
DIALOGUE STATE TRACKING WITH CONVOLUTIONAL SEMANTIC TAGGERS

Mandy Korpusik, James Glass

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA
korpusik@mit.edu, glass@mit.edu

ABSTRACT

In this paper, we present our novel approach to the 6th Dia-
logue State Tracking Challenge (DSTC6) track for end-to-end goal-
oriented dialogue, in which the goal is to select the best system re-
sponse from among a list of candidates in a restaurant booking con-
versation. Our model uses a convolutional neural network (CNN) for
semantic tagging of each utterance in the dialogue history to update
the dialogue state, and another CNN for predicting the best system
action template. Our model is competitive with the top two submis-
sions to the challenge, achieving 100% precision on subtasks 1 and
2 with a CNN rather than an LSTM for action selection, and a CNN
for slot-value tagging, instead of an LSTM or CRF.

Index Terms— Dialogue State Tracking, Semantic Tagging,
Convolutional Neural Network, Recurrent Neural Network, Condi-
tional Random Field

1. INTRODUCTION

A critical component of spoken dialogue systems (SDS) is tracking
the user’s goal over the course of the conversation, also known as di-
alogue state tracking (DST). The system must update the state of the
dialogue after each user query by determining their intent (e.g., mak-
ing a restaurant reservation), and selecting the corresponding value
for each slot specified by the user, such as Chinese for the food
slot, and city center for the area slot, in the restaurant domain.
Given the current dialogue state, the agent can then decide how best
to respond to the user to accomplish the desired task for him or her.

In this work, we specifically examine the 6th Dialogue State
Tracking Challenge (DSTC6) [1] track with a corpus collected by
Facebook AI Research for end-to-end goal-oriented dialogue. In
this task, the goal is making a restaurant reservation for the user,
given all their constraints on the location, cuisine, price range, at-
mosphere, and party size. This overall task is broken down into five
subtasks: 1) issuing API calls, 2) updating API calls, 3) displaying
options, 4) providing extra information, and 5) conducting full dia-
logues (see Fig. 1). This requires not only dialogue management, but
also querying knowledge bases (KB) of restaurants to respond with
the correct information to the user. The motivation for this challenge
is to build end-to-end models that have the potential to scale up and
generalize to new domains better than existing SDS methods, where
the dialogue state is designed to be domain-dependent.

In particular, we focus on the first two tasks in this paper, as
in [3], since tasks three and four can be simply handled by KB
lookup. We compare our convolutional neural network (CNN) ap-
proach to the top-2 DSTC6 participants, since they achieve 100%
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Fig. 1. An illustration of the five subtasks in the DSTC6 track for
end-to-end goal-oriented dialogue [2].

top-1 precision (P@1) on the test set for all subtasks. We demon-
strate that our CNN technique is competitive, reaching 100% P@1
on subtasks 1 and 2, without requiring any LSTMs, as were used in
both the top submissions. In addition, our approach uses a CNN se-
mantic tagger that we developed in previous work for tagging natural
language meal descriptions [4], which we establish is generalizable
to other tasks and domains, such as restaurant booking in DSTC6,
without requiring any task-specific hyperparameter fine-tuning.

2. RELATED WORK

Semantic Tagging A substantial body of work has been devoted to
spoken language understanding (SLU) and, in particular, semantic
tagging of user utterances in restaurant and food domains. Early
work in SLU explored generative and discriminative models for the
well-known Air Travel and Information System (ATIS) corpus [5],
including finite-state transducers (FSTs), support vector machines
(SVMs), and conditional random field models (CRFs) [6]. Other
work boosted the performance of statistical models by extracting
keywords based on a dependency parse of the user utterance [7].
More recently, deep learning models have been used, such as recur-

7220978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



rent neural networks (RNNs) [8] and bidirectional RNNs for joint
slot filling with domain and intent classification [9].

For the restaurant domain, prior state-of-the-art involved com-
plicated CRFs with carefully hand-crafted features, such as semantic
dependency features from query dependency parses [10], and word
vector and distributional prototype similarity features [11] were used
in CRFs for semantic tagging of meal descriptions. More recent
work on the food domain has applied CNNs, outperforming the
CRFs on the spoken test set without manual feature engineering [4].

Dialogue State Tracking Traditionally, spoken dialogue sys-
tems relied on separately trained components for spoken language
understanding (SLU) and dialogue state tracking. The SLU com-
ponent would identify slot-value pairs from the speech recogition
output, which would be passed to the state tracking module to up-
date the belief state [12, 13]. However, this pipeline of steps would
accumulate errors, as the SLU component often would not have the
necessary context to accurately predict the slot values. Thus, belief
tracking research shifted to jointly predicting slot-value pairs and
updating the dialogue state [14, 15].

Prior work by Henderson et al. fed delexicalized user utterances
into an RNN, which output a distribution over slot values [16]. How-
ever, delexicalizing the input requires a manually defined semantic
dictionary that maps from slot-value pairs to all possible text forms.
To avoid this reliance on hand-crafted semantic dictionaries, Mrk-
sic et al. recently demonstrated the ability of their Neural Belief
Trackers (NBT) [17] to match the performance of delexicalization-
based models, without requiring any hand-crafted semantic dictio-
naries, as well as the ability to significantly outperform such models
when the semantic resources are not available. In addition, Zhong
et al.’s state-of-the-art work has explored deep learning methods for
dialogue state tracking, but with recurrent (instead of convolutional)
self-attentive encoders [18]. Rastogi et al. also use RNNs in their
multi-domain deep learning model for state tracking [19], and Kor-
pusik et al. use CNNs without any pre-trained word vectors [20].

For the DSTC6 challenge, the top-2 performing methods each
used separately trained slot-value trackers to refine the initial ranking
of system response candidates generated by an action selector [21,
3]. We take a similar approach, but use a CNN instead of a long
short-term memory (LSTM) network to select system actions. We
also use a CNN for semantic tagging, rather than the CRF used in
Bai et al. [3] or the LSTM in Ham et al. [21] for slot-value tracking,
and we use less feature engineering than these systems. Bai et al. use
a heuristic strategy for the final scoring, with two branches based on
the preliminary scoring module (e.g., if api call is selected, then
update a candidate response’s score based on the relative index of
the word that last occurred in the dialogue history, using weights
according to the output of a separately trained “Uncertainty CRF”).

3. CNN DIALOGUE STATE TRACKER

3.1. Baselines

We compare against the baselines used by Bai et al. [3]: ranking can-
didate system responses randomly, according to tf-idf values, with a
support vector machine (SVM), with a vanilla LSTM, and with a hi-
erarchical LSTM. We also implement a binary CNN model with a
sigmoid output layer (see Fig. 2) that predicts whether each candi-
date is a good system response, given the input user utterance and
dialogue history. To get the final ranking, we use the sigmoid output
probability for each candidate.

2We pad input tokens with zero to the maximum utterance length seen in
training, apply 0.1 dropout, and perform batch norm after maxpooling.

Fig. 2. The binary CNN baseline that predicts whether each candi-
date system response is the correct answer. There are two inputs to
the network: the full dialogue history concatenated with the last user
utterance on the left, and a candidate system response on the right.2

3.2. CNN Architecture

Our best model pushes us closer to generating the next system re-
sponse, rather than simply selecting the best response from among
the list of candidates. Our full system architecture, shown in Fig. 3,
consists of one CNN for semantic tagging and updating the dialogue
state (see Fig. 4 for an example utterance with its tags), another CNN
for action selection (see Fig. 5), and a final response generation step
filling in the template with the slot values in the final dialogue state.

3.2.1. Semantic Tagging

As in our prior work, where we used CNNs for semantic tagging
on meal descriptions for a diet tracking application [22, 23, 24, 25],
we applied a CNN to semantic tagging of the user utterances in the
restaurant booking conversations. We select a CNN here rather than
a CRF because it has demonstrated comparable performance in our
previous semantic tagging work [4], without requiring any feature
engineering. We choose it over the more typical LSTM due to its
faster training time.3 We also illustrate the interpretability aspect of
the learned convolutional filters in Table 5, by identifying patterns
among the tokens that have the highest activation from the filters.

The CNN tagger is composed of a word embedding layer fol-
lowed by three stacked 1D convolutional layers, with kernel win-
dows spanning lengths of five, five, and three tokens, respectively. It
learned 150-dimension embeddings without using pre-trained word
vectors, used 64 filters per convolutional layer, applied ReLU activa-
tion, and trained with the Adam optimizer on cross-entropy loss for
up to 15 epochs with early stopping determined by no performance
gain on the validation set (20% split). We trained a separate tagger
for each of the two subtasks we evaluated in the DSTC6 challenge,
since that performed better than jointly training a tagger on both.

To convert the DSTC6 data to training data for semantic tag-
ging, we searched for api call utterances (see Table 1) within the
list of utterances for each dialogue, since that provided us with the
gold standard value for each slot. Each api call has the following
order: cuisine, location, number, price, atmosphere.
For example, a possible utterance might be api call italian
paris four cheap romantic. We then found exact string

3Training the LSTM takes > 5x longer than training the CNN on Task 2.
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Fig. 3. The full system architecture, where the action selector CNN ranks the 15 possible system action templates; the tagger CNN updates
the dialogue state by tagging each utterance in the dialogue history; and the final response is generated by selecting the top-ranked action,
applying an action mask, and populating slots with dialogue state values. Here, since there are missing slot values, the api call action is
masked out, and the next slot missing a value is atmosphere, so it is requested by the system as the final response.

Fig. 4. A sample user utterance with its color-coded semantic tags
(i.e., number in the party, restaurant location, and price range).

matches for each of the slot values among the previous utterances,
labeling each utterance with that slot type (e.g., food for each to-
ken paris) and the remaining tokens with the other semantic tag O.
At test time, we ran each user utterance in the dialogue history for
the DSTC6 challenge through the trained CNN tagger, updating the
dialogue state each time a new slot was identified, using the tagged
token as the value for that slot (e.g., two is the value specified for
the number slot in the example utterance shown in Fig. 4).

3.2.2. Action Selection

The second CNN in our system is trained to predict the best candi-
date system response template from among the 15 possible options
in Table 1. As shown in Fig. 5, this CNN takes only one input (the
full dialogue history of utterances concatenated together) and feeds
it to a learned word embedding layer of 64 dimensions. The embed-
dings for each token are fed through a 1D convolutional layer with
a window size of three tokens, ReLU activation, and 64 filters. The
output of this layer is then maxpooled before passing through a final
feed-forward layer with a softmax activation to output a probability
for each of the 15 possible candidate system response templates.

3.2.3. Final Response Generation

After the dialogue state is updated by feeding each utterance through
the CNN tagger, and the possible system actions are ranked by
the CNN action selector, an action mask is applied (as in Ham
et al. [21]), and the action templates are populated with slot val-
ues from the dialogue state. The action mask is formed based
on the dialogue state—if any slot values are not yet specified, the
api call action is masked out, and if all slot values are specified,
the request api slot action is masked out. In the final step, if
the api call action is selected, the values are populated using the
current dialogue state; likewise, if the request api slot action
is selected, the system response for the next slot that is still miss-
ing its value (again according to the current dialogue state) is chosen
(see Table 2 for the responses generated for each requested slot).4

4We use the deterministic order for requesting missing slots.

Action Template
ok let me look into some options for you

api call
i’m on it

hello what can i help you with today
sure is there anything else to update

you’re welcome
what do you think of this option:

great let me do the reservation
sure let me find another option for you

here it is
whenever you’re ready

the option was
i am sorry i don’t have an answer to that question

is there anything i can help you with
request api slot

Table 1. The 15 possible system action templates. The api call
action is populated with the values for each of the slots (i.e., cuisine,
location, number, price range, atmosphere) in the current dialogue
state, while the request api slot template is mapped to a re-
sponse for the next missing slot the system needs to call the API.

4. DSTC6 EXPERIMENTS

4.1. Data

The DSTC6 dialogue data we used is an extension of the bAbI dia-
logue data in Bordes and Weston [2], where the dialogues for restau-
rant reservation are generated through simulation based on a knowl-
edge base (KB) of restaurants.5 Each restaurant is specified by a
cuisine (e.g., French), location (e.g., Tokyo), price range (e.g., ex-
pensive), atmosphere, and dietary restrictions. Each restaurant has a
party size option of 2, 4, 6, or 8, and a phone number and address.
There are 10,000 example dialogues in the training set for each sub-
task, for which we train tagger and action selector CNNs separately.

We report precision @ {1, 2, 5} as our evaluation metric (i.e., the
number of times in the test set that the correct system response can-
didate is ranked first, in the top-2, and among the top-5 responses,
respectively). In our preliminary experiments, we evaluate on the
first of four test sets, in which the knowledge base is the same be-
tween training and test, and where dietary restrictions are omitted.

5See our prior work [20] for our CNN approach applied to the DSTC2
restaurant data from the University of Cambridge and Microsoft Research.
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Fig. 5. The CNN for action selection, which takes as input the full
dialogue history of utterances concatenated together, and outputs the
probabilities for each possible system response with a softmax.

Slot System Response
Cuisine any preference on a type of cuisine
Location where should it be
Number how many people would be in your party

Price which price range are you looking for
Atmosphere are you looking for a specific atmosphere

Table 2. The system response returned for each of the six possible
slots when the request api slot action template is chosen.

4.2. Results

As shown in Table 3, our model is competitive with the top partici-
pant [21] in the DSTC6 challenge, achieving 100% precision on the
first test set for subtasks 1 and 2. Our binary CNN model is outper-
formed by the SVM, vanilla LSTM, and hierarchical LSTM in P@1,
though it does better than the SVM in P@2 and outperforms both the
SVM and LSTM in P@5. Note that the action mask is a critical piece
of our system (due to predicting api call with missing slots, and
request api slot with all slots filled)—without it, P@1 drops
from 100% to 91.1% on Task 1 (and remains 100% on Task 2). In
Table 4, we show the results of the tagger on our automatically gen-
erated tagging data for subtask 1. We see examples of tricky user
utterances in Fig. 6, where the model makes a mistake when there
are two possible tokens for the same tag. In Table 5, we show the
tokens that have the highest activations for the tagger’s CNN filters.

Fig. 6. Two examples of semantic tagging errors, where the model
incorrectly labels both cheap and london as O, rather than the
correct tags Price and Location, respectively.

Task 1 Task 2
Model P@1 P@2 P@5 P@1 P@2 P@5

Random 10.2 20.4 50.9 0.95 19.5 46.7
TFIDF 21.0 29.9 52.2 36.7 47.4 66.9
SVM 81.3 81.6 83.0 74.5 76.4 78.9

LSTM 84.3 90.6 98.5 77.8 84.0 97.8
Hier. LSTM 88.6 94.1 99.9 81.7 92.6 100

Bai et al. 99.8 100 100 99.7 100 100
Ham et al. 100 100 100 100 100 100

Binary CNN 78.9 88.9 99.7 69.0 79.3 99.6
Our Model 100 100 100 100 100 100

Table 3. We report the precision for each of the baseline methods,
the top-2 submissions to the DSTC6 challenge [21, 3], our baseline
binary CNN, and our final softmax CNN model.

Semantic Tag Precision Recall F-score
Cuisine 100 96.9 98.4
Location 100 95.9 97.9
Number 100 100 100

Price 96.9 96.5 96.7
Atmosphere 100 100 100

All 99.8 99.8 99.8

Table 4. Precision, recall, and F-scores of our CNN semantic tagger
on each of the semantic tags in the automatically generated tagging
test set for the first subtask of DSTC6.

Filter Top-3 Highest Activation Tokens
19 french, spanish, italian
52 two, six, four
63 bombay, london, paris

Table 5. Top-3 tokens with high activation for the learned filters in
the semantic tagger’s third CNN layer—filter 19 picks out cuisines,
filter 52 isolates party numbers, and filter 63 identifies locations.

5. CONCLUSION

In this work, we have demonstrated that the CNN tagger we de-
signed in previous work for semantic tagging of natural language
meal descriptions [4] is general enough to be directly applied to the
6th Dialogue State Tracking Challenge (DSTC6) without requiring
task-specific hyperparameter fine-tuning. Our model, which com-
bines the CNN tagger with a CNN action selector, achieves 100%
precision on subtasks 1 and 2 of the end-to-end goal-oriented dia-
logue track, and is competitive with the top challenge participants.

In future work, we will experiment on the remaining three sub-
tasks (displaying options, providing extra information, and conduct-
ing full dialogues), as well as the other three test sets for each sub-
task. We could also add a feature to our CNN that indicates whether
all the slots have been filled or not when predicting the action tem-
plate, which should allow the network to automatically learn the ac-
tion mask. Finally, we aim to jointly train the tagger and action
selector CNNs as one fully end-to-end model.
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