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Abstract
Current methods for learning visually grounded language from
videos often rely on text annotation, such as human generated
captions or machine generated automatic speech recognition
(ASR) transcripts. In this work, we introduce the Audio-Video
Language Network (AVLnet), a self-supervised network that
learns a shared audio-visual embedding space directly from raw
video inputs. To circumvent the need for text annotation, we
learn audio-visual representations from randomly segmented
video clips and their raw audio waveforms. We train AVLnet on
HowTo100M, a large corpus of publicly available instructional
videos, and evaluate on image retrieval and video retrieval tasks,
achieving state-of-the-art performance. Finally, we perform
analysis of AVLnet’s learned representations, showing our model
utilizes speech and natural sounds to learn audio-visual concepts.
Index Terms: audio-visual, multimodal learning, self-
supervised learning, video retrieval, spoken captions

1. Introduction
Humans learn to understand language, recognize objects, and
identify correspondences between the two by recognizing pat-
terns in what they see and what they hear. Researchers have
developed machine learning models similarly capable of relating
spoken words to semantically relevant images [1–8]. By training
models to retrieve images from associated spoken captions, they
learn to identify words in speech and objects in images with-
out supervised speech recognition or object detection. However,
these methods require the collection of recorded spoken captions,
limiting their scalability to other languages and visual contexts.

Videos provide a natural source of paired visual and audio
data that does not require manual annotation and exists pub-
licly in large quantities. Thus, self-supervised audio-video mod-
els [9–15] have been applied to cross-modal tasks focused on
identifying non-speech sounds and localizing the objects that
produced them. We instead focus on relating spoken words to
visual entities in videos such as objects and actions, which is a
challenging task since human speech is semantically complex
and the objects of interest do not produce the sound. Towards
this goal, we use instructional videos which provide opportu-
nities to learn semantic relationships between raw speech and
visual entities given the narration naturally present in them.
∗ Equal contribution.

A common approach for learning from instructional videos
is to develop text-video models that learn a multi-modal em-
bedding space. These models typically do not incorporate the
audio signal, but even models that do [16–22] still require text
captions. To collect captions, some methods rely on humans to
generate visual descriptions [23]. Unlike raw audio which can
be noisy and nondescript, human-generated text provides a clean,
visually salient signal; however, collecting text descriptions is
time-consuming and infeasible for large datasets. To reduce the
need for annotation, other methods rely on ASR transcripts to
provide text representative of the speech in videos [24–28]. How-
ever, ASR transcripts process the continuous speech signal into
discrete words, which limits words to a certain vocabulary and
misses the opportunity to learn from visually relevant non-speech
sounds. Further, models trained on ASR transcripts are inappli-
cable to the 98% of languages for which ASR is unavailable [29].
For these reasons, our goal is to learn from the raw audio and
visual channels in videos without any additional annotation or
ASR transcripts.

In response, we propose the Audio-Video Language Net-
work (AVLnet) and a self-supervised framework to learn visu-
ally grounded language from raw video input. We circumvent
the need for spoken or textual annotations by learning directly
from the raw audio channel in video clips. We train AVLnet
on HowTo100M [25], a large-scale instructional video dataset.
Instead of defining video clips at ASR boundaries, we train our
model on randomly segmented clips, reducing the need for super-
vision. Despite training on unlabeled videos, our model achieves
state-of-the-art retrieval results on speech-image pairs in the
Places Audio Caption dataset [3]. We propose video retrieval
tasks on three video datasets, YouCook2 [23], CrossTask [30],
and MSR-VTT [31]. We further show how our model leverages
audio cues from both speech and natural sounds for retrieval
and semantically relates the audio and visual modalities to learn
audio-visual concepts. Our code, data, and trained models will
be released at http://avlnet.csail.mit.edu

2. Technical Approach
2.1. Audio-Video Models

The AVLnet architecture (Figure 1) consists of parallel visual
and audio branches that extract features at a local level and then
pool them into visual and audio feature vectors representing
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Figure 1: The Audio-Video Language Network (AVLnet) model consists of video and audio branches, non-linear feature gating, and an
audio-video embedding space. The model is trained through self-supervision and applied to image and video retrieval tasks.

the overall content within each modality. This procedure pro-
vides flexibility by allowing the model to handle variable length
video clips, which is especially useful during inference where
clip boundaries are determined by human annotators and can
vary drastically in length. The visual branch consists of a 2D
and 3D CNN feature extraction pipeline. From each video clip,
we compute 2D image features to obtain 1 feature per second
using a ResNet-152 model [32] pretrained on ImageNet [33]
and 3D video features to obtain 1.5 features per second using
a ResNeXt-101 model [34] pretrained on Kinetics [35]. Each
of the CNN outputs are temporally max-pooled to produce two
2048-dimensional feature vectors, which are then concatenated
into a 4096-dimensional feature vector v. The audio branch
consists of a trainable CNN with residual layers [3] to process
the raw audio in videos. The model takes in audio spectrograms
and outputs a temporal feature map, which is temporally mean-
pooled to obtain a 1024-dimensional feature vector a. In contrast
to text-video models that require pretrained word embeddings to
process speech transcripts [24, 25], our audio model is not pre-
trained, so it can be applied to videos in any language, including
those for which ASR is not available.

2.2. Audio-Video Gated Embeddings

After the visual feature vector v and audio feature vector a are
extracted, we learn a projection of both vectors into a shared
embedding space. While this could be achieved with a linear
projection, we apply non-linear feature gating [36] which allows
the model to re-calibrate each dimension based on its learned
importance and encourages the model to activate dimensions
in unison across both modalities. In Section 4, we analyze the
embedded dimensions and show the model indeed activates for
similar concepts along the same dimension in both audio and
video modalities. Non-linear gating is defined as:

f(v) = (W v
1 v + bv1) ◦ σ(W v

2 (W
v
1 v + bv1) + bv2) (1)

g(a) = (W a
1 a + ba1) ◦ σ(W a

2 (W
a
1 a + ba1) + ba2) (2)

where f(v) and g(a) are the output 4096-dimensional embed-
ding vectors,W a

1 ,W
a
2 ,W

v
1 ,W

v
2 matrices and ba1 , ba2 , bv1 , bv2 vec-

tors are learnable parameters, ◦ denotes element-wise multipli-
cation, and σ is an element-wise sigmoid activation.

2.3. Contrastive Loss for Audio-Video Retrieval

Due to the self-supervised nature of AVLnet, we use the Masked
Margin Softmax (MMS) loss [5], a contrastive loss function
that simulates retrieval within each batch. The MMS loss
trains the model to discriminate between the true audio-visual

embedding pairs (ai, vi), and imposter pairs (ai, vimp
j ) and

(aimp
j , vi). Unlike the triplet loss used in prior unsupervised

audio-image modeling [3] that samples imposter pairs randomly
or via negative mining, the MMS loss enables comparisons of
positives with a wider range of negatives. The loss is defined as
L(f(v), g(a)) + L(g(a), f(v)). We modify the loss to exclude
the masking component, because it is inapplicable to our proce-
dure where each clip contains only one ground truth audio-video
pair. During training, we use a batch of N videos and sample
M clips per video, resulting in B =MN video clips per batch.
Since L (Eq. 3) is applied post non-linear gating, we pass the
gated embeddings f(v) and g(a) to the function.

L(x, y) = − 1
B

B∑
i=1

(
log exi·yi−δ

exi·yi−δ +
B∑
j=1
j 6=i

exi·y
imp
j

)
(3)

We note that the MMS loss function can be seen as two applica-
tions of InfoNCE [37] (with a margin), however, the negatives
are sampled from both within the same video and from others.

2.4. Video Clip Sampling

Given a corpus of unlabeled instructional videos, we generate
training samples by randomly segmenting each video into M
clips of length t (which may overlap) to obtain a corpus of clips.
This procedure allows us to sample clips without supervised
annotation (i.e., segmenting based on ASR transcripts.) As a
result, it is applicable to instructional videos in languages not
supported by ASR, and it enables greater flexibility to vary the
number and length of clips in the resulting dataset. Although
unsupervised clip selection may result in silent or non-salient
clips, our experimental results (Section 3.4) show our model
performs comparably whether trained on randomly sampled
clips or on clips determined by ASR boundaries.

3. Experiments
3.1. Implementation Details

We train AVLnet on the 1.2 million instructional YouTube videos
in the HowTo100M [25] dataset using our random clip sampling
technique. The audio input is represented as a log Mel spectro-
gram (16 kHz sampling rate, 25 ms Hamming window, 10 ms
window stride, 40 Mel filters). We extract 2D and 3D visual
features following Miech et al. [25]. During training, we do not
update the feature extractor weights due to GPU memory limita-
tions. We use a batch of N = 128 videos and sample M = 32
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Table 1: Video clip and language retrieval results on YouCook2, CrossTask, and MSR-VTT. Models trained on: (1) target dataset only (no
pretraining); (2) HowTo100M only (zero-shot); (3) HowTo100M and target dataset (pretrain and fine-tune). All models use pretrained
visual features. Baseline models are from Boggust et al. [38] and Arandjelović et al. [11].

Method
YouCook2 CrossTask MSR-VTT

Video Clip (A→V) Language (V→A) Video Clip (A→V) Language (V→A) Video Clip (A→V) Language (V→A)
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Random 0.03 0.15 0.3 0.03 0.15 0.3 0.04 0.18 0.35 0.04 0.18 0.35 0.1 0.5 1.0 0.1 0.5 1.0

(1) [38] 0.5 2.1 3.4 0.6 2.2 3.7 0.4 1.9 3.7 0.6 2.8 5.7 1.0 3.8 7.1 1.8 4.5 8.1
(1) [11] 0.3 1.9 3.3 0.5 2.0 3.7 0.4 2.5 4.1 0.7 4.5 9.8 1.3 4.3 8.2 0.3 2.5 6.6
(1) AVLnet 0.7 2.3 3.9 0.8 3.0 4.9 0.7 2.4 4.6 0.5 5.2 11.0 0.9 5.0 9.0 0.8 4.6 8.1

(2) [38] 6.8 22.4 31.8 7.9 23.8 32.3 5.5 18.7 28.3 5.2 18.2 27.6 7.6 21.1 28.3 9.3 20.7 28.8
(2) [11] 13.6 31.7 41.8 12.9 33.0 42.4 7.3 19.5 27.2 7.5 19.4 27.2 12.6 26.3 33.7 11.9 25.9 34.7
(2) AVLnet 27.4 51.6 61.5 27.3 51.2 60.8 11.9 29.4 37.9 10.8 27.3 35.7 17.8 35.5 43.6 17.2 26.6 46.6

(3) [38] 8.5 26.9 38.5 9.9 30.0 41.1 6.6 20.8 31.2 6.0 21.5 31.4 10.3 27.6 35.9 11.8 29.0 38.6
(3) [11] 17.4 39.7 51.5 19.0 43.4 53.9 9.5 25.8 36.6 11.1 28.9 40.7 16.2 32.2 42.9 15.4 34.9 45.0
(3) AVLnet 30.7 57.7 67.4 33.0 58.9 68.4 13.8 34.5 44.8 15.5 37.0 52.9 20.1 40.0 49.6 22.0 41.4 50.3

clips per video, each t = 10 seconds long. We minimize the
MMS loss with Adam [39] using a learning rate of 1e−3 and
margin hyperparameter of δ = 0.001. We train each model on 2
V100 GPUs for 30 epochs, which takes ∼2 days.

3.2. Experimental Setup

Audio-Image Retrieval. Since instructional videos and spo-
ken captions of images both contain descriptive speech of vi-
sual scenes, learning from instructional videos could provide
a relevant initialization for learning from images and spoken
captions. Therefore, we train AVLnet on HowTo100M videos
and fine-tune it on images and spoken captions in the Places
Audio Caption [3]. The dataset contains 400k images from the
Places205 dataset [40] paired with 1,000 hours of unscripted
spoken captions. We evaluate the performance on audio to image
and image to audio retrieval tasks. Following the prior work,
results are reported on the validation set. We use the standard
recall metrics R@1, R@5, and R@10.
Audio-Video Retrieval. We fine-tune and evaluate our model
on two instructional video datasets: YouCook2 [23] and
CrossTask [30]. While YouCook2 contains cooking videos,
CrossTask contains a wider range of instructional videos. We
also fine-tune and evaluate on MSR-VTT [31] which contains
general YouTube videos. We use the human-annotated clips de-
fined in each dataset: 9,586 train clips and 3,350 validation clips
for YouCook2, 17,840 train clips and 2,819 validation clips for
CrossTask, and 6,783 train clips and 968 test clips for MSR-VTT.
We evaluate our model on video clip retrieval (audio to video)
and language retrieval (video to audio) tasks, which measure
how well the model can retrieve content in one modality based
on a query in the other modality. This follows prior work on
audio to video retrieval on YouCook2 [38]. This procedure tests
our model’s capability for video search using audio and spoken
queries, without needing to transcribe speech. We report results
in the no-pretraining, zero-shot, and fine-tuned settings.

3.3. Comparison to State-of-the-art

Audio-Image Retrieval. In this experiment, we train AVLnet
on HowTo100M using the 2D CNN features so that it can be
fine-tuned on the downstream images without any modifications.
During fine-tuning on Places, we update the weights of the
visual encoder instead of keeping it frozen as in training on
HowTo100M. In Table 2, we compare prior models trained only
on Places-400k [2–4, 41, 42] to AVLnet trained on HowTo100M
and fine-tuned on Places. Our method achieves large gains over

Table 2: Retrieval on Places using 400k training set. ‡Results
found in [3]. †Obtained using official code. *Concurrent work.

Method Audio to Image Image to Audio
R@1 R@5 R@10 R@1 R@5 R@10

Random 0.1 0.5 1.0 0.1 0.5 1.0
Harwath et al. [2]‡ 14.8 40.3 54.8 12.1 33.5 46.3
Harwath et al. [41]‡ 16.1 40.4 56.4 13.0 37.8 54.2
DAVEnet [3] 20.0 46.9 60.4 12.7 37.5 52.8
ResDAVEnet [4] 27.6 58.4 71.6 21.8 55.1 69.0
ResDAVEnet-VQ [42]† 34.9 70.2 79.4 32.7 65.6 77.0
MILAN [8]* 53.4 79.1 86.3 53.0 78.2 85.6
Ours, AVLnet 44.8 76.9 86.4 42.8 76.2 84.8

prior results, showing AVLnet learns a relevant initialization that
transfers to the images and captions in Places. We also show
the results of concurrent work [8] achieving similar results with
different audio features and pretraining datasets.
Audio-Video Retrieval. We compare AVLnet to prior
audio-video models proposed for video clip retrieval in non-
instructional contexts. The model from Boggust et al. [38] only
uses the center image frame from each video clip during training
and inference. The model from Arandjelović et al. [11] is trained
with a binary cross-entropy loss. Compared with AVLnet, it does
not use non-linear gating and uses an embedding dimension of
128 instead of 4096. For fair comparison, we train all models
on HowTo100M, and, since the prior models each use different
visual and audio pipelines, we change them to work with our
2D/3D visual features and deep audio network.

Table 1 shows the retrieval results on YouCook2, CrossTask,
and MSR-VTT in the no-pretraining, zero-shot, and fine-tuned
settings. The performances on video clip retrieval (A→V) and
language retrieval (V→A) are similar for the same target dataset.
When trained only on the target dataset, the models all perform
comparably. Training on HowTo100M significantly improves
the performance in the zero-shot and fine-tuned settings, suggest-
ing that large-scale pretraining is essential. This is true across all
datasets, including on YouCook2 and CrossTask which contain
instructional videos similar in content to HowTo100M videos,
and on MSR-VTT which contains general videos. AVLnet out-
performs the baseline models, especially in the zero-shot and
fine-tuned settings, and achieves significant performance on all
datasets regardless of the domain.

3.4. Ablation Studies

We evaluate our design choices via ablation studies com-
paring each model’s video clip retrieval on YouCook2 and
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Table 3: AVLnet ablation study video clip retrieval (R@10).
YC=YouCook2; CT=CrossTask; ZS=zero-shot; FT=fine-tune.

Study Configuration YC-ZS YC-FT CT-ZS CT-FT

Projection
Heads

Linear 44.2 53.0 28.4 35.7
Non-Linear 47.8 57.6 30.6 38.4
Gating 54.3 63.0 33.0 43.6

Loss
Function

MIL-NCE 24.8 29.6 15.2 22.1
Max-Margin 27.4 39.1 18.7 30.1
Binary Cross Entropy 46.2 54.6 28.4 41.3
InfoNCE 51.6 60.5 31.9 41.9
MMS 54.3 63.0 33.0 43.6

Clip Sampling /
Visual Features

2D features only 51.6 57.9 32.6 37.9
ASR clips 57.6 62.8 34.6 44.5
AVLnet 54.3 63.0 33.0 43.6

Clip Duration

2.5s 23.1 46.1 20.6 36.4
5s 41.2 55.2 30.2 41.4
10s 54.3 63.0 33.0 43.6
20s 40.9 52.6 24.5 35.3

Table 4: Speech vs. non-speech retrieval results (R@10).

Method Speech-241 Sounds-241
A→V V→A A→V V→A

AVLnet zero-shot 88.0 88.0 32.4 33.6
AVLnet fine-tuned 92.5 91.7 44.0 46.8

CrossTask (Table 3). Given the computational requirements
of HowTo100M, we train for 15 epochs with a batch size of 64.

First, we compare projections and find non-linear feature gat-
ing outperforms both linear and non-linear projection heads [43].

Next, we evaluate loss functions. MMS [5] outperforms
MIL-NCE [24], Binary Cross Entropy [10], Max-Margin Rank-
ing [25], and InfoNCE [37]. For MIL-NCE, we defined neigh-
bors as the nearest non-overlapping 10s clips. For InfoNCE,
we used negative samples from both within the same video and
others. MIL-NCE, initially proposed for text-video models, per-
forms the worst, suggesting loss functions designed for text may
not transfer well to audio.

We also find AVLnet performs better when trained on both
2D and 3D visual features. AVLnet performs similarly when
trained on random vs. ASR-defined clips, indicating our ap-
proach reduces supervision while maintaining performance.

Finally, we assess HowTo100M clip length and find it has
a large effect on retrieval performance. While we propose 10s,
speech-image models [3,4] use spoken captions that are typically
20s, and text-video models [24] use ASR-defined clips that aver-
age 4s. We find 10s outperforms 2.5, 5, and 20s, suggesting short
clips may not contain speech relevant to the visuals, whereas
long clips may contain too many audio-visual concepts.

3.5. Retrieving Speech versus Non-Speech Sounds

To identify the audio cues AVLnet uses for retrieval, we inves-
tigate performance in the absence and presence of speech. We
create two distinct evaluation sets: one containing videos with-
out speech and one with speech. To assign videos to each set, we
identify the number of words in each YouCook2 validation video
clip via ASR [44]. We create a new evaluation set, Sounds-241,
containing the 241 clips without a detected word. We randomly
sample 241 clips with at least one word detected to create another
evaluation set: Speech-241. AVLnet achieves higher retrieval
performance on Speech-241 (Table 4), suggesting our model
is particularly effective when speech is present and supporting
its application to speech to video search. The performance on
Sounds-241 is far above chance (4.1%), demonstrating AVLnet
also detects relevant cues in natural sounds.

Figure 2: AVLnet aligns audio-visual concepts to latent dimen-
sions. The top 3 dimensions are shown as their maximally activat-
ing visuals (center frame) and audio (waveform and transcript).

4. Audio-Visual Concept Discovery
To discover audio-visual concepts learned by AVLnet, we apply
unit visualization [45] to the multi-modal embedding space and
identify dimensions that activate for semantically similar audio
and visual inputs. We first extract audio and visual embeddings
for each YouCook2 validation clip, and identify the top 50 inputs
that maximally activate each dimension. We remove the temporal
pooling layer from AVLnet’s audio branch to get word-level
audio embeddings. Each audio embedding is mapped to the
ASR-detected words in the surrounding 2 seconds, and each
visual embedding is mapped to a set of food labels provided
by YouCook2 [46]. To systematically identify dimensions that
activate for similar concepts, we label each dimension with the
most frequent food label and word in its maximally activating
inputs. We then compute each dimension’s audio and visual
purity as the fraction of its maximally activating inputs that
contain the correct label. We rank dimensions by geometric
mean of their audio and visual purity (Figure 2). Although the
maximally activating visuals and audio are chosen independently,
we find strong semantic correlations, suggesting AVLnet has
learned audio-visual concepts from raw instructional video.

5. Conclusion
We present a self-supervised method for learning audio-video
representations from instructional videos with the goal of relating
spoken words to visual entities. We introduce the AVLnet model
that learns directly from raw video, reducing the need for spoken
or text annotations. We establish baselines on video retrieval
tasks on YouCook2, CrossTask, and MSR-VTT and achieve state-
of-the-art performance on image retrieval tasks on the Places
Spoken Caption dataset. Finally, we show AVLnet learns audio-
visual concepts by relating speech and sound to visual objects.
We plan to investigate the model’s ability to learn representations
in other languages as future work.
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