
SEMI-SUPERVISED TRAINING FOR IMPROVING DATA EFFICIENCY IN END-TO-END
SPEECH SYNTHESIS

Yu-An Chung∗1 Yuxuan Wang2 Wei-Ning Hsu∗1 Yu Zhang2 RJ Skerry-Ryan2

1Massachusetts Institute of Technology 2Google Inc.

ABSTRACT

Although end-to-end text-to-speech (TTS) models such as
Tacotron have shown excellent results, they typically require
a sizable set of high-quality <text, audio> pairs for training,
which are expensive to collect. In this paper, we propose
a semi-supervised training framework to improve the data
efficiency of Tacotron. The idea is to allow Tacotron to utilize
textual and acoustic knowledge contained in large, publicly-
available text and speech corpora. Importantly, these external
data are unpaired and potentially noisy. Specifically, first we
embed each word in the input text into word vectors and con-
dition the Tacotron encoder on them. We then use an unpaired
speech corpus to pre-train the Tacotron decoder in the acous-
tic domain. Finally, we fine-tune the model using available
paired data. We demonstrate that the proposed framework
enables Tacotron to generate intelligible speech using less
than half an hour of paired training data.

Index Terms— Tacotron, text-to-speech, semi-supervised
learning, pre-training, data efficiency

1. INTRODUCTION

Recent advances in end-to-end text-to-speech (TTS) have
shown great promise. We are now able to produce natural
prosody with high audio fidelity using a much simplified
voice building pipeline [1, 2, 3]. However, such models
typically require a sizable dataset consisting of high-quality
<text, audio> training pairs, which are expensive and time-
consuming to collect. Requiring large amounts of data also
hinders their applicability in low-resource settings.

This work aims to improve the data efficiency for end-
to-end TTS training by leveraging large-scale, publicly avail-
able, and unpaired text and speech data. Unpaired data are
plentiful and relatively easy to collect. Specifically, we pro-
pose a simple yet effective semi-supervised framework for
training Tacotron [1], a recently proposed end-to-end TTS
model. We propose to transfer the textual and acoustic rep-
resentations learned from unpaired data to Tacotron in an un-
supervised manner. This is then followed by a fine-tuning

∗Work done while at Google.
Sound demos can be found at https://google.github.io/

tacotron/publications/semisupervised.

step using only a small amount of paired data to learn the
alignment between the two representation domains.

In this preliminary study, we first identify the data require-
ment of a baseline Tacotron, i.e., the least amount of training
data needed for a baseline Tacotron to produce intelligible
speech. We then show that a Tacotron enhanced with the pro-
posed framework is able to produce intelligible speech using
less amount of data. Finally, we study different configurations
for incorporating the framework. For evaluation, we perform
both objective and subjective tests.

There exists previous work studying the application of un-
supervised and weakly supervised learning for TTS [4, 5, 6,
7]. Related to our work, for example, [7] uses pre-trained
word vectors in a LSTM-based acoustic model in paramet-
ric TTS [7]. These studies consider learning methods within
the traditional TTS paradigm, however. This work, by con-
trast, examines them within end-to-end TTS, and specifically
targets the data efficiency problem.

2. PROPOSED APPROACH

We use a baseline Tacotron architecture specified in [8],
where we use a GMM attention [9], LSTM-based decoder
with zoneout regularization [10] and phoneme inputs derived
from normalized text. We use Griffin-Lim [11] as the in-
version algorithm to convert the predicted spectrograms to
waveforms, as our main focus is to enable Tacotron training
on small data instead of producing high-fidelity audio. Using
Griffin-Lim allows much faster experiment cycles.

The two main building blocks of Tacotron are the en-
coder and the attention-based decoder. At a high level, the
encoder takes a source text as input and produces sequential
representations of it; the decoder is then conditioned on the
text representations to generate corresponding acoustic repre-
sentations (spectrogram frames), which are then converted to
waveforms. In the baseline Tacotron, the model is trained
from scratch where all network weights are randomly ini-
tialized, and both the text and acoustic representations are
learned from the given (parallel) training data. Below, we
introduce our approach to inject external textual and acoustic
knowledge to bootstrap the encoder and decoder, respectively.

6940978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

Fig. 1: Illustration of conditioning encoder on pre-trained
word vectors. The left side shows the locations of encoder
input and encoder top, where the word vectors can be incor-
porated via a conditioning module. The right side illustrates
the conditioning module, where we show two methods of con-
ditioning. ‘<sil>’ denotes silence (e.g. space). In method 2,
the dash lines correspond to the attention mechanism.

2.1. Conditioning the encoder on pre-trained word vec-
tors

The goal of the encoder is to extract robust sequential repre-
sentations of text. However, for a baseline Tacotron, the only
training signal comes from the text data in the <text, audio>
pairs, and the extracted representations are usually not rich
enough when there’s only a small amount of text.

We propose to exploit the textual knowledge contained
in large text corpora, which typically contain millions to
billions of words. From these large text corpora, one can
train real-valued word vectors that contain the meanings of
the words [12, 13] or language models that model grammat-
ical and semantic context [14]. These word vectors can be
added as auxiliary inputs to a TTS model to convey additional
textual knowledge not learnable from the original text data.

To expose this additional knowledge to the encoder, we
first embed each word in the input text into a word vector, and
add the word vector sequence on one of two locations (illus-
trated in the left side of Figure 1): “encoder input” represent-
ing the phoneme embedding sequence, or “encoder top” rep-
resenting the final encoder output sequence. While both con-
ditioning locations allow the encoder to access the pre-trained
word vectors, the choice of the conditioning location is an im-
portant design choice, which we study in experiments. For
convenience, we call both encoder input and encoder top fea-
tures conditioning location features. Due to the fact that the
word vectors and conditioning location features might have
different time resolutions (different sequence lengths), below
we propose two ways of combining them (illustrated in the
right side of Figure 1).

2.1.1. Word vectors concatenation

The first conditioning approach concatenates the word vector
at the first phoneme of the corresponding word and replicates
the word vector across all phonemes in the word. Take in-
put text “Thank you” as an example. The phoneme inputs
are ‘th’, ‘a’, ‘ng’, ‘k’, ‘<sil>’, ‘y’, ‘uu’ (same rule applies to
character inputs), where ‘<sil>’ denotes silence (e.g. space).
The word vector of “Thank” is appended to the phoneme em-
beddings of phonemes ‘th’, ‘a’, ‘ng’, and ‘k’. This approach
can be thought of as an hard attention mechanism where the
alignment is pre-determined by the position mapping between
words and their phonemes in the input text.

2.1.2. A conditioning attention head

If we consider the phrase “Thank you”, it’s possible that the
semantics of “Thank” can help the encoder to generate more
robust representation for “you”. However, the first approach
never exposes the word vector of “Thank” to the encoder
when it’s processing the phoneme embeddings of “you”. Our
second approach attempts to resolve this by applying a sep-
arate attention head between word vectors and conditioning
location features. It takes each conditioning location feature
as the attention query to generate the corresponding context
vector, which is a weighted sum of the word vectors. The con-
text vector and the conditioning location feature are then con-
catenated together for further processing. This enables each
conditioning location feature to extract and gather informa-
tion it needs from all word vectors. In this work, we use a
simple tanh based additive attention [15].

Since the encoder weights are still trained from scratch
with random initialization, we refer to this approach as en-
coder conditioning for the rest of the paper.

2.2. Decoder pre-training

In a baseline Tacotron system, the decoder needs to simul-
taneously learn acoustic representations and their alignments
with the text representations extracted by the encoder. To re-
duce the workload of the decoder, we propose using an inde-
pendent speech data source to pre-train the decoder, such that
it is initialized by a pre-learned acoustic representation. Dur-
ing pre-training, the decoder acts as a next-step frame predic-
tor with teacher forcing. Since the only objective is to predict
an acoustic frame from the previous one, this step does not
require text transcripts. In this stage, we simply keep the en-
coder weights frozen and replace the attention context vectors
by zero vectors. This forces the decoder to learn an autore-
gressive model of acoustics at the frame level.

After the decoder is pre-trained, we fine-tune the entire
model (including both encoder and decoder) using paired
data. By pre-training, the decoder no longer needs to learn
the acoustic representations from scratch and can thus focus

6941

more on learning the alignment between text and acoustic
representations.

A potential source of error of our simple approach is that
there is a model mismatch between decoder pre-training and
model fine-tuning: during pre-training, the decoder is only
conditioned on the previous frame; while during fine-tuning,
it is additionally conditioned on the text representations from
the encoder. Despite such a mismatch, we found decoder
pre-training still helpful. In addition, we found that the pre-
trained Tacotron converges much faster than the baseline.

3. EXPERIMENTS

We conduct experiments to demonstrate the effectiveness of
our framework. We use an internal single-speaker US English
dataset for training (fine-tuning).

3.1. Data requirements of the baseline Tacotron

To improve Tacotron’s data efficiency, first we need to un-
derstand its limit. We’d like to answer the following ques-
tion: what is the maximum amount of data N that could al-
most never successfully train a baseline Tacotron to produce
intelligible speech? To find out N , we gradually decrease
the amount of data used for training a baseline Tacotron from
about 40 hours to about 12 minutes and listen to the synthe-
sized speech on unseen phrases. As can be heard on our demo
page, we estimated that using between 10 and 40 hours of data
produces almost equally good synthesis, and using between 3
and 10 hours of data causes minor degradation but still sounds
very good. However, when there are only about 24 minutes
of data, the model fails to produce intelligible speech. When
there are only 12 minutes of data, the model outputs gibberish
that is impossible to understand. It’s important to note that the
transcripts in the 12 minutes data already cover all phonemes,
therefore the failure is not simply due to phoneme coverage.

Therefore, in the next section, we focus on demonstrat-
ing the effectiveness of our semi-supervised framework using
only 24 minutes of paired data.

3.2. Results on small data

Our encoder conditioning and decoder pre-training approaches
can be applied to Tacotron independently or jointly. We de-
note the model that only incorporates encoder conditioning
as T-Enc, model that only incorporates decoder pre-training
as T-Dec, model that incorporates both as T-Enc-Dec, and the
baseline Tacotron as T-Base.

We measure the synthesis quality using both objective and
subjective tests. For the objective metric, we use mel cep-
stral distortions (MCD) [16], which measures the distance be-
tween synthesis and ground truth in the mel cepstrum space—
the smaller the better. We use an evaluation set containing
about 30 minutes (631 sentences) of unseen data. We found

Table 1: MCD between ground-truth audio and synthe-
sis from 7 Tacotron variants (lower is better). For T-Enc,
we include both the results of using NNLM (1st row) and
W2V (2nd row) as the word embedding module; concatena-
tion/attention and input/top denote the conditioning method
and location, respectively. The best result is marked in bold.

T-Base
T-Enc

T-Dec T-Enc-Decconcatenation attention

input top input top

18.06
12.89
13.72

12.46
13.14

13.03
13.86

12.71
13.51 12.09 12.27

that our MCD results correlate well with our subjective per-
ception. For subjective measurements, we ran a series of side-
by-side preference tests using 1000 unseen phrases of differ-
ent lengths.

For encoder conditioning, we used a neural network lan-
guage model (NNLM) [14] trained on English Google News
200B corpus from TensorFlow Hub as the word embedding
module. The module maps each word to a 128-dimensional
vector. We also tried word2vec (W2V) [17] trained on the
same corpus as the word embedding module.

For decoder pre-training, we used VCTK [18], a publicly
available corpus containing 44 hours of speech from 109
speakers, the majority of which have British accents. Note
that there is an accent mismatch between the decoder pre-
training (multiple speakers with British accents) and fine-
tuning (single speaker with US accent) datasets. As men-
tioned above, we only use the speech signals in VCTK but
not their transcripts.

3.2.1. MCD objective tests

The MCD results are shown in Table 1. We first compare
the four configurations of encoder conditioning. Here we in-
clude the results of both NNLM and W2V word embeddings.
We can see that models using NNLM always outperform their
W2V counterpart. We speculate that this is because W2V
only conveys word meanings but not the contextual or struc-
tural information, which is modeled in NNLM.

In terms of conditioning locations, we see that condi-
tioning at encoder top always outperforms conditioning at
encoder input. While feeding word vectors to the early parts
of the network seems intuitive (as in encoder input condition-
ing), we believe it is not the best choice in the low-resource
setting. If the encoder weights learned from small data are
noisy, for example, they may “distort” well-trained word
vectors. Therefore, conditioning word vectors at a higher
layer (e.g. encoder top) may lead to better generalization.

In terms of conditioning method, we find that the simple
concatenation method always outperforms using a separate
attention head. We also attribute this to the limited training

6942

data: although a separate attention head offers more flexibility
for learning the alignment, it also introduces more trainable
parameters. In summary, the best configuration for encoder
conditioning is to directly concatenate word vectors obtained
from a pre-trained NNLM at the encoder top. We used this
configuration for T-Enc for the rest of the experiments.

From Table 1 we can see that T-Enc, T-Dec, and T-Enc-
Dec all achieve much lower MCD than T-Base. Among them,
T-Dec achieves the best result. However, T-Enc, T-Dec, and
T-Enc-Dec achieve similar MCD results (12.46, 12.09, 12.27,
respectively). As shown in side-by-side comparisons below,
the raters did not strongly prefer one over the other two, either.

3.2.2. Side-by-side subjective tests

Table 2: Results of SxS subjective tests based on a 7-point
rating scale. We report both rater preferences (in percentage)
and p-values for each comparison.

Competing pair Preference (%)
p-value

Former Latter Neutral

T-Base vs. T-Enc 3.3 65.1 31.6 1.07e-84
T-Base vs. T-Dec 3.2 61.8 35.0 3.47e-83
T-Enc vs. T-Dec 16.1 18.2 65.7 0.256

T-Enc-Dec vs. T-Dec 17.0 17.9 65.1 0.630

Table 2 shows the results of the four side-by-side (SxS)
preference tests, comparing T-Base against T-Enc, T-Base
against T-Dec, T-Enc against T-Dec, and T-Enc-Dec against
T-Dec. As we can see from the table, both T-Enc and T-Dec
significantly outperform T-Base: in both tests, raters strongly
preferred them over the baseline by more than 60%. Inter-
estingly, the raters considered T-Dec, T-Enc, and T-Enc-Dec
similarly preferable. The results of SxS tests are consistent
to those of MCD objective tests, and both demonstrate the
effectiveness of our semi-supervised framework.

3.3. Results on other amounts of data

We also compare T-Base, T-Enc, T-Dec, and T-Enc-Dec
trained on other amounts of data. In Figure 2, each curve
corresponds to a Tacotron variant, showing the relationship
between the amount of paired data used for training that
Tacotron variant and the MCD between ground-truth audio
and synthesis from it. We can see that the largest gap be-
tween T-Base and the three semi-supervised systems occurs
when using only 12 minutes (0.5 shards) of paired data. The
gap keeps decreasing when the amount of data increases.
This phenomenon is somewhat expected, because with more
paired data, Tacotron relies less on external knowledge for
learning representations and alignments. However, semi-
supervised Tacotron consistently achieves lower MCD than
the baseline, which may indicate benefits beyond better data
efficiency (e.g. improved prosody).

Fig. 2: MCD results by increasing the amount of paired data.

4. CONCLUSIONS AND DISCUSSIONS

We have proposed a semi-supervised training framework for
improving data efficiency in end-to-end TTS. Our framework
leverages large-scale, publicly available, and unpaired text
and speech data to provide additional textual and acoustic
knowledge to the Tacotron encoder and decoder, respectively.
We have shown that our framework makes end-to-end TTS
feasible in small-data regime. Specifically, a semi-supervised
trained Tacotron can produce intelligible speech using just 24
minutes of paired training data. This promising result also
provides some guiding principles for future data collection
efforts for both single and multi-speaker TTS. While we used
Tacotron as the TTS model in this study, we believe the frame-
work is generally applicable to other end-to-end TTS models.

This is only a preliminary work, and there is still much
to be investigated. For example, we’ve been using phoneme
inputs in this work and we’d like to understand the perfor-
mance tradeoffs on grapheme inputs. For leveraging textual
knowledge, instead of simply conditioning with word vectors,
a likely more effective method is to initialize the entire en-
coder with a pre-trained bidirectional NNLM [19]. For de-
coder pre-training, the model mismatch during pre-training
and fine-tuning can be further studied. An analysis on what
kind of information are extracted from external data and how
they are actually used by Tacotron is also an important future
work. Lastly, since the main focus of this work is to make
end-to-end TTS feasible in small-data regime instead of pro-
ducing high-fidelity audio, we only used Griffin-Lim as the
waveform synthesizer. To produce high-fidelity speech with
very little paired data, we still need to address the problem of
adapting neural vocoders in the semi-supervised setting.

5. ACKNOWLEDGEMENTS

The authors thank Daisy Stanton, Eric Battenberg, Soroosh
Mariooryad, Yinfei Yang, and the Machine Hearing and
Google Brain teams for their helpful feedback and discus-
sions.

6943

6. REFERENCES

[1] Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui
Wu, Ron J. Weiss, Zongheng Yang Jaitly, Ying
Xiao, Zhifeng Chen, Samy Bengio, Quoc Le, Yan-
nis Agiomyrgiannakis, Rob Clark, and Rif A. Saurous,
“Tacotron: Towards end-to-end speech synthesis,” in
INTERSPEECH, 2017.

[2] Jonathan Shen, Ruoming Pang, Ron J. Weiss, Mike
Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng
Chen, Yu Zhang, Yuxuan Wang, RJ Skerry-Ryan, Rif A.
Saurous, Yannis Agiomyrgiannakis, and Yonghui Wu,
“Natural TTS synthesis by conditioning wavenet on mel
spectrogram predictions,” in ICASSP, 2018.

[3] Wei Ping, Kainan Peng, and Jitong Chen, “Clarinet:
Parallel wave generation in end-to-end text-to-speech,”
in ICLR, 2019.

[4] Oliver Samuel Watts, Unsupervised learning for text-to-
speech synthesis, Ph.D. thesis, The University of Edin-
burgh, 2013.

[5] Heng Lu, Simon King, and Oliver Watts, “Combining
a vector space representation of linguistic context with
a deep neural network for text-to-speech synthesis,” in
ISCA Workshop on Speech Synthesis, 2013.

[6] Oliver Watts, Zhizheng Wu, and Simon King,
“Sentence-level control vectors for deep neural network
speech synthesis,” in INTERSPEECH, 2015.

[7] Peilu Wang, Yao Qian, Frank K. Soong, Lei He, and Hai
Zhao, “Word embedding for recurrent neural network
based TTS synthesis,” in ICASSP, 2015.

[8] Yuxuan Wang, Daisy Stanton, Yu Zhang, RJ Skerry-
Ryan, Eric Battenberg, Joel Shor, Ying Xiao, Fei Ren,
Ye Jia, and Rif A. Saurous, “Style tokens: Unsuper-
vised style modeling, control and transfer in end-to-end
speech synthesis,” in ICML, 2018.

[9] Alex Graves, “Generating sequences with recurrent neu-
ral networks,” arXiv preprint arXiv:1308.0850, 2013.

[10] David Krueger, Tegan Maharaj, János Kramár, Mo-
hammad Pezeshki, Nicolas Ballas, Nan Rosemary Ke,
Anirudh Goyal, Yoshua Bengio, Aaron Courville, and
Chris Pal, “Zoneout: Regularizing RNNs by randomly
preserving hidden activations,” in ICLR, 2017.

[11] Daniel Griffin and Jae Lim, “Signal estimation from
modified short-time fourier transform,” IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, vol.
32, no. 2, pp. 236–243, 1984.

[12] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean, “Distributed representations of
words and phrases and their compositionality,” in NIPS,
2013.

[13] Jeffrey Pennington, Richard Socher, and Christopher
Manning, “Glove: Global vectors for word represen-
tation,” in EMNLP, 2014.

[14] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin, “A neural probabilistic language
model,” Journal of Machine Learning Research, vol.
3, no. 2, pp. 1137–1155, 2003.

[15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio, “Neural machine translation by jointly learning to
align and translate,” in ICLR, 2015.

[16] R. Kubichek, “Mel-cepstral distance measure for objec-
tive speech quality assessment,” in PacRim, 1993.

[17] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean, “Efficient estimation of word representations in
vector space,” in ICLR Workshop, 2013.

[18] Christophe Veaux, Junichi Yamagishi, and Kirsten Mac-
Donald, “CSTR VCTK corpus: English multi-speaker
corpus for CSTR voice cloning toolkit,” 2017.

[19] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer, “Deep contextualized word representa-
tions,” in NAACL-HLT, 2018.

6944

