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Abstract—Audio tagging is an active research area and has a
wide range of applications. Since the release of AudioSet, great
progress has been made in advancing model performance, which
mostly comes from the development of novel model architectures
and attention modules. However, we find that appropriate training
techniques are equally important for building audio tagging models
with AudioSet, but have not received the attention they deserve. To
fill the gap, in this work, we present PSLA, a collection of model
agnostic training techniques that can noticeably boost the model
accuracy including ImageNet pretraining, balanced sampling, data
augmentation, label enhancement, model aggregation. While many
of these techniques have been previously explored, we conduct a
thorough investigation on their design choices and combine them
together. By training an EfficientNet with pretraining, balanced
sampling, data augmentation, and model aggregation, we obtain a
single model (with 13.6 M parameters) and an ensemble model that
achieve mean average precision (mAP) scores of 0.444 and 0.474 on
AudioSet, respectively, outperforming the previous best system of
0.439 with 81 M parameters. In addition, our model also achieves a
new state-of-the-art mAP of 0.567 on FSD50K. We also investigate
the impact of label enhancement on the model performance.

Index Terms—Audio tagging, audio event classification, transfer
learning, imbalanced learning, noisy label, ensemble.

I. INTRODUCTION

AUDIO tagging aims to identify sound events that occur in
a given audio recording, and enables a variety of Artificial

Intelligence-based systems to disambiguate sounds and under-
stand the acoustic environment. Audio tagging has a wide range
of health and safety applications in the home, office, industry,
transportation, and has become an active research topic in the
field of acoustic signal processing.

In recent years, audio tagging and classification research
has moved from small and/or constrained datasets such as
ESC-50 [1] and CHiME-Home [2] to much larger datasets
with a greater variety and range of real-world audio events
and substantially more training data. A significant milestone in
this field occurred with the release of the AudioSet corpus [3]
containing over 2 million 10-second audio clips extracted from
video and tagged at the utterance level with a set of 527 event
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Fig. 1. The proposed Pretraining, Sampling, Labeling, and Aggregation
(PSLA) training pipeline. AudioSet is extremely class imbalanced and has
prevalent annotation errors, we propose a data augmentation/balanced sampling
strategy and a label enhancement strategy to alleviate these two problems. We
also pretrain the convolutional neural networks with ImageNet and find it leads to
a noticeable performance improvement. By further aggregating multiple models
with weight averaging and ensemble techniques, we get a model that performs
much better than that trained with a conventional pipeline and achieves a new
state-of-the-art mAP of 0.474.

labels. AudioSet is currently the largest and most comprehensive
publicly available dataset for audio tagging. Not surprisingly, it
has subsequently become the primary source of training and
evaluation material for audio tagging research. The availability
of AudioSet has encouraged much audio tagging research that
has steadily seen the standard evaluation metric of mean average
precision (mAP) increase from, for example, 0.314 with shallow
fully-connected networks [3], to 0.392 with a residual network
with attention [4] to, most recently, 0.439 with spectrogram and
waveform-based convolutional neural networks (CNNs) [5]. In
order to cope with the weakly labeled data, multiple instance
learning and attention mechanisms have also been the subject of
much investigation [6]–[9].

In our audio tagging experiments using Audioset we have
observed that, in addition to the particular model architecture
being evaluated, significant performance improvements can be
achieved via training techniques including cross-modal pre-
training, data augmentation, label enhancement, and ensemble
modeling. Our empirical evaluations show that these model
agnostic techniques lead to significant accuracy improvements,
and combining them together can further boost the model ac-
curacy. Specifically, we train an ensemble of EfficientNet [10]
models with the proposed set of training techniques and achieve
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a new state-of-the-art mAP of 0.474 on AudioSet, our single
model with 13.6 M parameters also achieves an mAP of 0.444,
outperforming the previous the best system that contained 81
M parameters. In addition, our model also achieves a new
state-of-the-art mAP of 0.567 on the FSD50K benchmark [11].

As shown in Fig. 1, the training techniques we investigated
fall into four main categories. First, we find cross-modal pre-
training with ImageNet [12] improves the performance of au-
dio tagging CNNs even though AudioSet already contains a
substantial amount of in-domain data. Second, we address the
Audioset label imbalance by adopting balanced sampling and
data augmentation. Third, we observed that there are perva-
sive annotation errors in AudioSet and studied the impact of
such annotation errors on the model performance. We further
developed a method to improve training label quality. Fourth,
we use weight averaging and ensemble methods to improve
the overall performance. Many of these techniques have been
proposed previously in isolation. For example, ImageNet pre-
training has been used in [13] for small datasets, balanced
sampling and data augmentation have been used in [5], label
enhancement has been proposed in [14], and ensemble modeling
has been used in [4], [15], [16]. To the best of our knowledge
however, none of the prior efforts have used more than two
of these simultaneously, and the particular implementation is
often only briefly mentioned in the literature. In this paper, we
thoroughly investigate each of these techniques, a more thorough
understanding of the benefits of different training techniques
should facilitate a more meaningful comparison between various
works because performance differences due to the particular
training procedure could overshadow the model architecture or
other novel techniques being investigated. The training pipeline
we propose is model-agnostic and can serve as a recipe for
AudioSet tagging experiments to facilitate fair comparisons with
new techniques.

The contributions of this work are summarized as follows:
1) We present a collection of training strategies and design

choices for audio tagging. We quantify the improvement
of each component via extensive experimentation.

2) By training an ensemble of standard EfficientNet models
with the proposed training procedure, we achieve a new
state-of-the-art mAP of 0.474 on AudioSet, outperforming
the best previous system of 0.439.

3) We release the code, model, and enhanced label set.1 The
training pipeline can serve as a recipe of AudioSet training
to facilitate future audio tagging research.

The paper is organized as follows. We first describe the
baseline model architecture in Section II, then we gradually
improve the baseline model performance on AudioSet by adding
new training techniques in Sections III, IV, V, and VI. In each
section, we first review the corresponding technique and then
present our implementation and results. We present an ablation
study, experiments on FSD50K and other model architectures,
and a discussion of the results in Section VII. We conclude the
paper in Section VIII.

1Code at [Online]. Available: https://github.com/YuanGongND/psla

TABLE I
THE AUDIOSET [3] STATISTICS

II. EXPERIMENT SETTING AND BASELINE MODEL

A. Dataset

In this work, we mainly focus on AudioSet [3], a collection
of over 2 million 10-second audio clips excised from YouTube
videos and labeled with the sounds that the clip contains from a
set of 527 labels. AudioSet is a weakly labeled and multi-label
dataset, i.e., labels are given to a clip with no indication of where
in the clip the associated sound occurred, and every clip can, and
often does, have multiple labels associated with it. As shown in
Table I, the dataset is split into three subsets: balanced train,
unbalanced train, and evaluation. In this paper, we combine
the balanced and unbalanced training set as the full training
set. The balanced train dataset is a set of 22,176 recordings,
where each class has at least 49 samples, while the full train
set contains the entire 2 million recordings. The evaluation set
consists of 20,383 recordings and contains at least 59 examples
for each class. To obtain the raw audio, we extracted the dataset
from YouTube. Due to the constant change in video availability
(e.g., videos being removed, taken down) there is a natural
shrinkage (about 5%) from the original dataset [3]. Specifically,
we downloaded 20,785 (94%), 1,953,082 (95%), and 19,185
(94%) recordings for the balanced train, full train, and evaluation
set, respectively, which is consistent with previous literature
(e.g., [5]). Therefore, we do make fair comparisons with previous
state-of-the-art models by evaluating on the same subset of the
evaluation dataset.

We also evaluate the proposed PSLA training framework on
FSD50K [11], a recently collected data set of sound event audio
clips with 200 classes drawn from the AudioSet ontology to
see how the PSLA framework generalizes. FSD50K contains
37,134 audio clips for training, 4,170 audio clips for validation,
and 10,231 audio clips for evaluation. The audio clips are of
variable length from 0.3 to 30s with an average of 7.6s (7.1s for
the training and validation set, 9.8s for the evaluation set). For
both AudioSet and FSD50K, we sample the audio at 16 kHz.

B. Training and Evaluation Details

For all AudioSet experiments in this paper, we train the
neural network model with a batch size of 100, the Adam
optimizer [17], and use binary cross-entropy (BCE) loss. We
use a fixed initial learning rate of 1e-3 and 1e-4 and cut it in half
every 5 epochs after the 35th and 10th epoch for all balanced set
and full set experiments, respectively. The reason why a smaller
learning rate is used for the full AudioSet is that the full set is
about 100 times larger than the balanced set, using a smaller
learning rate can avoid the model falling into a local minima
before it sees all samples. We use a linear learning rate warm-up
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Fig. 2. The audio tagging model used in this work. The 10-second waveform
is first converted to a 1056× 128 log Mel filterbank (fbank) feature vector
and input to the EfficientNet model. The output of the penultimate layer of
EfficientNet is a 33× 4× 1408 tensor. We apply a frequency mean pooling
to produce a 33× 1408 representation that is fed into a 4-headed attention
pooling module. In each head, the CNN output is transformed into a 33× 527
dimensional tensor via a set of 1×1 convolution layers with a parallel attention
branch and classification branch. We multiply the output of each branch element-
wise and apply a temporal mean pooling (implemented by summation). Finally,
we sum the weighted output of each attention head after it has been scaled by a
learnable weight and produce the final prediction for all classes.

strategy for the first 1,000 iterations. As in previous efforts, we
train the model with 60 and 30 epochs for all balanced set and
full set experiments, respectively, and report the mean result on
the evaluation set of the last 5 epochs.

We use the mean average precision (mAP) of all the classes
as our main evaluation metric since it is the most commonly
used audio tagging evaluation metric on AudioSet. Mean aver-
age precision is an approximation of the area under a class’s
precision-recall curve, which is more informative of perfor-
mance when dealing with imbalanced datasets such as AudioSet
and FSD50k compared with the average area under the curve
of the receiver operating characteristic curve [18], [19]. In the
discussion section, we also report the average area under the
curve (AUC) of the receiver operating characteristic curve and
sensitivity index (d-prime) in order to compare our model with
previous work that only reports AUC and d-prime.

C. Baseline Model

In this work, we use a similar model structure as in [4],
illustrated in Fig. 2. Each 10-second audio waveform is first
converted to a sequence of 128 dimensional log Mel filterbank
(fbank) features computed with a 25ms Hanning window ev-
ery 10ms. We conduct zero padding to make all audio clips
have 1056 frames. This results in a 1056× 128 feature vector
that is input to a CNN model. In [4] the CNN was based
on the ResNet50 model [20]. In our work, the CNN is based
on the EfficientNet-B2 model [10] since it requires a smaller

TABLE II
MEAN AVERAGE PRECISION (MAP) COMPARISON OF THE RESNET MODEL [4]

AND THE EFFICIENTNET MODEL USED IN THIS PAPER

number of parameters and is faster for training and inference.
The EfficientNet model effectively downsamples the time and
frequency dimensions by a factor of 32. The penultimate output
of the model is a 33× 4× 1408 tensor. We apply mean pool-
ing over the 4 frequency dimensions to produce a 33× 1408
representation that is fed into a multi-head attention module.
The attention module consists of an attention branch and a
classification branch. Each branch transforms the CNN mean
pooled output into a 33× 527 dimensional tensor via a set of
1× 1 convolutional filters. After a sigmoid non-linearity and
a normalization on the attention branch, we combine the two
branches via a element-wise product. A temporal mean pooling
(implemented by summation) is then performed to produce a
final 527 dimensional output for each class label. Unlike [4], we
use a 4-headed attention module instead of a single-head one in
this work. We sum the weighted output of each attention head
after it has been scaled by a learnable weight to produce the final
output.

EfficientNet [10] is a recent proposed convolutional neural
network architecture that has shown an advantage on both
accuracy and efficiency over previous architectures. Such ad-
vantage mainly comes from two design: First, EfficientNet is
based on the mobile inverted bottleneck convolution (MBConv)
block [21], [22], an efficient residual convolution block. Second,
EfficientNet scales the network on all dimensions (i.e., width,
depth, and input resolution), which is demonstrated to be a
better strategy than scaling only one dimension. In this work,
we use EfficientNet-B2 that consists of 9 stages, 339 layers.
The original EfficientNet-B2 model for image classification has
9.11M parameters, after adding the attention module and adjust-
ing the classification layer, our audio tagging model has 13.64M
parameters in total. As shown in Table II, the EfficientNet
model achieves slightly worse performance than the ResNet-50
model, but has 12 million fewer parameters. In the rest of the
paper, we keep using the EfficientNet model and show that a
significant improvement can be achieved without modifying its
model architecture.

III. NETWORK PRETRAINING

Transfer learning and network pretraining have been widely
used in computer vision, natural language processing, speech
and audio processing in recent years [23]–[25]. The typical
process is to first train a model with either a large out-of-domain
or unlabeled dataset using an auxiliary task and then fine-tune
the model with in-domain data for the main task. The idea being
that the knowledge learned from the pretraining task can be
transferred to the main task.
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TABLE III
PERFORMANCE IMPACT ON MAP DUE TO PRETRAINING

WITH IMAGENET DATA

Fig. 3. Comparison of the performance of ImageNet-pretrained model and
random-initialized model with different training data volume.

For the audio tagging task, both supervised pretraining
(e.g., in [5]) and self-supervised pretraining (e.g., in [26]–[30])
using audio data have been studied in recent years. Performance
improvement is typically achieved when the in-domain dataset
is small (e.g., ESC-50 [1], UrbanSound [31], and balanced
AudioSet). However, it has not been reported that a pretrained
model can outperform a state-of-the-art audio tagging model
trained from scratch using the full AudioSet, possibly because
the full AudioSet contains 2 million audio recordings and there
is no larger annotated dataset available. While theoretically
self-supervised pretraining can leverage an unlimited amount
of unlabelled audio data, in practice it takes effort to find and
process large scale data with sufficient variety and coverage of
the 527 sound classes.

In contrast to the above-mentioned efforts, we find noticeable
performance improvement can be achieved by pretraining the
CNN with the ImageNet dataset [12] used for visual object
classification, even when the training data for the end task
of audio tagging is the full AudioSet. In our experiment, we
initialize the EfficientNet (the second to the penultimate layer)
with 1) ImageNet-pretrained weights (released by the authors
of [10]), and 2) random weights (He Uniform initialization [32]).
We then train both models in exactly the same way as described
in Section II-B.

As shown in Table III, ImageNet pretraining leads to a 51.9%
and 5.8% relative improvement for the balanced set and full
set experiment, respectively. To see the relationship between
the performance improvement and the end-task training data
volume, we further evaluate the performance when the audio
tagging training data volume is 100k, 200k, 300k, and 500k
(all comprised of the entire balanced set and samples randomly
taken from the full set). As shown in Fig. 3, the performance im-
provement decreases with the training data volume, but is always

noticeable. In addition, we find the performance improvement
led by ImageNet pretraining is much larger than that led by
more training iterations, e.g., when trained with the balanced
AudioSet, the model trained with 120 epochs achieves an mAP
of 0.1694, which is only slightly better than the model trained
with 60 epochs and is significantly worse than the model trained
with ImageNet pretraining that achieves an mAP of 0.2385.

In some sense, it is surprising that pretraining a model with
data from a different modality can be effective. However, transfer
learning from computer vision tasks to audio tasks is not new
and has been previously studied in [13], [33]–[35]. However,
we believe this is the first time it has been demonstrated to
be effective when the dataset of the audio task is at this scale,
indicating the auxiliary image classification task helps the model
learn some complementary knowledge. We hypothesize that the
improvements may be due to the model learning to recognize
low-level features such as edges during pretraining. Such knowl-
edge could potentially be relevant for finding acoustic “edges”
in the spectrogram.

In practice, many commonly used CNN architectures (e.g., In-
ception [36], ResNet [20], EfficientNet [10]) have off-the-shelf
ImageNet-pretrained models for both TensorFlow and PyTorch.
It is also straightforward to adapt these off-the-shelf models to
audio tasks. The only things that need to be modified are the
first convolution layer and the last classification layer. Since the
input of vision tasks is a 3-channel image while the input to
the audio task is a single-channel spectrogram, we adjust the
input channel of the first convolutional layer from 3 to 1 and
initialize it with random weights. Since the classification task
is essentially different, we abandon the last classification layer
of the pretrained model and feed the output of the penultimate
layer to our succeeding layers. We implement this using the
efficientnet_pytorch2 package.

In summary, the advantages of using ImageNet pretraining are
as follows. First, no additional in-domain labeled or unlabeled
datasets are needed. This is important because currently there is
no audio tagging dataset of comparable size to AudioSet. Sec-
ond, ImageNet pretraining can lead to consistent performance
improvement even when the in-domain training data size is huge.
Third, ImageNet pretraining is practically easy to implement.
The limitation is that it is only applicable to models that take 2D
image-like input (e.g., spectrogram). Nevertheless, a majority of
deep learning models for audio tasks do fall in this category. In
the following sections, we use Imagenet pretraining by default
for all experiments.

IV. BALANCED SAMPLING AND DATA AUGMENTATION

A. Balanced Sampling

As might be expected, the frequency of occurrence of different
sound events ranges widely. It is not surprising then that a large
scale audio tagging dataset is class imbalanced. As shown in
Fig. 4, the most frequent AudioSet class is “Music” which
has 949,029 samples, while the most infrequent class “Tooth-
brush” only has 61 samples, leading to a ratio of 15,557. Such

2[Online]. Available: https://github.com/lukemelas/EfficientNet-PyTorch
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Fig. 4. Sample count of each class in the full AudioSet (vertical axis is in
log scale). Note that the sample count of the “Speech” class is substantially
larger than the sum of sample counts of the “Male Speech,” “Female Speech,”
and “Child Speech” class. Similarly, the sample count of the “Music” class is
substantially larger than the sum of sample counts of the “Happy music” and
“Sad music” class. This indicates a potential prevalent miss annotation issue in
AudioSet.

imbalances can have a large impact on performance, particularly
for low-frequency classes [37].

With such large data imbalance, simple upsampling or down-
sampling are difficult to implement because upsampling will
make the dataset unacceptably large while downsampling will
waste a large portion of the data. Moreover, AudioSet is
a multi-label dataset, making it even harder to implement
up/downsampling methods. In this work, we propose a random
balanced sampling method to alleviate the class imbalance prob-
lem. Note that balanced sampling on AudioSet has been used
in [5], [6], [8], but is only briefly mentioned and the details can
only be found in the source code.

The proposed random balanced sampling approach is shown
in Algorithm 1, lines 1-8. We first count the sample number
ck of each class k over the entire dataset. We then assign a
sampling weight for each sample, specifically, the weight w(i)

of the ith sample is
∑527

k=1 1{k∈y(i)}1/ck. This assigns a higher
weight for samples containing rare audio events and also takes all
audio events that appear in the sample into consideration. During
training, we still feed N samples (N is the dataset size) to the
model for each epoch, but instead of traversing the dataset, we
draw a sample from the multinomial distribution parameterized
by the above-mentioned sample weights with replacement. That
makes rare sound event samples more likely to be seen by the
model. The advantages of the proposed random sampling are 1)
it is a compromise of upsampling and downsampling. It wastes
fewer samples than downsampling while keeping the number of
N samples fed to the model every epoch; 2) it is applicable to
multi-label datasets; and 3) the model sees a different set of data
every epoch, so the model checkpoints after every epoch have
a greater diversity, which is helpful for ensembles [38], [39], as
we will discuss in Section VI.

As shown in Fig. 5, while the proposed balanced sampling al-
gorithm greatly alleviates the data imbalance issue, the sampled

Algorithm 1 Balanced Sampling and Data Augmentation
Require:

Multi-label Dataset D = {x(i),y(i)}, i ∈ {1, . . ., N}

Procedure 1: Generate Sampling Weight

Input: Label Set {y(i)}
Output: Sample Weight Set W = {w(i)},
i ∈ {1, . . ., N}

1: traverse {y(i)}, count sample number ck of each class
k

2: initialize w(i) = 0, i ∈ {1, . . ., N}
3: for each sample i do
4: for each class k ∈ y(i) do
5: w(i) = w(i) + 1/ck

return W = {w(i)}

Procedure 2: Sampling and Augmentation in Training

Input: {x(i),y(i)}, W , F , T , M
6: for every epoch do
7: for n ∈ {1, . . ., N} do
8: draw i ∼ multinomial(W)
9: if unif(0, 1) < mixup rate M then
10: draw j ∼ unif{1, N}
11: draw λ ∼ Beta(α, α)
12: x = λx(i) + (1− λ)x(j)

13: y = λy(i) + (1− λ)y(j)

14: else
15: x = x(i), y = y(i)

16: draw f ∼ unif(0, F ), f0 ∼ unif(0, 128− f)
17: draw t ∼ unif(0, T ), t0 ∼ unif(0, 1056− t)
18: x = Masking(f0, t0, f, t)(x)
19: use (x, y) to train the neural network

Fig. 5. Sorted sampled frequency of each class after 30 training epochs.

frequency of each class is still imbalanced after the balanced
sampling algorithm is applied. This is because AudioSet is
a multi-label dataset and minority classes are usually paired
with majority classes, thus oversampling the minority class also
directly oversamples the majority class. We compare the per-
formance of the model trained with plain dataset traversal (with
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TABLE IV
PERFORMANCE IMPACT ON MAP DUE TO VARIOUS BALANCED SAMPLING

AND DATA AUGMENTATION STRATEGIES

Fig. 6. The proportion of unseen samples with the training epochs. Mixup rate
is the probability that the sample input to the model is a mixed-up sample. In
our implementation, one of the two mixed-up samples is drawn from a uniform
distribution, while the other is drawn using the balanced sampling multinomial
distribution.

data reshuffled at every epoch) and with the proposed random
sampling. As shown in Table IV, we find random balanced
sampling actually lowers the performance. This result is not
surprising because: 1) while better than downsampling, there is
still a substantial amount of data wasted every epoch. As shown
in Fig. 6, 40.9% data is not seen by the model after 30 training
epochs; 2) while the low-frequency class samples and high-
frequency class samples are roughly equally seen by the model,
the low-frequency class samples are actually repeated samples.
Both issues increase the risk of model overfitting. Therefore, we
explored the use of data augmentation to overcome this problem.

B. Time and Frequency Masking

We first consider simple time and frequency masking for data
augmentation, which has been found to be effective for audio
tagging [5] and speech recognition [40]. Frequency masking is
applied so that f consecutive frequency channels [f0, f0 + f )
are masked, where f ∼ unif(0, F ), f0 ∼ unif(0, 128− f),
and F is the maximum possible length of the frequency mask.
Similarly, time masking is applied so that t consecutive fre-
quency channels [t0, t0 + t) are masked, where t ∼ unif(0, T ),
t0 ∼ unif(0, 1056− t), and T is the maximum possible
length of the frequency mask. Note that 128 and 1056 are the
input dimensions of our model. We use the implementation
of torchaudio.transforms.FrequencyMasking
and TimeMasking, F = 48 and T = 192. The masking

parameters f0, t0, f, t are sampled on-the-fly for each audio
sample during training to minimize the chance of repeated audio
samples being fed to the model. As shown in Table IV, time
and frequency masking improves audio tagging performance
considerably, with relative improvements of 18.2% and
14.6% achieved for the balanced set and full set experiment,
respectively. Note that the overall amount of training samples per
epoch remains the same. We hypothesize that the effectiveness
of masking is due to the reduction of repeated samples in the
training data, especially for low-frequency samples.

C. Mix-Up Training

An additional form of data augmentation we explored is called
mix-up training where weighted combinations of audio samples
are combined to make new samples. Mix-up training creates con-
vex combinations of pairs of examples and their corresponding
labels. Studies have shown it can improve the performance of
image classification, voice command recognition [41], [42], and
audio tagging [5], [43]. Specifically, mix-up training constructs
augmented training examples as follows:

x = λx(i) + (1− λ)x(j)

y = λy(i) + (1− λ)y(j)

where x(i) and x(j) are two different training audio samples,
y(i) and y(j) are the corresponding labels, λ ∈ [0, 1] and x is
the mixed-up new audio sample, and y is the resulting label. We
conduct mix-up on the waveform level.

Past explanations for why mix-up training improves per-
formance include: 1) it increases the variation of the training
data [5], [43]; 2) it leads to an enlargement of Fisher’s criterion in
the feature space and a regularization of the positional relation-
ship among the feature distributions of the classes [41], [43]; and
3) it reduces the model’s memorization of corrupt labels [42].

In addition to these observations, we find mix-up training
has an additional advantage for imbalanced datasets. As we
discussed in Section IV-A, balanced sampling, while making
the low-frequency class samples more prevalent, has the unfor-
tunate side effect of wasting a large number of (40.9%) class
samples. By adopting the mixup strategy, the model can see
twice the number of samples within the same training epoch.
This advantage can be increased if one of the two mixed-up
samples is drawn from a uniform distribution, while the other
is drawn using the balanced sampling multinomial distribution
introduced in the previous section. Intuitively, mixing up a rare
sound event (e.g., toothbrush) with a frequent one (e.g., music)
is more reasonable than mixing up two rare sound events. Some
previous synthetic audio event detection datasets use a similar
method to construct samples [44]. As shown in Fig. 6, the mix-up
strategy can reduce the unseen samples to almost zero in just a
few epochs.

We further make two modifications based on previous ef-
forts. In prior work λ is drawn from a uniform distribution
unif(0, 1) [43] or Beta distribution Beta(α, α) with α <
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TABLE V
PERFORMANCE AS A FUNCTION OF MIX-UP RATE (TRAINING ON

BALANCED SET WITH α = 10)

TABLE VI
PERFORMANCE AS A FUNCTION OF α (TRAINING ON BALANCED SET

WITH MIX-UP RATE = 0.5)

1 [42], where

Beta(α, α) : prob(x;α, α) =
xα−1(1− x)α−1

B(α, α)

where B is the beta function

B(α, α) =

∫ 1

0

tα−1(1− t)α−1dt

Thus λ has a relatively high likelihood to be close to either 0
or 1. From the perspective of sound mixing and reducing the
number of unseen samples, a λ close to 0.5 could be more
reasonable since it leads to more “evenly” mixed up samples and
the model can see both samples. Second, since samples in the
evaluation set are not mixed up, mixing up all samples during
training might lead to a gap between training and evaluation.
Thus we set a mix-up rate to control the number of samples
to mix up during training, a mixup rate of 0.5 means that 50%
training samples are mixup samples and the rest 50% training
samples are non-synthetic samples. Therefore, the model can
see non-synthetic samples during training. As shown in Fig. 6,
a mix-up rate of 0.5 results in 95% samples being seen by the
model in 5 epochs. For non mix-up samples, the data loader only
needs to load one audio sample instead of two. A low mix-up rate
can also reduce the data loading and pre-processing cost during
training, which is non-negligible because it is almost impossible
to fit the full AudioSet into memory.

We evaluate the impact of mix-up rate and α, as shown in Ta-
bles V and VI. A larger α and a medium mix-up rate indeed lead
to better classification performance. Combining them achieves
0.3108 mAP, which is better than a plain setting of α=mixup
rate=1 that achieves 0.3079 mAP. We use α = 10 and mix-up
rate= 0.5 in all subsequent experiments.

D. Summary

We combine the balanced sampling and masking and mix-up
data augmentation strategies together, as described in Algo-
rithm 1. We summarize the contribution of each component in
Table IV. It is worth mentioning that while balanced sampling
alone lowers the performance, it is helpful when combined with
data augmentation strategies. By adopting balanced sampling
and data augmentation, an 11.6% relative improvement and an
mAP of 0.4397 are achieved for the full set experiment. We only
do data augmentation for balanced set experiments as the data is

Fig. 7. Sorted class-wise average precision (AP) and its standard deviation of
the model trained on full set. Note that the “Speech” class has a much higher AP
than the “Male Speech,” “Female Speech,” and “Child Speech” class. Similarly,
the “Music” class has a much higher AP than the “Happy Music” and “Sad
Music” class. “Singing” and “Song” have similar definition but very different
AP. Classes with low AP also have a larger AP variance.

already roughly balanced and obtain a 30.3% relative improve-
ment and an mAP of 0.3108, demonstrating the effectiveness of
data augmentation for small datasets. Finally, it is worth men-
tioning that by merely adopting ImageNet pretraining, balanced
sampling, and data augmentation with a standard EfficientNet
architecture, the model already outperforms the previous best
system. In the following sections, we use balanced sampling
(for the full AudioSet) and data augmentation as defaults for all
experiments.

V. LABEL ENHANCEMENT

In this section, we explore the noisy label aspect of AudioSet:
how it impacts audio tagging performance, and how to alleviate
it. This line of research is motivated by observing the model’s
class-wise performance. In Fig. 7, we show the class-wise aver-
age precision (AP) of the model trained with the full set. From
the figure it is immediately apparent that the AP of each class
differs greatly, indicating that the model has a range of ability
to recognize various sounds. This is not an issue specific to
our model or training pipeline, but has been widely reported in
prior work [5], [8], [14], [45], [46]. The order of class-specific
performance reported by independent research also appears to
be similar. For example, the “Male speech,” “Bicycle,” “Har-
monic,” “Rattle,” and “Scrape” classes are among the 10 worst
performing classes in [45], and they are also are among the
10 worst performing classes for our model when trained with
the balanced set. We further confirm that models with different
architectures have similar class-specific performance order with
experiments in Section VII-B. This consistency suggests that
the issue might be due to an intrinsic problem with the data
or the task. Since the class-wise AP is not strongly correlated
with either class sample count in the training set or the class
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TABLE VII
CORRELATION COEFFICIENTS BETWEEN CLASS-WISE AP AND CLASS SAMPLE

COUNT/ANNOTATION QUALITY ESTIMATE RELEASED BY AUDIOSET AUTHORS

annotation quality estimate released by the AudioSet authors (as
shown in Table VII), it has been hypothesized that the class-wise
performance variation is due in part to the difficulty in reliably
tagging the different sound classes themselves [5], [46].

While we agree that the poor performance of some classes
could be due to particular audio events being difficult to identify,
it is not true for all poor-performing classes. For example, the
“Male Speech,” “Female Speech,” and “Child Speech” classes
have APs of 0.07, 0.09, 0.45, respectively while the AP of the
“Speech” class is 0.80. This discrepancy cannot be explained
by the class difficulty hypothesis because recognizing speaker
gender from speech is a relatively easy task [47]–[49], and the
performances of the speech classes should not be so disparate.
By examining the class sample counts, we find another issue
that the sample count of the “Speech” class is substantially
larger than the sum of sample counts of the “Male Speech,”
“Female Speech,” and “Child Speech” classes. Specifically, in
the balanced set, there are 5,309 audio clips with the label
“Speech” but only 55, 55, 128 audio clips are with label “Male
Speech,” “Female Speech,” and “Child Speech,” respectively.
The same thing happens in the full set (shown in Fig. 4): the
“Speech Class” has 947,009 samples while the sum of the other
three classes is 34,878. In other words, only 4.5% and 3.7%
of speech samples are labeled as either male, female, or child
speech in the balanced and full AudioSet, respectively. This
indicates that a large portion of samples are not correctly labeled.
Based on these two observations, we hypothesize that the low
performance of the male, female, and child speech classes is
not due a small number of samples, or inherent classification
difficulty, but that they have only a small fraction of correctly
labeled data, which ultimately confuses the model. We refer to
this phenomenon as a Type I error.

We also find that there are substantial samples labeled with
sub-classes, but not with the corresponding parent class defined
by the AudioSet ontology. For example, there are 40 and 3,201
audio clips labeled as either “Male Speech,” “Female Speech,”
or “Child Speech,” but not labeled as “Speech” in the balanced
and full AudioSet, respectively. We refer to this phenomenon as
Type II error.

We formalize the two types of error as follows:
1) Type I error: an audio clip is labeled with a parent class,

but not also labeled as a child class when it does in fact
contain the audio event of the child class.

2) Type II error: an audio clip is labeled with a child class,
but not labeled with corresponding parent classes.

It is worth mentioning that neither type of error are included
in the quality estimate released by the AudioSet authors because
the quality estimate checked 10 random audio clips of each class
and verified that they actually contained the corresponding sound

event. In other words, the quality estimate counts the false posi-
tive annotation errors, but not false negatives. As a consequence,
the quality estimate of the “Male Speech,” “Female Speech,” and
“Child Speech” is 90%, 100%, and 100%, respectively, while
they have obvious false negative annotation errors.

Unfortunately, false negatives are prevalent in AudioSet. An-
other example are the music classes (see Figs. 4 and 7 for sample
counts and class-wise AP of music classes). The reason for these
types of errors is due to the AudioSet annotation pipeline. In
the pipeline, the human annotator verifies the candidate labels
nominated by a series of automatic methods (e.g., by using
metadata). Also, the list of candidate labels is limited to ten
labels per clip. Since the automatic methods for nomination are
not perfect, some existing sound events fail to be nominated,
or are nominated but ranked below the top ten, thus leading to
missing labels [3], [14].

As seen in the speech class example, annotation error can
impact performance, but has not received much attention. To
the best of our knowledge, only a few efforts have covered the
missing label issue. In [45], [50], a synthetic error is studied,
however, the real-world noisy labels are believed to be much
harder to deal with than the synthetic labels. In [14], the authors
propose a loss masking based teacher-student model. In this sec-
tion, we propose an ontology-based label enhancement method
to alleviate the noisy label problem. Our approach differs from
previous work in three aspects: First, we work on real-world
noisy labels rather than synthetic corrupted labels; Second, we
explicitly modify the labels of the training data rather than using
loss masking during training. Thus the enhanced label set can be
used in the exact same way as the original set (no need to modify
the model and training pipeline). We plan to release the enhanced
label set to facilitate future research. Third, we leverage the Au-
dioSet ontology to constrain label modification, which reduces
the chance of incorrect modifications. For example, for an audio
clip labeled as “Speech,” we only consider adding child or parent
labels in the specific “Speech” branch of the ontology.

As shown in Algorithm 2, the proposed approach consists of
the following steps. First, we train a teacher model using the
full AudioSet with the original label set. Second, we set a label
modification threshold for each audio tagging, specifically, we
set the threshold of a class as the teacher model’s mean prediction
score of all audio clips originally labeled as that class (lines
1-2). The threshold can also be set as other values such as the
5th, 10th, or 25th percentile of the teacher model’s prediction
score. The lower the threshold, the more labels are added. We
then identify all samples that need to be relabeled. For each
sample, we compile all child (Type I) and/or parent (Type II)
labels of all original labels as the candidate set according to the
AudioSet ontology (line 6). For each label in the candidate set, if
the teacher model’s prediction score of the class is greater than
the corresponding label modification threshold, we add it to the
labels of the sample (line 7-8). Finally, we retrain the model
from scratch with the enhanced label set.

We apply the proposed label enhancement method (with the
teacher model’s mean prediction score as the label modifi-
cation threshold) on the balanced training set and show the
results in Table VIII. Note the model without label enhancement
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Algorithm 2 Label Enhancement
Require:

Teacher Model M
Dataset D = {x(i),y(i)}, i ∈ {1, . . ., N}
Label Ontology O

Procedure 1: Generate Label Modification Threshold

Input: M,D
Output: Threshold Set T = {tk}, k ∈ {1, . . ., 527}

1: for k ∈ {1, . . ., 527} do
2: tk =

∑N
i=1 1{k∈y(i)}M(x(i))(k)/

∑N
i=1 1{k∈y(i)}

return T = {tk}

Procedure 2: Enhance the Label Set

Input:M,D,O, T
Output: Enhanced Label Set {y′(i)}, i ∈ {1, . . ., N}

3:Initialize {y′(i)} = {y(i)}
4:for i ∈ {1, . . ., N} do
5: for k ∈ y(i) do
6: for kn ∈ O(k) do �parent or child class of k
7: if M(x(i))(kn) > tkn

and kn �∈ y(i) then
8: y′(i) = y′(i) ∪ {kn}
return {y′(i)}

TABLE VIII
RESULT OF LABEL ENHANCEMENT ON THE BALANCED SET (NOTE THE MAP

WITHOUT LABEL ENHANCEMENT IS 0.3108±0.0013)

has an mAP of 0.3108±0.0013 (the model from the previous
section). The key findings are as follows: First, a noticeable
number of labels are added, and over half of the classes are
impacted, which further indicates that the missing label issue
is prevalent in AudioSet. Second, enhancing the label improves
the performance of both impacted and non-impacted classes,
but the impacted classes have a larger relative improvement.
Third, the mean class-wise relative AP improvement is larger
than the relative mean AP (mAP) improvement, indicating that
more of the classes that improved originally had below-average
performance. This supports our hypothesis that the missing label
problem lowers the performance of a sound class. Fourth, we
evaluate the performance of fixing Type I errors, Type II errors,
and fixing both. The improvement achieved by fixing Type I
errors is larger than fixing Type II errors. Fixing both cannot
further improve the performance. Fifth, since the performance

improvement is relatively minor, we run all experiments three
times with different random seeds and report both the mean
and standard deviation. As shown in the table, the results verify
the statistical significance of the improvement. Finally, we also
applied the label enhancement method on the full AudioSet,
however, we did not observe a performance improvement. Fixing
Type I, Type II, and both errors leads to mAPs of 0.4400, 0.4387,
and 0.4386, respectively, while the model without label enhance-
ment achieves an mAP of 0.4397±0.0007. We believe the main
reason for the relatively small improvement achieved by label
enhancement is that the same label noise exists consistently
in both the training set and evaluation set. Therefore, merely
applying label enhancement on the training set leads to a mis-
match between the training and evaluation sets. The performance
results do not therefore fully reflect the actual improvement. In
addition, it is possible that the label modification threshold is
not appropriate for the full AudioSet.

In order to verify these hypotheses, we evaluate our model
on existing datasets with more accurate annotation including
ESC-50 [1] and FSD50K [11], and also test various label
modification thresholds. ESC-50 contains 2,000 audio samples
of 50 sound classes, among which 40 classes are overlapped
with the AudioSet. Therefore, we evaluate our model trained
with AudioSet on the 1,600 samples that are labeled as these
40 overlapped classes. FSD50K is a recently collected data
set of sound event audio clips with 200 classes drawn from
the AudioSet ontology. The FSD50K evaluation set is more
carefully annotated compared with the training and validation
set and can be used as fair references. Since the length of
AudioSet model input is 10s while a small portion of FSD50K
audio clips are longer than 10s, we cut all FSD50K audio
clips to 10s for testing. In addition, we also apply the pro-
posed label enhancement algorithm on the AudioSet evalu-
ation set and generate enhanced evaluation sets. We include
the enhanced AudioSet evaluation sets as additional evaluation
sets.

We evaluate various label modification thresholds including
the mean, 25th percentile (25P), 10th percentile (10P), and
5th percentile (5P) of the teacher model’s prediction score of
all audio clips originally labeled as that class. The lower the
threshold, the more labels are modified, e.g., using the 5th
percentile of the prediction score as the threshold changes the
largest number of labels. We then train models with the four
enhanced label sets and compare their results on seven evalua-
tion sets (ESC-50, FSD50K, original AudioSet evaluation set,
and four enhanced AudioSet evaluation set with different label
modification thresholds).

As shown in Table IX, we find that models trained with en-
hanced AudioSet label sets consistently outperforms the model
trained with the original AudioSet label set on all evaluation sets
except the original AudioSet evaluation set, demonstrating that
the proposed label enhancement algorithm is able to improves
the model performance, the reason why we cannot observe
the improvement on the AudioSet evaluation set is that the
evaluation set itself contains annotation errors. While there is
no threshold that is optimal for all evaluation sets, for both
balanced and full AudioSet experiments, we find the mean and
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TABLE IX
AUDIOSET LABEL ENHANCEMENT (LE) EXPERIMENT RESULTS. WE USE THE MEAN, 25TH PERCENTILE (25P), 10TH PERCENTILE (10P), AND 5TH PERCENTILE

(5P) OF THE PREDICTION SCORE AS THE LABEL MODIFICATION THRESHOLDS AND GENERATE 4 ENHANCED AUDIOSET TRAINING LABEL SETS AND EVALUATION

LABEL SETS. WE THEN TRAIN THE MODEL WITH THE ENHANCED TRAINING SETS AND EVALUATE IT ON VARIOUS EVALUATION SETS. THE RESULTS SHOW THAT

THE MODEL TRAINED WITH ENHANCED LABEL SETS CONSISTENTLY OUTPERFORMS THE MODEL TRAINED WITH ORIGINAL LABEL SETS ON ALL EVALUATION

SETS EXCEPT THE ORIGINAL AUDIOSET EVALUATION SET

TABLE X
PERFORMANCE IMPACT ON MAP DUE TO WEIGHT AVERAGING

25th percentile of the teacher model’s prediction score are the
most appropriate label modification thresholds.

We believe it is an important and non-negligible topic for
future AudioSet and general audio tagging research because
noisy labels are inevitable for a large-scale dataset and errors
will impact model performance. In the following section, we
use models trained with the enhanced label set as default for all
balanced set experiments.

VI. WEIGHT AVERAGING AND ENSEMBLE

A. Model Weight Averaging

In this section, we explore improving model performance
by aggregating multiple models. The first strategy we explore
is weight averaging [51]. Weight averaging performs an equal
average of the weights traversed by the optimizer, which makes
the solution fall in the center, rather than the boundary, of a wide
flat low-loss region and thus lead to better generalization than
conventional training. Empirically, weight averaging has been
shown to improve the performance of various models such as
VGG [52], ResNets [20], and DenseNets [53] on a variety of
tasks [51], [54]. While weight averaging is usually applied with
a high constant or cyclical learning rate, we find it is helpful
even when used together with a weight decay strategy.

In this work, we simply average all weights of the model
checkpoints at multiple epochs. For both balanced set and full
set experiments, we start averaging model checkpoints of every
epoch after the learning rate is decreased to 1/4 of the initial
learning rate (i.e., the 41st and the 16th epochs, respectively)
until the end of the training. As shown in Table X, weight

Fig. 8. Relationship of the performance of averaging models with the epoch
starts to average. For both weight and prediction averaging, we average all
checkpoints from the starting epoch to the last epoch, i.e., the earlier to start
averaging, the more checkpoints are averaged. Note that the improvement of
model averaging is not sensitive to exactly when weight averaging begins. For
weight averaging, the optimal starting epoch is around the 15th epoch while
starting averaging at any epoch after the 10th epochs can outperform any single
checkpoint. For prediction averaging, starting averaging from the first epoch
leads to the highest mAP, indicating averaging all checkpoints is optimal, while
starting averaging at any epoch can outperform any single checkpoint. However,
averaging the predictions of the last few checkpoints barely outperforms single
checkpoints, indicating the importance of diversity.

averaging leads to a 0.9% improvement for both balanced set
and full set experiment. We further find the improvement is not
sensitive to exactly when weight averaging begins. As shown in
Fig. 8, starting averaging at any epoch after the10th epochs (until
the last epoch) can outperform any single checkpoint model for
the full set experiment.

In summary, weight averaging is easy to implement, adds no
additional cost to training and inference, but can consistently
improve model performance. By applying weight averaging to
our models, we get our best single model with an mAP of

Authorized licensed use limited to: MIT Libraries. Downloaded on January 08,2022 at 21:03:49 UTC from IEEE Xplore.  Restrictions apply. 



3302 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

Fig. 9. The learning curve of our experiments. Each experiment is run three
times, and the stand deviation is shown in the shade.

0.3192 and 0.4435 for balanced and full AudioSet experiment,
respectively.

B. Ensemble

Finally, we explore a series of ensemble strategies. The goal
of ensemble methods is to combine the predictions of several
models to improve generalizability and robustness over any
single model. Previously, ensemble of audio tagging models has
been studied in in [4], [13], [15], [16], [55]–[57], but typically
only one strategy is covered in each of these previous efforts.
In this work, we use the simple voting algorithm, but compare
multiple ways of building the model committee. The reason why
we do not use iterative ensemble methods (e.g., Boosting) is
because AudioSet training is expensive making iterative training
computationally unreasonable for this work.

1) Checkpoint Averaging: The first strategy investigated is
checkpoint averaging, whereby the output of checkpoint models
at multiple epochs are averaged together. The implementation is
similar to weight averaging, but is conducted in the model space
rather than the weight space. Since we conduct random sampling
with replacement during full set training, the combination with
checkpoint averaging is the same as bootstrap aggregating (i.e.,
Bagging) [39]. In our experiment, we average the output of all
checkpoint models (i.e., 60 and 30 checkpoint models for the
balanced set and full set, respectively). As shown in the upper
part of Table XI, this approach works well. Specifically, the
ensembled model noticeably outperforms the best checkpoint
model in the committee. In addition, as shown in Fig. 8, starting
averaging from the first epoch leads to the highest mAP, indi-
cating averaging all checkpoints is optimal. Averaging from any
epoch can outperform the best single checkpoint model, which
can be a simple alternative. However, this approach greatly
increases the computational overhead of inference, which makes
it less practical in deployment.

2) Averaging Models Trained With Different Random Seeds:
Previous work suggests that ensembles generalize better when
they constitute members that form a diverse and accurate
set [58]. As shown in Fig. 8, starting averaging the checkpoint
predictions from the last few epochs can only slightly outperform

TABLE XI
RESULTS OF MODEL ENSEMBLE. FOR EACH EXPERIMENT, WE SHOW THE

NUMBER OF THE MODELS IN THE COMMITTEE (# MODELS), THE AVERAGE

MAP OF MODELS IN THE COMMITTEE (AVG MAP), THE MAP OF THE BEST

MODEL IN THE COMMITTEE (BEST MAP), AND THE MAP OF THE ENSEMBLE

MODEL (ENSEMBLE MAP). NOTE THAT FOR ALL EXPERIMENTS, THE

ENSEMBLE MAP IS HIGHER THAN THE BEST MAP

the best single checkpoint model, even though these checkpoint
models are quite accurate, indicating the importance of diversity.
Therefore, we run the experiment three times with the exact
same setting, but with a different random seed. We then average
the output of the last checkpoint model of each run. As shown
in the middle part of Table XI, this approach leads to an even
larger improvement than checkpoint averaging with only three
models in the committee. Therefore, averaging models trained
with different random seeds, while increasing the training cost
(due to the repeat runs), is more practical for deployment and
offers better performance.

3) Averaging Models Trained With Different Settings: Fi-
nally, we explore averaging more models with greater diversity.
Specifically, we ensemble models trained with all different set-
tings tested in this paper, including whether pretraining is used
(pretrain), different mix-up rates (mixup rate), different mix-up
α (mix-up-α), different augmentation settings (augment), and
different label enhancement strategies (label). As shown in the
lower part of Table XI, no matter how the model committee
is built, ensemble always improves the performance and outper-
forms the best model in the committee. In the literature, diversity
is usually introduced with an intuitive motivation. For example,
in [15], the authors ensemble models use different scale inputs
because they believe the optimal input scale varies with the target
audio events, and ensembles allows the model to extract relevant
information from inputs with various scales. But according to
our experimental results, the source of the diversity seems to be
less important, i.e., the diversity caused by any factor is helpful
for an ensemble.

In addition, we find the performance of the ensemble model
is positively correlated with the accuracy of the models in the
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TABLE XII
ABLATION STUDY RESULTS ON AUDIOSET

committee as well as the number of the models. For both the
balanced set and full set experiments, our best model is achieved
when all available models form an ensemble.

VII. SUPPLEMENTARY EXPERIMENTS

A. Ablation Study

From Section III to Section VI, we incrementally improve
model performance from the baseline by incorporating a new
technique with other techniques that have been found to be
effective. In order to clearly identify the contribution of each
technique and verify that all are necessary for the best model,
we conduct an ablation study on balanced and full AudioSet.
Specifically, we set the PSLA model with checkpoints ensemble
as the baseline (the best model for a single training run), and
then remove techniques from PSLA one by one, and check the
performance. As shown in Table XII, removing any technique
from PSLA leads to a performance drop, demonstrating that
all proposed techniques are useful. It is worth mentioning that
removing balanced sampling leads to a significant performance
drop for AudioSet, the performance of the model is worse than
the model only with pretraining (0.3939 mAP, in Table IV),
indicating that other techniques (e.g., masking, mixup, and
ensemble) should be used together with balanced sampling for
AudioSet. Besides balanced sampling, removing pretraining
leads to the largest performance drop, followed by ensemble,
time and frequency masking, and mixup training for the full
AudioSet.

B. Experiment With Various Audio Tagging Models

In the previous sections, we focus on the EfficientNet-B2 with
a 4-headed attention model described in Section II-C. In order to
identify if the proposed PSLA framework is model-agnostic and
explore the model size-performance trade-offs, in this section,
we evaluate the PSLA framework using 6 different models. All
models take the same input and are trained with the same setting
as mentioned in Section II-B.

1) MobileNet V2 [21]. The MobileNet model does not have
an attention module. We use a fully connected layer as the
classification layer.

2) EfficientNet-B0 with single-headed attention model. The
model architecture is the same as the model described
in Section II-C except that it is based on a smaller
EfficientNet-B0 and only has one attention module.

3) EfficientNet-B2 with mean pooling model. The model
architecture is the same as the model described in Sec-
tion II-C except that it uses mean pooling rather than
attention pooling.

4) EfficientNet-B2 with single-headed attention model. The
model architecture is the same as the model described in
Section II-C except that it only has one attention module.

5) EfficientNet-B2 with 4-headed attention model. This is
the model we use in from Section III to Section VI and is
described in Section II-C.

6) ResNet50 with single-headed attention module. This is the
model proposed in [4].

To save compute, for all PSLA models, we use the checkpoint
averaging ensemble that only requires a single training process,
we also report the single model with weight averaging for all full
AudioSet experiments. As shown in Table XIII, when trained
with PSLA techniques, all models can achieve a noticeable per-
formance improvement. This justifies that the proposed PSLA
framework is model-agnostic.

Comparing the EfficientNet-B2 models with 4-headed at-
tention, single-headed attention, and mean pooling, we find
while the single 4-headed attention model performs best (0.4435
mAP), the single-headed attention model and the mean pooling
model only perform slightly worse. The EfficientNet-B0 model
with single-headed attention that has 5.36M parameters also
achieves a comparable performance with the best existing model
that has 81 M parameters [5]. The choice of the model depends
on the application, e.g., attention-based models can be used for
frame-level tagging; models with mean pooling can be used
for streaming applications; smaller models are preferable for
resource-constrained devices.

We also compute the Pearson correlation of class-wise APs
between these models and find that the correlation of class-wise
APs are high (over 0.95), this confirms that the poor performance
of some class is not due to model architecture, but due to the data.

C. Experiment on FSD50K

In the previous sections, we focus on AudioSet. To check
the generalizability of the proposed PSLA techniques, we also
conduct a set of experiments on FSD50K [11]. Specifically,
we train the EfficientNet-B2 model with a 4-headed attention
module with an initial learning rate of 5e-4 and a batch size of
24 for 40 epochs. The learning rate is cut in half every 5 epochs
after the 10th epoch. Since the maximum input audio length of
FSD50K is 30s, we pad all input audio clips to 30s. For the
single model, we train it with the FSD50K training set, validate
it on the FSD50K validation set, and evaluate it on the FSD50K
evaluation set. We use the same weight averaging and checkpoint
averaging ensemble setting as the AudioSet experiments. We
also conduct an ablation study on FSD50K.

As shown in Table XIV, our single model, weight averaging
model, and ensemble model achieve an mAP of 0.5535, 0.5571,
and 0.5671 on the FSD50K evaluation set, respectively, all out-
perform the best existing model [59]. Removing any technique
from PSLA leads to a performance drop, demonstrating that all
proposed techniques can be generalized to the FSD50K dataset.
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TABLE XIII
COMPARISON OF THE PERFORMANCE ON MAP OF VARIOUS MODELS TRAINED WITH PSLA AND WITHOUT PSLA ON THE BALANCED AND FULL AUDIOSET

TABLE XIV
EXPERIMENT RESULT ON FSD50K DATASET

TABLE XV
COMPARISON WITH PREVIOUS METHODS (UPPER: BALANCED AUDIOSET

EXPERIMENTS, LOWER: FULL AUDIOSET EXPERIMENTS)

D. Learning Curve of PSLA Models

We show the learning curve of our best single EfficientNet
B2 with 4-headed attention model (without weight averaging)

in Fig. 9. For both the balanced set and full set experiment, we
repeat the training process three times with different random
seeds and show the standard deviation in the plot. As we can
see, the training converges, and the performance of the model
barely varies with the random seed, i.e., the three runs achieve
almost the same result.

VIII. CONCLUSION

In this paper, we describe several techniques that improve the
performance of a CNN-based neural model for audio tagging.
First, we show an ImageNet-pretrained CNN can noticeably
improve performance. While it is straightforward to implement
for CNN-based models it has seldom been used in audio tagging
research. Second, due to an imbalance in sound class samples in
Audioset, we describe several data balancing and augmentation
strategies that alleviate the data imbalance issue and help im-
prove performance. We argue that balanced sampling and data
augmentation should be a standard component for AudioSet
modeling. Third, by observing variation in class-specific per-
formance, we identified a missing label issue with Audioset and
proposed a label enhancement method that shows improvement
on the balanced training set. The enhanced label set can be used
in the same way as the original label set in future research.
We were not able to observe a performance improvement by
enhancing the full set labels, possibly due to similar missing
labels in the evaluation set. Due to its impact on performance, we
believe addressing the noisy label issue is an important research
topic for audio tagging. Finally, we describe weight averaging
and ensemble strategies that are both simple and effective for
audio tagging.

By combining all these training techniques, we are able to
improve the performance of a normal EfficientNet model by
130.6% and 28.2% without modifying the model architecture
for the balanced and full AudioSet experiment, respectively.
This magnitude of improvement is larger than was achieved by
many previous model architecture or attention module develop-
ment efforts, indicating that appropriate training techniques are
equally important. As a consequence, by training an EfficientNet
with these techniques, we obtain a single model (with 13.6 M
parameters) and an ensemble model that achieve mean aver-
age precision (mAP) scores of 0.444 and 0.474 on AudioSet,
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respectively, outperforming the previous best system of 0.439
with 81 M parameters [5]. Our best model trained with only
the balanced AudioSet (∼1% of the full set) outperforms our
baseline and many previous models trained with the full set.
We show the AUC and d-prime of our models and compare
them with previous efforts in Table XV. The proposed model
outperform previous models for all evaluation metrics.

The work in this paper can serve as a recipe for AudioSet
training. Most of the proposed methods are model agnostic and
can be combined together with various model architectures and
attention modules. As we showed in the paper, the same model
can perform much better when it is trained with appropriate
techniques. We hope this work can facilitate future audio tagging
research by documenting a set of strong and useful training
techniques.
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