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ABSTRACT
Automatic pronunciation assessment is an important technol-
ogy to help self-directed language learners. While pronuncia-
tion quality has multiple aspects including accuracy, fluency,
completeness, and prosody, previous efforts typically only
model one aspect (e.g., accuracy) at one granularity (e.g.,
at the phoneme-level). In this work, we explore modeling
multi-aspect pronunciation assessment at multiple granular-
ities. Specifically, we train a Goodness Of Pronunciation
feature-based Transformer (GOPT) with multi-task learning.
Experiments show that GOPT achieves the best results on
speechocean762 with a public automatic speech recognition
(ASR) acoustic model trained on Librispeech.

Index Terms— Pronunciation assessment, Transformer

1. INTRODUCTION

Computer assisted pronunciation training (CAPT) is an im-
portant technology for self-directed language learning [1,
2, 3], which facilitates non-native (L2) speakers to learn
foreign spoken (L1) languages. Compared with conven-
tional classes, CAPT is more economical and convenient, and
also allows language learners to receive immediate feedback
on their pronunciation. Due to its usefulness, CAPT has
been extensively studied, with the majority of these efforts
focusing on scoring phoneme-level pronunciation quality
(e.g., [4, 5, 6, 7, 8, 9, 10]). Overall pronunciation quality
includes many other aspects such as word- and utterance-
level fluency, prosody, stress, etc., which have been typically
modeled separately (e.g., [11, 12, 13, 14, 15, 16]). However,
phoneme-, word-, and utterance-level scores of accuracy,
fluency, prosody, and stress are potentially correlated, there-
fore modeling them jointly instead of separately may allow
a machine learning model to learn a more comprehensive
representation and in turn improve its performance. In reality,
it is also desirable to have a single model that can assess
multiple aspects of pronunciation simultaneously.

As a step in this direction, in this paper we propose a new
pronunciation assessment model, named GOPT, based on
Goodness of Pronunciation (GOP) features and a Transformer
self-attention architecture [17]. We use the open-source spee-
chocean762 dataset [18] that contains one phoneme-level,

Code at https://github.com/YuanGongND/gopt.

three word-level, and five utterance-level labels including
accuracy, prosody, and fluency and apply multi-aspect multi-
grained supervision for GOPT training. This not only en-
ables GOPT to measure multiple aspects of pronunciation
quality, but also boosts its performance for each assessment
task. In addition, the Transformer architecture captures the
contextual information between phonemes and words of an
utterance. As a consequence, GOPT noticeably outperforms
previous methods on the speechocean762 benchmark for both
phoneme- and utterance-level assessment tasks (there is no
previous work reporting word-level scores). To our knowl-
edge, this is the first work studying multi-aspect L2 speaker
pronunciation assessment in a multi-granularity fashion.

2. RELATED WORK

As mentioned, CAPT has been extensively studied with a
long history. One major focus of this area is automatic
mispronunciation detection, where GOP [4] and its variants
(e.g., [10, 5, 7, 8]) are dominant methods. To capture the
correlation between phonemes and words of an utterance,
self-attention based models such as Transformer [17] have
been added on top of GOP features for score modeling to
improve performance [9, 19]. There are also some non-GOP
based methods such as a wav2vec2-based method [20] and
a deep feature based method [21] where transfer learning is
usually needed due to the limited L2 training material.

Conversely, automatic assessment of other aspects of pro-
nunciation quality are usually modeled independently, e.g.,
fluency [11, 12], prosody [13, 14], intonation [15, 16]. There
are only a few previous efforts on multi-granularity pronun-
ciation assessment [19, 22]. In these works, however, only a
single score is considered for each granularity. In addition,
the hierarchical architecture in [19] requires a relatively so-
phisticated training scheme to optimize.

To the best of our knowledge, this paper is the first to si-
multaneously consider multiple pronunciation quality aspects
(accuracy, fluency, prosody, etc) along with multiple granu-
larities (phoneme, word, utterance). In addition, we show that
a BERT-style [23] non-hierarchical standard Transformer ar-
chitecture can perform well on most assessment tasks. Unlike
many previous efforts using non-public datasets or acoustic
models, in this work, we intentionally use a public acoustic
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Fig. 1. Illustration of the proposed GOPT architecture with a sample utterance “Its Name”, actual utterances used are longer.

model and dataset for our main experiments (which achieves
state-of-the-art results) for easy reproduction and comparison.

3. GOODNESS OF PRONUNCIATION
TRANSFORMER

3.1. Speechocean762 Dataset

Speechocean762 [18] is a free open-source dataset designed
for pronunciation assessment, consisting of a total of 5,000
English utterances collected from 250 non-native speakers.
One major advantage of speechocean762 is that it provides
rich label information. Specifically, for each utterance, it pro-
vides five utterance-level aspect scores: accuracy, fluency,
completeness, prosody, and total score (ranging from 0-10).
For each word, it provides three word-level aspect scores: ac-
curacy, stress, and total score (ranging from 0-10). It also pro-
vides an accuracy score for each phoneme (ranging from 0-2).
Each score is annotated by five experts. Thus, it provides a
total of 8 labels for different granularities and pronunciation
quality aspects. However, the rich annotation has not been
fully utilized by previous work. We re-scale utterance and
word-level scores to 0-2, making them on the same scale as
the phoneme scores. The training set consists of 2,500 utter-
ances, 15,849 words, and 47076 phones; the test set consists
of 2,500 utterances, 15,967 words, and 47,369 phones.

3.2. GOPT Architecture Overview

An overview of the GOPT architecture is shown in Figure 1.
For the pronunciation assessment task, the canonical tran-
scription is known. We first input the audio and correspond-
ing canonical transcription to the acoustic module to get a se-
quence of frame-level phonetic posterior-probabilities, which
are then force-aligned at the phoneme-level and converted
to 84-dimensional goodness of pronunciation (GOP) features
(discussed in Section 3.3). The GOP feature is then projected
to 24-dimensions with a dense layer. In parallel, we gener-
ate a sequence of canonical phoneme embeddings (also at the
phoneme-level) by first converting each canonical phoneme

to a one-hot encoding and then projecting it to the same 24-
dimensions as the projected GOP feature. The reason for
using a canonical phoneme embedding is because different
phonemes have different characteristics and thus the canoni-
cal phoneme provides useful information to the Transformer
model [21]. We then add the projected GOP feature, canoni-
cal phoneme embedding, and a 24-dimensional trainable po-
sitional embedding together and input it to the Transformer
encoder. For simplicity, we intentionally follow the original
Transformer encoder architecture [17] as close as possible but
scale it down to 3 layers and an embedding dimension of 24.

Unlike previous work [19, 21] that use a hierarchical ar-
chitecture to get utterance level representations, we prepend a
set of five trainable [cls] tokens to the phoneme-level input
sequence in a similar way as BERT [23], each corresponding
to one utterance aspect label, and use the output of the Trans-
former encoder of these [cls] aspect tokens as the corre-
sponding utterance-level representations. The reason why this
regime works is that the Transformer can learn the correlation
between the utterance-level tokens and phoneme-level tokens
through the attention mechanism.

During training we apply multi-task learning to the
model. Specifically, we use one regression head for each
phoneme, word, and utterance label (eight in total). Each
regression head is a 24 × 1 dense layer with layer normal-
ization. Utterance-level regression heads are added on top
of the output of the Transformer of the corresponding utter-
ance [cls] tokens. Phoneme- and word-level regression
heads are added on top of the Transformer output of each
corresponding phoneme. We propagate the word score to
each of its phonemes during training and average the out-
put of phonemes that belong to the word in inference. We
use mean squared error (MSE) loss for each assessment
task. Since we normalize the scores to the same scale,
for simplicity, we first average the losses of each granu-
larity and then sum them up with the same weight, i.e.,
L = Lutterance + Lword + Lphoneme, where Lutterance
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Phoneme Score Word Score (PCC) Utterance Score (PCC)
Model

MSE ↓ PCC ↑ Accuracy ↑ Stress ↑ Total ↑ Accuracy ↑ Completeness ↑ Fluency ↑ Prosodic ↑ Total ↑
RF [18] 0.130 0.440 - - - - - - - -
SVR [18] 0.160 0.450 - - - - - - -
Lin et.al [21] - - - - - - - - - 0.720

LSTM
0.089
±0.000

0.591
±0.003

0.514
±0.003

0.294
±0.012

0.531
±0.004

0.720
±0.002

0.076
±0.086

0.745
±0.002

0.747
±0.005

0.741
±0.002

GOPT
(Librispeech)

0.085
±0.001

0.612
±0.003

0.533
±0.004

0.291
±0.030

0.549
±0.002

0.714
±0.004

0.155
±0.039

0.753
±0.008

0.760
±0.006

0.742
±0.005

GOPT
(PAII-A)

0.069
±0.000

0.679
±0.001

0.588
±0.004

0.146
±0.004

0.601
±0.003

0.727
±0.004

0.011
±0.069

0.692
±0.015

0.694
±0.009

0.732
±0.006

Table 1. Comparing the performance of various pronunciation assessment tasks between GOPT and baseline models. GOPT
(PAII-A) depends on a different acoustic model so its results (shown in grey) cannot be directly compared with other models.

and Lword are averaged utterance and word level losses of
five utterance-level labels and three word-level labels, respec-
tively; Lphoneme is the phoneme loss. The entire network
(except the acoustic model) is trained end-to-end.

3.3. Acoustic Model and GOP Feature

For our main experiment we use a public ASR acoustic
model1 trained with Librispeech [24] 960-hour data. The
model is based on the factorized time-delay neural network
(TDNN-F) and trained with the Kaldi Librispeech S5 recipe.

Acoustic model trained on both L1 and L2 speech gen-
erates better alignment for L2 speech and may output better
GOP features [25]. To explore if GOPT works with different
acoustic models, we also test with two PAII internal acous-
tic models PAII-A and PAII-B, both are also TDNN-F mod-
els. PAII-A is trained with 452 hours L1 TED-LIUM 3 [26]
data and 1,696 hours of L2 data collected from 5,994 non-
native speakers; PAII-B is trained with 995 hours of L1 data
(from WSJ [27], TED-LIUM 3 [26], and Librispeech [24])
and 6,591 hours of L2 data from 672k non-native speakers.

In this work, we use the log phone posterior (LPP) and log
posterior ratio (LPR) defined in [8] as GOP features. Specifi-
cally, the LPP of a phone p is defined as follows:

LPP (p) ≈ 1

te − ts + 1

te∑
t=ts

log p(p|ot) (1)

p(p|ot) =
∑
s∈p

p(s|ot) (2)

where ts and te are the start and end frame indexes; ot is the
input observation of the frame t, s is the state belonging to the
phone p. LPR of a phone pj versus pi is defined as:

LPR(pj |pi) = log p(pj |o; ts, te)− log p(pi|o; ts, te) (3)

The Librispeech acoustic model we use has a total of 42 pure
phones, thus the GOP feature of phone p can be defined as a
84-dimensional vector as follows:

[LPP (p1)..., LPP (p42), LPR(p1|p)..., LPR(p42|p)] (4)
1https://kaldi-asr.org/models/m13

4. EXPERIMENTS

For all experiments, we train the model with an Adam opti-
mizer, an initial learning rate of 1e-3, a batch size of 25, and
MSE loss for 100 epochs using the official speechocean762
training set, and evaluate on the official test set. The learn-
ing rate is cut in half every five epochs after the 20th epoch,
and the result of the last epoch is reported. We repeat each
experiment five times with different random seeds and re-
port the mean and standard deviation of the results. Since
the speechocean762 labels are imbalanced (biased towards
high scores), we use the Pearson correlation coefficient (PCC)
as the main evaluation metric but also report MSE of the
phoneme accuracy score to make a comparison with previ-
ous work. Note that while we re-scale the utterance and word
level scores, PCCs and phoneme-level MSE are not impacted.

4.1. Main Results

We compare the following six models: 1) Random forest
regression (RF) model implemented in the code repository
of [18]; 2) Support vector regressor (SVR) based model
in [18]; 3) Deep feature and transfer learning-based model
presented in [21]; 4) An LSTM based model implemented by
us. To make a fair comparison, the LSTM model has the same
depth and embedding dimension as the GOPT model and is
trained with the same setting. The output of the last token
is used as the utterance representation and, as with GOPT,
the word score is propagated to its phones; 5) The proposed
GOPT model with the Librispeech acoustic model. 6) The
proposed GOPT model with the PAII-A acoustic model. It is
worth mentioning that models 1-5 are all based on acoustic
models trained with the same Librispeech data, and models
1,2,4,5, and 6 use the same GOP features (model 3 does not
use GOP features but deep transfer learning). Therefore, we
make a fair comparison and the performance difference is not
due to the acoustic model and GOP features.

We show the results in Table 1. The key findings are as
follows: First, the proposed GOPT model can perform well
on most assessment tasks except word stress score and sen-
tence completeness score assessment, demonstrating that it
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Setting Phoneme Word Utterance

Training Task

Only Phoneme 0.605±0.002 - -
Only Word - 0.536±0.004 -
Only Utterance - - 0.736±0.011
Joint* 0.612±0.003 0.549±0.002 0.742±0.005

Canonical Phoneme Embedding

w/o Phn Embed 0.512=0.006 0.472±0.006 0.719=0.002
w/ Phn Embed* 0.612±0.003 0.549±0.002 0.742±0.005

# Transformer Layer (ASR params not included in #params)

3* (27K Params) 0.612±0.003 0.549±0.002 0.742±0.005
6 (48K Params) 0.605±0.003 0.543±0.004 0.731±0.003

Embedding Dimension (ASR params not included in #params)

12 (8K Params) 0.608±0.003 0.544±0.008 0.741±0.011
24* (27K Params) 0.612±0.003 0.549±0.002 0.742±0.005
48 (94K Params) 0.605±0.003 0.545±0.006 0.738±0.004
96 (355K Params) 0.586±0.006 0.530±0.006 0.725±0.004

Table 2. The ablation results, we only show the PCC of
phoneme, word, and utterance total scores due to space limi-
tation. * denotes the setting used in the base GOPT model.

is possible to have a single model for multi-aspect and multi-
granularity pronunciation assessment. Specifically, the GOPT
achieves 0.085 MSE and 0.612 PCC for the phoneme accu-
racy score assessment, noticeably outperforming the models
in [18]; GOPT achieves 0.742 PCC for the utterance-level
score assessment, noticeably outperforming the model in [21]
which uses more sophisticated features than GOP. We hypoth-
esize that the poor utterance completeness assessment per-
formance is due to the highly imbalanced distribution of the
completeness score in the training data. Second, the multi-
task learning scheme can be also applied to an LSTM, which
achieves similar results for utterance assessment with GOPT.
However, the performance of the LSTM for phoneme-level
and word-level assessment are worse than the GOPT, demon-
strating that the Transformer architecture is better at model-
ing fine-grained pronunciation units. Third, using the PAII-A
acoustic model trained on both L1 and L2 speech can fur-
ther boost the phoneme and word assessment performance
by around 10%, but the utterance-level performance is worse
than just using the Librispeech acoustic model. We also eval-
uate GOPT with PAII-B acoustic model, it leads to similar
results with GOPT with PAII-A acoustic model.

4.2. Ablations

We conduct a set of ablation studies to show the performance
impact of various factors. We set the GOPT model mentioned
in Section 3 with three Transformer layers, embedding dimen-
sion of 24, canonical phoneme embedding, and trained with

Scoring
Model

Acoustic Model

Librispeech PAII-A PAII-B

MSE ↓ PCC ↑ MSE ↓ PCC ↑ MSE ↓ PCC ↑

SVR 0.160 0.450 0.118 0.538 0.115 0.561

GOPT
0.085
±0.001

0.612
±0.003

0.069
±0.000

0.679
±0.001

0.071
±0.001

0.662
±0.001

Table 3. Comparing the phoneme assessment performance
between the SVR based [18] model and proposed GOPT
model with various acoustic models.

all phoneme, word, and utterance assessment tasks as the base
GOPT model, and then change one factor at a time to observe
the performance change.

We show the results in Table 2. First, we see that the
GOPT trained with multi-task learning achieves better re-
sults than any single-task learning model, demonstrating that
multi-task learning not only allows the model to conduct
multi-aspect and multi-granularity pronunciation assessment
simultaneously, but also improves the performance of each
individual task. Second, we see that the canonical phoneme
embedding is crucial to the performance as the model trained
without it performs much worse for all tasks. However, it is
worth mentioning that canonical phoneme embedding is not
the reason why GOPT outperforms previous methods since
canonical phoneme embedding is also used in [21]. In [18],
each phoneme has a separate classifier, which serves a sim-
ilar function as a canonical phoneme embedding. Third, we
explore the performance impact of the size of GOPT model,
and see that increasing either the width or depth of the net-
work cannot further improve the performance, indicating that
a small model is preferred with the relatively small dataset.
Further, although the GOP feature is 84-dimensional, we
show that an embedding size of 24 is sufficient to represent
pronunciation quality with a Transformer.

Finally, in Table 3, we compare the phoneme assessment
performance between the SVR [18] model and the proposed
GOPT model with various acoustic models. We show that
the proposed GOPT consistently leads to a significant perfor-
mance improvement regardless of the acoustic model, demon-
strating that the GOPT is model agnostic and can be used with
different acoustic models.

5. CONCLUSION

In this paper, we present the Transformer-based multi-aspect
multi-granularity pronunciation assessment model GOPT. We
show that with the multi-task learning scheme, a single GOPT
model can conduct multiple pronunciation tasks simultane-
ously, and its performance is better than the same model
trained with a single task. Experiments show the GOPT can
noticeably outperform previous methods on speechocean762.
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