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ABSTRACT

Recognizing human non-speech vocalizations is an im-
portant task and has broad applications such as automatic
sound transcription and health condition monitoring. How-
ever, existing datasets have a relatively small number of vocal
sound samples or noisy labels. As a consequence, state-of-
the-art audio event classification models may not perform
well in detecting human vocal sounds. To support research
on building robust and accurate vocal sound recognition, we
have created a VocalSound dataset consisting of over 21,000
crowdsourced recordings of laughter, sighs, coughs, throat
clearing, sneezes, and sniffs from 3,365 unique subjects. Ex-
periments show that the vocal sound recognition performance
of a model can be significantly improved by 41.9% by adding
VocalSound dataset to an existing dataset as training material.
In addition, different from previous datasets, the VocalSound
dataset contains meta information such as speaker age, gen-
der, native language, country, and health condition.

Index Terms— vocal sounds, audio classification, corpus

1. INTRODUCTION

Automatic human vocal sound recognition is an important
task and has a wide range of applications, e.g., it can help the
automatic speech recognition system transcribe both speech
and non-speech vocalizations. Recognizing health-related
sounds like cough and sneeze could also provide insights into
the general well-being of occupants in the office, at home, or
other public or private spaces, e.g., the detection of coughing
and sneezing and their density, intensity, and other features
could be used as an indicator of group health [1, 2, 3].

To build an accurate and robust non-speech vocal sounds
recognizer, a dataset with reasonable volume and variety,
and accurate annotation is crucial. However, to our knowl-
edge, currently, there is no such large-scale publicly available
vocal sound dataset. Moreover, it has been found that a
generic audio event classification model trained with existing
datasets such as AudioSet [4] does not perform well in clas-
sifying human vocal sounds, e.g., the average precision of
state-of-the-art models on cough and sneeze classes are only
around 0.5 on the AudioSet evaluation set [5, 6]. Potential
reasons include the fact that corpora such as ESC-50 [7],
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FSD50K [8], and AudioSet [4] have a relatively small num-
ber of human vocal sound samples (summarized in Table 1)
and the AudioSet annotation quality for these sounds may
be lacking due to the challenge of annotating with a large
sound vocabulary [6, 9, 10]. To address this limitation, in
this paper we introduce the VocalSound dataset consisting
of over 21,000 crowdsourced recordings of laughter, sighs,
coughs, throat clearing, sneezes, and sniffs, collected via
Amazon Mechanical Turk. The VocalSound dataset is class-
balanced, collected from 3,365 speakers from 60 countries,
with their ages ranging from 18 to 80. To the best of our
knowledge, the VocalSound dataset has the largest number of
human vocal sound samples. While one potential limitation
of VocalSound dataset is the audio samples are not produced
spontaneously but acted by the subjects, our experiments
show that the model vocal sound recognition performance
on an evaluation set consisting of real vocal sounds can be
significantly improved by over 41.9% by adding VocalSound
dataset to existing dataset as training material, demonstrating
the usefulness of the VocalSound dataset. In addition, in con-
trast to previous datatsets [7, 8, 4], the VocalSound dataset
contains meta information such as speaker age, gender, native
language, country, and health condition to support research.

2. RELATED WORK

There are a few existing datasets for generic audio event clas-
sification that also contain human vocal sound samples such
as AudioSet [4], FSD50K [8], ESC-50 [7], and DCASE [11].
Specifically, AudioSet is currently the largest publicly avail-
able dataset for generic audio classification consisting of over
2 million audio clips excised from YouTube and labeled with
a set of 527 labels. The FSD50K dataset consists of 51,197
audio clips unequally distributed in 200 sound classes. While
AudioSet and FSD50K consist of a large number of audio
samples, they are class imbalanced and have a relatively
small number of vocal sound samples (summarized in Ta-
ble 1). Also, limited by the data acquisition scheme, they do
not provide speaker information such as age, gender, native
language, etc. Due to the difficulty of annotating YouTube
videos with a large sound vocabulary, the noisy label issue
has been found in AudioSet [6, 9, 10], which could also im-
pact the performance of the model trained on it. Recently,
there are a few efforts to collect cough samples for building
COVID-19 classification models [12, 13, 14, 15, 16, 17, 18].
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Fig. 1. The speaker age (left), country (center), and native language (right) distribution.
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ESC-50 FSD50K AudioSet VocalSound
Laughter 40 1,186 5,696 3,504
Sigh - 136 301 3,504
Cough 40 385 871 3,504
Throat Clearing - - 355 3,504
Sneeze 40 125 1,200 3,504
Sniff - - 205 3,504
Others 1,880  49.4K 2M 0
Vocal Sound Total 120 1,832 8,628 21,024

Table 1. Data volume comparison of VocalSound and exist-
ing datasets.

In comparison with the proposed dataset, existing imitated
vocal sound datasets [19, 20] are much smaller in size.

The proposed VocalSound dataset differs from previous
efforts in that 1) the VocalSound dataset is class-balanced and
has more vocal sound samples collected from a large number
of speakers with reasonable gender and age distributions. Due
to the data acquisition scheme, the labels are also reliable. 2)
the VocalSound dataset has rich meta information, including
speaker gender, age, native language, country, and health con-
dition, which broadens the application of the dataset, e.g., the
metadata can be used to study the impact of gender, age, lan-
guage on the performance of vocal sound classification mod-
els; the health label can potentially be used to build speech-
based health classification system; the anonymous speaker la-
bel can potentially be used to build vocal sound-based speaker
re-identification system, etc.

3. VOCALSOUND DATA COLLECTION

We crowdsource the VocalSound recordings via Amazon Me-
chanical Turk (AMT). Subjects volunteer to complete our Hu-
man Intelligence Tasks (HITs) on AMT and get compensation
after the HITs are reviewed and approved by us. Our HIT con-
sists of seven subtasks. First, we ask the gender, age, country,
native language, and health information of the subject. For the
health condition, we ask the question “do you have a cold, al-
lergy, or other health-related symptoms that might affect your
speech today?”. Then in subtasks 2-7, we ask the subject to
record themselves laughing, sighing, coughing, clearing their
throat, sneezing, and sniffing. We do not collect personally
identifiable information from the subject or the recording de-
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vice, and the data collection is anonymous. We approve HITs
according to the following three criteria: 1) the audio length
is longer than 2 seconds; 2) we use Google Speech API to
transcribe the audio to make sure no speech is contained, au-
dios that can be transcribed as words (e.g., haha) are manu-
ally verified; 3) We use the model in [6] to verify if the au-
dio matches the corresponding class. As the prediction of the
model might not be accurate, we only use a low threshold
to exclude obvious unrelated samples. We apply these crite-
ria during the data collection process, to provide immediate
feedback to the Turker and to improve the overall quality of
the recordings. We manually verified 600 samples from the
dataset, with about 96% judged to be high quality recordings.

4. DATA DISTRIBUTION

We collected 3,504 HITs completed by 3,365 unique sub-
jects. Only a small number of subjects completed the HIT
more than one time. Our goal was to encourage as much
diversity across speakers as possible. Among the subjects,
45% are female, 55% are male. Therefore, the VocalSound
dataset is roughly gender-balanced. We show the subject age,
country, and native language distribution in Figure 1. The
age of the subjects ranges from 18 to 80 while most sub-
jects’ ages fall between 20 to 40. Nevertheless, there are
still 321 subjects that are older than 50, which are adequate
for evaluating the model performance on the senior group.
The subjects are from 60 countries, where the United States
(60.3%), India (10.8%), and Brazil (8.3%) are the majority
countries. English (67.2%), Portuguese (8.7%), and Italian
(6.8%) are the corresponding dominant native languages of
the subjects. 4.0% of the subjects report that they have health-
related symptoms that might affect their speech during the
data collection. The mean, median, and standard deviation of
the audio length is 4.18s, 3.72s, and 1.81s, respectively. The
audios are recorded at 44.1kHz in .wav format.

The data is split into training, validation, and evaluation
sets with 15570 (74%), 1860 (9%), and 3594 (17%) sam-
ples, respectively. The three sets are speaker-independent.
We pay special attention to the evaluation set and manu-
ally checked every sample of each speaker and removed
low-quality recordings. This clean evaluation set makes the
model evaluation fairer and more effective.
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Fig. 2. The model architecture used in our experiments.
Each audio waveform is first converted to a sequence of 128-
dimensional log Mel filterbank (fbank) features computed
with a 25ms Hanning window every 10ms. The ¢ x 128 fbank
feature vector is input to an EfficientNet-BO model [21]. The
EfficientNet-B0O model effectively downsamples the time and
frequency dimensions by a factor of 32, and the feature di-
mension is 1280. Thus, the penultimate output of the model
isa [t/32] x 4 x 1280 tensor. We apply mean pooling over the
4 frequency dimensions to produce a 33 x 1408 representation
that is fed to a set of 1 x 1 convolutional filters with a sigmoid
activation function, where #class is the number of prediction
classes. A temporal mean pooling is then performed to pro-
duce a final #class dimensional output for each class label.

5. BASELINE EXPERIMENTS

We conduct two baseline experiments using the proposed Vo-
calSound dataset. First, in Section 5.1, we conduct a six-class
(laughter, sigh, cough, throat clearing, sneeze, and sniff) clas-
sification experiment on the VocalSound dataset to show the
model trained with VocalSound dataset can perform well on
vocal sound classification. Second, in Section 5.2, we show
the VocalSound dataset can help improve the vocal sound
recognition from a wide variety of background sounds by
combining it with the existing FSD50K dataset.

For both experiments, we use an EfficientNet-BO [21]
based audio classifier (illustrated in Figure 2), which has a
similar architecture with the state-of-the-art audio classifica-
tion model in [6], but uses EfficientNet-BO and mean tempo-
ral pooling instead of EfficientNet-B2 and attention pooling.
As discussed in [6], such simplification can greatly improve
the computational efficiency while only marginally reducing
performance. For both experiments, we train the model using
an Adam optimizer [22], an initial learning rate of le-4, a
batch size of 100, and cross-entropy loss for 50 epochs and
select the best model using the development set and evaluate
the model on the evaluation set. SpecAugment [23] is used
during training. We repeat each experiment 3 times and report
the mean and standard deviation of the results.
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Test Set Accuracy (%)

VocalSound Validation Set 90.1£0.2

VocalSound Evaluation Set 90.5+0.2
Different Age Group

Age 18-25 91.54+0.3

Age 26-48 90.1+£0.2

Age 49-80 90.9+£1.6
Different Gender Group

Male 89.240.5

Female 91.940.1

Table 2. Six-class Vocal Sound Classification Results.

5.1. Six-class Vocal Sound Classification

In this experiment, we train a six-class (laughter, sigh, cough,
throat clearing, sneeze, and sniff) classifier using the Vocal-
Sound dataset. We train, validate, and evaluate the model us-
ing the training, validation, and evaluation sets mentioned in
Section 4. We downsample the sampling rate to 16kHz, and
truncate or pad all audio samples to 5 seconds.

As shown in Table 2, the accuracy on the evaluation set is
90.5+0.2% (on the validation set: 90.1+0.2%), demonstrat-
ing the proposed VocalSound dataset can be used as training
material to effectively train a vocal sound classifier. Inter-
estingly, we find the classification accuracy varies with the
speaker groups. As shown in Table 2, the model achieves an
accuracy of 91.540.3%, 90.14+0.2%, 90.94+-1.6% on the age
group of 18-25, 26-48, 49-80, respectively; and 89.24+0.5%
and 91.940.1% on male and female subjects, respectively.
The performance does not solely depend on the number of
training samples of each group as the age group of 26-48 and
the male group have the largest number of samples but do
not have the highest accuracy. Since the VocalSound dataset
contains speaker meta information, it can be used to support
future research on removing such model bias.

5.2. Vocal Sound Recognition from Background Sounds

While the model trained with just the VocalSound dataset
achieves good accuracy on the 6-class vocal sound classifi-
cation task, recognizing vocal sounds from a wide variety of
background natural sounds is a more important and challeng-
ing task. Even the state-of-the-art audio classification mod-
els in [6, 5] cannot achieve satisfactory results for the vo-
cal sound classes, e.g., the average precision on cough and
sneeze classes are only around 0.5 on the AudioSet evalua-
tion set. In this experiment, we show how the proposed Vo-
calSound dataset can help improve the performance for this
task. Specifically, we show that combining the VocalSound
dataset with the existing FSD50K dataset as training material
can noticeably improve vocal sounds recognition from back-
ground sounds compared with only using FSD50K as train-
ing material. The reason why we use FSD50K rather than
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Training Set Laughter Sigh Cough Sneeze Background Vocal Classes Overall
F1 AP | FI AP | FI AP | FI AP | FI AP | Avg. Fl mAP
FSD50K 0.45 0.46 0.31 0.28 0.41 0.35 0.61 0.57 0.97 0.99 0.45 0.41

Only +0.04 £0.05 | £0.01 £0.02 | £0.04 +0.02 | +£0.02 40.07 | £0.00 +£0.00 +0.02 40.01
FSD50K+ 0.59 0.54 0.41 0.37 0.65 0.67 0.71 0.77 0.98 0.99 0.59 0.59
VocalSound  4+0.01 £0.02 | +£0.03 40.05 | £0.01 40.01 | +£0.07 40.01 | +£0.00 +£0.00 +0.02 +0.01

Improvement  29.7%  18.1% | 30.5% 322% | 58.6% 93.9% | 16.0% 34.3% | 1.5% 0.0% | 31.8% 41.9%
Table 3. Vocal Sound Recognition Results on FSD50K Evaluation Set.
Vocs IIOK OBlY 45 FSDSOK + VocalSound ples are added. Therefore, we use a balanced sampling
Overall F1: 0.55 Overall F1: 0.67 strategy [6] to make the model see roughly the same number
G111 1| 5] 0 |9 4711 | 2] 0 |98 of samples of each class during training, specifically, we use
& . .

NS o] o |26l ol 1l s the t.orch .'UtllS .data. Welght'edRandomSampler
P function. This also makes the comparison between the mod-
PR A A A R els trained with these two training sets fairer. In addition
= 21 s [m]n o | ol 2 1 aal 10 to balanced sampling, we also apply SpecAugment [23] and

o random time shift to alleviate the class-imbalance issue.

& i Il el Ml il el Il e e We train the EfficientNet models with the aforementioned
Q,»b\& §@‘ S & & & §@‘ S & & two training sets with the same setting, validate the models
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Predicted label Predicted label

Fig. 3. Comparison of the confusion matrixes of the model
trained with only FSD50K (left) and with FSD50K + Vocal-
Sound (right), evaluated on FSD50K evaluation set. Results
averaged from three runs and rounded to integer. Adding Vo-
calSound in the training set can improve the precision of the
vocal sound classes (highlighted in bold numbers).

AudioSet as the base dataset is because FSD50K, especially
its evaluation set, has more accurate labels [8] while labels of
AudioSet are relatively noisy [6, 9, 10]. The FSD50K consists
of 51K audio clips distributed in 200 sound classes so a wide
variety of background sounds are included. Since FSD50K
only contains 4 vocal sound classes, we consider a 4+1-class
(laughter, sigh, cough, and sneeze + background class) classi-
fication problem. For the FSD50K dataset, we relabel all sam-
ples that are not labeled as laughter, sigh, cough, and sneeze
as anew “background” class. FSD50K is a multi-label dataset
but there are only 5, 1, and 13 samples having more than one
vocal sound label in the training, validation, and evaluation
set, respectively. We randomly select one label for these sam-
ples, making the task a single-class classification problem.
We compare two training set settings: 1) FSD50K only,
we use the official 37k training split of FSD50K as the train-
ing set, among the 37k samples, only 1,241 samples are vocal
sound samples and other samples are background sounds;
2) FSD50K + VocalSound, VocalSound dataset samples are
combined with the FSD50K training set to form a new train-
ing set. It is worth mentioning that both datasets are severely
class-imbalanced. The background class has 10x more sam-
ples than each vocal sound class even after VocalSound sam-
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using the FSD50K validation set, and evaluate the models us-
ing the FSD50K evaluation set. Note that we intentionally
evaluate on FSD50K (real sounds, independent from the Vo-
calSound dataset) rather than the VocalSound dataset itself
to more fairly show the advantage of adding VocalSound for
training. Since the evaluation set is also class-imbalanced, we
report average precision (AP) and fl-score (F1) rather than
accuracy. As shown in Table 3, training with FSD50K + Vo-
calSound can significantly boost the vocal sound recognition
performance by a relative f1-score improvement of 31.8% and
an average precision improvement of 41.9%. In Figure 3, we
compare the confusion matrix of the two models. We find that
adding VocalSound in the training set can greatly improve the
precision of the vocal sound classes. We run a McNemar’s
test and confirm the improvement is statistically significant
(p < 0.05). All these demonstrate that the proposed Vocal-
Sound dataset, while consisting of non-spontaneous sounds,
can be used as training material to effectively improve the vo-
cal sound classification performance in realistic use cases.

6. CONCLUSIONS

In this paper, we introduce VocalSound, a new dataset con-
sisting of over 21,000 audio recordings of laughter, sighs,
coughs, throat clearing, sneezes, and sniffs. Compared with
existing generic audio event datasets, the proposed dataset
has more vocal sound samples and richer speaker informa-
tion. Our experiments show that the VocalSound dataset can
noticeably improve vocal sound recognition performance.
We hope the new dataset can contribute to future research on
building accurate and robust vocal sound recognizers.
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