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Abstract

In this paper we present the first model for directly synthesizing fluent, natural-
sounding spoken audio captions for images that does not require natural language
text as an intermediate representation or source of supervision. Instead, we connect
the image captioning module and the speech synthesis module with a set of discrete,
sub-word speech units that are discovered with a self-supervised visual grounding
task. We conduct experiments on the Flickr8k spoken caption dataset in addition to
a novel corpus of spoken audio captions collected for the popular MSCOCO dataset,
demonstrating that our generated captions also capture diverse visual semantics
of the images they describe. We investigate several different intermediate speech
representations, and empirically find that the representation must satisfy several
important properties in order to work well.

a person in a blue jacket is on a 
snowboard on a snow covered slope

a snowboarder is snowboarding 
on the side of the mountain

a snowboarder is snowboarding 
on the side of the mountain

Same unit sequence, different speakersDifferent unit sequences, same speaker

Figure 1: Spoken image captions generated from the proposed model, with diversity in both linguistic
content and acoustic properties, controlled through the I2U and the U2S models, respectively. A
speech recognition model is used to transcribe speech into text for illustration. Audio samples are
available at https://wnhsu.github.io/image-to-speech-demo.

1 Introduction

Current state-of-the-art models for automatic speech recognition and speech synthesis are based
upon supervised machine learning techniques, where the supervision most often takes the form of
utterance-level text transcriptions of speech audio. These models are very data-hungry, and collecting
transcribed speech audio poses a significant barrier for deploying speech technologies to all the
world’s languages. Although there are over 7,000 languages spoken worldwide [64], only several
dozen have enough data available to support supervised speech recognition, and many languages
do not even employ a writing system [2]. In contrast, most people learn to use spoken language
long before they learn to read and write, suggesting that linguistic annotation is not a prerequisite for
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speech processing systems. This line of reasoning motivates research that aims to discover meaningful
linguistic abstractions (phones, words, etc.) directly from the speech signal, with the intention that
they could reduce the reliance of spoken language systems on text transcripts.

A rich body of work has recently emerged investigating representation learning for speech using visual
grounding objectives [92, 32, 37, 57, 39, 74, 15, 4, 85, 47, 58, 91, 54, 25], as well as how word-like and
subword-like linguistic units can be made to emerge within these models [33, 36, 23, 4, 36, 34, 40, 35].
So far, these efforts have predominantly focused on inference, where the goal is to learn a mapping
from speech waveforms to a semantic embedding space. Generation of speech conditioned on a point
in a semantic space has been less explored, and is what we focus on in this work. We hypothesize
that generative approaches offer interesting advantages over relying solely on inference. For example,
prior works have demonstrated the capability of recognizing visually descriptive words, but have
not been shown to learn non-visual words or grammar. Our experiments show that these aspects of
spoken language are learned to some degree by a visually-grounded generative model of speech.

Specifically, we introduce a model capable of directly generating fluent spoken audio captions of
images without the need for natural language text, either as an intermediate representation or a form
of supervision during training (Figure 1). Tremendous progress has been made recently in natural
language image caption generation [62, 22, 73, 102, 59, 109, 68, 84, 17, 70, 6, 71, 114, 18] and
naturalistic text-to-speech synthesis [104, 97, 79, 93, 105, 88, 75, 81]. Combining these models
provides a means for generating spoken image descriptions, but existing approaches for training these
models are reliant on text during training. Instead, we leverage sub-word speech units discovered
using a self-supervised learning objective as a drop-in replacement for the text. We hypothesize
that by using such techniques, an even wider variety of traditionally text-based NLP models could
be applied to speech data without the need for transcription or ASR. Because all human languages
utilize small, discrete phonetic inventories, we posit that our framework should be applicable for any
language in the world. In our experiments, we demonstrate that not just any set of discovered speech
units can function in this role. We find the greatest success with units that are discrete, exhibit a low
frame-rate, and highly robust to speaker and environmental variability.

The main contributions of our paper are as follows:

1. The first methodology for fluent image-to-speech synthesis that does not rely on text. A
critical aspect of our approach is factorizing the model into an Image-to-Unit (I2U) module and a
Unit-to-Speech (U2S) module, where the speech units are discovered in a self-supervised fashion.
This approach enables disentanglement of linguistic variability and acoustic/speaker variability.

2. Extensive analysis on the properties required for learned units to replace text. While the idea
may seem simple and straightforward, it is not a trivial task to obtain proper units. In fact, most of
the units experimented in this paper fail to serve as drop-in replacements. Moreover, we demonstrate
that what are deemed good units vary significantly for inference and generation, respectively.

3. Proposing a semantic diversity-aware captioning metric for sampling-based evaluation. We
show that even when an I2U model fails to generate sensible caption through beam search decoding,
it can still produce reasonable captions by sampling from the posterior, hinting that posterior mode-
based evaluation can only inspect limited aspects of a model. Hence, we advocate for sampling-based
evaluation and propose a new metric to assess diversity.

4. Over 600,000 Spoken audio captions for the MSCOCO dataset. We collect speech from 2,352
people who were tasked with reading each MSCOCO caption out loud. This dataset (SpokenCOCO)
is made publicly available at https://groups.csail.mit.edu/sls/downloads/spokencoco/
to support work at the intersection of speech, language, and vision.

2 Related Work

Image-to-Text and Image-to-Speech Captioning. Significant progress towards generating realistic
(text) captions that describe the content of visual images was made with the advent of deep neural
networks [102, 59, 109, 6]. Far less work has focused on generating spoken audio captions from
natural images. Training an image-to-speech system using separate (image, text) and (text, speech)
datasets was explored in [72]. One other work has explored image-to-speech synthesis without using
text [38], but with limited results. In [38], BLEU scores were only computed in terms of unsupervised
acoustic units, not an estimate of the actual words produced by the synthesizer. The resulting captions
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were not evaluated for fluency, naturalness, or intelligibility, and the BLEU scores in terms of the
unsupervised units were very low (0.014 on the MSCOCO test set).

Speech Synthesis without Text and Voice Conversion. Voice conversion is a classic problem in
speech processing that involves resynthesizing a recording to sound as if it was spoken by a different
person [1, 90, 95]. Voice conversion has recently seen progress using neural approaches [45, 49,
50, 46, 27, 12, 14, 69, 56, 87], but the most relevant work to our own is the ZeroSpeech 2019
challenge [24, 94, 10], which explicitly addresses the unsupervised learning of discrete speech units
which can be used as the basis of a synthesizer.

Speech Representation for Downstream Tasks. Pre-training models on ImageNet [19] is now par
for the course in computer vision, and NLP has also recently embraced the pre-training paradigm [78,
21, 111]. Pre-training is appealing because it enables powerful models with many parameters to
be fit to a large amount of domain-general training data, and then fine-tuned on small amounts of
domain-specific data relevant for a particular downstream task. The speech community has not yet
discovered a pre-training approach whose performance and wide applicability is comparable with
the state-of-the-art techniques in vision or NLP, but many recent works have been attempting to
do just that. Several papers have investigated masked prediction [8, 86, 7, 103], while others have
implemented autoencoder models with various constraints applied to the latent representations, such
as discreteness [98, 25, 11] or disentanglement [50, 48, 65, 60]. Predictive coding has a long history
in speech processing, but has recently seen a revival using deep neural networks [76, 16]. Most
relevant to our work is the use of multimodal grounding to learn discrete speech representations [35].

3 Learning to Speak By Only Seeing and Listening

3.1 Overview of the Proposed Framework

A depiction of our modeling approach is shown in Figure 2. Caption generation for an image involves
a cascade of two components: given an input image I , we first generate a linguistic unit sequence
U according to the I2U module P (U | I). Given the linguistic symbol sequence U , we generate
a speech waveform S according to the U2S module P (S | U). If the linguistic unit sequence U
were to take the form of natural language text, the model would be equivalent to the cascade of a
conventional image captioning system followed by a TTS module. Note that we assume S ⊥ I | U
because prosody variation is not dependent on the image for the datasets considered.

The key idea in this paper is to instead define U to be a sequence of learned speech units, discovered
without text supervision. Specifically, we use the visually-grounded sub-word speech unit discovery
model introduced by [35]. We define inference with this model as U = f(S), enabling us to
“transcribe” any given speech audio waveform S into a sequence of units U . The addition of this
third component enables us to train P (U | I) from a dataset of images paired with spoken captions
{(I1, S1), . . . , (IN , SN )}. The conditional independence assumption between S and I given the
U enables us to choose any arbitrary speech dataset for training P (S | U), therefore enabling the
speaker characteristics and other acoustic properties to be independently controllable from the I2U
system [106, 51, 89, 42, 3, 112, 30].

3.2 Datasets

For training the P (U | I) model as well as the sub-word speech unit model f(S), we rely on a
dataset of images and their accompanying spoken audio captions. We consider 3 datasets of this type:
SpokenCOCO is based on the MSCOCO captioning dataset [67], but as part of this work we collect
a spoken version of the 605,495 captions via Amazon Mechanical Turk by displaying the text to a
person and having them read it aloud. The captions were recorded by 2,352 different speakers. We
provide additional details regarding the dataset statistics in the supplementary material. Flickr8k
Audio Captions [32] contains 8,000 images and 40,000 text captions from the Flickr8k dataset [83],
which have been read aloud by 183 different speakers. Places Audio [37] is comprised of 400,000
images from the MIT Places 205 dataset [113] that have each been captioned by a single person.
Unlike SpokenCOCO and the Flickr8k audio captions, the Places Audio captions are spontaneous
speech and were collected from over 2,500 different speakers.

While in principle we could also use the speech from any of the captioning datasets to train the
symbol-to-speech model P (S | U), in practice the naturalness and intelligibility of speech produced
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Figure 2: Diagram of our proposed framework.

by a synthesis model benefits from training data recorded by a single speaker in a clean recording
environment [53, 110, 29, 52]. For this reason, we choose to use the waveforms from two well-known
speech synthesis training datasets: LJSpeech [55] is a dataset of approximately 24 hours of speech
drawn from audio books, recorded by a single speaker. VCTK [99] is a dataset often used for
multi-speaker synthesis and contains speech recordings from 109 different speakers, each of whom
read aloud 400 sentences sampled from newspapers. Note that using different datasets for training
each module constructs a very challenging setup, where the learned units need to contain sufficient
linguistic information and minimal acoustic information for the entire pipeline to function properly.

3.3 Learning Robust Linguistic Units from Visually-Grounded Speech

Before training the I2U or U2S modules, we must train the transcription model f(S). To do this,
we turn to the ResDAVEnet-VQ model introduced by [35]. This model learns a mapping from
spoken caption waveforms and visual images to points in a shared semantic space, in which inner
products are predictive of semantic relatedness. The intermediate layers of the ResDAVEnet-VQ
model incorporate vector quantization (VQ) blocks, which were shown in [35] to learn phone-like
and word-like tokenizations of an input speech waveform. We investigate both the VQ2 (higher
framerate) and VQ3 (lower framerate) discrete unit representations from a ResDAVEnet-VQ model
that was trained using a {2} → {2, 3} curriculum (in the notation given in [35]).

The majority of un/self-supervised speech representations are trained with a signal reconstruction-
based objective [11, 50] or predictive coding [76, 16]. In contrast, ResDAVEnet-VQ and related
models of visually grounded speech are trained to associate speech with contextually relevant visual
inputs using a contrastive loss such as the triplet loss [107, 37] or noise contrastive estimation
(NCE) [76, 54], which maximizes a lower bound on the mutual information between I and S
as observed in [96]. This objective forces the learned speech representations to be useful for
predicting image semantics. Because visual semantics are described with words, the units learned
by ResDAVEnet-VQ are forced to be predictive of words rather than speaker identity, acoustic
environment, noise, etc., all of which must be modeled by reconstruction-based approaches.

Although the ResDAVEnet-VQ model has been shown to be capable of learning a hierarchy of
discrete speech units from phone-like to word-like, the experiments in [35] show that only several
hundred words are explicitly learned by the model (a small subset different words appearing in the
Places Audio captions), which tend to be “visual words.” Conversely, the phone-like units learned by
the lower VQ layers of the model were shown to cover all of the phones in American English (as
there are only several dozen). For this reason, to represent U in our I2U model, we choose to use the
representations learned by the lower VQ layers that were shown to be correlated with phones. We
postulate that future work may benefit from incorporating the word-level ResDAVEnet-VQ units into
our framework. Once the ResDAVEnet-VQ model has been trained, we can use it to “transcribe” any
given speech waveform into a sequence of units by performing a forward pass of the speech through
the audio branch of the model, retaining only the outputs of the target VQ layer(s).

Nominally, the VQ layers will output codebook vectors (where each unique vector represents a
speech unit) at a uniform temporal rate, which is downsampled with respect to the framerate of the
acoustic input depending upon which VQ layer is used. Given an input spectrogram to the model
computed with a 10ms frame shift, the two VQ layers we investigate in this paper (VQ2 and VQ3)
respectively output vectors every 20ms and 40ms. In general, the VQ units from each model are
repeated for several consecutive frames. We can decrease the average length of the symbol sequence

4



U by employing a lossy form of run-length encoding (RLE) (see Figure 2) which retains the sequence
of symbol identities but discards duration information. This removes the burden of unit duration
modeling from the I2U model and shifts it onto the U2S model, which we will show to be crucial.

3.4 Image-to-Unit and Unit-to-Speech Models

Both the I2U model and the U2S model are based upon recurrent seq2seq with attention networks [9].
Specifically, we use Show-Attend-and-Tell [109] for the I2U model. We use the off-the-shelf im-
plementation that has an image encoder pre-trained for classification (which is language agnostic
and hence should work in any language within our proposed framework). We choose this model not
only because of its ubiquity, but also because it represents one of the simplest captioning models by
today’s standards. After inferring the discrete unit sequence U for each speech recording S in the
training dataset using the ResDAVEnet-VQ model, we train the I2U model on the resulting (I, U)
pairs of images and their speech unit sequence representing the caption. For the U2S model, we use
the off-the-shelf implementation of Tacotron-2 [88] with no pre-training to generate spectrograms,
and WaveGlow [81] to generate waveforms from these spectrograms. TTS models generally require
training pairs of the form (text, speech), but in our case the ResDAVEnet-VQ unit transcription
model enables us to train the Tacotron-2 model on any arbitrary set of speech waveforms by tran-
scribing each recording S into its unit sequence U , and then training the model on the (U, S) pairs.
Both models are trained with the maximum likelihood objective, with the I2U model trained to
maximize EI,U [logP (U | I)] and the U2S model trained to maximize ES,U [logP (S | U)]. This
has interesting implications for the diversity of captions produced with different decoding strategies,
which we explore in Section 4.

4 Experiments

Our experiments attempt to address several questions:

First, how can we measure the performance of an image-to-speech system? Generating a spoken
caption for an image within our framework first involves generating a latent unit sequence with the
I2U model, followed by synthesizing a speech waveform conditioned on the unit sequence with the
U2S model. The concatenation of these models can fail to produce a good caption if the I2U system
fails to encode linguistic/semantic information into the unit sequence, or if the U2S system fails to
synthesize an intelligible waveform given a unit sequence. To better localize these failure modes, we
evaluate the full I2S system as well as the U2S system in isolation. We evaluate the U2S system by
using it as a vocoder and soliciting human judgements in the form of Mean Opinion Score (MOS) and
Side-By-Side (SXS) preference tests. To evaluate the full I2S system, we could use any method that
measures the semantic information contained in the generated language. One way would be to use a
speech-to-image retrieval system, while another is to infer a text transcription of the generated speech
with an ASR system, and then employ standard text-based caption evaluation metrics. This has the
advantages of making possible a comparison with a "upperbound" system in the form of text-based
captioning, as well as measuring other aspects of language generation such as syntactic correctness
(via BLEU-4) and scope of the learned vocabulary. For those reasons, we use the latter strategy.

Second, what properties must learned units have in order to be a drop-in replacement for text?
The most essential differences between text and speech are the amount of information encoded and
the sequence lengths. Beyond text, speech also encodes prosody, speaker, environment information
as well as the duration for each linguistic unit, all of which are minimally correlated with the
conditioned images. We hypothesize that learned speech units should discard such information in
order to seamlessly connect the I2U and U2S modules. To verify it, we pay particular attention to the
variations of the learned units in frame rate (VQ2 or VQ3), encoding of duration information (using
RLE or not), and robustness to domain shift (WaveNet-VQ or ResDAVEnet-VQ).

Third, how should language generation models be evaluated more generally? We examine
evaluation of the I2S model using beam search-based decoding as well as sampling-based decoding.
We find that because evaluation metrics that are reliant on beam search-based decoding only evaluate
the mode of a model’s posterior, they do not reflect the ability of a model to generate diverse linguistic
content. Furthermore, we show that it is possible for a model’s posterior mode to be linguistically
meaningless, and yet meaningful language can still be generated with sampling-based decoding.
Towards this end, we introduce a novel multi-hypothesis evaluation metric (M-SPICE).
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4.1 Evaluating the Unit-to-Speech Model

We first evaluate the U2S model on several different intermediate unit representations. We consider
the VQ2 and VQ3 units derived from the ResDAVEnet-VQ model described in Section 3.3, as well
as units derived from the unimodal WaveNet-VQ model [11, 10] trained on the same 400,000 Places
Audio captions as the ResDAVEnet-VQ model. We construct a Tacotron-2 model for each of the three
unit types on the LJSpeech audio data. We transcribe each LJSpeech utterances into a unit sequence,
then train the U2S model from the resulting unit sequence and waveform pairs. We evaluate the
naturalness of the speech produced by each model on held-out data, both in-domain using LJSpeech
and out-of-domain using SpokenCOCO. Amazon Mechanical Turk (AMT) workers performed Side-
by-Side preference tests (SXS) and naturalness evaluation based on mean opinion scores (MOS) on a
scale from 1 to 5 for each U2S model, which we display in Table 1. Although VQ2 was preferred
for in-domain synthesis on LJSpeech, VQ3 achieved the highest scores on the out-of-domain task
(SpokenCOCO), indicating that of the three unit types it has the strongest robustness to domain shift.

Table 1: (left) Subjective preference (%) between unit representations. (right) Subjective evaluation
on fidelity (MOS with 95% confidence interval).

Unit A Unit B LJSpeech SpokenCOCO
A Neutral B A Neutral B

VQ3 VQ2 23.9 31.5 44.6 40.4 32.5 27.5
VQ3 WVQ 36.6 37.1 26.3 58.3 21.8 19.9
VQ2 WVQ 43.9 30.2 25.9 49.8 24.2 26.0

Unit LJSpeech MOS SpokenCOCO MOS

VQ3 3.723 ± 0.039 3.336 ± 0.044
VQ2 3.932 ± 0.036 2.961 ± 0.045
WVQ 3.658 ± 0.040 2.896 ± 0.053

4.2 Incorporating the Image-to-Unit Model

We trained a Show, Attend, and Tell (SAT) model on SpokenCOCO for the WaveNet-VQ, VQ2, and
VQ3 units, as well as VQ3 units without RLE. We also compare to text characters and words; the full
hyperparameter and training details for all models are provided in the supplementary material, but in
general we kept these as constant as possible when comparing different linguistic representations.

Before connecting the U2S model, we noticed that all speech unit models except the one trained
on RLE VQ3 units failed during beam search decoding on the test images; rather than producing a
diverse sequence of output units, the decoder would generally get stuck in a loop until the maximum
decoding length was reached. This phenomenon also took place using VQ3 units without RLE,
indicating that the decoder had difficulty modeling the duration of the units. We hypothesize that the
reason the VQ2 and WaveNet-VQ units failed is due to their lack of invariance to domain shift, as
evidenced by their decay in naturalness when used for out-of-domain synthesis as shown in Table 1.
For this reason, the main results in this section using beam search are only shown for the VQ3 model.
We show example outputs of each system in the supplementary material, as well as BLEU-4 scores
on SpokenCOCO in terms of the speech units. The looping phenomenon in the context of beam
search decoding with generative models of language was also observed by [44, 26, 82, 43, 63, 108];
we explore sampling-based alternatives to beam search for the other unit types later in Section 4.3.

To evaluate the full Image-to-Speech model, we first train an automatic speech recognition (ASR)
system on the re-synthesized SpokenCOCO captions using the VQ3 Tacotron-2 model. Specifically,
we use the Wav2Letter++ [80] implementation of the seq2seq+TDS model [31], using the COCO
caption text as the ground truth labels for ASR training. This enables us to estimate a word-level
transcription of the spoken captions produced by our system, which we can then use to compute
standard captioning evaluation metrics (including BLEU-4 [77], METEOR [20], ROUGE-L [66],
CIDEr [100], and SPICE [5]) and make direct comparisons with conventional text captioning systems.
In order to verify that the synthesized captions are intelligible to humans and the ASR system did not
simply learn to recognize artifacts of the synthesized speech, we asked AMT workers to transcribe into
words a set of 500 captions generated by our system and also evaluated their naturalness. 3 workers
transcribed and 3 workers rated each caption, allowing us to compute an MOS score (3.615±0.038),
a word error rate (WER) between the 3 human transcriptions (9.40%), as well as between the human
and the ASR-produced transcriptions (13.97%) averaged against all 3 transcriptions.

Table 2a summarizes our results. We compare with recent approaches from the literature for bottom-
up text captioning (top 3 rows). We train the decoder of an SAT model while keeping the image
encoder fixed (middle 3 rows), in addition to fine-tuning the image encoder (bottom 3 rows). We
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report results when training the I2U model to output words, characters, or VQ3 units, both with
greedy decoding and beam search decoding. Despite having no access to text, the SAT-FT speech
captioning model trained on VQ3 units achieves a BLEU-4 score of .233 with beam search decoding.
This is very close to the .243 achieved by the original SAT word-based captioning model. Figure 1
shows that the generated captions are fluent and reflect the implicit learning of some syntactic rules.
We also report captioning scores on the smaller Flickr8k spoken caption dataset in Table 2b.

Table 2: Word-based caption evaluation using BLEU-4, METEOR, ROUGE, CIDEr, and SPICE.
ASR is used to transcribe the spoken captions generated by the proposed VQ3 model into text for
evaluation. The beam size ∈ {3, 5, 8, 10} was chosen for each model to maximize SPICE. Our
word-based SAT models outperform [109] because we use a stronger image encoder (ResNet-101).

(a) MSCOCO

model U B-4 M R C S

SAT [109] word 0.243 0.239 - - -
AA [70] word 0.327 0.260 0.540 1.042 -

SAT
word 0.315 0.253 0.533 0.984 0.185
char 0.289 0.239 0.512 0.879 0.172
VQ3 0.186 0.186 0.446 0.584 0.127

SAT-FT
word 0.339 0.265 0.551 1.062 0.196
char 0.323 0.256 0.536 1.002 0.187
VQ3 0.233 0.212 0.478 0.732 0.149

(b) Flickr8k

model U B-4 M R C S

SAT [109] word 0.213 0.203 - - -

SAT
word 0.216 0.207 0.469 0.550 0.149
char 0.190 0.190 0.441 0.476 0.136
VQ3 0.116 0.141 0.390 0.232 0.091

SAT-FT
word 0.225 0.215 0.483 0.584 0.155
char 0.191 0.196 0.450 0.519 0.143
VQ3 0.125 0.145 0.391 0.245 0.095

4.3 From Mode to Distribution: Sampling-Based Caption Evaluation

The results in the previous section only evaluate beam search decoding with the I2U model, and do
not fully reveal the posterior over captions for an input image, or whether the unit representations that
failed with beam search would work well with other methods. To probe this, we evaluate the models
using sampling-based caption generation. Figure 3 shows the SPICE scores on SpokenCOCO using
beam search and two sampling-based methods. VQ3 still performs the best of all unit types with
both beam search and sampled decoding. VQ2 can sometimes generate captions with beam search
when the beam is kept small, but as the beam grows it begins to loop and the scores become very low.
We see that all unit types can generate reasonable captions when using sampling-based decoding,
although ResDAVEnet-VQ units consistently outperform the WaveNet-VQ units, suggesting that they
better capture sub-word structure. Example outputs are provided in the supplementary material.

Figure 3: MSCOCO test SPICE scores of various units and decoding methods. VQ3\RLE denotes
VQ3 units without RLE. Top-k sampling considers only the k-most probable units at each step.

We estimated the vocabulary size of our SAT-FT model using VQ3 units by counting the number of
unique recognized words produced at least 3 times when captioning the SpokenCOCO test images.
These numbers are shown for the model under the various decoding methods in Figure 4. The number
of captions per image is denoted by n, where top candidates are used for beam search and i.i.d.
samples are drawn for sampling. Sampling-based decoding reveals a larger vocabulary size than beam
search, and the number of words learned by our models (several thousand) is far greater than the
number of words learned by the ResDAVEnet-VQ model (approx. 279) in [35]. We hypothesize that
training a model to generate spoken captions encourages it to learn many more words than only being
trained to retrieve images from captions. We also hypothesize that because beam search attempts to
find the mode of the posterior distribution over captions, it tends to produce a smaller set of common
words and does not reveal the breadth of the distribution learned by the model. To better measure the
diversity of our models, we introduce a new captioning metric in the next section.
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Figure 4: Vocabulary size learned by the proposed image-to-speech model. A word is added to the
vocabulary if it appears at least three times from n runs of decoding on the MSCOCO test set and is
in a reference dictionary. The same candidates used in Figure 5 are used here for each configuration.

4.4 A New Diversity-Aware Metric: Multi-Hypothesis SPICE

In the previous section, we showed that sampling-based decoding revealed a much larger model
vocabulary than beam search, even when the SPICE scores were comparable. This highlights a
limitation of SPICE in measuring the diversity of the captions. This was previously addressed by
[101] who used oracle scoring among the top hypotheses, but in that work each caption was still
independently scored. We introduce M-SPICE (Multi-Hypothesis SPICE), which evaluates a set of
candidate captions against a set of reference captions. To compute M-SPICE for an image, we sample
a set of candidate captions (or top N from beam search) and compute a scene graph G(C) from the
union of the candidate scene graphs. We compute the reference scene graph G(S) using the union
of the reference caption scene graphs as is normally done in SPICE. We then evaluate the F-score
between G(C) and G(S), which we refer to as M-SPICE. When evaluating sampled captions, we
gain a broader estimate of the model’s posterior distribution, rather than just the mode. This addresses
the recall penalty faced by single caption evaluation strategies, because the model is considered to
have retrieved an object if any of the sampled captions refers to it. Note that simply taking the mean
SPICE over the set of samples does not measure the diversity between candidates. Figure 5 shows
the M-SPICE scores of our SAT-FT model using VQ3 units on SpokenCOCO. When evaluating over
multiple captions (n > 1), using the beam search hypotheses increases the score less than sampling.

Figure 5: M-SPICE score on the SpokenCOCO test set with different candidate proposal methods.
To compute n-candidate M-SPICE scores, top-n candidates are used for beam search, whereas n
random samples drawn with the given (t, k) configuration are used for sampling. Black dashed lines
show the highest value reported for beam search when n = 1.

5 Conclusion

In this paper, we have presented a novel methodology for Image-to-Speech synthesis without relying
on text. We introduced a novel dataset of over 600k spoken captions for the MSCOCO dataset which
we make publicly available to the research community. Finally, we introduced a novel captioning
metric, M-SPICE, which jointly evaluates the quality and diversity of a captioning model. Future
work should investigate applying the proposed method to additional languages, devising improved
speech unit representations, and jointly training the speech unit model with the I2S model. This
would offer the opportunity to explore new analysis-by-synthesis training objectives. Finally, other
tasks such as visual dialog could be explored as a way of teaching the model via richer interaction.
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A Visually-Grounded Speech Datasets

Table A1 displays details of the three visually-grounded speech datasets used in this paper, and
distributions of utterance duration are illustrated in Figure A1. When computing duration statistics,
we exclude utterances longer than 15s for SpokenCOCO and Flickr8k Audio, and 40s for Places
Audio, because we found that those utterances resulted from incorrect operation of the data collection
interface (e.g., workers forgot to stop recording). When computing vocabulary sizes and word
statistics, text transcripts are normalized by lower-casing all the alphabets and removing characters
that are neither alphabets nor digits.

For the SpokenCOCO data collection on Amazon Mechanical Turk, we displayed the text of a
MSCOCO caption to a user and asked them to record themselves reading the caption out loud. For
quality control, we ran a speech recognition system in the background and estimated the word-level
transcription for each recording. We computed the word error rate of the ASR output against the text
that the user was prompted to read, and only accepted the caption if the word error rate was under
30%. In the case that the word error rate was higher, the user was asked to re-record their speech. We
paid the users $0.015 per caption recorded, which in conjunction with the 20% overhead charged by
Amazon resulted in a total collection cost of $10,898.91.

Table A1: Statistics and properties of the three visually-grounded speech datasets used in the paper.
SpokenCOCO Flickr8k Audio [32] Places Audio [36]

Num. of Utterances 605495 40000 400000
Num. of Speakers 2353 183 2683
Num. of Images 123287 8000 400000
Num. of Utterances / Image 5 5 1
Utterance Duration µ 4.12s 4.33s 8.37s
Utterance Duration σ 1.31s 1.33s 4.53s
Avg. Num. of Words / Utterance 10.45 10.81 19.29
Avg. Num. of Words / Second 2.41 2.63 2.31
Total Duration 742hr 46hr 936hr
Vocabulary Size 29539 8718 41217
Type scripted scripted spontaneous

Figure A1: Utterance duration histograms for the three visually-grounded speech datasets.

B Detailed Explanation for M-SPICE

SPICE computes an F-score between two bags of semantic propositions T (S) and T (c) parsed from
a set of references S = {si}i and a hypothesis c, where T (c) denotes a bag of propositions extracted
from a scene graph parsed c, and we can compute that for multiple sentences with T (S) = ∪i(T (si)),
and we have |T (S)| ≥ |T (si)| for all i, as captions may capture different aspects of the same image.

To extend SPICE for scoring multiple hypotheses C = {cj}Jj=1, one can compute an average
SPICE: 1

J

∑
j F1(T (S), T (cj)), or use the oracle SPICE proposed in [101]: maxjF1(T (S), T (cj)).
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However, these metrics fail to capture the diversity among hypotheses. Let us now consider two
hypothesis set, C1 = {c11, c12} and C2 = {c21, c22}, where

• T (c11) = T (c12) = T (c21) = {(girl), (table), (girl, sit-at, table)}

• T (c22) = {(girl), (girl, young)}

• T (S) = {(girl), (table), (girl, young), (girl, sit-at, table)}

We would like a metric to score C2 higher than C1 because it captures diverse and correct concepts;
however, since F1 scores are the same for c11, c12, c21, and is lower for c22, the average SPICE of C1

is higher while the oracle SPICE are the same for both C1 and C2. Our proposed M-SPICE can be
formulated as F1(∪iT (si),∪jT (cj)). When hypotheses capture diverse AND correct propositions,
the M-SPICE recall should increase as shown in Figure A2 row 2. Note that the M-SPICE score and
recall will not increase if propositions are diverse but incorrect.

Figure A2: M-SPICE F-score (same as Figure 5) and recall on the SpokenCOCO test set with
different candidate proposal methods.

C Detailed Experimental Setups

In this section, we provide details about data preprocessing, model architecture, and training hyper-
parameters for each module used in this paper. The same setups are used for all unit types unless
otherwise stated.

C.1 Image-to-Unit Model

Data Images are reshaped to 256×256×3 matrices and per-channel normalized with µ =
[0.485, 0.456, 0.406] and σ = [0.229, 0.224, 0.225]. During training, unit sequences are truncated or
padded to the target length shown in Table A2. The target lengths are determined such that there are
less than 10% sequences truncated while still allowing a reasonable batch size to be used. Units that
occurred less than five times are excluded. Sequences are not truncated during evaluation. We follow
the data splits used in [35] for Places, and [59] for Flickr8k and SpokenCOCO (commonly known as
the “Karpathy split”).

Table A2: Configuration for each type of units used in the Image-to-Unit model.
Word Char VQ3 VQ2 WVQ VQ3 \ RLE

Target Length 18 70 100 200 110 160
Sequence Truncated (%) 1.12 1.74 6.90 9.37 7.80 6.35
Batch Size (SAT) 80 60 40 40 40 40
Batch Size (SAT-FT) 32 32 20 - - -
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Model We adopt an open-source re-implementation3 of Show, Attend, and Tell [109] (SAT) with
soft attention, which replaces the CNN encoder in [109] with a ResNet-101 [41] pre-trained on
ImageNet [19] for image classification. The last two layers of the ResNet are removed (a pooling
layer and a fully-connected layer) such that the encoder produces a 14× 14× 2048 feature map for
each image.

Training Two model variants are considered in this paper: SAT and SAT-FT, which differ in how
each part is initialized and which parts are updated during training. The SAT model initializes the
encoder parameters with a pre-trained image classification model and freezes the encoder parameters
during training. On the other hand, the SAT-FT model (fine-tuned SAT model) initializes the entire
model with a pre-trained SAT model, and update all parameters during training. Adam [61] with
a learning rate of 10−4 is used for optimizing both models. The training objective is maximum
likelihood combined with a doubly stochastic attention regularization introduced in [109] with a
weight of 1. Dropout is applied to the input of decoder softmax layer with a probability of 0.5 during
training. Gradients are clipped at 5 for each dimension. The batch size for each unit is shown in
Table A2, which are chosen based on the target length and the GPU memory constraints. All SAT
models are trained for at most 30 epochs, and SAT-FT models are trained for at most 20 epochs.
Models are selected based on the unit BLEU-4 score on the validation set.

The time complexity of forward computation is the same for the encoder for all units, while for the
decoder it is proportional to the unit sequence length due to the auto-regressive nature. Using two
NVIDIA TITAN X Pascal GPUs with data parallel training, each epoch takes about 2.8 hours for
VQ3 units and 5.3 hours for VQ2 units.

C.2 Unit-to-Speech Model

Data Run-length encoded unit sequences are used as input for all systems (i.e., VQ3 and VQ3 \ RLE
systems share the same unit-to-speech model). The native sample rates of audio files in LJSpeech [55]
and VCTK [99] are 22050Hz and 48kHz, respectively. For consistency and compatibility with
the spectrogram-to-waveform model, we down-sample those in VCTK to 22050Hz. Following
Tacotron [105] and Tacotron2 [88], we compute a 80 dimensional Mel spectrogram for each audio file
with a 256-sample frame hop, a 1024-sample frame size, and a Hann window function. At a sample
rate of 22050Hz, it corresponds to about 11.6ms frame hop and 46.4ms frame size. Utterances longer
than 8 seconds are discarded during training to accommodate for the GPU memory constraints. We
follow the data splits provided at https://github.com/NVIDIA/tacotron2 for LJSpeech. For
the multi-speaker VCTK dataset, to ensure the same speaker distribution between train and valid
splits, we randomly sample 2.5% of the utterances from each speaker for validation, which results in
a set of 1087 utterances.

Model We use a cascade of two systems to convert a unit sequence into a waveform. The first part
synthesizes a Mel spectrogram from a sequence of units, which is referred to as the Unit-to-Speech
model in this paper and determines most of the properties of interest in speech (e.g., linguistic content,
speaker, prosody). The second part is a vocoder that converts a Mel spectrogram into a waveform,
which mostly affects the fidelity of the synthesized speech rather than the aforementioned properties.
A vocoder can be either a learned module like WaveNet [75] and WaveGlow [81], or a parameter-less
signal processing block such as using the Griffin-Lim algorithm [28].

We use an re-implementation4 of Tacotron2 [88] for Unit-to-Speech models, which is a sequence-to-
sequence encoder-decoder model with location-sensitive attention [13]. For single-speaker models
trained on the LJSpeech dataset, the exact same hyperparameters and model architecture are used
as [88]. For multi-speaker models trained on the VCTK dataset, we create an additional speaker
embedding table of 256 dimensions for all speakers and control the speaker identity through these
speaker embeddings. Speaker embeddings are injected at two places in the decoder: first in concate-
nation with the original input to the decoder LSTM, and second in concatenation with the output of
the decoder LSTM, right before predicting the stop token and the spectra of a frame.

3https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning
4https://github.com/NVIDIA/tacotron2
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A pre-trained5 WaveGlow [81] vocoder is used for all Unit-to-Speech models, which demonstrates
the universality of vocoder models and how little acoustic properties of interest are affected by them.
Although it is possible to achieve a even higher fidelity score through training or fine-tuning the
WaveGlow model on the re-synthesized spectrograms, we did not attempt to experiment with that,
since the focus of this paper is to demonstrate the capability of generating fluent spoken captions and
controlling properties like speaker identity independently.

Training A batch size of 64 are used for all systems. Adam [61] with an initial learning rate of
10−3 is used to minimize the mean square error from spectrogram prediction and the binary cross
entropy from stop token prediction combined. L2 regularization for the parameters with a weight of
10−6 is applied, and the L2 norm of the gradients are clipped at 1. Models are trained for 500 epochs
on LJSpeech and 250 epochs on VCTK, and selected based on the validation loss.

The time complexity of forward computation at the encoder is proportional to the unit-sequence
length because of the bi-directional LSTM layer in the encoder. On the other hand, the number of the
decoding steps is proportional to the duration of the speech at the decoder, which is independent of
the choice of input representation; however, at each decoding step, the number of encoder outputs the
attention module attends to is proportional to length of the unit sequence. Empirically, each training
epoch on LJSpeech takes about 12 minutes using two NVIDIA Titan X Pascal GPUs for both VQ2
and VQ3 models despite that VQ2 sequences are in average twice as long as VQ3 sequences, which
shows that time complexity are dominated by other computations.

C.3 Speech-to-Unit Model

We obtain the ResDAVEnet-VQ “{2}→ {2, 3}” model and the WaveNet-VQ (PA) model reported
in [35] from the authors. Both models learn discrete representations for speech and are used to
transcribe speech into a sequence of units in this paper. We use these models to extract unit sequences
for all datasets without fine-tuning, which examines the robustness of these Speech-to-Unit models
when applied to datasets of different domains. Table A3 compares the three types of units used
in this paper (VQ3, VQ2, WVQ) extracted from these two models. For self-containedness, the
ABX error rate for each unit reported in [35] are also included. The ABX test evaluates the phone
discriminability of the learned units on the ZeroSpeech 2019 English test set [24]. Note that (1) VQ3
and WVQ have the same unit rate before run-length encoding, (2) VQ2 achieves the lowest ABX
error rate, (3) and all units have a lower ABX error rate before run-length encoding.

Table A3: Properties of the three types of units and the two speech-to-unit models.
VQ3 VQ2 WVQ

Source Model ResDAVEnet-VQ ResDAVEnet-VQ WaveNet-VQ
Training Data Places Audio+Image Places Audio+Image Places Audio
Training Objective Contrastive Loss Contrastive Loss Reconstruction Loss
RLE ABX Error Rate 15.68% 13.06% 25.23%
Pre-RLE ABX Error Rate 14.52% 12.51% 24.87%
Pre-RLE Unit Rate 40ms 20ms 40ms

D Image-to-Unit Samples

Table A4 and A5 display unit captions for the same image generated from Image-to-Unit models
trained on different learned units. Captions in Table A4 are decoded with beam search (beam size=5),
and those in Table A5 are sampled from the model distribution with top-k sampling (k = 5).

Table A4 shows that Image-to-Unit models trained on WVQ and VQ3 units without run-length
encoding (VQ3 \ RLE) fail to produce reasonable captions using beam search for all images. In
fact, generated captions are almost always the same among different images for these two models.
The WVQ model generates captions looping the same bi-gram until exceeding the maximum length,
while the VQ3 \ RLE repeats the same unit. On the other hand, the model trained on VQ2 units can
sometimes produce reasonable captions, but it exhibit the same behavior as the WVQ model when it
fails as shown here.

5https://github.com/NVIDIA/waveglow
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On the contrary, Table A5 shows that all four models are capable of generating non-trivial captions
without looping via sampling.6 The observation here is consistent with the evaluation results on the
transcribed spoken captions presented in Table A7 and A8 and Figure A3.

Table A4: Exemplar beam search decoding results from SAT Image-to-Unit models.
Symbol Captioned Generated with Beam Search (beam size=5)

VQ3 263 32 208 5 336 100 717 803 256 803 815 144 120 144 654 936 48 417 272 417 362 766
825 284 614 156 341 135 769 5 208 32 208 5 336 815 144 815 494 181 467 417 870 395
683 141 250 543 820 587 181 913 1013 467 5 208 32 208 5 467 360 606 360 801 1009 398
847 89 100 869 254 1003 442 42 791 417 272 141 766 362 614 156 341 135 769 5 208 32

VQ2 71 791 71 791 71 791 71 791 71 791 71 791 71 791 71 791 71 791 71 791 71 791 71 791 71
791 71 791 71 791 71 791 71 791...

WVQ 181 232 181 232 181 232 181 232 181 232 181 232 181 232 181 232 181 232 181 232 181
232 181 232 181 232 181 232 181 232...

VQ3 \ RLE 263 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
32 32 32 32 32 32 32 32 32 32 32 32...

Table A5: Exemplar sampling results with (t, k) = (1.0, 5) from SAT Image-to-Unit models.
Symbol Captioned Generated with top-k sampling (k = 5)

VQ3 263 208 467 717 288 426 986 72 44 341 151 801 1022 27 320 426 288 66 570 683 351 313
910 820 543 820 230 100 852 329 852 288 502 706 427 110 451 297 938 457 426 100 852
329 852 791 993 522 993 374 502 288 936 48 263 208 32

VQ2 71 791 71 791 71 791 71 191 175 51 139 359 173 599 307 419 133 621 85 165 315 883 175
191 71 791 71 48 511 765 983 873 314 409 333 267 409 734 229 787 184 937 886 254 934
666 973 19 947 227 805 967 883 175 48 695 511 655 806 491 647 507 343 867 819 655
699 491 136 221 513 996 675 581 467 652 488 186 3 183 311 613 371 463 314 21 238 910
238 657 230 82 270 868 643 78 391 940 922 49 771 986 147 947 19 957 862 957 95 7 819
695 1011 159 831 589 966 827 753 891 162 253 269 219 13 501 977 302 241 157 691 723
695 175 191 71 791 71 791 71 791 71 48 1007

WVQ 181 232 181 232 181 232 181 232 181 232 181 225 124 232 181 232 225 232 181 225 124
225 232 181 252 169 211 147 89 67 156 155 189 110 53 246 225 89 52 21 5 216 155 225
25 47 41 223 225 181 166 57 185 82 25 225 124 149 214 93 28 195 65 1 23 109 246 223
141 47 41 223 181 232 82 231 188 169 147 89 225 181 225 124 181 124 5 216 53 246 181
225 137 52 5 159 225 181 225 46 155 246 232 181 232 225 232 181 225 52 30 5 216 166
225 124 225 181 225 5 4 46 225 181 25 137 52 159 155 225 181 225 108 155 246 225 108
155 225 232 181 25 89 221 70 197 232 181 225 214 28 214 225 181 232 244 220

VQ3 \ RLE 263 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 208 208 5 5 336 100 803 256 560 417
870 870 870 968 910 250 543 820 587 909 909 181 717 48 936 48 224 176 284 538 133 807
715 39 27 27 476 5 5 476 570 395 395 683 313 141 250 250 587 587 494 909 922 181 100
100 827 119 66 272 417 766 766 766 614 614 156 341 135 135 181 913 913 1013 5 208 208
208 208 208 208 5 5 5 476 320 96 96 651 538 133 766 766 825 740 913 1013 467 5 208
208 32 32 32 32 208 208 5 5 336 501 254 254 254 254 1003 442 852 362 825 740 639 639
587 543 543 975 320 320 284 284 228 844 844 622 622 846 654 654 846 336 263 208 32
32 32 32 32 32 32 32 32 32 32 32 32 32

6The model might still generate trivial captions when sampling with a temperature close to zero or setting a
very small k with top-k sampling, in which case sampling is similar to greedy decoding.
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E Caption Evaluation on Unit Sequences

The spoken caption evaluations presented in Section 3.2 utilized an automatic speech recognizer to
transcribe the generated captions into words so that they could be compared against reference text
captions. In the case that a speech recognizer is not available, we can perform evaluation directly on
the speech unit representations by using the unit model to transcribe the reference spoken captions.
Table A6 displays BLEU-4, METEOR, ROUGE, and CIDEr scores evaluated directly on the various
speech unit representations; we cannot compute SPICE scores directly on the speech units because
SPICE requires a dependency tree for each caption. It is important to note that for a given evaluation
metric, the scores across the models are not directly comparable because their unit spaces are different.
We do note that the relative ranking among VQ3, VQ2, and Wavenet-VQ is consistent across BLEU-4,
METEOR, and ROUGE, however, VQ3 \ RLE achieves abnormally high scores on these metrics
despite producing trivial captions for all images as shown in Table A4. This is because unit “32” has
learned to represent non-speech frames such as silence, which frequently occurs at both the beginning
and end of utterances. Without RLE, consecutive strings of “32” units are extremely common in both
the candidate and reference captions, which inflates the scores of this model. The exception here is
the CIDEr metric, which incorporates TF-IDF weighting that tends to de-emphasize these kinds of
uninformative patterns. The fact that the CIDEr score is 0 for both the VQ3 \ RLE and Wavenet-VQ
models indicates that in general the captions produced by these models are uninformative. We posit
that word-level evaluation is always preferable for spoken caption generation, but in the case that this
is not possible the CIDEr metric may be the best option.

Table A6: Unit-based caption evaluation on MSCOCO test set. The beam size ∈ {3, 5, 10} was
chosen for each model to maximize the CIDEr score. Note that the scores between different units are
not directly comparable, because they are computed based different types of units.

symbol Greedy / Beam-Search (SAT Model)
Unit BLEU-4 Unit METEOR Unit ROUGE Unit CIDER

VQ3 0.176 / 0.274 0.178 / 0.196 0.280 / 0.328 0.121 / 0.215
VQ2 0.172 / 0.141 0.132 / 0.108 0.178 / 0.157 0.027 / 0.020
WVQ 0.019 / 0.020 0.048 / 0.048 0.081 / 0.081 0.000 / 0.000

VQ3 \ RLE 0.163 / 0.163 0.168 / 0.168 0.218 / 0.218 0.000 / 0.000
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F Full Results of Caption Evaluation on Word Sequences

Table A7 and A8 and Figure A3 present the complete caption evaluation results on transcribed word
sequences for all 5 metrics, supplementing Figure 3 in the main paper that only presents the SPICE
results. Note that the transcripts for WVQ and VQ3 \ RLE beam search captions are not reliable;
for the reasons discussed in the previous section the generated spoken captions contain only silence,
and the ASR model used for transcription did not see utterances comprised of pure silence during
training. We see that ranking between symbols are generally consistent among all those metrics,
except the ranking between WVQ and VQ3 \ RLE when sampling with a temperature of 0.4. This is
a relatively low-score regime when both model are transiting from generating trivial caption (t = 0.1)
to non-trivial captions (t = 0.7).

Table A7: Word-based caption evaluation on MSCOCO test set. An ASR model is used to transcribe
the spoken captions into text for evaluation. The beam size ∈ {3, 5, 10} was chosen for each model
to maximize the SPICE score.

symbol Greedy / Beam-Search (SAT Model)
BLEU-4 METEOR ROUGE CIDEr SPICE

word 0.287 / 0.315 0.247 / 0.253 0.524 / 0.533 0.939 / 0.984 0.180 / 0.185
char 0.238 / 0.289 0.230 / 0.239 0.495 / 0.512 0.783 / 0.879 0.164 / 0.172
VQ3 0.133 / 0.186 0.162 / 0.186 0.413 / 0.446 0.435 / 0.584 0.111 / 0.127
VQ2 0.068 / 0.073 0.138 / 0.126 0.343 / 0.345 0.262 / 0.224 0.084 / 0.065
WVQ 0.010 / 0.009 0.069 / 0.069 0.286 / 0.285 0.009 / 0.009 0.011 / 0.011

VQ3 \ RLE 0.000 / 0.000 0.002 / 0.002 0.001 / 0.001 0.000 / 0.000 0.001 / 0.001

Table A8: Sampling-based evaluations with SAT models trained on different units.

Metric symbol Sampling with Temperature Top-K Sampling (t = 1.0) Top-K Sampling (t = 0.7)
t = 1.0 t = 0.7 t = 0.4 t = 0.1 k = 10 k = 5 k = 3 k = 10 k = 5 k = 3

BLEU-4

VQ3 0.052 0.097 0.132 0.137 0.084 0.108 0.120 0.109 0.119 0.124
VQ2 0.039 0.058 0.068 0.066 0.059 0.068 0.069 0.064 0.070 0.071
WVQ 0.033 0.047 0.025 0.012 0.056 0.050 0.037 0.052 0.042 0.025

VQ3 \ RLE 0.049 0.075 0.035 0.000 0.070 0.087 0.092 0.082 0.094 0.093

METEOR

VQ3 0.124 0.151 0.168 0.165 0.147 0.160 0.166 0.159 0.165 0.168
VQ2 0.115 0.134 0.146 0.140 0.134 0.142 0.147 0.140 0.144 0.147
WVQ 0.096 0.106 0.078 0.069 0.112 0.104 0.088 0.105 0.094 0.080

VQ3 \ RLE 0.119 0.135 0.055 0.002 0.136 0.146 0.148 0.141 0.144 0.141

ROUGE-L

VQ3 0.303 0.358 0.403 0.416 0.346 0.371 0.386 0.373 0.386 0.397
VQ2 0.293 0.330 0.351 0.345 0.325 0.345 0.351 0.340 0.348 0.355
WVQ 0.270 0.297 0.287 0.287 0.312 0.309 0.292 0.309 0.295 0.276

VQ3 \ RLE 0.295 0.330 0.152 0.001 0.328 0.349 0.355 0.340 0.348 0.350

CIDEr

VQ3 0.195 0.345 0.461 0.451 0.312 0.383 0.424 0.395 0.431 0.444
VQ2 0.143 0.231 0.272 0.267 0.220 0.260 0.277 0.251 0.270 0.278
WVQ 0.095 0.150 0.044 0.009 0.180 0.145 0.082 0.154 0.116 0.055

VQ3 \ RLE 0.182 0.277 0.130 0.000 0.260 0.316 0.340 0.304 0.328 0.332

SPICE

VQ3 0.063 0.093 0.111 0.114 0.086 0.100 0.108 0.100 0.106 0.109
VQ2 0.052 0.074 0.086 0.087 0.073 0.082 0.085 0.079 0.084 0.087
WVQ 0.035 0.046 0.019 0.011 0.051 0.042 0.026 0.043 0.034 0.020

VQ3 \ RLE 0.060 0.078 0.034 0.001 0.077 0.087 0.091 0.083 0.088 0.086
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Figure A3: Word-based caption evaluation results of all five metrics on SAT models trained on
different units, using both beam search decoding and sampling for unit sequence generation.
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G Comparison of Average SPICE and M-SPICE

Figures A4 and A5 display the M-SPICE scores and SPICE score distributions of different sampling
methods for the SAT and SAT-FT model trained on VQ3 units, respectively. The exact numbers are
shown in Tables A9, A11, A10, and A12. When performing sampling-based evaluation, there is
bound to be some stochasticity in the results. However, the SPICE score distributions (box plots over
10 trials) shown in the bottom row of Figures A4 and A5 are very narrow, which we attribute to the
fact that the COCO test set is large enough attenuate this stochasticity. The narrowness of the box
plots also suggests that taking the average SPICE score over multiple sampling runs does not reflect
the diversity of the captions the way that M-SPICE does.

Table A9: M-SPICE F1-scores of the VQ3 SAT
model with beam search decoding.

n =
Beam Size

1 3 5 8 10

1 0.111 0.125 0.127 0.126 0.125
2 - 0.127 0.130 0.129 0.128
3 - 0.129 0.131 0.131 0.130
5 - - 0.134 0.133 0.132
10 - - - - 0.135

Table A10: M-SPICE F1-scores of the VQ3 SAT-
FT model with beam search decoding.

n =
Beam Size

1 3 5 8 10

1 0.140 0.147 0.149 0.148 0.148
2 - 0.152 0.154 0.152 0.152
3 - 0.155 0.157 0.155 0.154
5 - - 0.161 0.159 0.158

10 - - - - 0.164

Table A11: M-SPICE F1-scores of the VQ3 SAT model with sampling. t denotes the temperature,
and k denotes the number of top units considered at each decoding step for top-K sampling.

n =
Sampling with Temperature Top-K Sampling (t = 1.0) Top-K Sampling (t = 0.4)

t = 1.0 t = 0.7 t = 0.4 t = 0.1 k = 10 k = 5 k = 3 k = 10 k = 5 k = 3

1 0.063 0.093 0.111 0.114 0.086 0.100 0.108 0.100 0.106 0.109
2 0.092 0.128 0.147 0.137 0.120 0.137 0.145 0.138 0.143 0.146
3 0.106 0.145 0.163 0.147 0.137 0.153 0.161 0.153 0.160 0.163
5 0.117 0.156 0.175 0.154 0.148 0.165 0.173 0.164 0.173 0.174

10 0.115 0.153 0.173 0.155 0.145 0.160 0.169 0.162 0.169 0.171

Table A12: M-SPICE F1-scores of the VQ3 SAT-FT model with sampling.

n =
Sampling with Temperature Top-K Sampling (t = 1.0) Top-K Sampling (t = 0.4)

t = 1.0 t = 0.7 t = 0.4 t = 0.1 k = 10 k = 5 k = 3 k = 10 k = 5 k = 3

1 0.076 0.113 0.136 0.140 0.109 0.122 0.131 0.137 0.137 0.141
2 0.108 0.153 0.177 0.168 0.146 0.164 0.173 0.178 0.179 0.180
3 0.123 0.171 0.195 0.180 0.163 0.182 0.192 0.196 0.197 0.199
5 0.134 0.184 0.208 0.190 0.174 0.194 0.204 0.210 0.211 0.211

10 0.130 0.180 0.207 0.193 0.170 0.189 0.200 0.208 0.209 0.210
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Figure A4: M-SPICE F1-scores and recalls (top) and SPICE distributions (bottom) of the SAT model
on the MSCOCO test set with different caption generation methods. Box-and-whisker plots the
SPICE scores over 10 runs are shown, where a box extends from the first quartile to the third quartile.

Figure A5: M-SPICE F1-scores and recalls (top) and SPICE distributions (bottom) of the SAT-FT
model on the MSCOCO test set with different caption generation methods.
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H Full Results of Learned Vocabulary Size

In Table A13, we display the numerical results depicted graphically in Figure 4.

Table A13: The vocabulary size of the VQ3 SAT-FT model as estimated by various decoding
approaches. The numbers in this table display the specific values of the curves depicted in Figure 4.

n
Beam Search Sampling (t: temperature; k: top-k)
beam size=? (t, k) = (?, All) (t, k) = (1.0, ?) (t, k) = (0.7, ?)

1 3 5 8 10 1.0 0.7 0.4 0.1 10 5 3 10 5 3

1 551 479 447 421 411 1447 978 689 561 1058 908 770 694 663 670
2 - 572 523 502 474 2100 1367 917 696 1522 1289 1025 907 867 851
3 - 693 620 585 562 2550 1644 1075 803 1855 1515 1222 1069 1003 973
5 - - 681 625 617 3239 2111 1305 938 2367 1861 1511 1266 1209 1155
10 - - - - 700 4311 2876 1664 1155 3176 2512 1954 1618 1552 1437

I Disentangled Voice Control for Image-to-Speech Synthesis

We examine to what extent the VQ3 units are portable across different speakers by training a U2S
model on the VCTK dataset that additionally takes a speaker ID as input. The resulting model is able
to generate speech with the voice of any VCTK speaker. We evaluate the captions produced by this
system on SpokenCOCO for 5 speakers in Table A14. In order to compute these scores we transcribe
the captions generated by each model into text using the ASR system we describe in Section 4, which
was solely trained on re-synthesized SpokenCOCO captions using the LJSpeech U2S model. The
scores in Table A14 indicate not only that the I2U model can be easily integrated with U2S models
representing a diverse set of speakers, but also that the LJSpeech ASR system works very well on the
speech synthesized from the VCTK models. In Figure 1, we show example captions generated by
conditioning on the same unit sequence, but different speaker identities.

Table A14: Demonstration of disentangled voice control via synthesizing the same units with different
unit-to-speech models conditioned on different speaker IDs. Units are generated with beam search
using the SAT-FT model for the MSCOCO test set.

Train Data Speaker ID Gender Region BLEU-4 METEOR ROUGE CIDER SPICE

LJSpeech - F - 0.233 0.212 0.478 0.732 0.149

VCTK

p247 M Scottish 0.234 0.211 0.480 0.730 0.148
p231 F English 0.233 0.210 0.478 0.724 0.146
p294 F American 0.236 0.212 0.482 0.732 0.148
p345 M American 0.234 0.209 0.477 0.717 0.144
p307 F Canadian 0.234 0.211 0.479 0.729 0.148

J More Image-to-Speech Samples

In Tables A15 and A16, we show many more examples of spoken captions generated by the VQ3
model. In Table A15, all three captions in each row were generated from the same unit sequence
corresponding to the top hypothesis from beam search decoding. Each column represents the
caption waveform generated by a different U2S model reflecting a different speaker. Although the
spectrograms are visibly very different (reflecting the differing speaker characteristics across the U2S
models), the word sequence estimated by the ASR model is generally the same. We do notice some
substitution errors (highlighted in red), most commonly between “a” and “the”.

Table A16 shows captions generated by the same VQ3 model and for the same set of images depicted
in Table A15, but instead of varying the U2S model we show captions generated via sampling rather
than beam search. Here, we note that the sampled captions exhibit diversity both their content and
linguistic style. We observe that the captioning model has learned to produce captions that correctly
use quantifiers and conjugate verbs (“a couple of cows walking” vs. “a cow is standing”). The model
also disentangles object identity from attributes such as color “red fire hydrant” vs. “yellow fire
hydrant” vs. “green fire hydrant”).
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Table A15: Samples. More at https://wnhsu.github.io/image-to-speech-demo/3_vq3_
voice_control_sat-ft_model

Image Generated Spoken Captions / Transcripts (SAT-FT, VQ3, Beam Search)
LJSpeech VCTK (p247) VCTK (p307)

a small airplane sitting on
the grass

a small airplane sitting on
the grass

a small airplane sitting on
the grass

a man riding a wave on a
surfboard

a man riding a wave on a
surfboard

a man riding a wave on a
surfboard

a large red bus on the side
of the road

a large red bus on the side
of the road

a large red bus on the side
of a road

a couple of cows standing
in the grass

a couple of cows standing
in the grass

a couple of cows standing
in the grass

a cow walking down the
street with a store

a cow walking down the
street in a store

a cow walking down the
street next to a store

a red fire hydrant sitting
on the side of a street

a red fire hydrant sitting
on the side of a street

a red fire hydrant sitting
on the side of a street

a yellow fire hydrant
sitting on the side of a

road

a yellow fire hydrant
sitting on the side of the

road

a yellow fire hydrant
sitting on the side of a

road

a green fire hydrant sitting
on a sidewalk

a green fire hydrant sitting
on the sidewalk

a green fire hydrant sitting
on a sidewalk
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Table A16: Samples. More at https://wnhsu.github.io/image-to-speech-demo/2_vq3_
sample_diversity_sat-ft_model

Image Generated Spoken Captions / Transcripts (SAT-FT, VQ3, Sampling (t, k) = (0.4, 3))
trial 1 trial 2 trial 3

the airplane is parked on
the field

a plane is parked in the
grass near a white and

white airplane

a small airplane that is
standing in a field

a surfer riding a wave in
the water

the man is riding the wave
in the water

a surfer is riding a wave
on a wave

the bus parked on the side
of the road

a large red bus is stopped
in the road

a bus is parked on the road

a couple of cows walking
in a field

a couple of cows in a
grassy field

a couple of cows walking
in a grassy field

a cow is standing in a
store

a brown cow walking
down the side of a street

a brown and white cow
standing in a line

a red fire hydrant is sitting
on the side of the street

a red fire hydrant sitting
on a sidewalk in a

concrete

a red fire hydrant sitting
on the side of a road

a yellow fire hydrant in
the middle of the side of a

road

a yellow fire hydrant is
sitting in the park

a yellow fire hydrant in a
line on the side of a street

a fire hydrant on a
sidewalk in the middle

a green fire hydrant on the
side of the road

a fire hydrant with a curb
on the side of the street
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