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Abstract

In this paper, we compare a suite of neural networks (recur-
rent, convolutional, and the recently proposed BERT model)
to a CRF with hand-crafted features on three semantic tagging
corpora: the Air Travel Information System (ATIS) benchmark,
restaurant queries, and written and spoken meal descriptions.
Our motivation is to investigate pre-trained BERT’s transfer-
ability to the domains we are interested in. We demonstrate
that neural networks without feature engineering outperform
state-of-the-art statistical and deep learning approaches on all
three tasks (except written meal descriptions, where the CRF is
slightly better) and that deep, attention-based BERT, in particu-
lar, surpasses state-of-the-art results on these tasks. Error anal-
ysis shows the models are less confident when making errors,
enabling the system to follow up with the user when uncertain.
Index Terms: BERT, Semantic Tagging, CNN, RNN, CRF

1. Introduction
The first step in a dialogue system, after recognizing the speech
of the user utterance, is spoken language understanding (SLU).
Specifically, SLU entails identifying relevant slots and their as-
sociated values, also known as semantic tagging or slot fill-
ing. Given these slots and their values, the system then decides
which action to take next and how best to respond to the user.

In our prior work, we explored convolutional neural net-
work (CNN) models for semantic tagging and mapping of natu-
ral language meal descriptions to a structured food database [1,
2, 3], as well as for dialogue state tracking [4, 5, 6]. In this
work, we demonstrate that our CNN generalizes to other do-
mains beyond nutrition, outperforming prior state-of-the-art on
the benchmark ATIS task, as well as a restaurant query dataset.
In addition, we compare to recurrent neural networks (RNNs)
and the recent BERT model [7]. We establish that prior to
BERT, ensembles of RNNs and CNNs performed best in gen-
eral, with boosts from pre-trained word vectors, but that now a
single pre-trained BERT model with fine-tuning of a token clas-
sification layer on top outperforms them all. In the remainder of
this paper, we explain the three tasks in detail, outline the deep
learning models, show results, and analyze the types of errors
the model makes, as well as what the CNN filters learn.

2. Semantic Tagging Tasks
We evaluated deep learning models on three spoken lan-
guage understanding datasets—Air Travel Information System
(ATIS), restaurant booking, and food logging. ATIS1, which
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1https://github.com/yvchen/JointSLU/tree/master/data

has been used since the 1990s, and the restaurant task2 are both
publicly available. See Table 1 for a summary of the data.

Dataset # Train Data # Test Data # Tags
ATIS 4,978 893 127

Restaurants 7,659 1,520 17
Written Meals 35,130 3,412 5
Spoken Meals 35,130 476 5

Table 1: The data statistics for each corpus. The spoken meal
description data uses the same training set as the written.

2.1. ATIS Corpus

The Air Travel Information System (ATIS) task involves di-
alogues between users and automated spoken dialogue sys-
tems for booking flights. The goal is to label each token in
a user utterance with the correct semantic tags, which are in
the standard B-I-O format (e.g., B-fromloc.city name
refers to the beginning of the departure city’s name,
I-fromloc.city name is inside the departure city phrase,
and O is Other). We show an example user utterance with
its corresponding gold standard semantic tags in Fig. 1. In our
work, we start from the same dataset as prior work [8]: the
training set consists of 4,978 utterances selected from the Class
A (context independent) training data in the ATIS-2 and ATIS-3
corpora, and the ATIS test set contains both the ATIS-3 NOV93
and DEC94 datasets.

Figure 1: Semantic tagging on a user utterance in ATIS, where
BOS and EOS refer to the beginning and end of a sentence.

2.2. Restaurant Corpus

The restaurant corpus was collected on Amazon Mechanical
Turk (AMT), where workers were hired to write queries about
restaurants, given a set of keywords [9].

2.3. Written and Spoken Meal Corpus

In our prior work [10], we collected written meal descriptions
on AMT, which were then tagged by Turkers in a second round
of labeling tasks [11]. To generate spoken meal descriptions, we
asked Turkers to verbally record a subset of the written meal de-
scriptions. In total, we collected 2,962 spoken utterances (from
37 speakers, totaling 2.74 hours), which we used in prior work
to train a Kaldi [12] recognizer with a decoder word error rate
(WER) of 7.98% on a held-out test set. AMT workers annotated
the semantic tags of the recognizer’s output.

2https://groups.csail.mit.edu/sls/downloads/restaurant/
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3. Related Work
Substantial work has been devoted to spoken language under-
standing, specifically semantic tagging of the ATIS corpus for
flights and air travel. Early work explored generative and dis-
criminative models, including finite-state transducers (FSTs),
support vector machines (SVMs), and conditional random field
models (CRFs) [13]. Other work boosted the performance of
statistical models by extracting keywords based on a depen-
dency parse of the user utterance [14]. More recently, deep
learning models have been shown to outperform CRFs, such
as convolutional neural networks (CNNs) [15], recurrent neural
networks (RNNs) [16], and jointly trained RNNs for slot filling
and intent detection [17, 18, 19, 20]. For the restaurant and
meal description tasks, prior state-of-the-art used CRFs with
carefully hand-crafted features, such as semantic dependency
features from query dependency parses [21], and word vector
and distributional prototype similarity features [10].

4. Models
We investigated a collection of deep learning models for se-
mantic tagging: RNNs, CNNs, the recently proposed attention-
based BERT [7], conditional random field (CRF) models trained
on logits from the hidden layer of RNNs, and a feed-forward
(FF) baseline. We also ensembled neural networks together,
and initialized the CNN with pre-trained word embeddings.

4.1. RNN

In our PyTorch implementation of the RNN, we built a bidi-
rectional gated recurrent unit (GRU) on top of a word embed-
ding layer, with a linear layer on top for the final prediction.
We used embeddings of dimension 128, hidden layers of size
512, batches with 50 samples each, and trained with the Adam
optimizer on cross-entropy loss for 1,000 steps of randomly
selected batches. The maximum length was set based on the
longest sample in each batch. The FF baseline replaced the re-
current layer with a linear layer of size 512. We implemented
the RNN-CRF as in [22] by extracting logits from the trained
RNN’s hidden layer and feeding these as features to the CRF.
Therefore, the RNN-CRF does not require any manual feature
engineering, unlike the CRFs discussed in the related work.

4.2. CNN

As in our prior work [23], we built a CNN tagger composed of
a word embedding layer followed by three stacked 1D convolu-
tional layers, with kernel windows spanning lengths of five, five,
and three tokens, respectively. We learned 150-dimension em-
beddings, 64 filters per convolutional layer, applied ReLU ac-
tivation, and trained with the Adam optimizer on cross-entropy
loss for up to 15 epochs with early stopping determined by no
performance gain on the validation set (20% split). We experi-
mented with pre-trained word embeddings from 200-dimension
Glove [24] (trained on Wikipedia and Gigaword) and 300-
dimension word2vec [25] (trained on Google News).

4.3. BERT

Within the past year, several papers have come out that learn
contextual representations of sentences, where the entire sen-
tence is used to generate embeddings. ELMo (Embeddings
from Language Models) [26] uses a linear combination of vec-
tors extracted from intermediate layer representations of a bidi-
rectional LSTM trained on a large text corpus as a language

model (LM). The OpenAI GPT (Generative Pre-trained Trans-
former) [27] is a fine-tuning approach, where they first pre-
train a multi-layer Transformer [28] as a LM on a large text
corpus, and then conduct supervised fine-tuning on the spe-
cific task of interest, with a linear and softmax layer on top
of the pre-trained Transformer. Finally, Google’s BERT (Bidi-
rectional Encoder Representations from Transformers) [7] is a
fine-tuning approach similar to GPT, but with the key differ-
ence that instead of combining separately trained forward and
backward Transformers, they instead use a masked LM for pre-
training. They demonstrate state-of-the-art performance on 11
NLP tasks, including the CoNLL 2003 entity recognition task.

For our BERT model, we used the base pre-trained BERT
(parameters were frozen) with a fine-tuned softmax token clas-
sification layer added on top (no CRF), tuned hyperparameters
on 10% validation data (i.e., batch of 32, uncased tokenizer,
3 × 10−5 learning rate, and four epochs). Since BERT uses
word pieces, but the data is pre-tokenized, we use only the
first sub-token’s predicted label during evaluation. In Fig. 2,
sub-word tokens labeled X are omitted in evaluation. In future
work, it would be interesting to compare the performance of
several BERT models—fine-tuning multiple layers, using more
than just the first sub-token, and extracting contextual embed-
ding features from multiple layers for classification.

Figure 2: An illustration of how BERT is used to generate con-
textualized word embeddings, which are then fed into a fine-
tuned linear token classification layer on top.

5. Experiments
For each of the language understanding tasks, we evaluated our
deep learning models on a held-out test set and compared our
performance to state-of-the-art models. For ATIS, restaurants,
and spoken meals, we demonstrate that deep learning models
surpass prior state-of-the-art, in terms of weighted average pre-
cision, recall, and F-score. For meals, we break down F-score
by tag since there are only five tags. Although the CRF per-
forms better than the deep learning models on the written meals,
it requires many carefully hand-crafted features, while the deep
learning models do not require any feature engineering.

Overall, BERT performs best on all tasks (see Tables 2, 3, 4,
and 5). On ATIS, the RNN ensemble is second best; on restau-
rants, the ensemble of RNNs and CNNs is next; on written
meals, the CRF trained on n-grams, part-of-speech (POS) tags,
entities, food and brand lexicons, and pre-trained word em-
beddings slightly outperforms BERT; on spoken meals, a CNN
trained on word2vec is second; and, in general, the FF baseline
is worst. Finally, pre-training the CNN with word vectors im-
proves performance, with Glove slightly better than word2vec.
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Model Precision Recall F-score
FF baseline 85.8 86.7 85.7

Transformer encoder [28] 96.6 96.6 96.4
1 RNN 97.9 97.9 97.7

RNN-CRF 97.8 97.9 97.7
4 RNNs 98.0 98.1 97.8
1 CNN 96.4 97.0 96.5

CNN + Glove 97.5 97.6 97.3
CNN + word2vec 97.1 97.4 97.1

4 Glove CNNs 97.5 97.7 97.4
4 RNNs + 4 Glove CNNs 97.8 97.9 97.6

BERT 98.1 98.3 98.1
FST [13] 91.6 91.9 91.7
CRF [14] – – 95.0

R-CRF [16] – – 96.5
Joint seq. bLSTM [17] – – 94.3
Attention-based [18] – – 94.2

Slot-gated bLSTM [20] – – 95.2

Table 2: F1 scores on ATIS, for our models versus prior work.

Model Precision Recall F-score
FF baseline 82.3 80.7 81.0

1 RNN 87.1 87.4 87.2
RNN-CRF 87.1 87.4 87.2

4 RNNs 89.1 89.3 89.1
1 CNN 88.3 88.2 88.1

CNN + Glove 88.8 88.8 88.7
CNN + word2vec 88.9 88.7 88.6

4 Glove CNNs 89.7 89.7 89.7
4 RNNs + 4 Glove CNNs 89.9 90.0 89.8

BERT 91.6 91.6 91.6
Best CRF [21] 85.3 83.9 84.6

Table 3: Precision, recall, and F-scores on the restaurant test
set [21].The gain from Glove and word2vec is not from using
larger dimensions (200 and 300, respectively). Without pre-
trained embeddings, using larger dimensions decreases the F-
score (from 88.1 to 87.5 and 87.1, respectively).

Model Food Brand Num Descrip Avg
FF baseline 85.1 69.0 91.0 74.4 85.3

1 RNN 94.3 77.2 94.2 87.1 92.1
RNN-CRF 94.4 76.8 93.1 86.9 91.7

4 RNNs 95.1 80.5 94.5 88.4 92.9
1 CNN 91.9 79.5 95.1 87.1 92.4

CNN + Glove 94.4 84.1 94.7 89.5 93.9
CNN + wd2vc 93.6 83.6 91.0 88.0 92.1
4 Glove CNNs 94.4 84.4 91.7 89.0 92.7

4 RNN + 4 CNN 76.9 78.3 94.5 89.1 85.3
BERT 94.6 87.0 94.7 90.4 94.2

CRF (unigram) 92.3 78.5 93.9 86.6 92.4
CRF (+ bigram) 94.1 80.3 95.1 88.9 93.7
Best CRF [29] 94.6 85.7 95.1 90.3 94.4

Table 4: Per-label F1 scores on written meals [29]. The CRF
performs best, but it requires hand-crafted features, whereas
the neural models are competitive without feature engineering.
Although BERT is not the best overall, it does particularly well
on brands and descriptions, which is hard for the other models,
and even the AMT workers, to distinguish.

Model Food Brand Num Descrip Avg
FF baseline 87.9 61.7 93.7 78.3 90.1

1 RNN 94.0 81.5 95.9 89.1 94.9
RNN-CRF 94.1 80.6 95.3 87.9 94.5

4 RNNs 94.4 80.9 97.2 89.8 95.3
1 CNN 93.9 78.2 97.5 89.1 95.1

CNN + Glove 94.9 80.9 97.5 91.1 95.5
CNN + wd2vc 95.4 80.6 97.2 90.9 95.7
4 Glove CNNs 95.1 82.2 97.0 91.4 95.6

4 RNN + 4 CNN 95.5 77.4 97.8 91.7 95.6
BERT 94.4 85.3 97.8 91.1 95.8

Best CRF [29] 93.3 79.0 96.6 87.7 94.2

Table 5: Per-label F1 scores on spoken meal data [29]. All the
neural networks outperform the CRF, demonstrating that they
are more robust to speech recognition errors.

6. Analysis
We hypothesize that the models will be less confident in their
predictions when making mistakes. This has important applica-
tions for real-world tasks, in which the model could learn from
human feedback when it is not confident in its prediction. For
example, in a diet tracking application, if the model is uncer-
tain about the tag for “oatmeal” in the food description “oat-
meal cookie,” it might ask, “Was the oatmeal a description of
cookie, or a separate food?” Thus, the model could learn online
from users without asking an overwhelming number of ques-
tions, only for clarification on those for which it is least certain.
In addition, we could use the confidence of the model to dis-
cover errors in the test set labels if, for example, the model is
very confident when it makes a mistake. Here we show that the
models are indeed less confident when making errors, and that
high confidence can be used to discover errors in the test data.

We see in Fig. 3 that as we increase the confidence thresh-
old3 from 0.5 to 0.999, the weighted average F-score on the
written meal test set increases. In particular, during evalua-
tion, we omit the examples where the model is uncertain, since
the predicted tag’s probability is below the specified confidence
threshold. The performance improvement from eliminating ex-
amples where the model is less certain indicates that the model
is more confident when its predicted tag is correct, and less con-
fident when it makes errors, as hypothesized.

Error analysis reveals that the model tends to have less
certainty in its predictions when it is mistaken, and that high-
confidence predictions may identify errors in the data annota-
tion. We see in Fig. 4 that the high-confidence prediction for
“syrup” as a Food (i.e., p = 0.999) is actually correct, whereas
the gold standard tag for Brand from AMT is a mistake. We
also note that the predicted probabilities for the mistakes are
lower, illustrating the model’s uncertainty (i.e., p = 0.69 and
p = 0.73 for incorrectly tagged tokens “medium sized” and
“butter,” respectively).

We see a common type of error made by the model in Fig. 5,
where multiple adjacent food items cause the model to incor-
rectly predict the first food token as a Description rather
than a Food. In addition, Fig. 6 illustrates the difficulty of dis-
tinguishing between brands, foods, and descriptions, especially
in the presence of OOV words (i.e., out-of-vocabulary tokens
not seen during training are <UNK>). One advantage of BERT
is that it uses word-pieces, which mitigates the OOV problem.

3Note that we define “confidence” as the probability which the
model assigns to the top-predicted label (unrelated to ASR confidence).
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Figure 3: The F-score as a function of the confidence thresh-
old, on the written meal description task, where tags that fall
below the threshold are omitted from the recompute of the F-
score. Performance improves as more data is omitted, since the
model is only evaluated on tags where it is more certain (i.e.,
the predicted tag’s probability is above the confidence thresh-
old). While the percent of data omitted increases quite a bit as
the confidence threshold goes up from 0.9 to 0.999, the F-score
gain is incremental in this region of the plot.

Figure 4: Incorrectly predicted semantic tags for a sample meal
description, where “syrup” is actually tagged correctly by the
model. Thus, this data annotation error can be discovered by
identifying incorrect predictions that have high confidence (e.g.,
p = 0.999).

Figure 5: The model incorrectly predicts that “cheese” is a de-
scription of “bacon” instead of a separate food item.

Figure 6: The model mistakes brands for descriptions or foods.

In addition to error analysis, we also analyzed what specifi-
cally the neural network models were learning, since a common
criticism is that these networks are “black boxes” and hard for
humans to interpret. To do this, we select the tokens that have
the highest activation for each of the 64 learned filters in the top
layer of the trained three-layer CNN. We observe that individual
filters seem to pick out semantically similar words. For exam-
ple, in Table 6, filter 11 identifies numbers, 12 focuses on flight
attributes such as airline and number of stops, and filter 22 finds
cities. We see a similar trend in Table 7 on the restaurant data
(i.e., filter 6 identifies cuisines, filter 56 focuses on time, and
filter 35 finds tokens related to ratings), and Table 8 on the meal
description task (i.e., filter 34 identifies quantities, filter 5 picks
out brands, and filter 20 focuses on food).

Finally, we discuss the tradeoff between accuracy and
model speed/size. When deploying a real-world system for in-
teracting with users, efficiency is critical. While BERT per-
forms best, it has 110M parameters (1.1GB), and takes 8s
per GPU to test on ATIS; the CNN is only 3.1M parameters
(12MB), and takes 1.6s on ATIS with 1 CPU.

Filter Top-10 Highest Activation Tokens
11 12, 5, 230, 4, 7, to, 6, round, 10, 8
12 round, nonstop, us, american, northwest, delta,

United, twa, daily, continental
22 phoenix, houston, pittsburgh, denver, detroit,

milwaukee, cincinnati, chicago, charlotte, toronto

Table 6: Top-10 activated tokens for ATIS CNN filters.

Filter Top-10 Highest Activation Tokens
6 brazilian, authentic, asia, italian, tex, mexican,

sandwich, mex, mediterranean, spanish
56 till, until, after, open, at, past, before, a, is, every
35 4, highest, 3, 5, star, 1, starving, three, get, five

Table 7: Top-10 activated tokens for restaurant CNN filters.

Filter Top-10 Highest Activation Tokens
34 8, 16, 14, 2, had, a, 6, an, ., 12
44 Coke, coke, Water, Mountain, Kraft, cheese,

Eggs, Dr. Miracle, Mt.
20 chile, tuna, egg, crab, chicken, cottage, butter,

oranges, cauliflower, coconut

Table 8: Top-10 activated tokens for meal CNN filters.

7. Conclusion
In this paper, we have demonstrated that BERT outperforms
prior state-of-the-art approaches on three spoken language un-
derstanding tasks: ATIS, restaurants, and spoken meal descrip-
tions (with the exception of written meal descriptions, where
a hand-crafted CRF slightly outperforms BERT). Our analysis
of the trained CNN establishes that its filters are learning se-
mantically meaningful categories related to the semantic tags,
as well as predicting tags with lower confidence when making
mistakes. In the future, we aim to incorporate a feedback mech-
anism into the dialouge system so that the model will ask for
clarification when it is uncertain about the semantic tags, thus
learning online from users.
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