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Abstract

Autoregressive Predictive Coding (APC), as a self-supervised
objective, has enjoyed success in learning representations from
large amounts of unlabeled data, and the learned representations
are rich for many downstream tasks. However, the connec-
tion between low self-supervised loss and strong performance
in downstream tasks remains unclear. In this work, we pro-
pose Vector-Quantized Autoregressive Predictive Coding (VQ-
APC), a novel model that produces quantized representations,
allowing us to explicitly control the amount of information en-
coded in the representations. By studying a sequence of increas-
ingly limited models, we reveal the constituents of the learned
representations. In particular, we confirm the presence of in-
formation with probing tasks, while showing the absence of
information with mutual information, uncovering the model’s
preference in preserving speech information as its capacity be-
comes constrained. We find that there exists a point where pho-
netic and speaker information are amplified to maximize a self-
supervised objective. As a byproduct, the learned codes for a
particular model capacity correspond well to English phones.

Index Terms: self-supervised learning, unsupervised learning,
representation learning, vector quantization, transfer learning

1. Introduction

Many high-level properties of speech, e.g., phonetic content and
speaker characteristics, are not easily accessible' without suffi-
ciently powerful transformations from the surface features such
as audio waveforms and spectrograms. Speech representation
learning aims to search for a transformation from the surface
features that better reveals these properties to downstream tasks.
Recently, self-supervised learning—a paradigm that treats
the input itself or modifications of the input as learning
targets—has obtained promising results for learning such trans-
formations [1, 2, 4, 5, 6, 7, 8, 9, 3, 10]. These methods,
mostly inspired by the techniques for pre-training NLP mod-
els [11, 12, 13], learn speech representations by either infer-
ring future information conditioned on historical audio [1, 2],
or predicting masked parts of input audio [9, 3]. The result-
ing representations, obtained without requiring any additional
labeled data, are able to outperform the surface features across
downstream tasks such as speech recognition, speech transla-
tion, speaker identification, and emotion recognition [14, 15].
Autoregressive Predictive Coding (APC) [2] is one of the
recent self-supervised speech representation models. APC

Code is available
iamyuanchung/VQ-APC.

'Following other recent works [1, 2, 3], in this study we use lin-
ear separability (or separability with a shallow network) to define the
accessibility of information for a downstream task.
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defines a prediction task that trains an autoregressive neural
model (e.g., a unidirectional RNN) to predict a future frame
considering the past context. Although the learned representa-
tions contain highly accessible phonetic and speaker informa-
tion, the reason why this seemingly unrelated self-supervised
objective produces such a representation remains unclear. In
this work, we aim to provide an explanation, investigating the
constituents that lead to low objective values, and connect them
with the properties of the learned representations.

Our approach is to study the properties of the learned repre-
sentation as we limit the model capacity. The models with lim-
ited capacity are forced to retain information to achieve max-
imal prediction, thereby allowing us to study the constituents
of the task and the learned representations. Several options are
available to obtain a spectrum of models with different capacity,
including reducing the number of layers, reducing the hidden
layer size, or enforcing a bottleneck along the feed-forward pro-
cess. The impact of different numbers of hidden layers has been
studied in prior work [2]. Regardless, it is difficult to quantify
the amount of information by changing the number of layers,
changing the hidden layer size, or using low-rank matrices to
enforce bottlenecks. In this work, we study the use of vector
quantization (VQ), where the amount of information (i.e., bits
required to transmit the codebook and the sequence of codes)
can be exactly quantified, to control the capacity of the models.

Recent studies on VQ for representation learning, mostly
motivated by the discrete nature of phonetic units, attempt to
show that enforcing the quantization leads to a better represen-
tation for acoustic unit discovery [16, 17] and automatic speech
recognition [7, 18]. In contrast, our goal is not to discover the
discrete units in speech. We treat VQ as a general approach to
limit the model capacity, and study its impact on the informa-
tion encoded in the learned representations.

2. Proposed Models
2.1. A review on APC

Given a sequence of acoustic feature vectors (z1, T2, ..., T¢) as
context, APC incorporates an autoregressive neural model g r,
e.g., a unidirectional RNN or a Transformer decoder [19, 12],
to summarize the sequence for predicting a future frame x4,
that is n steps ahead of x:. Let y; denote the predic-
tion of gar at time ¢. In practice, for a speech utter-
ance x = (z1, xa, ..., o1 ), where T is the sequence length, gar
is trained by minimizing the L1 frame-wise loss between
the predicted sequence (y1,ys2,...,yT—n) and the target se-
quence (Ti4n, T24n, -y TT):
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Figure 1: A diagram of VQ-APC. gar is an autoregressive
model with L layers with 9%1)2 denoting the (-th layer and hgl)

denoting the output vector of 9%1)?, at time t. The figure is an
example of inserting a VQ layer (area inside the dashed box)
between the first and second layers 95411)3 and gffg%. The or-
ange block represents the code variable lookup process that re-
places hg) by zt“), where zt(e> is one of the elements in a code-
book. The quantized hidden vectors are fed to the next layer
and the feed-forward process continues. The training objective
is the same as APC: to minimize the L1 loss between the pre-

dicted frame vy, and the target future frame T r.

Once gar is trained, one can extract features by taking its hid-
den representations, e.g., the last layer output, to replace the
surface features as the new input to downstream models.

2.2. VQ-APC

Figure 1 illustrates the VQ-APC architecture, which is based
upon APC with additional quantization layer(s). Assume gar
has L layers. Let gffl){ denote the /-th layer of gar. Af-
ter feeding x (z1,22,...,27) tO gaR, each g%z)z will pro-
duce a sequence of hidden vectors h® = (hy), hég), s hgf)).
Next, we add a vector quantization (VQ) layer [16] that re-

places hiz) by zf@, where zt(z) is one of the V' elements in a

codebook {ci1, ..., cy }. We then pass the resulting hidden vec-
tors 2 = (zy), zéz), cey zéf)) to the next layer gfﬁ;) and

continue the feed-forward process.

We use the Gumbel-Softmax with the straight-through es-
timator [20] for selecting discrete codebook variables in a fully
differentiable way. Specifically, we apply a linear layer to
map h,@ to a vector r € RY. At test time, we simply choose
the largest index in 7. At training time, the probability p; of
selecting the ¢-th code variable c; is computed as follows:

e(ritvi)/T 5
pi = W, 2
j=
where v = —In(—1In(u))) € RY and u is uniformly sam-

pled from (0,1). 7 controls how close the approximation
is to argmax. During the forward pass, the argmax code cg
where k = argmax,p; is chosen; during the backward pass,
the true gradients of the Gumbel-Softmax outputs are used. The
training objective is the same as APC (Equation 1).
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The codebook size and the code dimension of a VQ layer
control the amount of information from the previous layer flow-
ing to the next, and changing either of these two factors allows
us to explicitly control the capacity of the models. As we limit
the model capacity, the model is forced to retain information to
achieve maximal prediction. By studying a sequence of increas-
ingly limited models, we are able to reveal the constituents of
the prediction task and the learned representations.

3. Experiments

We conduct experiments to study the properties of the learned
representations and their connection to the self-supervised ob-
jective. Since VQ layers are known to significantly disrupt
model training, we first examine where VQ layer(s) should be
inserted. Next, by using phonetic and speaker classification as
probing tasks, we show the model’s preference in preserving
speech information as its capacity becomes constrained. We
then visualize the learned VQ codes to show the presence and
absence of phonetic information and the correspondence be-
tween codes and phones. Finally, we compare VQ-APC with
other self-supervised speech representation models.

3.1. Setup

Training of self-supervised models.  All self-supervised
models, including the VQ-APC variants and other models to
be compared, are trained on the clean 360-hour subset of
LibriSpeech [21]. We use 80-dimensional log Mel spectro-
grams (normalized to zero mean and unit variance per speaker)
as input features, that is, z+ € R®°, and train all models for 100
epochs using Adam [22] with a batch size of 32 and an initial
learning rate of 1072,

Probing tasks. We consider phonetic and speaker classifica-
tion for measuring the accessibility of the phonetic and speaker
information contained in the representations, respectively. Both
experiments are carried out on the Wall Street Journal cor-
pus (WSJ) [23]. For phonetic classification, the goal is to cor-
rectly classify each frame in an utterance into one of the 42
phones. The phone alignments are generated with a speaker
adapted GMM-HMM model. We follow the standard split of
WSJ, using 90% of si1284 for training, the rest 10% for vali-
dation, and reporting phone error rate on dev93. For speaker
classification, the goal is to correctly predict the speaker identity
of an utterance. We follow [14] and consider a 259-class classi-
fication task where each class corresponds to an unique speaker,
using 80% of s1284 for training, the other 10% for validation,
and reporting classification error rate on the rest 10%. We note
that speaker classification is not a typical task for WSJ, and only
serves as a sanity check for the presence of speaker informa-
tion (and its potentially correlated channel information) [1, 3].
The classifier for both tasks is a linear logistic regression that
takes the features extracted from the self-supervised models as
input. For speaker classification, the features from the same
utterance are averaged before being fed to the classifier. All
self-supervised models are kept frozen when training the linear
classifier. All reported numbers are an average of 5 runs, of
which variances are negligibly small and not included.

3.2. Preliminary VQ experiments

We first explore several potential places to insert VQ layers.
For all VQ-APC variants in our experiments, the autoregressive
model gar is a 3-layer unidirectional GRU with 512 hidden



Table 1: Phonetic classification results of VQ-APC with differ-
ent VQ configurations. The layers where VQ is inserted are
denoted as a set, and () is equivalent to the regular APC. We
compare both the hidden vectors h® and their corresponding
VQ codes z® (when applicable) for £ = 1,2,3 as extracted
features. Training loss on LibriSpeech is also reported. The
lowest phone error rate is highlighted in bold.

vQ Train Phone error rate
config. — loss 1) L L@ L0 L@ L6
0 068 465 386 333 — - -
(1} 070 430 375 323 434 -  —
{2} 072 458 354 315 — 360 —
{3} 073 464 357 305 —  — 308
{1,2} 122 750 723 707 748 726 —
{1,381 083 599 541 510 612 — 514
{2,3} 087 631 587 547 — 599 552
{1,2,3} 121 753 741 685 754 752 678

units, and the target frame in the future, n, is set to 5 when
training (Equation 1) on LibriSpeech. Whenever a VQ layer is
added, the embedding dimension of each code is 512, and 7 for
the Gumbel-Softmax straight-through estimator (Equation 2) is
a fixed value of 0.1 throughout training.

Table 1 presents the phonetic classification results of adding
VQ layers to different layers in gar. In the “VQ config.” col-
umn, the numbers inside the parenthesis denote the layers we
insert a VQ layer. For example, {1} means that we only add

VQ layer after gj(;;%. () denotes the case where no VQ layer is
applied, equivalent to the regular APC. The codebook size here
is 128. We try using both the hidden vectors h® and their quan-
tized codes z*) (when applicable) for £ = 1,2, 3 as extracted
features. We also include the final VQ-APC training loss on the
LibriSpeech 360-hour subset after 100 epochs (not the down-
stream linear classifier’s training loss on WSJ).

Quantizing one layer. As indicated by the training loss, we see
that the bottleneck imposed by the VQ layer indeed handicaps
the models’ ability to predict the future, as {1}, {2}, and {3} all
have higher training loss than (). In terms of phone error rate,
regardless of where VQ is inserted, we see improvement over
the APC representations. Inserting VQ at the third layer leads
to the most improvement, from 33.3 to 30.5. The quantized
codes z(g), when applicable, could also be used as extracted
features, which perform similarly to their corresponding pre-
quantized representations. For example, in {3}, z® (30.8) is
close to h® (30.5).

Quantizing multiple layers. We find that our VQ-APC models
with multiple VQ layers have trouble fitting the training set.
Their representations are also much worse than the regular APC
on phonetic classification. One potential remedy is to enable
VQ with a schedule [17], but is beyond the scope of the paper.

3.3. The constituents of the learned representations

Experiments so far suggest that the phonetic information is still
present (if not better) after using VQ. For the rest of the paper,
we will focus on the case where VQ is inserted at the third layer,
i.e., the case of {3}. To study the constituents of the learned rep-
resentations, we train a series of increasingly limited VQ-APC
models by decreasing the codebook size from 2048 to 64 while
fixing the code dimension to 512. As the codebook size be-
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Figure 2: Training loss (purple), phonetic classification (red),
and speaker classification (blue) results of VQ-APC with VQ
configuration {3} using varying codebook sizes. The x-axis is
the codebook size, decreasing from 2048 to 64, and the y-axis on
the left is the corresponding phone error rate and on the right
the speaker (spk.) error rate. For clarity, the vertical axis for
training loss is not displayed. The three dash horizontal lines
show the corresponding results of a regular APC, i.e., ().

comes smaller, the model is forced to choose what information
to encode and what to discard, thus revealing the constituents of
the learned representations. We show the training losses of these
models at convergence and the respective phone and speaker er-
ror rates in Figure 2. The dashed lines are the training loss,
phone error rate, and speaker error rate of a regular APC model.

First, the training loss (purple curve) increases as expected,
showing worse fit on the training set as we limit the codebook
size. Note that in theory, when the codebook size goes to in-
finity, we recover the regular APC. The phone error rate (red
curve) obtains a minimum at codebook size 512, and starts to
worsen with smaller codebook size. The sharp degradation in
phone error rate suggests that the model discards certain pho-
netic information to achieve maximal self-supervised objective.

The speaker error rate (blue curve), on the contrary, does
not change by much as we limit the codebook size. This shows
that the speaker information (and its potentially correlated chan-
nel information) is mostly retained. Given the sharp degradation
in phone error rate, we can conclude that the model prefers to
retain speaker information over phonetic information to achieve
maximal future prediction. The preference of information can
potentially stem from the use of GRUs, the VQ configuration,
and the self-supervised, future prediction objective. More anal-
yses are needed to disentangle the among these causes.

On the other hand, when the codebook size becomes large,
the model falls back to regular APC and might suffer from over-
fitting [24], paying unnecessary attention to the spectral details
that does not generalize for predicting future frames. Finally,
even with a codebook size of 64, we still see gains over regular
APC, showing the strong performance of VQ-APC in represen-
tation learning.

3.4. Visualizations of learned codes

To better measure the correspondence between the learned VQ
codes and English phones, we compute co-occurrence statis-
tics (at the frame level) across the 360-hour subset of Lib-
riSpeech, the dataset we use to train the VQ-APC models. We
compare three settings, {1}, {2}, and {3} with a codebook size
of 128. The conditional probability P(phone|code), as shown
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Figure 3: From left to right, visualizations of the conditional probability matrix P(phone|code) for configurations {1}, {2}, and {3}
with 128 codes, respectively. Each sub-figure is a 42 x 128 conditional probability matrix, where each row and column correspond to
a phone and code index, respectively. Color scaling is saturated at probability 0.5 for better visualization.

in Figure 3, are estimated based on the co-occurrence statistics,
i.e., via maximum likelihood. In each sub-figure, the rows and
columns are ordered via spectral co-clustering with 15 clusters
to group together phones that share similar sets of codes, and a
diagonal segment would imply a high correspondence between
phones and codes. Note that the phone labels of LibriSpeech
are only used for analysis and never seen during training.

From Figure 3, we see that the correspondence between
phones and VQ codes is stronger when quantized at higher lay-
ers, and is especially strong for {3}. Recall that probing tasks
are useful for showing the presence of certain information, but
have difficulty showing the absence of it. In contrast, given the
co-occurrence statistics, mutual information can be estimated
to support the absence of information. The normalized mutual
information are 0.167, 0.285, and 0.406 for {1}, {2}, and {3},
respectively. In other words, not only can we conclude that the
learned representations in {3} contain phonetic information, we
can also readily conclude that {1} and {2} contain much less
information for certain phones.

3.5. A comparison with other self-supervised models

Finally, we compare VQ-APC with other self-supervised
speech representation models, including Contrastive Predictive
Coding (CPC) [1], Bidirectional Masked Reconstruction [9],
Mockingjay [3], and Multi-Target APC [24]. We briefly review
these methods below, and show their results on phonetic and
speaker classification in Table 2. To stay as close to the original
implementation as possible, we do not separate the discussion
of models, such as the use RNNs or Transformers, and the self-
supervised objectives.

CPC and APC share a similar methodology as both use
an autoregressive model to learn representations through con-
ditioning on past frames to predict information about a future
frame. Their difference is that while APC tries to directly pre-
dict the future frame via regression, CPC aims to learn repre-
sentations containing information that most discriminates the
future frame from a set of negative samples. We mainly follow
the original paper [1] for implementing CPC with some mod-
ifications described in [2]. These modifications are meant to
minimize the architectural differences between APC and CPC
while maintaining their training objectives.

Multi-Target APC (MT-APC) is an extension of APC. It in-
corporates an auxiliary objective serving as a regularizer to im-
prove the generalization of the main future prediction task. The
exact same setup described in [24] is used in our experiments.

Different from CPC and APC that are based on the idea of
future prediction, Bidirectional Masked Reconstruction (BMR)
and Mockingjay are under the category of masked prediction.
Inspired by the masked language modeling technique from
BERT [13], BMR and Mockingjay mask parts of the input sig-
nals, and predict them through conditioning on both past and
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future contexts with a bidirectional RNN and Transformer en-
coder [25], respectively. For experiments, we mainly follow the
implementations in the original papers [9, 3], except that the
number of layers are reduced to match ours to minimize the ar-
chitectural differences.

Table 2: Phonetic and speaker classification results of differ-
ent self-supervised speech representation models. All features
are fed to a linear logistic repression. For log Mel, we also
include the results of using a 1- and 3-layer multi-layer percep-
tron, denoted as MLP-1 and MLP-3, respectively. We also note
the neural architectures used by each model.

Model Network Phone Speaker
error rate  error rate
log Mel - 50.3 17.6
log Mel + MLP-1 - 43.1 12.3
log Mel + MLP-3 - 41.2 11.9
CPC [1] 3-layer uni-GRU 34.1 9.7
APC [2] 3-layer uni-GRU 333 8.5
MT-APC [24] 3-layer uni-GRU 30.5 7.3
VQ-APC (ours) 3-layer uni-GRU 28.4 5.5
BMR [9] 3-layer bi-GRU 324 6.2
Mockingjay [3] 3-layer Transformer 30.8 5.1

On phonetic classification, we see that VQ-APC (28.4)
improves over APC (33.3) and MT-APC (30.5), demonstrat-
ing the effectiveness of VQ layers. It also outperforms other
self-supervised models despite using the same (vs. CPC) or
smaller (vs. BMR and Mockingjay) network. On speaker classi-
fication, VQ-APC (5.5) again improves over the other two APC
models (8.5 and 7.3), and is on par with the best model (Mock-
ingjay, 5.1). On both tasks, all self-supervised models outper-
form log Mel regardless of the type of classifier it uses.

4. Conclusions

We have demonstrated that incorporating vector quantiza-
tion (VQ) layers into an Autoregressive Predictive Coding
model imposes a bottleneck, forcing the model to learn better
representations. Extensive experiments have been conducted
to compare different VQ configurations, to study the effect
of varying codebook sizes, and to compare with other self-
supervised speech representation models. We show evidence
for the presence and absence of phonetic and speaker informa-
tion in the learned representations, and also show the model’s
preference in retaining information when the model capacity is
limited, in the hope to bridge the connection between the self-
supervised objective and the properties of the learned represen-
tations. When the phonetic information is present, the learned
VQ codes also correspond well with English phones.
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