
Cost-Sensitive Deep Learning
with Layer-Wise Cost Estimation

Yu-An Chung
Massachusetts Institute of Technology

Cambridge, MA, U.S.A.

andyyuan@mit.edu

Shao-Wen Yang
Amazon

Seattle, WA, U.S.A.

swyang@amazon.com

Hsuan-Tien Lin
National Taiwan University

Taipei, Taiwan

htlin@csie.ntu.edu.tw

Abstract—While deep neural networks have succeeded in
several applications, such as image classification, object detection,
and speech recognition, by reaching very high classification accu-
racies, it is important to note that many real-world applications
demand varying costs for different types of misclassification
errors, thus requiring cost-sensitive classification algorithms.
Current models of deep neural networks for cost-sensitive classifi-
cation are restricted to some specific network structures and lim-
ited depth. In this paper, we propose a novel framework that can
be applied to deep neural networks with any structure to facilitate
their learning of meaningful representations for cost-sensitive
classification problems. Furthermore, the framework allows end-
to-end training of deeper networks directly. The framework is
designed by augmenting auxiliary neurons to the output of each
hidden layer for layer-wise cost estimation, and including the total
estimation loss within the optimization objective. Experimental
results on public benchmark data sets with two cost information
settings demonstrate that the proposed framework outperforms
state-of-the-art cost-sensitive deep learning models.

Index Terms—cost-sensitive classification, deep neural net-
works, cost-sensitive deep learning

I. INTRODUCTION

Deep learning has shown great success on a broad range

of applications such as image classification [1, 2, 3, 4] and

speech recognition [5]. Problems in such applications belong

to a large class of regular classification in which each type of

misclassification error is penalized equally.

Nevertheless, using accuracy as the evaluation metric for

learning does not always produce the most useful classification

system in the real world. In fact, many real-world applica-

tions [6, 7, 8, 9, 10] demand varying costs for different types of

misclassification errors. For example, different costs are useful

for building a realistic face recognition system [9, 11, 12, 13],

in which a government staff being misrecognized as an impos-

tor causes only a slight inconvenience; however, an imposer

misrecognized as a staff can result in serious damage. Even in

a simple digit recognition task, varying costs can be helpful

in representing the nature of the task, as it is common and

understandable to classify an ill-written 7 as 1 but classifying

a 7 as a 4 would be laughable. Such applications call for cost-

sensitive learning, which aims to identify the best classifier

under the application-demanded costs.

Much research effort has been made to study cost-sensitive

classification algorithms. In the works of [14, 15, 16], the

researchers proposed to equip probabilistic classifiers with

Bayes decision theory to enable the classifiers to consider

the cost information during prediction. Some other studies ex-

tended existing cost-insensitive classification algorithms to be

cost-sensitive, such as support vector machine [17]. Recently,

as deep neural networks (DNN) have become state-of-the-art

on a broad range of machine learning applications [5, 3, 4],

researchers are attempting to make DNN cost-sensitive [18].

One successful DNN for cost-sensitive classification, called

Cost-Sensitive DNN (CSDNN), has been recently proposed

by [18]. The training process of CSDNN consists of two

steps. The first step is to initialize the DNN by layer-wise

pretraining using a cost-sensitive variant of the conventional

auto-encoder [19]. The second step involves the fine-tuning

of the DNN with a loss function that incorporates the cost

information. The final CSDNN is thus cost-sensitive in both

pretraining and training stages, and is shown to be a state-of-

the-art algorithm that outperforms other existing cost-sensitive

classification algorithms and some deep learning alternatives.

While CSDNN is state-of-the-art, its design is based on

the conventional fully-connected DNN with sigmoid activa-

tion functions and experiences two issues. First, the design

restricts the applicability to more modern structures such as

convolutional [20, 1] and pooling layers. Second, the sigmoid

function suffers from the problem of diminishing gradients

when the network deepens, even after careful pretraining.

In this paper, we resolve these issues by proposing a

novel framework for cost-sensitive deep learning. To build a

cost-sensitive DNN for a K-class cost-sensitive classification

problem, the proposed framework replaces the layer-wise

pretraining step with layer-wise cost estimation, in which K
additional neurons are added to the output of each hidden

layer. These K additional neurons serve as auxiliary units

that help the DNN learn meaningful representations towards

estimating the costs in each layer. The DNN is then trained

by solving a joint optimization problem on the weighted

sum of the loss functions associated with the auxiliary units.

Experiments conducted on four benchmark data sets and two

cost information settings validate that the proposed frame-

work outperforms CSDNN. The proposed framework can

be easily and effectively attached to deep neural networks

with ReLU [21] activation functions or convolutional neural

networks like AlexNet [1], as shown in the longer version of

this work [22]. The benefits of performance and generality

108

2020 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)

978-1-6654-0380-1/20/$31.00 ©2020 IEEE
DOI 10.1109/TAAI51410.2020.00028

20
20

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 T

ec
hn

ol
og

ie
s a

nd
 A

pp
lic

at
io

ns
 o

f A
rti

fic
ia

l I
nt

el
lig

en
ce

 (T
A

A
I)

 |
97

8-
1-

66
54

-0
38

0-
1/

20
/$

31
.0

0
©

20
20

 IE
EE

 |
D

O
I:

10
.1

10
9/

TA
A

I5
14

10
.2

02
0.

00
02

8

Authorized licensed use limited to: MIT Libraries. Downloaded on October 06,2021 at 18:27:17 UTC from IEEE Xplore. Restrictions apply.

make the proposed framework a favorable choice in practice.

The idea of using additional neurons as auxiliary units has

been studied by several existing deep learning works, such

as the well-known GoogLeNet [3], which takes the additional

neurons as intermediate classifiers in selected hidden layers

as regularizers. Deeply-Supervised Nets [23] adds additional

neurons as intermediate classifiers to all hidden layers and

reported that the nodes not only serve as regularizers but

also allow improved convergence behavior. BranchyNet [24]

considers auxiliary neurons at hidden layers as early exit

points of prediction to speed up testing time. Nevertheless,

all the previous works focus on using regular (cost-insensitive)

classifiers as auxiliary units. To the best of our knowledge, our

proposed framework is the first work that tackles cost-sensitive

deep learning with layer-wise auxiliary units.

The rest of the paper is organized as follows. In Section II,

we formally define the cost-sensitive classification problem

and introduce related works. Then, we propose our framework

in Section III, and validate the framework with real-world data

sets in Section IV. Finally, we conclude in Section V.

II. PRELIMINARY

We start by formalizing the cost-sensitive problem in Sec-

tion II-A. We then introduce some important cost-sensitive

deep learning works in Section II-B.

A. Cost-Sensitive Classification

In a K-class regular classification problem, a size-N train-

ing set S = {(xn, yn)}Nn=1 is given, where each input vector

xn is within an input space X ⊆ R
D, and each label yn is

within a label space Y = {1, 2, ...,K}. Regular classification

aims at using S to train a classifier g : X → Y such that

the expected error �y �= g(x)� on the test examples (x, y) is

small.1 That is, each type of misclassification error is charged

with the same penalty.

We consider a general cost-vector setting [14, 17] of cost-

sensitive classification when designing the proposed frame-

work. The cost-vector setting represents the cost information

by coupling an additional cost vector c ∈ [0,∞)K with

each example (x, y), where the k-th component c[k] of the

cost vector c denotes the cost of predicting x as class k,

and naturally c[y] = 0. Consider a cost-sensitive training set

Sc = {(xn, yn, cn)}Nn=1, cost-sensitive classification aims at

using Sc to train a classifier gc : X → Y such that the expected

cost c[gc(x)] on the test examples (x, y, c) is small.

A special case of the cost-vector setting is the cost-matrix

setting, where the cost information is encoded by a K × K
cost matrix C and each entry C(y, k) ∈ [0,∞) indicates

the cost for predicting a class-y example as class k. The

information within the cost matrix can be simply cast as the

cost vectors by defining the cost vector in (x, y, c) as the y-

th row of the cost matrix C. The cost-matrix setting, albeit

less general, allows real-world applications to specify their

1The boolean operation �·� is 1 if the condition is true, and 0 otherwise.

demanded costs more easily. We follow many earlier cost-

sensitive classification works [14, 15, 25, 17, 18] to take the

cost-matrix setting when conducting benchmark experiments.

B. Deep Learning for Cost-Sensitive Classification

Nowadays, most DNNs are designed to solve regular clas-

sification problems [3, 4]. Those DNNs usually consist of

several hidden layers with a softmax layer of K neurons at

the end. Each input vector x propagates through different

hidden layers and is transformed into different levels of

latent representations. The softmax layer converts the last

latent representation into per-class probability estimation, and

takes the class with the highest estimated probability as the

prediction g(x) of the network.

On the other hand, only few works have explored cost-

sensitive classification using shallow or deep neural networks.

Prior to the prevailing of deep learning, [26] pioneered the

study of making neural networks cost-sensitive by sampling

and threshold-moving to tackle the class imbalance problem;

[14] proposed four approaches of modifying neural networks

for cost-sensitivity. Recently, [18] attempted to make cost-

sensitive neural networks deeper by proposing a cost-sensitive

deep learning algorithm called Cost-Sensitive DNN (CSDNN).

In terms of the network structure, CSDNN starts with a DNN

with fully-connected layers, but replaces the softmax layer

at the end of the DNN by a cost-estimation layer. Each of

the K neurons in the cost-estimation layer provides per-class

cost estimation with regression instead of per-class probability

estimation. Then, the class with the lowest estimated cost can

be naturally taken as the prediction gc(x) of the network.

[18] proposed to train the structure with a cost-sensitive loss

function LOSR on the cost-estimation layer.2

[18] then found that the performance of the network can

be further improved by careful pretraining, and proposed a

Cost-Sensitive Auto-Encoder (CSAE) to pretrain the structure

above in a layer-wise manner. CSAE operates similar to a

conventional auto-encoder [19], which is a shallow neural

network that maps any input x to a representation such that

the output x̃ is a close reconstruction of the original input. The

reconstruction error is commonly measured by cross-entropy

loss, denoted by LCE. What makes CSAE different is that

the shallow network is augmented with K additional output

neurons for cost estimation. That is, CSAE attempts to not only

reconstruct x but also digest the cost information by estimating

the cost vector c. The attempt is represented with a mixture

loss (1−β) · LCE + β · LOSR with a balancing coefficient

β ∈ [0, 1] on the output layer of CSAE. When β=0, CSAE

degrades to a conventional auto-encoder.

Figure 1 illustrates how CSAE is used to pretrain CSDNN.

With the pretraining, each layer in CSDNN carries some

ability to estimate the costs. That is, the pretraining makes

the latent representations cost-aware. [18] reported that such

initialization indeed allows CSDNN to converge to a better

optima and to reach state-of-the-art performance.

2The term LOSR stands for One-Sided Regression and roots from a cost-
sensitive SVM work [17]. Details are omitted here for lack of space.

109

Authorized licensed use limited to: MIT Libraries. Downloaded on October 06,2021 at 18:27:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. CSAE pretraining for CSDNN [18]

III. PROPOSED FRAMEWORK

While CSDNN is state-of-the-art, its design is based on

fully-connected layers with sigmoid activation functions and

suffers from some issues. We discuss the issues behind

CSDNN that motivate us to propose a better framework in

Section III-A, and present the framework in Section III-B.

A. Motivation

Arguably the key idea within CSDNN is pretraining with

CSAE. To understand the issues behind CSDNN, we first

review the necessity of pretraining for general deep learning.

In earlier years, neural networks used sigmoid or hyperbolic-

tangent activation functions for non-linear transformation in

the hidden layers [27, 28, 29, 19]. Both functions, which

exhibit flatness in part of their curves, can cause the gra-

dients of the network to be small. As the depth of the

network increases, the small gradients in the latter layers of

the network make the gradients in the earlier layers even

smaller during back-propagation, a phenomenon known as the

diminishing gradients. Earlier works by [29] and [19] tackled

the diminishing-gradient problem by proposing a greedy layer-

wise pretraining strategy. Pretraining helped mitigate the prob-

lem to some degree, but the problem would resurface as the

network deepens if we stick with the same activation functions.

In recent years, another route to resolve the diminishing-

gradient problem is to consider other activation functions,

such as the rectifier linear unit (ReLU) [21]. As ReLU does

not suffer from the diminishing-gradient problem as much as

sigmoid or hyperbolic-tangent activation functions, pretraining

is no longer necessary [30]. Nowadays, ReLU and many of its

variants [31, 32] become the mainstream activation functions

in modern deep learning studies [33, 4].

CSDNN [18] intended to conduct cost-sensitive deep learn-

ing by mimicking what [19] did for regular deep learning: us-

ing sigmoid activation functions, and adopting greedy laywer-

wise pretraining. Thus, CSDNN carries the same problem

of diminishing gradients when the network deepens, as our

experimental results in Section IV will demonstrate. To keep

cost-sensitive deep learning up to date with modern deep

learning studies, it is then necessary to conduct cost-sensitive

Fig. 2. a DNN with five hidden layers dressed with the proposed Auxiliary
Cost-Sensitive Targets (AuxCST) framework

deep learning with other routes, such as adopting ReLU and

removing the pretraining stage.

Nevertheless, directly removing the pretraining stage in

CSDNN throws away one important benefit of CSAE in

making the latent representations cost-aware. Next, we present

our proposed framework to rescue the benefit.

B. Layer-Wise Cost Estimation

Our key goal is to construct a DNN that can simultane-

ously enjoy the benefit of cost-aware representation extraction

(similar to that provided by CSAE), and the flexibility of

using any structures. CSAE achieved cost-aware representation

extraction by using K additional neurons in the auto-encoder

for cost estimation. Our key idea is to also use K additional

neurons for cost estimation, but instead of adding them to the

auto-encoders that are separated from the DNN, we propose

to directly put K neurons into each layer of the DNN. That is,

we propose to replace CSAEs by “merging” their additional

neurons with the DNN of our interest. The proposed structure

is illustrated with Figure 2. By dressing the original DNN

with K additional neurons in each layer that serve as auxiliary

outputs, the extracted latent representations carry some ability

to estimate the costs, thus achieving cost-aware representation

extraction almost effortlessly.

As shown in Figure 2, in addition to augmenting K
additional neurons to each layer of the DNN, we follow

CSDNN and replace the output layer of the DNN with a cost-

estimation layer. Then, the only remaining task is to train the

“upgraded” DNN with a proper loss function. We consider a

simple weighted-mixture loss function of the main one-sided

regression loss function at the output layer, and the auxiliary

one-sided regression loss functions at the hidden layers. In

particular, let L
(i)
OSR denote the auxiliary loss function for the

output of the i-th hidden layer and L
(∗)
OSR denote the main loss

function at the output layer, we train the upgraded DNN with:

H−1∑

i=1

αi · L(i)
OSR + L

(∗)
OSR, (1)

110

Authorized licensed use limited to: MIT Libraries. Downloaded on October 06,2021 at 18:27:17 UTC from IEEE Xplore. Restrictions apply.

where H is the number of hidden layers in the DNN, and αi

is the balancing coefficient for L
(i)
OSR.3

With the proposed structural addons and the mixture loss

function, we are now ready to present the full framework

in Algorithm 1. The framework will be named as Auxiliary

Cost-Sensitive Targets (AuxCST). While the novel framework

appears simple, it carries many practical benefits. With the

framework, we can now flexibly use ReLU or other activa-

tion functions and thus avoid diminishing-gradient problem.

We can also build cost-sensitive DNN with any structures,

such as image inputs with convolutional and pooling layers.

Furthermore, we can apply this framework directly on any

state-of-the-art DNN structures such as ResNet [4] for solving

large-scale cost-sensitive classification problems.

Algorithm 1 Auxiliary Cost-Sensitive Targets (AuxCST)

Input: your favorite regular DNN or any off-the-shelf one [1,

3, 4] with H hidden layers; balancing coefficients

{αi}H−1
i=1

1: Replace the softmax layer at the end of DNN with K

regression neurons and loss function L
(∗)
OSR

2: for i = 1, 2, . . . , H − 1 do
3: Add K additional regression neurons with loss function

L
(i)
OSR to the output of the i-th hidden layer and connect

them fully to the i-th hidden layer

4: end for
5: Train the new DNN by back-propagation on (1)

IV. EXPERIMENTS

Three sets of experiments are conducted to validate the

usefulness of the proposed AuxCST framework. Four bench-

mark data sets are used for the experiments: MNIST, CIFAR-

10 [34], and CIFAR-100 [34]. For all data sets, the training

and testing splits follow the source websites; the input vectors

in training set are linearly scaled to [0, 1], and the input vectors

in the testing sets are scaled accordingly.

The data sets were originally collected for regular (cost-

insensitive) classification and thus contain no cost informa-

tion. We adopt the most frequently-used benchmark in cost-

sensitive learning, the randomized proportional setup [25], to

generate the costs. For a regular data set S = {(xn, yn)}Nn=1,

the setup first generates a K × K matrix C, and sets the

diagonal entries C(y, y) to 0 while sampling the non-diagonal

entries C(y, k) uniformly from [0, 10 |{n:yn=k}|
|{n:yn=y}|]. Then, for

each example (xn, yn) in S, its cost vector cn is defined as

the yn-th row of matrix C. The randomized proportional setup

generates the cost information that takes the class distribution

of the data set into account, charging a higher cost (in

expectation) for misclassifying a minority class, and can thus

be used to deal with imbalanced classification problems.

3There is no need to consider L
(H)
OSR for the outputs of the last hidden

layer, as the main loss function L
(∗)
OSR readily conducts cost estimation.

Arguably one of the most important use of cost-sensitive

classification is to deal with imbalanced data sets. Neverthe-

less, the first three data sets MNIST, CIFAR-10, and CIFAR-

100 are somewhat balanced, and the randomized proportional

setup may generate similar cost for each type of misclassi-

fication error. To better meet the real-world usage scenario

and increase the diversity of data sets, we further conduct

experiments to evaluate the algorithms with imbalanced data

sets. In particular, for each of the first three data sets MNIST,

CIFAR-10, and CIFAR-100, we construct a variant data set by

randomly picking 40% of the classes and removing 70% of

the examples that belong to those 40% classes. We will name

these imbalanced variants as MNISTimb, CIFAR-10imb, and

CIFAR-100imb, respectively.

Our first experiment in Section IV-A intends to investi-

gate the relationship between the balancing coefficient αi

in (1) for using AuxCST and the performance. Our second

experiment in Section IV-B compares DNN equipped with

AuxCST framework with state-of-the-art CSDNN [18]) to

show the usefulness of AuxCST. For the first and the sec-

ond experiments, the cost information was generated by the

randomized proportional setup. In each of the experiments,

we will describe the goal of the experiment, present the

experimental results, and provide discussions and conclusions.

A. How does αi affect AuxCST?

In our proposed Auxiliary Cost-Sensitive Targets (AuxCST)

framework, K additional neurons are added in parallel to each

of the hidden layer in DNN. As an example x propagates

through the network, in addition to the final prediction layer,

the DNN also outputs K values in each hidden layer. Same

with the final prediction layer, these additional K neurons in

each hidden layer also aim to estimate the per-class costs,

and are coupled with LOSR. The final objective function for

optimizing the entire DNN is a weighted sum of the main

one-sided loss for the final prediction layer and the auxiliary

one-sided loss for all hidden layers, and has the form (1).

In this experiment, we would like to investigate the relation-

ship between the selection of αi in (1) and the performance

(average test costs) of AuxCST framework. To simplify the

experiment, we keep all coefficients αi to identical values,

that is, α1 = α2 = ... = αH−1 = α, and (1) becomes:

α ·
H−1∑

i=1

L
(i)
OSR + L

(∗)
OSR, (2)

and we increase the value of α from 0 to 1 by a step 0.1. We

show the results of the imbalanced version of MNIST here,

while similar results have been observed for MNIST, CIFAR-

10, CIFAR-100 and their imbalanced variants. Their cost

information is generated by randomized proportional setup.

We constructed fully-connected DNN with varying numbers

of hidden layers H = {1, 2, 3, 4, 5}, where each hidden layer

consists of 1024 neurons. Note that our proposed AuxCST

framework can be applied to DNN consists of any kind of

layers, but since our goal in current experiment is not to pursue

111

Authorized licensed use limited to: MIT Libraries. Downloaded on October 06,2021 at 18:27:17 UTC from IEEE Xplore. Restrictions apply.

the best performance but to investigate more about AuxCST,

we choose to use only fully-connected layers for constructing

DNN in order to reduce the amount of hyper-parameters.

The results are shown in Figure 3. We plot 5 curves (because

we tested with 5 kinds of numbers of hidden layers), where

the x-axis is the value of α, and the y-axis is the corresponding

average test costs achieved. Note that when α = 0, it means

that the DNN does not make use of AuxCST framework.

From the figure, no matter how many hidden layers there are,

roughly U-shaped curves could be observed, and the lowest

average test costs were achieved when α fell in the range

0.2 ∼ 0.5, implying that α within this range best balanced

layer-wise and final cost estimation terms.

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

α

av
er

ag
e

te
st

 c
os

ts

MNIST
imb

1
2
 3
4
5

Fig. 3. The figure depicts the relationship between the selection of α for using
AuxCST framework and the performance achieved on MNISTimb with five
curves. The numbers in the legend are the number of hidden layers, and each
number corresponds to a curve.

B. Compare with state-of-the-art

In this experiment, we build two DNNs with and with-

out AuxCST framework and compare them to state-of-the-

art Cost-sensitive Deep Neural Network (CSDNN) [18]. We

emphasize the two major drawbacks of CSDNN here:

1) CSDNN uses sigmoid functions for non-linear transfor-

mations, and this will eventually results in diminishing

gradients when the network grows deeper.

2) CSDNN can be applied to DNN that consists of only

fully-connected layers, this puts limits on its potential to

be extended and applied to more challenging tasks that

require modern neural components such as convolution

and pooling layers.

To give CSDNN a fair chance of comparison, the two DNNs

we build also consist of only fully-connected layers, and ReLU

is used as activation function. The first DNN is equipped with

AuxCST by setting αi = 0.2, as 0.2 was found to be one of

the best value balancing for (2) in Section IV-A, we will refer

to this DNN as AuxDNN. The second DNN, which will be

referred to as NaiveDNN, did not make use of AuxCST and

was directly optimized by LOSR, it is equivalent to setting

α = 0 in (2).

The experimental results are displayed in Figure 4. The

x-axis is the number of hidden layers and the y-axis is the

corresponding average test costs achieved. As we can observe

from Figure 4, when the number of hidden layers was less than

or equal to three, CSDNN outperformed NaiveDNN probably

because CSAE were doing cost-aware feature extraction rela-

tively well, which accorded to the experimental results in [18].

When the number of hidden layers exceeded three, all of the

three models began to suffer from overfitting, causing their

average test costs to increase. However, by looking at CSDNN

and NaiveDNN, it was interesting to observe that although

the average test costs of both models increased, the extent of

increment of CSDNN was larger than that of NaiveDNN. We

inferred that this phenomenon was ascribed to the diminishing

gradients caused by sigmoid functions used in CSDNN, and

although CSAE had done their best to mitigate this problem

when the network was relatively shallow, CSDNN can still

not escape the fate of diminishing gradients when the network

grew deeper. This phenomenon could not be observed in [18]

because the deepest network they built had only three hidden

layers. As for AuxDNN, it significantly outperformed both

CSDNN and NaiveDNN regardless of the number of hidden

layers, this further demonstrated the usefulness of our pro-

posed AuxCST framework.

1 1.5 2 2.5 3 3.5 4 4.5 5
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

#(hidden)

av
er

ag
e

te
st

 c
os

ts

MNIST

CSDNN
NaiveDNN
AuxDNN

1 1.5 2 2.5 3 3.5 4 4.5 5
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

#(hidden)

av
er

ag
e

te
st

 c
os

ts

MNIST
imb

CSDNN
NaiveDNN
AuxDNN

1 1.5 2 2.5 3 3.5 4 4.5 5

1.8

1.85

1.9

1.95

#(hidden)

av
er

ag
e

te
st

 c
os

ts

CIFAR−10

CSDNN
NaiveDNN
AuxDNN

1 1.5 2 2.5 3 3.5 4 4.5 5
3.5

3.55

3.6

3.65

3.7

3.75

#(hidden)

av
er

ag
e

te
st

 c
os

ts

CIFAR−10
imb

CSDNN
NaiveDNN
AuxDNN

1 1.5 2 2.5 3 3.5 4 4.5 5
4.1

4.15

4.2

4.25

4.3

4.35

4.4

#(hidden)

av
er

ag
e

te
st

 c
os

ts

CIFAR−100

CSDNN
NaiveDNN
AuxDNN

1 1.5 2 2.5 3 3.5 4 4.5 5
5.5

5.55

5.6

5.65

5.7

5.75

#(hidden)

av
er

ag
e

te
st

 c
os

ts

CIFAR−100
imb

CSDNN
NaiveDNN
AuxDNN

Fig. 4. The six sub-figures display the performance of the three competing
DNNs on MNIST, CIFAR-10, CIFAR-100, MNISTimb, CIFAR-10imb, and
CIFAR-100imb, where each curve corresponds to one competitor.

V. CONCLUSION AND FUTURE WORK

We propose a novel framework Auxiliary Cost-Sensitive

Targets (AuxCST) for general end-to-end cost-sensitive deep

learning. Different from the previous approaches, the frame-

work can be applied to DNN that consists of any structures to

tackle challenging cost-sensitive classification problems. Ex-

tensive experimental results demonstrate the usefulness of the

proposed framework for making any advanced DNN models

112

Authorized licensed use limited to: MIT Libraries. Downloaded on October 06,2021 at 18:27:17 UTC from IEEE Xplore. Restrictions apply.

cost-sensitive. In the future, we will build a deeper network

with AuxCST framework to tackle ImageNet cost-sensitive

classification problem.

ACKNOWLEDGEMENT

We thank members of the NTU Computational Learning

Laboratory and the anonymous reviewers for valuable com-

ments. The work was partially supported by the Ministry of

Science and Technology of Taiwan via MOST 107-2628-E-

002-008-MY3 and 108-2119-M-007-010.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,”

in NeurIPS, 2012.

[2] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-

column deep neural networks for image classification,”

in CVPR, 2012.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-

novich, “Going deeper with convolutions,” in CVPR,

2015.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual

learning for image recognition,” in CVPR, 2016.

[5] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-

dependent pre-trained deep neural networks for large-

vocabulary speech recognition,” TASLP, vol. 20, no. 1,

pp. 30–42, 2012.

[6] M. Tan, “Cost-sensitive learning of classification knowl-

edge and its applications in robotics,” Machine Learning,

vol. 13, no. 1, pp. 7–33, 1993.

[7] P. K. Chan and S. J. Stolfo, “Toward scalable learning

with non-uniform class and cost distributions: A case

study in credit card fraud detection,” in KDD, 1998.

[8] W. Fan, W. Lee, S. Stolfo, and M. Miller, “A multiple

model cost-sensitive approach for intrusion detection,” in

ECML, 2000.

[9] Y. Zhang and Z.-H. Zhou, “Cost-sensitive face recogni-

tion,” TPAMI, vol. 32, no. 10, pp. 1758–1769, 2010.

[10] T.-K. Jan, H.-T. Lin, H.-P. Chen, T.-C. Chern, C.-Y.

Huang, B.-C. Wen, C.-W. Chung, Y.-J. Li, Y.-C. Chuang,

L.-L. Li, Y.-J. Chan, J.-K. Wang, Y.-L. Wang, C.-H.

Lin, and D.-W. Wang, “Cost-sensitive classification on

pathogen species of bacterial meningitis by Surface En-

hanced Raman Scattering,” in BIBM, 2011.

[11] J. Lu and Y.-P. Tan, “Cost-sensitive subspace learning for

face recognition,” in CVPR, 2010.

[12] L. Zhang, H. Li, X. Zhou, B. Huang, and L. Shang,

“Cost-sensitive sequential three-way decision for face

recognition,” in RSEISP, 2014.

[13] G. Zhang, H. Sun, Z. Ji, Y.-H. Yuan, and Q. Sun,

“Cost-sensitive dictionary learning for face recognition,”

Pattern Recognition, vol. 60, pp. 613–629, 2016.

[14] M. Kukar and I. Kononenko, “Cost-sensitive learning

with neural networks,” in ECAI, 1998.

[15] P. Domingos, “Metacost: A general method for making

classifiers cost-sensitive,” in KDD, 1999.

[16] B. Zadrozny and C. Elkan, “Learning and making deci-

sions when costs and probabilities are both unknown,” in

KDD, 2001.

[17] H.-H. Tu and H.-T. Lin, “One-sided support vector

regression for multi-class cost-sensitive classification,” in

ICML, 2010.

[18] Y.-A. Chung, H.-T. Lin, and S.-W. Yang, “Cost-aware

pre-training for multiclass cost-sensitive deep learning,”

in IJCAI, 2016.

[19] Y. Bengio, “Learning deep architectures for ai,” Machine
Learning, vol. 2, no. 1, pp. 1–127, 2009.

[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,

“Gradient-based learning applied to document recogni-

tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–

2324, 1998.

[21] V. Nair and G. Hinton, “Rectified linear units improve

restricted boltzmann machines,” in ICML, 2010.

[22] Y.-A. Chung, S.-W. Yang, and H.-T. Lin, “Cost-sensitive

deep learning with layer-wise cost estimation,” NTU,

Tech. Rep., 2016, https://arxiv.org/abs/1611.05134.

[23] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu,

“Deeply-supervised nets,” in AISTATS, 2015.

[24] S. Teerapittayanon, B. McDanel, and H. Kung,

“Branchynet: Fast inference via early exiting from deep

neural networks,” in ICPR, 2016.

[25] N. Abe, B. Zadrozny, and J. Langford, “An iterative

method for multi-class cost-sensitive learning,” in KDD,

2004.

[26] Z.-H. Zhou and X.-Y. Liu, “Training cost-sensitive neural

networks with methods addressing the class imbalance

problem,” TKDE, vol. 18, no. 1, pp. 63–77, 2006.

[27] J. Dayhoff, Neural Network Architectures: An Introduc-
tion. Van Nostrand Reinhold Co., 1990.

[28] S. Lawrence, L. Giles, A. C. Tsoi, and A. Back, “Face

recognition: A convolutional neural-network approach,”

TNN, vol. 8, no. 1, pp. 98–113, 1997.

[29] G. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning

algorithm for deep belief nets,” Neural Computation,

vol. 18, no. 7, pp. 1527–1554, 2006.

[30] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse

rectifier neural networks,” in AISTATS, 2011.

[31] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical eval-

uation of rectified activations in convolutional network,”

arXiv preprint arXiv:1505.00853, 2015.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep

into rectifiers: Surpassing human-level performance on

imagenet classification,” in ICCV, 2015.

[33] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier

nonlinearities improve neural network acoustic models,”

in ICML, Workshop on Deep Learning for Audio, Speech
and Language Processing, 2013.

[34] A. Krizhevsky and G. Hinton, “Learning multiple layers

of features from tiny images,” Master’s thesis, Depart-
ment of Computer Science, University of Toronto, 2009.

113

Authorized licensed use limited to: MIT Libraries. Downloaded on October 06,2021 at 18:27:17 UTC from IEEE Xplore. Restrictions apply.

