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ABSTRACT

We present the Factorial Deep Markov Model (FDMM) for
representation learning of speech. The FDMM learns disen-
tangled, interpretable and lower dimensional latent represen-
tations from speech without supervision. We use a static and
dynamic latent variable to exploit the fact that information in
a speech signal evolves at different time scales. Latent rep-
resentations learned by the FDMM outperform a baseline i-
vector system on speaker verification and dialect identifica-
tion while also reducing the error rate of a phone recognition
system in a domain mismatch scenario.

Index Terms— Disentangled Representation Learning,
Variational Inference, Factorial Deep Markov Model

1. INTRODUCTION

Our interest in unsupervised speech processing stems from
the desire to depart from expert based, fully supervised auto-
matic speech recognition systems to the decipher-based sce-
nario [1] where unlabeled speech and non-parallel text are
available. In this scenario, a machine would have to learn
to read and listen from scratch without correspondences be-
tween speech and text. Unsupervised representation learn-
ing can be seen as tackling the listening part of the larger
problem. Another motivating factor for our work is unsuper-
vised spoken language acquisition — the problem of discover-
ing discrete linguistic structure from speech. The problem
of acoustic unit discovery (AUD) [2] falls under this cate-
gory. The task is to cluster similar sounding acoustic seg-
ments, thereby discovering sound units that occur frequently
in a speech corpus. A lower dimensional structured latent
space can make the problem easier by reducing the number of
parameters needed to build an AUD clustering model [3].

In this work, we propose a novel generative model, the
factorial deep markov model (FDMM) (Section 4) that learns
disentangled and intepretable representations from speech
without supervision. At a high level, the FDMM is just a
variational auto-encoder (VAE) [4] which, in addition to the
usual encoder and decoder neural nets, has a transition neural
net that models the Markovian dynamics in the latent space.
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The model is trained using Stochastic Variational Inference
(SVI), an optimization-based approximate inference method
(Section 3). We evaluate our model on speaker verification,
dialect identification and domain mismatched ASR tasks
(Section 5) and show that it successfully encodes content and
style/domain information in two independent (in the prior)
latent variables.

2. RELATION TO PRIOR WORK

We build on the excellent work of Hsu et. al [5] which intro-
duced a factorial hierarchical VAE (FHVAE) for disentangled
representation learning from speech. Like the FDMM, the
FHVAE also has content and style/domain latent variables z4
and z9 respectively. To exploit the multi-scale information
present in the speech signal, the FHVAE has a fixed sequence
level prior, pe on zo to encourage zg to evolve at a lower
time resolution than z;. Estimates for z; and z5 are given by
neural network encoders mapping the observation space to the
latent space, while a lookup table, £, indexed by sequence ID
provides estimates for g2, ensuring that po is sampled only
once per sequence. As £ € RV*? its size grows with the
number of training sequences (/V), which makes the FHVAE
impractical to train on large datasets. In recent follow up work
Hsu et. al [6] propose a training methodology based on hierar-
chical sampling of the training sequences that makes training
an FHVAE possible on large datasets. Alternatively, in our
work, we show that increasing the time resolution for z4, in-
stead of decreasing it for z5 and capturing temporal dynamics
of the speech signal in the model, allows us to eliminate fio
altogether. In this way, our model overcomes the shortcoming
of the FHVAE and is the key contribution of our work.

Our model is directly inspired by Krishnan et. al [7],
which introduces a Deep Markov Model and trains it using
SVI. We extend their work and introduce a static random
variable to encourage disentanglement in the latent space.
A parallel work [8] introduced a disentangled sequential
VAE (DSVAE), which, like us, models z; at a higher time-
resolution than z,. Unlike the DSVAE, we model state
transition probabilities in the prior and also perform a sys-
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tematic evaluation of different posterior inference networks
(Section 4.2, Table 1).

3. VARIATIONAL INFERENCE

Approximate inference techniques can be categorized into
sampling based methods such as Markov Chain Monte Carlo
and Variational Methods [9]. In this paper we use a Varia-
tional Method which is discussed in some detail below. For
sampling-based methods readers are referred to some excel-
lent work presented in [10, 11].

Variational inference turns the problem of inference into
optimization. In Variational inference we approximate the in-
tractable posterior distribution p with a simpler distribution
q, parameterized by ¢. Different values of ¢ denote different
members of the family q; q is called the variational family
and ¢ are the variational free parameters. The optimization
objective is then to find the member of the family g that is
closest to the true posterior p. Closeness between the two
distributions is measured using the KullbackLeibler (KL) di-
vergence between the two distributions [9]. Formally, we can
write the optimization objective in terms of KL:

q*(h) = arg max KL(q(h) || p(h|z)) (1

which is equivalent to writing in terms of the free parameter
@b:
¢ = arg max KL(gg(h) || p(h|z)) 2

where, h is the latent space and « the observation space.

Using the formula for KL(q||p) = >_ q(h) log p%’(I’I?J)
A

and the fact that KL > 0, it is straightforWard to show that
minimizing KL is equivalent to maximizing the lower bound
on the model likelihood p(x), also known as the model evi-
dence. This objective function is popularly know as the Evi-
dence Lower Bound or ELBO [4] and is given by:

L£(9,0) = —Eq[log pe(x|h)] +KL(gs(h)|Ip(h)) (3)

L is maxed when the reconstruction loss, — E4 [log p(xz|h)]
and the KL term is minimized. The KL term acts as a regu-
larization that encourages q to be diverse [9].

4. THE FACTORIAL DEEP MARKOV MODEL

4.1. FDMM Description

The generative model has two random variables: a) seg-
ment level, y and (b) frame level z. The difference in time
resolution encourages disentanglement in the latent space
such that z encodes the content information while y encodes
style/domain information. More formally, the generative

T
Fig. 1. Proposed generative model on the left and the corre-
sponding inference model on the right. z; and y are latent
random variables, x; is the observed random variable, T is
the number of frames in the acoustic segment, x1.7. Model
and posterior parameters are 6 and ¢ respectively. y and z
encodes information present at different time scales in the
speech signal

model is defined as :

N T
po(x,y,2) = [ [ po(w™) [[ po (27|21 1)po (2|27 y™)

n=1 t=1
“)
where, x7* is the acoustic frame in an acoustic segment of
length T belonging to the n'" sequence in a dataset containing
a total of N sequences, y™ is the segment level random vari-
able. The above factorization can be read off from the graph
structure given in Figure 1.
Each of the conditional probability distribution on the
right hand side of the equation 4 is given as follows:

tth

N5y, 2e), 1§ (95 20)) (5
N(0,I) (6)

N (T (26-1), TG (2-1)) (D)

p@(wlya Zt)
po(y) =

pe(Zt|Zt—1) =

where, fy is a feed-forward neural net emission function that
acts as a bridge between the latent space and the observation
space and Ty is the gated transition function that is modeled
using a feed-forward neural net [7]. The model is reminis-
cent of a linear dynamical system (LDS), the difference being
that the emission and transitions are modeled using non-linear
functions f and 7" respectively.

4.2. FDMM Inference

The goal of inference is to find the posterior distribution:

p(x,y,z)

p(x) ®

p(y,zlx) =
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Name Posterior Inf. Network
FDMM.i  q(2z¢|zt—1,Te.r) RNN & Comb Fxn
FDMM.i  q(2zt|zt—1,z1.7) BRNN & Comb Fxn
FDMM.iii  q(zt|zt—1,®1:t) RNN & Comb Fxn

Table 1. Different inference networks. Comb Fxn refers to

Combiner Function. See Fig 2 for details

where, x is the observed variable and y, z are the hidden vari-
ables. To infer the true posterior distribution is intractable due
to the normalization term p(x), hence we turn to variational
inference (Section 3). We introduce an approximate posterior
44 (y,z|x), which can be written as:

H 94 (y"|x%.7) H 9 (21" |2{ 1, Tiir)

n=1
©))
where all the posteriors distributions over y, z are multivariate
diagonal Gaussian distributions. The above factorization can
be read off from the inference model structure in Fig 1. Below
we give explanation of how individual terms in the right hand
side (RHS) of equation 9 are modeled.

9 (2, y|x) =

The probability density g4 (y™|x 7. 1) is given as:

ap(ylzrr) = N(gh(z1r),95 (Trr))  (10)

where, g4 is a bidirectional-LSTM (BLSTM) that gives esti-
mates of the parameters of the diagonal Gaussian posterior.

The second term on the RHS g4 (2¢|z¢—1, Z¢.7) is mod-
eled using two functions, an RNN that takes as input x¢. and
provides backward messages at each time step to estimate z;
and a combiner function that combines the backward mes-
sages coming from the RNN and the previous estimate 2, _ .

A more pedagogical explanation can be seen in Figure 2.
In the figure, given an acoustic segment of length 5, we esti-
mate latent variables z and y as follows. The parameters of
the posterior over y is given by a BLSTM encoder followed
by two linear transformation layers to give mean and log stan-
dard deviation of g(y|x). To get the parameters of the dis-
tribution over, say zz, we combine the backward messages
coming from t = 3,4,5 with the forward message summa-
rized in z;. Hence, zo ~ q(z2|z1,®3.5). The backward
messages are provided by the RNN. This is reminiscent of
the forward-backward algorithm used to train tradition hid-
den Markov models and linear dynamical systems. We use
the exact same configurations for the RNN backward net and
the combiner function as given in [7].

In the following section, we systematically test three
forms of the posterior over z; using different inference net-
works as given in Table 1.

Latent Variable
Estimates

COPPRY

Combiner
0' 6 0' (7
Function Hi, 07 /43 3 Ha, 04 ﬂs 5

H2s (r,

Bidirectional
LSTM

Backward
RNN

A
Acoustic
Observations

Fig. 2. A pedagogical explanation of the inference process

5. EXPERIMENTS

We use two datasets to conduct the experiments: (a) TIMIT
[12] which contains 5.4 hours (6,300 utterances), with 10 sen-
tences per speaker, of 16kHz broadband recordings of read
speech. 70% of the speakers are male and 30% female. (b)
MGB3 [13] which is a standard dataset used for Arabic di-
alect identification and consists of 70 hours of 16kHz speech
recordings. The data is partitioned into five common dialects;
Modern Standard Arabic, Gulf, Levantine, North African and
Egyptian.

All speech data is represented as a sequence of 80 di-
mensional Mel-scale filter bank (FBank) features computed
every 10ms. We use the librosa [14] toolkit for feature ex-
traction. An observed sample x in our generative model is a
200ms acoustic segment that implies 7" = 20 in the generative
model given in Fig 1. i.e. © € R20%80 and latent variables
y, z € R32.

Encoder settings used for experiments are as follows: (a)
The encoder for latent variable y is a 2-layered LSTM with
256 hidden units. The output of the encoder is passed through
a Gaussian linear layer that outputs the mean and variance es-
timates for the posterior distribution of y. (b) The encoder
for z is a either an RNN or BRNN with hidden units of size
256 in both cases. (c) The combiner function combines the
forward, z;_1, and backward, h"™", messages to give esti-
mates of the conditional posterior distribution of z;. It first
projects the forward message z;—; in the same space as the
backward message h;™", then takes an average. The average
is then transformed by a linear function to give mean and log
standard deviation of g(z¢|e). (d) The transition function T'
from z;_7 to z; is a gated transition function. Due to lack
of space we refer the reader to look at Section 5 of paper [7]
for Gated Transition Function. We use the same setup in this
work.

Speaker Verification: To evaluate the disentanglement
between learned static latent representation y and dynamic
z, we perform a speaker verification task using the two la-
tent representations on the TIMIT test data, which contains
24 unique speakers. The data is split into a train, dev, and
test and is extracted using the kaldi speech recognition toolkit
[15]. We use the same exact setup for speaker verification as
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Model Feature Dim EER(%)
Factor Analysis  i-vector 200 9.8
FHVAE (o =0) o 16 5.0
FDMM_i Py 32 6.3
FDMM._i 7 32 18.1
FDMM.ii Py 32 7.0
FDMM.ii Kz 32 17.9
FDMM iii By 32 5.8
FDMM _iii 7 32 20.0

Table 2. Speaker Verification performance on the TIMIT test
data using different feature representations.

used in [5, 8]. Below we give details about feature extraction
from our model. These features are used for speaker verifica-
tion.

For a given speech sequence {z7.1}1.n, where T is the
number of frames in the n*" acoustic segment for the se-
quence containing N such segments, we construct two feature
representations as follows [8]:

N

1
hy = 2 HE By = Bagriepn @) (D
n=1
1 N
Bz = o Z Z Bz, My, = Egerie)(z1)(12)
t=1n=1

In Table 2 we measure the speaker verification performance
in terms of Equal Error Rate (EER), a common metric used
for this task. Speaker verification proceeds by comparing the
feature representation of the test utterance, *®%t with the tar-
get utterance pt2"9t from the claimed identity using cosine
similarity between the two representations. If the similarity is
greater than some threshold e, then the identity is confirmed.
Varying e will give us different false acceptance and rejection
rates. EER is the point at which false acceptance and rejec-
tion rates are equal. For seminal work in speaker verification
readers are referred to [16].

Domain Invariant ASR: An open problem in the auto-
matic speech recognition (ASR) community is domain adap-
tation. Domain adaptation is the problem of adapting a model
trained on a data rich domain such as broadcast news to a do-
main where limited amount of labeled data is available such
as for dialects of a language. Feature space domain adapta-
tion refers to the process of extracting domain invariant fea-
tures from the input signal to then train a model that can be
transferred to other domains.

In Table 3 we evaluate whether the latent representations
learned by our model contain domain invariant information
or not. To that end, we build a phone classification model
using TIMIT data. The phone classification model is a 3 layer
LSTM [17, 18] with a hidden state size of 1024. We train the
model with two input feature types: (a) 80 dimensional Mel-

Phone Err. Rate

Train Data Feature Male Female
All FBank 252 22.0
Male FBank 27.1 35.8
Male z 274  30.1

Table 3. Phone Classification performance using raw FBank
features and the latent z features from FDMM

Model Feature Dim ACC(%)
Factor Analysis i-vector 200 574
FHVAE (o = 10) pgq 32 68.0
FHVAE (o = 10) po 32 54.5
FDMM.iii K 32 65.2
FDMM.iii Py 32 529

Table 4. Dialect ID performance on Arabic dialect id task to
test latent space disentanglement

scale FBank features and (b) 32 dimensional z features from
the FDMM. To test domain independence we train the phone
classification model on utterances spoken by male speakers
and test on female speakers; a scenario we consider to be two
different “domains”. This setup is same as in [5].

Dialect Identification: To showcase the generality of our
model we train an FDMM on the spoken Arabic dialect iden-
tification dataset, MGB3. We extract latent features pt,, and
[~ in the same way as mentioned in equations 11, 12 and
use them to perform five class dialect identification. More
details about the task can be found in [19]. Experimental
results are shown in Table 4. We use a convolutional neu-
ral network based dialect identification system with exactly
the same structure as given in [20]. In [21], the authors re-
port dialect identification results using the latent representa-
tions learned by an FHVAE and a baseline i-vector system on
MGB3. We add these results here for comparison.

In summary, speaker verification performance using the
dynamic latent variable z is much worse than using y while
for domain invariant ASR and dialect identification it is much
better. This shows that our model successfully learns to en-
code content and style/domain information in two different
latent variables.

6. CONCLUSION

In this work, we propose a factorial deep Markov model that
successfully learns disentangled latent representations from
speech. We test our model on three tasks and show that the
performance is comparable with an FHVAE model that uses a
hierarchical prior to exploit muti-scale information in speech.
In the future we hope to investigate more complex models
with multiple Markov chains with different time resolutions.
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