong dual LSTM encoder baseline for selecting
the correct response from a list of possible candidates. We
report a Recall@50 score of 82.4% on the first held-out test
set for the Advising subtask 1 of the first track of the 7th
Dialogue System Technology Challenge (DSTC7). In future
work, we will explore methods of incorporating more con-
textual information and leveraging the full dialogue history
and provided knowledge base of course information. In or-
der to handle unknown words at test time, we will investigate
character embeddings and delexicalization. We will apply
our models to the other subtasks and to the Ubuntu dataset.



Student: does eecs370 have <UNK> ?
Correct: nope , no labs in eecs 370 .

Top-4 Predicted:
1) no <UNK> . have a good one !

2) it starts at 3:00 and ends at 4:30pm.
3) i would suggest taking eecs 280

4) how much challenge do you want ?
Student: many thanks , and i hope to never see you again .

Correct: my wish for you is that you graduate quickly .
Top-4 Predicted:

1) you ’re welcome .
2) i believe that is a good decision . i wish you luck .

3) what time of day do you need ?
4) do you need anything else ?

Student: do they pair well together ?
Correct: it depends on your schedule . eecs 370 is a
easy class whereas , according to statistics <UNK>

from past year students , eecs 281 is not an easy class ,
so i recommend <UNK> it with an easier class .

Top-4 Predicted:
1) it depends

2) the students do not like eecs376 .
3) i suggest strongly you take eecs 280

4) you have met all the requirements , so it is possible .
Student: as a professor how is he ?

Correct: if you want , you can see for yourself
by registering for the class .

Top-4 Predicted:
1) well , that depends

2) 370 has a score of <UNK> for being relatively <UNK> .
3) it has a high degree of easiness , helpfulness , and clarity

4) it ’s not a very heavy load

Table 6: Examples of incorrect top-4 response predictions.
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