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ABSTRACT

To leverage crowd-sourced data to train multi-speaker text-to-speech
(TTS) models that can synthesize clean speech for all speakers, it
is essential to learn disentangled representations which can indepen-
dently control the speaker identity and background noise in generated
signals. However, learning such representations can be challenging,
due to the lack of labels describing the recording conditions of each
training example, and the fact that speakers and recording conditions
are often correlated, e.g. since users often make many recordings
using the same equipment. This paper proposes three components
to address this problem by: (1) formulating a conditional generative
model with factorized latent variables, (2) using data augmentation to
add noise that is not correlated with speaker identity and whose label
is known during training, and (3) using adversarial factorization to
improve disentanglement. Experimental results demonstrate that the
proposed method can disentangle speaker and noise attributes even if
they are correlated in the training data, and can be used to consistently
synthesize clean speech for all speakers. Ablation studies verify the
importance of each proposed component.

Index Terms— text-to-speech synthesis, variational autoencoder,
adversarial training, data augmentation

1. INTRODUCTION

Recent development of neural end-to-end TTS models [1, 2] en-
ables control of both labelled and unlabelled speech attributes by
conditioning synthesis on both text and learned attribute represen-
tations [3, 4, 5, 6, 7, 8]. This opens the door to leveraging crowd-
sourced speech recorded under various acoustic conditions [9] to train
a high-quality multi-speaker TTS model that is capable of consistently
producing clean speech. To achieve this, it is essential to learn disen-
tangled representations that control speaker and acoustic conditions
independently. However, this can be challenging for two reasons.
First, the underlying acoustic conditions of an utterance, such as the
type and level of background noise and reverberation, are difficult to
annotate, and therefore such labels are often unavailable. This hinders
the use of direct conditioning on the acoustic condition labels in a way
similar to conditioning on one-hot speaker labels [2]. Second, speaker
identity can have strong correlations with recording conditions, since
a speaker might make most of their recordings in the same location
using the same device. This makes it difficult to learn a disentangled
representation by assuming statistical independence [10].

We address this scenario by introducing three components: a con-
ditional generative model with factorized latent variables to control
different attributes, data augmentation by adding background noise
to training utterances in order to counteract the inherent speaker-
noise correlation and to create ground truth noisy acoustic condition
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labels, and adversarial training based on the generated labels to en-
courage disentanglement between latent variables. We utilize the
VCTK speech synthesis dataset [11], and background noise signals
from the CHiME-4 challenge [12] to synthesize a dataset containing
correlated speaker and background noise conditions for controlled ex-
periments. We extensively evaluate disentanglement performance on
the learned latent representations as well as the synthesized samples.
Experimental results identify the contribution of each component,
and demonstrate the ability of the proposed model to disentangle
noise from speakers and consistently synthesize clean speech for all
speakers, despite the strong correlation in the training data.

2. PROPOSED METHOD

2.1. Conditional factorized variational autoencoder for TTS

We base our TTS model on Tacotron 2 [13], which takes a text se-
quence as input, and outputs a sequence of mel spectrogram frames.
To control speech attributes other than text, two additional latent vari-
ables, zs and zr , are introduced to condition the generative process,
where the former models speaker identity, and the latter models resid-
ual unlabelled attributes (e.g. acoustic conditions). Prior distributions
for both variables are defined to be isotropic Gaussian. The full TTS
model can be written as a conditional generative model with two
latent variables: p(speech | zs, zr, text).

Two variational distributions are introduced: q(zs | speech)
and q(zr | speech), to approximate the intractable posteriors of the
latent variables, following the variational autoencoder (VAE) frame-
work [14]. Each distribution is defined to be diagonal-covariance
Gaussian, whose mean and variance are parameterized by a neural
network encoder. Note that zs, zr , and text are assumed to be con-
ditionally independent given speech, in order to simplify inference.
In contrast to learning an embedding for each speaker, learning an
inference model for zs can be used to infer speaker attributes for
previously unseen speakers.

To factorize speaker and residual information, an auxiliary
speaker classifier that takes zs as input is trained jointly with the TTS
model. This encourages information that is discriminative between
speakers to be encoded in zs, and leaves residual information to zr .
A simple fully-connected network is used for the speaker classifier.

2.2. Speaker invariant data augmentation

When acoustic conditions are correlated with speakers, information
about e.g. background noise level can be used to discriminate be-
tween speakers, and therefore can be encoded into zs. To counteract
such behavior, one can decorrelate these factors by leveraging prior
knowledge that adding noise should not affect speaker identity.

We propose to augment the original training set with a noisy copy
that mixes each utterance with a randomly selected piece of back-
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Fig. 1. Overview of the components of the proposed model. Dashed
lines denote sampling via reparameterization [14].

ground noise at a randomly sampled signal-to-noise ratio (SNR), but
reuses the same transcript and speaker label as the original utterance.
This operation can be seen as flattening the SNR distribution of each
speaker, in order to make SNRs less discriminative about speakers.

2.3. Augmentation-adversarial training

To increase the degree of disentanglement, it is also useful to proac-
tively discourage zs from encoding acoustic condition information.
If the ground truth acoustic condition labels are available, domain
adversarial training [15] can be applied directly to encourage zs not
to be informative about the acoustic condition. Nevertheless, such
labels are often unavailable in crowdsourced datasets such as [9].

In order to utilize adversarial training in such a scenario, we pro-
pose to use the augmentation label (original/augmented) to replace the
acoustic condition label (clean/noisy). This augmentation label can
be seen as a noisy acoustic condition label: an augmented utterance
must be noisy, but an original one can be either. If zs is invariant to
acoustic conditions, then it is also invariant to augmentation labels,
implying that the latter is a necessary condition for the former.

Following [15], invariance of zs to augmentation is measured
using the empiricalH-divergence between the zs distribution of the
augmented data and that of the original data, given a hypothesis
class H. As suggested in [16], the empirical H-divergence can be
approximated with the Proxy A-distance: 2(1 − 2ε), where ε is a
generalization error of an augmentation classifier trained to predict if
zs is inferred from an augmented utterance.

2.4. Model and training objective

The complete model is illustrated in Figure 1, composed of three
modules: a synthesizer, p(speech | zs, zr, text), an inference net-
work with two encoders, q(zs | speech) and q(zr | speech), and an
adversarial factorization module with speaker and augmentation clas-
sifiers, p(ys | zs) and p(ya | zr), where ys and ya denotes speaker
and augmentation labels. The parameters of the synthesizer, the two
encoders, the speaker classifier, and the augmentation classifiers are
accordingly denoted as θ, φs, φr , ψs, and ψa, respectively.

Training of the proposed model aims to maximize the conditional
likelihood and the information zs contains about speakers, while min-
imizing theH-divergence between the zs inferred from the original
utterances and that from the augmented ones. The objective function
can be formulated as combining an evidence lower bound (ELBO)
with a domain adversarial training [15] objective:

L1(θ, φs, φr, ψs; speech, text,ys,ya)

= ELBO(θ, φs, φr; speech, text)

+ Eq(zs|speech)[λ1 log p(ys | zs)− λ2 log p(ya | zs)] (1)
L2(ψa; speech,ya) = Eq(zs|speech)[log p(ya | zs)], (2)

where λ1, λ2 > 0 are the loss weights for the two classifiers, and
ELBO(θ, φs, φr; speech, text) is formulated as:

Eq(zs|speech)q(zr|speech)[log p(speech | zs, zr, text)]
−DKL

(
q(zs | speech) || N (0, I)

)
−DKL

(
q(zr | speech) || N (0, I)

)
,

where DKL(q||p) denotes the KL-divergence between q and p.
Note that the augmentation classifier is optimized with a differ-

ent objective than the rest of the model. To train the entire model
jointly, a gradient reversal layer [15] is inserted after the input to the
augmentation classifier, which scales the gradient by −λ2.

3. RELATED WORK

Our formulation of a TTS model with latent variables are closely
related to [3, 4, 6, 7, 8], which focus on modeling unlabeled speech
attributes. In contrast to this work, [3, 4, 6, 7] do not address dis-
entangling attributes to enable independent control when different
attributes are highly correlated in the training data, while [8] learns
to disentangle speaker attributes from the rest by encoding those with
small within-speaker variance to zs.

The proposed augmentation-adversarial training combines data
augmentation for speech [17] with domain adversarial neural net-
works (DANNs) [15] for disentangling correlated attributes. These
two methods have been mainly applied for training robust discrimina-
tive models [18, 19, 12, 20, 21, 22], and are less studied in the context
of building generative models. In addition, our method provides two
advantages. First, while DANNs require domain labels, our proposed
method enables adversarial training even when the ground truth do-
main labels are unavailable. Second, domain adversarial training
aims to remove domain information while preserving target attribute
information; however, if domain and target attribute have very strong
correlations, the two objectives conflict with each other, and one of
them will be compromised. Our proposed method alleviates such
issues by using data augmentation to decorrelate the two factors.

Learning disentangled representations for generative models has
gained much interest recently [23, 24]. Several studies also explored
adversarial training for disentanglement, such as using maximum
mean discrepancy [25] and generative adversarial network [26]. We
particularly emphasize disentangling statistically correlated attributes,
and applyH-divergence based adversarial training on latent variables.

4. EXPERIMENTS

We artificially generated a noisy speech dataset with correlated
speaker and noise conditions using the VCTK corpus [11] and
background noise from the CHiME-4 challenge [12]. The motivation
here is to simulate real noisy data while evaluating the model under
carefully controlled conditions. VCTK contains 44 hours of clean
English speech from 109 speakers. We downsample the signals
to 16 kHz to match the background noise sample rate, and split it
into training and testing sets in a 9:1 ratio. The CHiME-4 corpus
contains 8.5 hours of background noise recorded in four different
locations (bus, cafe, pedestrian area, and street junction), which we
split into three partitions: train, test, and aug. To simulate
speaker-correlated noise, we randomly selected half the speakers to
be noisy, and mixed all of their train and test utterances with noise
sampled from train and test respectively, at SNRs ranging from
5 - 25 dB. As described in Section 2.2, we generated an augmented
set by mixing every (potentially noisy) training utterance with a
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noise signal sampled from aug at SNRs ranging from 5 - 25 dB.
Utterances in the augmented set are annotated with ya = 1, and
those in the original noisy training set are annotated with ya = 0.

4.1. Model and training setup

The synthesizer network use the sequence-to-sequence Tacotron 2
architecture [13], with extra input zs and zr concatenated and passed
to the decoder at each step. If not otherwise mentioned, zs is 64-dim
and zr is 8-dim. The generated speech is represented as a sequence of
80-dim mel-scale filterbank frames, computed from 50ms windows
shifted by 12.5ms. We represent input text as a sequence of phonemes,
since learning pronunciations from text is not our focus.

The speaker and the residual encoders both use the same architec-
ture which closely follow the attribute encoder in [8]. Each encoder
maps a variable length mel spectrogram to two vectors parameterizing
the mean and log variance of the Gaussian posterior. Both classifiers
are fully-connected networks with one 256 unit hidden layer followed
by a softmax layer to predict the speaker or augmentation posterior.

The synthesizer, encoders, and speaker classifier are trained to
maximize Eq (1) with λ1 = λ2 = 1, and the augmentation classifier
is trained to maximize Eq (2). The entire model is trained jointly with
a batch size of 256, using the Adam optimizer [27], configured with
an initial learning rate of 10−3, and an exponential decay that halves
the learning rate every 12.5k steps, starting at 50k steps.

4.2. Latent space disentanglement

We quantify the degree of disentanglement by training speaker and
noise classifiers on zs and zr separately. The classification accu-
racy on a held-out set is used to measure how much information a
latent variable contains about the prediction targets. A simple linear
discriminative analysis classifier is used for all four tasks. If the
classifier input contains no information about the target, the best a
classifier can do is to predict the highest prior probability class. Since
the distributions of both speaker and acoustic conditions are close
to uniform, a speaker-uninformative input should result in about 1%
accuracy, and a noise-uninformative input should result in about 50%.

Results are shown in Table 1, comparing the full proposed model
with two alternative models: one which removes adversarial training,
denoted as “- adv,”, and a second which further removes data aug-
mentation, denoted as “- adv - aug.” Without data augmentation and
adversarial training, the second alternative completely fails to disen-
tangle speaker from noise, i.e. its speaker encoding zs can infer both,
while its residual encoding zr cannot infer either. The first alternative
learns to encode acoustic condition into zr , reaching 96.5% accuracy
on noise prediction; however, part of such information still leaks
to zs, as indicated by the 85% noise prediction accuracy. The full
proposed model achieves the highest noise prediction accuracy using
zr , and the lowest accuracy using zs, implying the best allocation of
acoustic information. Nevertheless, adversarial training also results in
slight leakage of speaker information to zr , indicated by the speaker
prediction accuracy increase from 1.4% to 2.3%.

4.3. Evaluation of synthesized speech

To evaluate how well the two latent variables, zs and zr , can control
the synthesized speech, we sample five clean speakers and five noisy
speakers, and select one testing utterance for each speaker with dura-
tion ≥ 3s. For each of the ten utterances, the two latent variables are
inferred using the corresponding encoders. We construct an evalua-
tion set of 100 phrases that does not overlap with the VCTK corpus,
and synthesize them conditioned on each combination of zr and zs,

Model zs zr
speaker noise noise speaker

Proposed 97.58 60.20 97.44 2.33
- adv 97.64 85.35 96.53 1.40
- adv - aug 93.68 97.93 51.17 1.13

Table 1. Accuracy (%) of speaker and noise classifiers trained on zs
or zr on a held-out set.

Model clean speakers noisy speakers

Baseline 18.16 11.26

Model (set of zr , set of zs)
(C, C) (C, N) (N, C) (N, N)

Proposed 18.62 18.35 8.89 8.62
- adv 18.64 17.03 10.43 8.59
- adv - aug 18.78 9.49 18.80 9.50

Table 2. Average WADA-SNR of synthesized samples from a multi-
speaker baseline conditioning on different speaker embeddings, and
the proposed model and the two alternatives conditioning on different
(zr, zs) combinations. “C” denotes latents inferred from clean testing
utterances of the clean speaker set, and “N” denotes those inferred
from noisy testing utterances of the noisy speaker set.

including those inferred from different utterances. The total 10,000
synthesized samples are divided into four groups, depending on the
set of speakers (clean/noisy) zr and zs are inferred from.

4.3.1. Control of acoustic conditions

To quantify the ability to control noise, we use waveform amplitude
distribution analysis (WADA) [28] to estimate an SNR without a clean
reference signal. We compare to a baseline multi-speaker Tacotron
model, which removes the residual encoder and replaces the speaker
encoder with a lookup table of 64-D speaker embeddings. The upper
half of Table 2 presents the estimated SNRs of synthesized speech
using this baseline, conditioning on the same five clean speakers
and the five noisy speakers mentioned above. The difference in SNR
between clean and noisy speakers indicates that the acoustic condition
is tied to speaker identity in this baseline model.

Results of the proposed model and the two alternatives mentioned
in Section 4.2 are shown in the lower half of Table 2. By conditioning
on zr inferred from clean utterances, the proposed model is able
to synthesize clean speech even for noisy speakers whose training
utterances all had background noise. Moreover, when conditioning on
the same set of zr , the proposed achieves the smallest discrepancy in
SNR between different zs sets. On the other hand, the ”-adv” variant
has a larger discrepancy between different zs sets, indicating worse
disentanglement comparing to the full model, while the ”-adv-aug”
variant fails to control noise through zr . These results are in line with
the noise prediction results using zs and zr shown in Table 1. Figure 2
illustrates synthesized samples for a noisy speaker, comparing the
baseline to our proposed model. Our model is capable of controlling
noise using zr , and can generate clean speech for the noisy speaker,
while the baseline output always contains background noise.

4.3.2. Control of speaker identity
We next examine if zs can control the speaker identity of synthesized
speech, using a text-independent speaker verification system [29] to
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(a) Baseline (b) Proposed model with noisy zr (c) Proposed model with clean zr

Fig. 2. Synthesized utterances of a noisy speaker (p252) from the baseline model (a), and our proposed model conditioning on zs inferred from
a noisy utterance of p252, along with two zr from different speakers, one from a noisy utterance (b), and the other from a clean utterance (c).

Model zs from clean utt zs from noisy utt

Proposed 99.92 98.36

Table 3. Speaker classification accuracy (%) of clean synthesized
samples conditioning on zs inferred from clean and noisy utterances.

Baseline Proposed w/ clean zr Proposed w/ noisy zr

3.22 4.52 1.32

Table 4. MOS scores of the baseline and the proposed model.

compute speaker discriminative embeddings, called d-vectors [30],
from the reference and synthesized speech samples. The system is
trained to optimize a generalized end-to-end speaker verification loss,
so that the embeddings of two utterances are close to each other if they
are from the same speaker, and far way if from different speakers.

We build a nearest-neighbor classifier, which assigns an input sig-
nal the speaker label of the reference signal whose d-vector is closest
to that of the input, measured using Euclidean distance. To prevent
background noise from affecting d-vector quality, we only evaluate
synthesized samples conditioned on zr from clean utterances. Ta-
ble 3 shows that the synthesized samples closely resemble the speaker
characteristics of their corresponding reference samples, regardless
of zr used for conditioning. The results indicate that speaker identity
is controlled by zs, while being invariant to change in zr .

4.3.3. Subjective naturalness evaluation
To quantify fidelity, we rely on crowd-sourced mean opinion scores
(MOS), which rates the naturalness of the synthesized samples by
natives speakers using headphones, with scores ranging from 1 to 5
in 0.5 increments. Results shown in Table 4 compare the baseline
and the proposed model conditioning on zr from clean utterances.
When conditioning on zr from clean utterances, the proposed model
achieves a higher MOS score than the baseline. In contrast, the MOS
drops significantly when conditioning on zr inferred from noisy
utterances. The results indicate that disentangling speaker and noise
improves the naturalness of the generated speech, and the proposed
model can synthesize more natural speech with less background noise
than the baseline when conditioning on zr inferred from clean signals.

4.4. Hyperparameter sensitivity

Finally, we study the sensitivity of disentanglement performance with
respect to the choice of speaker encoding dimensions. As shown in the
previous two sections, good latent space disentanglement translates to
good performance in terms of control of speaker identity and acoustic
conditions for synthesis. In this section, we only evaluate latent space
disentanglement when changing the dimension of zs

dim(zs) Model zs zr
speaker noise noise speaker

32
Proposed 97.58 57.66 97.62 2.80
- adv 97.62 81.41 97.51 1.82
- adv - aug 92.82 98.02 55.17 2.31

128
Proposed 97.67 65.15 97.40 2.09
- adv 97.64 97.29 52.72 0.98
- adv - aug 93.48 98.15 52.50 1.00

256
Proposed 97.53 64.80 97.31 2.80
- adv 97.64 97.98 85.90 1.05
- adv - aug 93.95 98.15 53.66 1.18

Table 5. Held-out set accuracy (%) of speaker and acoustic condition
classifiers trained on zs or zr with different zs dimensions.

Table 5 compares performance of the proposed model when the
dimensionality of zs is 32, 128, and 256 (results for 64 dimensions
are in Table 1). Variants without data augmentation or adversarial
training fail to disentangle in all configurations. When the dimension
of zs increases, both the proposed model and ”-adv” report worse
separation of information, as indicated by increased noise prediction
accuracy using zs. Specifically, the ”-adv” fails to encode noise infor-
mation in zr when zs has 128 dimensions, which could result from
a bad initialization of model parameters; however, such a behavior
also indicates that when adversarial training is not applied, the disen-
tanglement performance may rely heavily on the model initialization.
On the other hand, the proposed model is least sensitive to the change
of zs dimensionality. It always achieves the highest noise prediction
accuracy using zr , and the lowest noise prediction accuracy using zs.

5. FUTURE WORK

The proposed methods for disentangling correlated attributes is gen-
eral, and can potentially be applied to other pairs of correlated factors,
such as reverberation and speaker, or to other modalities, such as con-
trollable text-to-image generation. In addition, for future work, we
would also like to investigate the capability of the proposed method
to disentangle pairs of attributes which are both unsupervised.
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