
GENERATIVE PRE-TRAINING FOR SPEECH WITH AUTOREGRESSIVE PREDICTIVE
CODING

Yu-An Chung, James Glass

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
{andyyuan, glass}@mit.edu

ABSTRACT

Learning meaningful and general representations from unannotated
speech that are applicable to a wide range of tasks remains challeng-
ing. In this paper we propose to use autoregressive predictive cod-
ing (APC), a recently proposed self-supervised objective, as a gen-
erative pre-training approach for learning meaningful, non-specific,
and transferable speech representations. We pre-train APC on large-
scale unlabeled data and conduct transfer learning experiments on
three speech applications that require different information about
speech characteristics to perform well: speech recognition, speech
translation, and speaker identification. Extensive experiments show
that APC not only outperforms surface features (e.g., log Mel spec-
trograms) and other popular representation learning methods on all
three tasks, but is also effective at reducing downstream labeled data
size and model parameters. We also investigate the use of Trans-
formers for modeling APC and find it superior to RNNs.

Index Terms— representation learning, self-supervised learn-
ing, pre-training, transfer learning, autoregressive modeling

1. INTRODUCTION

The goal of speech representation learning is to find a transforma-
tion from surface features such as waveforms and spectrograms
that makes high-level properties of speech (e.g., phonetic content,
speaker characteristics, and even emotional cues) more accessible
to downstream tasks. Unsupervised or self-supervised objectives
are especially appealing for learning representations as they can
leverage unlabeled data, which are much cheaper to obtain and more
scalable than datasets requiring annotation. Representations learned
via unsupervised approaches are also less likely to be biased toward
a certain set of problems [1, 2, 3, 4, 5], and have more potential to
be applied to a wide range of tasks.

In this paper, we aim to derive a generative pre-training approach
that learns general and meaningful speech representations transfer-
able to a variety of, potentially unknown, downstream speech tasks,
where each task may require information about a different aspect
of speech to perform well. For example, phonetic content may be
more crucial to speech recognition, while speaker-related applica-
tions may value the speaker information more.

Due to the required generality, we argue that it is necessary to
retain in the representations as much information about the origi-
nal signals as possible, and let the downstream model select which
information in the representations are most useful for the task it

Code and pre-trained models are available at https://github.
com/iamyuanchung/Autoregressive-Predictive-Coding.

is tackling. However, most existing representation learning objec-
tives [6, 7, 8, 9, 10] are designed to remove certain variabilities in
speech (such as noise or speaker, depending on their design) and thus
risk discarding information that could be useful for unknown down-
stream tasks. Autoregressive predictive coding (APC) [1], on the
other hand, has been shown capable of learning representations that
preserve information about the original signals, thus making them
more accessible for downstream usage, where accessibility is de-
fined as how linearly separable the representations are. This makes
APC an ideal generative pre-training approach for transfer learning.

The rest of the paper is organized as follows. In Section 2 we
briefly review the objective of APC and introduce two types of ar-
chitectures to work as its backbone. In Section 3 we describe how
we perform transfer learning with APC. Experiments and analysis
on speech recognition, speech translation, and speaker identification
are presented in Section 4. Finally, we conclude in Section 5 and
point out some interesting future directions.

2. AUTOREGRESSIVE PREDICTIVE CODING

2.1. Objective

Autoregressive predictive coding (APC) [1] considers the sequen-
tial structures of speech and attempts to predict information about
a future frame. Inspired by the neural language modeling objective
for text [11], which models the likelihood of a sequence of tokens
to appear as a legit language, APC is trained to understand what a
reasonable spectrogram should look like and encode such informa-
tion in the representations. Given a speech utterance represented as
a sequence of acoustic feature vectors (e.g., log Mel spectrograms)
x = (x1, x2, ..., xN), APC incorporates an encoder Enc that en-
codes each frame xi one at a time autoregressively until the current
frame xk, and tries to predict a future frame xk+n that is n steps
ahead of xk. n ≥ 1 is meant to encourage Enc to infer more global
structures in speech rather than exploiting local smoothness of sig-
nals. At each time step, Enc produces an output prediction yi that
has the same dimensionality as xi. Enc is optimized by minimiz-
ing the L1 loss between the predicted sequence y = (y1, y2, ..., yN)
and the target sequence t = (t1, t2, ..., tN), which can be easily
generated by right-shifting the input sequence x by n time steps:

N−n∑
i=1

|ti − yi|, ti = xi+n. (1)

Since the training target is derived from its input, APC is self-
supervised and can benefit from large quantities of unlabeled data.

3497978-1-5090-6631-5/20/$31.00 ©2020 IEEE ICASSP 2020

Authorized licensed use limited to: MIT Libraries. Downloaded on October 06,2021 at 18:10:49 UTC from IEEE Xplore. Restrictions apply.

2.2. Encoder model

We consider two implementations of the encoder Enc for processing
x = (x1, x2, ..., xN) and producing y = (y1, y2, ..., yN) in an au-
toregressive fashion: an RNN and a Transformer [12]. For the RNN,
we use standard L-layer unidirectional GRUs [13]:

h0 = x,

hl = GRU(l)(hl−1), ∀l ∈ [1, L],

y = WhL,

(2)

where W projects the output of the last RNN layer hL to the dimen-
sionality of x. For an RNN-based APC, the set of trainable parame-
ters is: {W,GRU(1), ...,GRU(L)}.

For the Transformer, similar to [14, 15], we consider a stack of
L identical decoder blocks of the original architecture [12]. Each
block applies a multi-headed self-attention operation over the input
sequence followed by a position-wise feedforward layer for produc-
ing the input to the next block. We follow [12] and use the sinusoidal
positional encodings, which do not introduce additional parameters,
to provide positional information of x to the model:

h0 = Winx+ P (x),

hl = TRF(l)(hl−1), ∀l ∈ [1, L],

y = WouthL,

(3)

where TRF stands for Transformer, P (·) denotes the sinusoidal en-
coding function, Win is an affinity that maps x to the dimensional-
ity of the Transformer hidden state, and Wout is another affinity that
maps the final Transformer output hL back to the dimensionality of
x. The set of trainable parameters of a Transformer-based APC is:
{Win,Wout,TRF(1), ...,TRF(L)}. In practice, we tie Win and
Wout by setting Win = WT

out as a regularization.

3. TRANSFER LEARNING WITH APC

3.1. Pre-training data

We use the LibriSpeech corpus (only the speech portion) [16] for
training APC. Specifically, the train-clean-360 subset, which
contains 360 hours of audio produced by 921 speakers in total, is
used. We use 80-dimensional log Mel spectrograms (normalized to
zero mean and unit variance per speaker) as input features. We also
explore the effect of different n (Equation 1).

3.2. Transfer learning approaches

Once an APC feature extractor Enc is trained, for a downstream
labeled dataset {(xj , cj)}Sj=1, where (xj , cj) is a (feature, label)
pair and S denotes the training size, we transform the surface
features {xj}Sj=1 (in our case, the log Mel spectrograms) into
a higher-level representation with Enc and obtain a new dataset
{(Enc(xj), cj)}Sj=1. Note that cj can be a sequence or a single
value, depending on the task.

We simply take the output of the last layer of RNN or Trans-
former as the extracted representations, i.e., Enc(x) = hL in Equa-
tions 2 and 3, although there are potentially better approaches that
combine the internal representations across all layers [17].

When training a downstream model with {(Enc(xj), cj)}Sj=1,
one possibility is to keep Enc frozen and only optimize the model;
another way is to update Enc as well so that the extracted represen-
tations are better adapted to the task of interest. We examine both
approaches in Section 4.

4. EXPERIMENTS

We consider three important tasks for our transfer learning experi-
ments: (1) automatic speech recognition, (2) speaker identification,
and (3) automatic speech translation. For each task, we describe the
used dataset and downstream model in their respective section.

4.1. APC training details

As introduced in Section 2, we consider two architectures as the
backbone of APC: RNN (Equation 2) and Transformer (Equation 3),
denoted as R-APC and T-APC, respectively. For R-APC, we use 4-
layer unidirectional GRUs with 512 hidden units. Following [1], we
employ residual connections [18] between two consecutive layers.
For T-APC, we construct a 4-layer decoder-only Transformer with a
hidden size of 512; each layer consists of an 8-headed self-attention
module followed by a 1-layer MLP with 2048 hidden units and a
GELU activation function [19]. Both R-APC and T-APC are trained
for 100 epochs using Adam [20] with a batch size of 32 and an initial
learning rate of 10−3.

4.2. Comparing methods

We compare APC with two recently proposed self-supervised
representation learning objectives: contrastive predictive coding
(CPC) [6] and problem-agnostic speech encoder (PASE) [3].

CPC and APC share a similar learning methodology, which is to
predict information about a future frame xk+n based on a history
H = (x1, x2, ..., xk). However, instead of trying to directly predict
xk+n given H via regression, CPC aims to learn representations
containing information that are most discriminative between xk+n

and a set of randomly sampled frames {x̃}. The origin distribu-
tion where {x̃} are drawn from will largely affect what information
are encoded in the representations. For example, if {x̃} come from
the same utterance as xk+n, speaker information is likely to be dis-
carded since they do not help distinguish xk+n and {x̃}. Despite its
effectiveness in tasks where the type of useful information is known
(so one can select the sampling strategy accordingly), CPC might
not be an ideal generative pre-training approach due to its lack of
flexibility for learning general representations.

We mainly follow [6] for implementing CPC with some modi-
fications described in [1]. As for APC, we also train CPC with the
LibriSpeech train-clean-360 subset.

PASE is a feature extractor trained by jointly optimizing multiple
self-supervised objectives, where the learning target for each objec-
tive can be generated from the input signals. Ideally, solving each
task contributes to prior knowledge into the representation, resulting
in a more general one that is potentially suitable for transfer learning.

Unfortunately, we are unable to train our own PASE using
train-clean-360, probably due to the complexity of optimiz-
ing multiple objectives simultaneously. Therefore, we directly use
the pre-trained PASE model released by the authors [3]. This model
was trained on about 10 hours of LibriSpeech audio—according
to [3], they first aggregated all subsets in LibriSpeech, resulting in
about 1,000 hours of audio produced by 2,484 speakers in total, then
randomly selected utterances from the full set to exploit about 15
seconds of training material for each speaker.

For a fair comparison, we also train APC and CPC with approxi-
mately 10 hours of audio randomly selected from train-clean-360.
Note that although they are trained on about the same amount of au-
dio, PASE has actually seen more speakers while each speaker also

3498

Authorized licensed use limited to: MIT Libraries. Downloaded on October 06,2021 at 18:10:49 UTC from IEEE Xplore. Restrictions apply.

has fewer training material. We add a subscript 10 to a model (e.g.,
CPC10) if it is trained on only 10 hours of audio.

Below we present our transfer learning results on the three con-
sidered tasks, starting with automatic speech recognition (ASR).

4.3. Speech recognition

We conduct ASR experiments on the Wall Street Journal (WSJ) [21]
corpus. We follow the standard split, using 90% of si284 (about
72 hours) for training, the rest 10% for development, and report-
ing word error rates (WER) on dev93. The ASR model we use is
a end-to-end, sequence-to-sequence (seq2seq) with attention archi-
tecture [22] composed of an encoder and a decoder. The encoder
consists of 2 convolutional layers for downsampling the input fea-
tures followed by a 4-layer bidirectional 256-dim GRU network.
The decoder is a 1-layer unidirectional 256-dim GRU network. The
seq2seq model is trained for 100 epochs using Adam with a batch
size of 16 and a learning rate of 10−3. For decoding, we use beam
search with a beam size of 5. The baseline WER using log Mel
spectrograms as input features is 18.3.

Table 1: ASR results (WER ↓) of APC with varying n during pre-
training and different transfer learning approaches (Frozen vs. Fine-
tuned). log Mel is the baseline that uses log Mel spectrograms as
input features. The best transfer learning result is marked in bold.

Features n

1 2 3 5 10 20

log Mel 18.3

R-APC Scratch 23.2
R-APC Frozen 17.2 15.8 15.2 16.3 17.8 20.9
R-APC Finetuned 18.2 17.6 16.9 18.2 19.7 21.7

T-APC Scratch 25.0
T-APC Frozen 19.0 16.1 14.1 13.7 15.4 21.3
T-APC Finetuned 22.4 17.0 15.5 14.6 16.9 23.3

The first experiment, presented in Table 1, identifies the best fu-
ture time step to predict when training APC (n in Equation 1) and
transfer learning approach (whether to update the pre-trained APC
weights). We also include the case where APC is randomly initial-
ized and trained from scratch along with the seq2seq model.

From Table 1 we observe that there exists a sweep spot when
we vary n for both R-APC and T-APC regardless of the transfer
learning approach. We think this is because for a small n, APC can
exploit local smoothness in the spectrograms for predicting the target
future frame (since xk can be very similar to xk+n when n is small)
and thus does not need to learn to encode information useful for
inferring more global structures; an overly large n, on the other hand,
makes the prediction task too challenging such that APC is unable to
generalize across the training set. The best n for R-APC is 3 and for
T-APC it is 5. We also find that for all n, keeping pre-trained APC
weights fixed (*-APC Frozen), surprisingly, works better than fine-
tuning them (*-APC Finetuned), while the latter still outperforms
the baseline. Furthermore, we see that training APC from scratch
along with the seq2seq model (*-APC Scratch) always performs the
worst—even worse than the baseline. With APC transfer learning,
WER is reduced by more than 25% from 18.3 to 13.7.

For the rest of the experiments we adopt R-APC Frozen with
n = 3 and T-APC Frozen with n = 5.

In addition to improving the performance of existing models on
standard datasets, transfer learning is potentially useful for reducing

the size of the downstream dataset and model needed for achieve
similar performance. The intuition is that with prior knowledge, one
does not need to learn automatic feature extraction from scratch. Be-
ing data-efficient is especially beneficial to low-resource languages
with very few training pairs available, and a smaller model with
competitive performance can mitigate the problem of having lim-
ited computational or storable resources. Below we demonstrate the
effectiveness of APC transfer learning in these two aspects.

Table 2: ASR WER results with varying amounts of training data
randomly sampled from si284. Feature extractors pre-trained with
just 10 hours of LibriSpeech audio are denoted with a subscript 10.

Features Proportion of si284

1 1/2 1/4 1/8 1/16 1/32

log Mel 18.3 24.1 33.4 44.6 66.4 87.7

CPC 20.7 28.3 38.8 50.9 69.7 88.1
R-APC 15.2 18.3 24.6 35.8 49.0 66.8
T-APC 13.7 16.4 21.3 31.4 43.0 63.2

PASE10 20.8 26.6 32.8 42.1 58.8 78.6
CPC10 23.4 30.0 40.1 53.5 71.3 89.3
R-APC10 17.6 22.7 28.9 38.6 55.3 73.7
T-APC10 18.0 23.8 31.6 43.4 61.2 80.4

In Table 2 we compare APC with other feature extractors using
varying amounts of labeled data. For example, 1/16 means that we
take only 72 × 1/16 = 4.5 hours from si284 for training. We
find that for all input features, there is a significant increase in WER
whenever the training size is reduced by half. When comparing R-
APC and T-APC with log Mel, we see the former two always outper-
form the latter across all proportions, and the gap becomes larger as
training size decreases. Note that when using only half of si284 for
training, R-APC already matches the performance of log Mel trained
on the full set (18.3), and T-APC even outperforms it (16.4 vs. 18.3).
In particular, we observe that T-APC always outperforms log Mel by
using half of the training data log Mel uses.

When comparing the bottom half (where the feature extractors
are trained on just 10 hours of audio) of Table 2 with the upper
part, we see that using more pre-training data is indeed helpful—
performance of both CPC and APC are improved across all propor-
tions. This observation aligns with the findings in recent NLP lit-
erature [23, 24] where having more pre-training data leads to better
transfer learning results. Finally, we see that most of the time APC
outperforms CPC and PASE. In some cases PASE is slightly better
than T-APC10 (e.g., when only 1/8 or less of si284 is available),
but is still worse than R-APC10.

Table 3: ASR WER results using different numbers of GRU layers
for the encoder in the ASR seq2seq model.

Features Number of encoder layers

1 2 3 4

log Mel 28.8 23.5 20.8 18.3

CPC 34.3 29.8 25.2 23.7
R-APC 26.2 20.3 17.6 15.2
T-APC 25.2 18.6 15.8 13.7

PASE10 29.4 25.7 22.5 20.8
CPC10 35.8 31.3 26.0 24.4
R-APC10 27.6 22.3 19.6 17.6
T-APC10 28.1 23.2 20.6 18.0

3499

Authorized licensed use limited to: MIT Libraries. Downloaded on October 06,2021 at 18:10:49 UTC from IEEE Xplore. Restrictions apply.

The next aspect we examine is to what extent can we reduce the
downstream model size with transfer learning. Specifically, in Ta-
ble 3 we present the results of using different numbers of GRU layers
∈ {1, 2, 3, 4} for constructing the encoder in the seq2seq model. We
see that when using the same number of layers, *-APC and *-APC10

always outperform other features. It is noteworthy that T-APC with
just 2 layers performs similar to log Mel using 4 layers (18.6 vs.
18.3), which demonstrates the effectiveness of APC transfer learn-
ing for reducing downstream model size.

4.4. Speech translation

Our second task is automatic speech translation (AST), where the
goal is to translate speech in one language into text in another. We
use an English-to-French translation dataset [25] augmented from
the LibriSpeech corpus [16] dedicated for this task. Each data pair
consists of an English waveform and its French text translation. Fol-
lowing [26], we split the original training set, containing about 100
hours of audio, into 90% for training and 10% for development, and
report BLEU scores [27] on the dev and test sets. The AST model we
use is an RNN-based, end-to-end seq2seq with attention architecture
identical to [28]. The baseline BLEU scores using log Mel as input
features on the dev and test sets are 12.5 and 12.9, respectively.

For comparison, we include the performance of the cascaded
system reported in [28]. The cascaded system pipelines an ASR
module that first transcribes the input speech into text, and a ma-
chine translation (MT) module that translates the text to the target
language. A cascaded system is usually more expensive to train than
an end-to-end model as it requires intermediate audio transcriptions
in the source language, but serves as a strong baseline. We also
include the performance of a recently proposed Transformer-based,
end-to-end AST model, dubbed S-Transformer [29], which has been
shown to outperform RNN-based end-to-end model.

Table 4: Speech translation results. BLEU scores (↑) are reported.
We also include the results of the cascaded system (ASR + MT)
reported in [28] and the S-Transformer model reported in [29]. Only
the results on the test set are available for these two approaches.

Methods dev test

Cascaded - 14.6
S-Transformer - 13.8

log Mel 12.5 12.9

CPC 12.1 12.5
R-APC 13.5 13.8
T-APC 13.7 14.3

PASE10 12.0 12.4
CPC10 11.8 12.3
R-APC10 13.2 13.7
T-APC10 12.8 13.4

From Table 4 we see that APC, regardless of how much pre-
training data is used and the type of Enc, always outperforms log
Mel, CPC, and PASE on both dev and test sets. Besides, our RNN-
based model with T-APC features (14.3) outperforms S-Transformer
(13.8), and is comparable with the cascaded system (14.6).

4.5. Speaker identification

Our final task, speaker identification (SID), examines how much
transferable speaker information is captured by the representations

Table 5: Speaker ID results. Accuracies (↑) are reported.

Features Number of utterances per speaker seen in training

1 5 10 20 50 full (130 in avg.)

log Mel 8.7 43.7 60.4 70.5 87.4 96.1

CPC 13.0 45.5 65.8 75.9 89.3 96.5
R-APC 17.2 56.9 73.3 87.4 95.1 99.0
T-APC 17.6 58.6 74.4 87.8 96.3 99.1

PASE10 12.5 48.6 64.8 79.6 92.6 96.7
CPC10 11.7 44.9 63.2 74.6 88.3 95.8
R-APC10 14.3 54.4 72.3 87.1 95.0 98.9
T-APC10 13.5 49.2 70.5 82.8 92.4 98.0

learned by different objectives. We use WSJ for our SID experi-
ments. We split si284 into 80% for training, 10% for development,
and 10% for testing. The task is equivalent to a 259-speaker classi-
fication problem. Features are fed into a 1-layer GRU network with
a Softmax layer appended on top of the output of the last time step,
which is optimized by minimizing the negative log-likelihood across
the training set. We investigate settings where different amounts of
utterances per speaker are used for training—in the most extreme
case only one utterance per speaker is available. Exploring such
one- or few-shot learning scenarios is especially interesting as it is
closer to the real world where, for instance, a speech application on a
personal device needs to quickly adapt to user-specific features with
just a few input samples for better user experience.

From Table 5 we see that APC representations contain more
transferable speaker information than all the other features, almost
always outperforming them regardless of how many utterances per
speaker are seen during training. It is noteworthy that T-APC is al-
most twice as good as log Mel (17.6 vs. 8.7) in one-shot learning.

5. CONCLUSIONS

We demonstrate that autoregressive predictive coding (APC) is an
effective generative pre-training objective for transfer learning to a
wide range of speech tasks. We use a Transformer to model APC and
empirically show that it is more effective than an RNN used in [1].
On speech recognition (ASR), speech translation, and speaker iden-
tification (SID), representations learned by APC consistently and,
mostly, significantly outperform log Mel spectrograms and represen-
tations learned by other objectives such as CPC [6] and PASE [3].
We also investigate the data efficiency and model efficiency aspects
on ASR and SID, and show that APC representations are the most
effective among all comparing methods at reducing downstream la-
beled data size and model parameters.

There are many interesting directions for future work. In our
experiments, we find that keeping APC weights frozen works better
than updating them when training on downstream dataset. How-
ever, we believe that the latter is more ideal for transfer learning as it
adapts the extracted representations toward the target task. More
sophisticated techniques for fine-tuning [30] could be used. Re-
garding the backbone architecture of APC, the Transformer model
can be potentially improved by modifying the way we inject posi-
tional information [31, 32]. Additionally, as hinted by recent NLP
research [23, 24], training APC on more unlabeled data is also a
promising way for improving the transfer learning results. Finally,
we are interested in exploring the usage of APC in other speech ap-
plications such as speech synthesis, where pre-training and transfer
learning have already achieved some success [33, 34, 35, 36, 37].

3500

Authorized licensed use limited to: MIT Libraries. Downloaded on October 06,2021 at 18:10:49 UTC from IEEE Xplore. Restrictions apply.

6. REFERENCES

[1] Yu-An Chung, Wei-Ning Hsu, Hao Tang, and James Glass,
“An unsupervised autoregressive model for speech represen-
tation learning,” in Interspeech, 2019.

[2] Jan Chorowski, Ron Weiss, Samy Bengio, and Aäron van den
Oord, “Unsupervised speech representation learning using
wavenet autoencoders,” IEEE/ACM TASLP, vol. 27, no. 12,
pp. 2041–2053, 2019.

[3] Santiago Pascual, Mirco Ravanelli, Joan Serrà, Antonio Bona-
fonte, and Yoshua Bengio, “Learning problem-agnostic speech
representations from multiple self-supervised tasks,” in Inter-
speech, 2019.

[4] Steffen Schneider, Alexei Baevski, Ronan Collobert, and
Michael Auli, “Wav2vec: Unsupervised pre-training for
speech recognition,” in Interspeech, 2019.

[5] Herman Kamper, “Truly unsupervised acoustic word em-
beddings using weak top-down constraints in encoder-decoder
models,” in ICASSP, 2019.

[6] Aaron van den Oord, Yazhe Li, and Oriol Vinyals, “Repre-
sentation learning with contrastive predictive coding,” arXiv
preprint arXiv:1807.03748, 2018.

[7] Benjamin Milde and Chris Biemann, “Unspeech: Unsuper-
vised speech context embeddings,” in Interspeech, 2018.

[8] Yu-An Chung and James Glass, “Speech2vec: A sequence-
to-sequence framework for learning word embeddings from
speech,” in Interspeech, 2018.

[9] Yi-Chen Chen, Sung-Feng Huang, Chia-Hao Shen, Hung-Yi
Lee, and Lin-Shan Lee, “Phonetic-and-semantic embedding of
spoken words with applications in spoken content retrieval,” in
SLT, 2018.

[10] Wei-Ning Hsu, Yu Zhang, and James Glass, “Unsupervised
learning of disentangled and interpretable representations from
sequential data,” in NIPS, 2017.

[11] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ,
and Sanjeev Khudanpur, “Recurrent neural network based lan-
guage model,” in Interspeech, 2010.

[12] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, et al., “Attention is all you need,” in NIPS, 2017.

[13] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau,
and Yoshua Bengio, “On the properties of neural machine
translation: Encoder-decoder approaches,” in SSST, 2014.

[14] Peter Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan
Sepassi, et al., “Generating wikipedia by summarizing long
sequences,” in ICLR, 2018.

[15] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever, “Improving language understanding by generative
pre-training,” Tech. Rep., OpenAI, 2018.

[16] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev
Khudanpur, “Librispeech: An ASR corpus based on public
domain audio books,” in ICASSP, 2015.

[17] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner,
Christopher Clark, Kenton Lee, and Luke Zettlemoyer, “Deep
contextualized word representations,” in NAACL-HLT, 2018.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Deep residual learning for image recognition,” in CVPR,
2016.

[19] Dan Hendrycks and Kevin Gimpel, “Gaussian error linear units
(gelus),” arXiv preprint arXiv:1606.08415, 2016.

[20] Diederik Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” in ICLR, 2015.

[21] Douglas Paul and Janet Baker, “The design for the wall street
journal-based CSR corpus,” in Speech and Natural Language
Workshop, 1992.

[22] Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,
Kyunghyun Cho, and Yoshua Bengio, “Attention-based mod-
els for speech recognition,” in NIPS, 2015.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova, “BERT: Pre-training of deep bidirectional Trans-
formers for language understanding,” in NAACL-HLT, 2019.

[24] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, et al., “RoBERTa: A robustly optimized BERT pretrain-
ing approach,” arXiv preprint arXiv:1907.11692, 2019.

[25] Ali Kocabiyikoglu, Laurent Besacier, and Olivier Kraif, “Aug-
menting Librispeech with French translations: A multimodal
corpus for direct speech translation evaluation,” in LREC,
2018.

[26] Yu-An Chung, Wei-Hung Weng, Schrasing Tong, and James
Glass, “Towards unsupervised speech-to-text translation,” in
ICASSP, 2019.

[27] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu, “BLEU: A method for automatic evaluation of machine
translation,” in ACL, 2002.

[28] Alexandre Bérard, Laurent Besacier, Ali Can Kocabiyikoglu,
and Olivier Pietquin, “End-to-end automatic speech translation
of audiobooks,” in ICASSP, 2018.

[29] Mattia Di Gangi, Matteo Negri, and Marco Turchi, “Adapting
Transformer to end-to-end spoken language translation,” in
Interspeech, 2019.

[30] Jeremy Howard and Sebastian Ruder, “Universal language
model fine-tuning for text classification,” in ACL, 2018.

[31] Abdelrahman Mohamed, Dmytro Okhonko, and Luke Zettle-
moyer, “Transformers with convolutional context for ASR,”
arXiv preprint arXiv:1904.11660, 2019.

[32] Kazuki Irie, Albert Zeyer, Ralf Schlüter, and Hermann Ney,
“Language modeling with deep Transformers,” in Interspeech,
2019.

[33] Yu-An Chung, Yuxuan Wang, Wei-Ning Hsu, Yu Zhang, and
RJ Skerry-Ryan, “Semi-supervised training for improving data
efficiency in end-to-end speech synthesis,” in ICASSP, 2019.

[34] Yuan-Jui Chen, Tao Tu, Cheng-Chieh Yeh, and Hung-Yi
Lee, “End-to-end text-to-speech for low-resource languages
by cross-lingual transfer learning,” in Interspeech, 2019.

[35] Tomoki Hayashi, Shinji Watanabe, Tomoki Toda, Kazuya
Takeda, Shubham Toshniwal, and Karen Livescu, “Pre-trained
text embeddings for enhanced text-to-speech synthesis,” in In-
terspeech, 2019.

[36] Wei Fang, Yu-An Chung, and James Glass, “Towards transfer
learning for end-to-end speech synthesis from deep pre-trained
language models,” Tech. Rep., Massachusetts Institute of Tech-
nology, 2019.

[37] Ye Jia, Yu Zhang, Ron Weiss, Quan Wang, Jonathan Shen,
et al., “Transfer learning from speaker verification to multi-
speaker text-to-speech synthesis,” in NeurIPS, 2018.

3501

Authorized licensed use limited to: MIT Libraries. Downloaded on October 06,2021 at 18:10:49 UTC from IEEE Xplore. Restrictions apply.

