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Abstract

This thesis proposes a uni�ed framework for integrating a variety of linguistic knowl-
edge sources for representing speech, in order to facilitate their concurrent utiliza-
tion in spoken language systems. The feasibility of the proposed methodology is
demonstrated on the test bed of bi-directional letter-to-sound / sound-to-letter gen-
eration. We present a hierarchical lexical representation which includes information
such as morphology, stress, syllabi�cation, phonemics and graphemics. Each of these
knowledge sources occupies a distinct stratum in the hierarchy, and the constraints
they provide are administered in parallel during generation. A probabilistic parsing
paradigm is adopted for generation. The parser is a hybrid of a rule-based formalism
and data-driven techniques, and is capable of bi-directional generation. Our train-
ing and testing corpora are derived from the high-frequency portion of the Brown
Corpus (10,000 words), augmented with markers indicating stress and word morphol-
ogy. We evaluated our performance based on an unseen test set. The percentage
of nonparsable words for letter-to-sound and sound-to-letter generation were 6% and
5% respectively. Of the remaining words our system achieved a word accuracy of
71.8% and a phoneme accuracy of 92.5% for letter-to-sound generation, and a word
accuracy of 55.8% and letter accuracy of 89.4% for sound-to-letter generation. The
implementation of a robust parsing mechanism shows how generation constraints can
be relaxed within the hierarchical framework, in order to broaden coverage and handle
nonparsable words. Additionally, a pilot study provides evidence that the framework
can be generalized to encompass other linguistic knowledge sources for potential ap-
plications in speech synthesis, recognition and understanding.
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Chapter 1

Introduction

1.1 Overview

Human-machine communication via speech is the shared vision and common goal of

many speech researchers. Computers with the power to speak and listen can create

a user-friendly, hands-free and eyes-free environment for the user, and the speech

medium can provide an e�cient and economical mode of transmission. Great strides

have been made in many areas of speech research over the past few decades. Speech

synthesizers [41] have achieved a reasonable degree of clarity and naturalness, and

are striving to cover unlimited vocabularies. Speech recognizers are now capable of

speaker-independent, large-vocabulary, continuous speech recognition. The speech in-

put may either be read or spontaneous.1 Vocabulary sizes can range from a few thou-

sand words to tens of thousands of words [63] and e�orts to handle out-of-vocabulary

words are under way [6], [35]. Natural language understanding systems can analyze

a recognized sentence to obtain a meaning representation [73]. The semantics are

then channelled to the appropriate locations to perform speci�c actions (such as sav-

1Read speech tends to be \cleaner" than spontaneous speech. The latter is characterized by
hesitations, �lled pauses such as \um" and \ah," false starts (e.g. \I want to y to Bos-Boston")
and ungrammatical constructs.

16
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ing or deleting a �le), or to retrieve information (such as airline reservations and

city navigation). Interactive information retrieval via speech also requires a language

generation component for response generation [25]. The combined applications of

these four branches of technology, namely, speech synthesis, speech recognition, lan-

guage understanding and language generation, has brought about the recent advent

of conversational systems [23] [100] . These systems can carry out a conversational

dialogue with the user concerning topics in a restricted domain (or multiple restricted

domains [28]). The systems accept spontaneous speech as input and respond with

synthesized speech as output. They enable the user to solve problems within the

designated domain (such as trip planning, weather inquiries, etc.) [24] [28], convey a

spoken message with another language via machine translation [94], or learn to read

[8] [33] [54].

The development of conversational systems necessitates correct interpretation of

spoken input, and accurate generation of spoken output. Decoding the semantics

embedded in an acoustic signal, or encoding a message in synthesized speech, involve

diverse sources of linguistic knowledge [14] [96]. Amongst these are:

� Signal processing | the transformation of a continuously-varying acoustic speech

signal into a discrete form.

� Phonology and acoustic-phonetics | the study of speech sounds, their variabil-

ities as a result of coarticulation, as well as their acoustic characteristics. For

example, although the underlying phoneme sequences in \nitrate" and \night

rate" are identical, they are realized di�erently.

� Lexical constraints and word morphology | the knowledge about the compo-

sition of words in a language.2

� Syntactic information | the rules about grammatical constructs in the forma-

2A morpheme is the minimal syntactic unit in a language which carries meaning, and a morph is
the surface realization of a morpheme.
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tion of clauses, phrases or sentences from words.

� Semantic information | the meaning of the spoken input. For example, it

may be di�cult to di�erentiate between the two sentences \Meter at the end

of the street" and \Meet her at the end of the street" based on the acoustics of

continuous speech, but they are di�erent both syntactically and semantically.

� Prosodics | the stress and intonation patterns of speech. The location of

emphasis in a spoken sentence conveys speci�c meaning. \I am ying to Chicago

tomorrow" indicates that ying is the means of transportation to Chicago (and

not driving or others); while \I am ying to Chicago tomorrow" proclaims that

Chicago is the ight destination (and not Boston or another city).

� Discourse and pragmatics | the context of the conversation and the rational

chain of thoughts invoked. Consider as examples the sentences \It is easy to

recognize speech" and \It is easy to wreck a nice beach." Both are semantically

reasonable and syntactically well-formed. However, acoustically they are almost

indistinguishable. In order to achieve disambiguation, a conversational system

needs to resort to information regarding the dialogue context.

These di�erent knowledge sources interact together to modify the speech signal.

Word pronunciations, which are a major concern in recognition and synthesis, can

be inuenced by word morphology, syntax, semantics and discourse. For example,

the pronunciation of \unionization" depends on whether the topic of interest con-

cerns \ions" or \unions," which may give the respective derivations \un+ionization"

or \union+ization."3 Semantics is needed for the disambiguation of homonyms such

as \see," \sea" and \C". Syntax leads to the di�erent pronunciations between the

noun and verb forms of \conduct" (/k a n d { k t/ and /k { n d ^ k t/). Coar-

ticulatory e�ects in di�erent phonetic contexts and across word boundaries are ex-

pressed as phonological rules [62]. Examples include the apping of the /t/ in \water"

3This example is borrowed from [21].
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(/w O º 5/) and the palatalization of the /d/ before the word boundary in \did you"

(/d I J y u/). Naturally, these rules are found in both synthesizers and recogniz-

ers. Prosodics are essentials for conveying [76] and deducing the correct meaning in

spoken language; and so is discourse, as can be observed from the examples above.

Natural language understanding often involves parsing sentences.4 The semantic and

syntactic information extracted in the process can also be used to trim the recog-

nizer's search space. For example, if a speech recognizer is asked to decode the next

word in the sentence \I want to y from Boston to..." the search algorithm probably

should focus on the city names in the vocabulary.

It is therefore obvious that these interrelated knowledge sources are indispensable

in the development of speech systems, be it synthesis, recognition or understand-

ing. The di�erent types of information, or subsets of them, are often incorporated

independently, and with ad hoc methodologies, into the components of existing con-

versational systems. Phonological rules are applied in letter-to-sound generation in

speech synthesis [17]. They are also embedded in pronunciation models and networks

in speech recognizers [31]. n-gram language models [39] are popular for guiding the

search in speech recognizers, because they can be automatically acquired for di�erent

tasks with a wide range of perplexities, and are thus more adaptable than �nite-state

grammars [47] [49]. The recognition outputs may be further re-processed using natu-

ral language parsers to provide syntactic analysis and derive meaning. As was shown

earlier, semantics and syntax may come into play for reducing the search space of

the recognizer, especially for high perplexity5 tasks (such as those with large vocab-

ularies) where constraints given by the n-gram language models are weak. A lower

search complexity should help avoid search errors and maintain high recognition per-

formance. Discourse and prosody have also been used in dialogue management [42].

4There also exists systems which attempt to obtain semantics without involving syntactic analysis,
see [65] [92].

5Perplexity is an information-theoretic measure for the average uncertainty at the word boundary
for the next possible words to follow. Later in the thesis we will show how it is computed. A high
perplexity signi�es a large search space, and a more di�cult recognition problem.
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We feel that instead of allowing these knowledge sources to reside individually in

a conversational system, it is more desirable to model their interrelationships in an

integrated framework. The objective of this thesis is to propose a methodology for

such integration. The resultant framework should facilitate the concurrent utilization

of the knowledge sources, and should be applicable in speech synthesis, recognition

and understanding.

1.2 An Integrated Hierarchical Framework for

Speech

Having a common framework which integrates all the relevant knowledge sources for

speech synthesis, recognition and understanding is advantageous. Not only can it

reduce redundancy in development e�orts, but also any improvements made in the

framework can be inherited by all three tasks. This integration is best exempli�ed

by the human communication system. Our framework is therefore designed to mirror

the chain of events underlying the communication between a speaker and a listener,

a sequence which has been described as the speech chain [20].

When a speaker wants to convey a spoken message to a listener, he �rst gathers his

thoughts, which constitutes the semantics of his speech. The semantics is generally

coherent with the context of the dialogue, which involves discourse and pragmatics.

The speaker proceeds to con�gure his message into a linguistic form. He chooses the

appropriate words and their morphological forms from his vocabulary, and organizes

them into sentences and phrases according to the grammar rules or syntax of the

language. The speech utterance is then formulated in the brain, along with prosodic

features (pitch, intonation and duration) and stress (sentential and word-internal

stress) to aid expression. The utterance is then spoken by the coordinated movements

of the vocal organs and articulators, producing the phonetics of the speech wave which

is transmitted from the speaker to the listener. The acoustics of the speech wave
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is processed by the auditory system of the listener to decode the series of sounds

produced by the speaker. From this the listener infers the list of words used, analyzes

the structure of the sentence uttered and �nally acquires the message conveyed by the

speaker. In the event that the sentence contains a new word which is unknown to the

listener, learning takes place. The listener secures various properties of the word, such

as its meaning, spelling, pronunciation, usage, etc., and subsequently incorporates the

word into his vocabulary.

It seems plausible that the design of a uni�ed framework for speech be modeled

after the speech chain. We conceive of a grand speech hierarchy with multiple levels of

linguistic knowledge sources, grossly ranging from discourse, pragmatics and seman-

tics at the upper levels, through the intermediate levels including prosody and stress,

syntax, word morphology, syllabi�cation, distinctive features, to the lower levels of

word pronunciations, phonotactics and phonology, graphemics,6 phonetics and acous-

tics. The framework should encode not only the constraints propagated along each

level of linguistic representation, but also the interactions among the di�erent layers.

The hierarchy is illustrated in Figure 1-1. From one perspective, the order of events

in speech production is roughly simulated as we descend the hierarchy; while the

reverse order as we ascend the hierarchy approximately models the speech perception

process. Looking from another perspective, this uni�ed body of linguistic knowledge

should be applicable in speech generation/synthesis, recognition and understanding.

Furthermore, learning can be achieved if the regularities within the framework can

be derived and utilized in generating new structures or representations.

The prime objective of this thesis is to propose such a uni�ed framework of lin-

guistic knowledge sources for multiple speech applications. The test-bed selected for

demonstrating the feasibility of our methodology is the task of bi-directional spelling-

to-phonemics/phonemics-to-spelling generation.

6By \graphemes" we are referring to contiguous letters which correspond to a phoneme.
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Discourse and Pragmatics

Syntax and Semantics

Sentence/Phrase Prosodics

Word Morphology

Word Stress

Syllabification and Phonotactics

Phonemics

Phonetics and Graphemics

Acoustics

Figure 1-1: A Proposed Grand Hierarchy for Representing Speech
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1.3 Spelling-Phonemics Conversion

The scope of this thesis focuses on the task of bi-directional spelling-phonemics conver-

sion. Formalizing the relationship between the spelling and phonemic pronunciation

of an English word requires information regarding part of speech, word sense, stress,

morphology, phonemics and graphemics. These knowledge sources constitute the sub-

structure in the speech hierarchy (Figure 1-1) which is of immediate relevance to the

English word. We have selected as our test-bed the design of representations and

algorithms pertaining to the simultaneous/synchronized application of these knowl-

edge sources for bi-directional spelling-phonemics conversion. This task should su�ce

as apt evidence for the viability of our proposed uni�ed framework, at least on the

(smaller) scale of the English word. The thesis will also include preliminary experi-

ments which show the extendability of the implemented framework. The versatility

of the framework is implicated by the bi-directionality | the same set of knowledge

sources remains pertinent, be it spelling-to-phonemics generation or phonemics-to-

spelling generation. In a similar manner, if the grand speech hierarchy in Figure

1-1 is realized, its versatility should transcend to applications in speech synthesis,

recognition and understanding.

The bi-directional generation task is also chosen because of its usefulness in han-

dling out-of-vocabulary words in unrestricted text-to-speech synthesis and large vo-

cabulary speech recognition. Text-to-speech synthesizers used as reading machines

for the blind, or as interactive voice response for transmission over the telephone,

often encounter new words outside their vocabulary. When this happens, letter-to-

sound generation becomes the key operating mechanism. Similarly, it is di�cult to

fully specify the active vocabulary of a conversational system beyond a static initial

set. Users should be able to enter new words by providing the spoken, typed or hand-

written spellings and/or pronunciations. If only one of the two elements is given, a

bi-directional system will be able to automatically generate the other element, and

dynamically update the system's vocabulary accordingly.
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The development of a bi-directional letter-to-sound/sound-to-letter generator war-

rants an understanding of the relationship between English orthography and phonol-

ogy. This will be examined in the following subsection.

1.3.1 Orthographic-phonological Correspondences in English

The English writing system is built from the 26 letters in the alphabet. However,

only certain letter sequences are found in English words. Adams [1] [53] noted that,

From an alphabet of 26 letters, we could generate over 475,254 unique

strings of 4 letters or less, or 12,376,630 of 5 letters or less. Alterna-

tively, we could represent 823,543 unique strings with an alphabet of only

7 letters, or 16,777,216 with an alphabet of only 8. For comparison, the

total number of entries in Webster's New Collegiate Dictionary is only

150,000.

Such a limited set of letters and letter patterns, however, encodes a vast body of

knowledge. In fact, the graphemic constraints may very well be a consequence of this.

The alphabetic principle [69] refers to the occurrence of systematic correspondences

between the spoken and written forms of words | the letters and letter patterns found

in written English map somewhat consistently to the speech units such as phonemes

in spoken English. Chomsky and Halle [11] pointed out that English phonology and

morphology are simultaneously represented in the orthography. This suggests that the

orthography should exhibit cues which reect lexical structures like the morpheme.

Other lexical structures like the syllable are derived from phonotactic constraints

speci�c to the language, so if written English largely corresponds to spoken English,

then syllabic structures should be found in the orthography as well [1] [53].

The way that English orthography corresponds to morphology, syllabi�cation and

phonology is fairly systematic, but it also admits many irregularities. Therefore,

English has been described as a quasi-regular system [53]. To illustrate correspon-

dences in morphology, consider the words \preview" and \decode," which contain
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the pre�x morphs \pre-" and \de-" respectively. Since the meaning of a word is

often constituted by the meanings of its morphemes, consistency is preserved in the

coining of the words \precompile" and \debug." However, there are also irregulari-

ties such as \pretense" (unrelated to \tense"), and \deliver" (unrelated to "liver").

To illustrate correspondences in syllabi�cation, there is consistency in the word-pairs

\baked"-\faked" and \dies"-\lies," but inconsistency lies in \baked"-\naked," and

\dies"-\diet." To illustrate correspondences in phonology, \gave"-\brave" is consis-

tent, while \gave"-\have" is not.7 Vowels account for many of the inconsistencies in

letter-phoneme mappings, since the identity of the vowel in a word is strongly a�ected

by the stress pattern of the word. The stress pattern is in turn dependent on the part

of speech of a word, e.g., homographs which can take on two parts-of-speech often

have a stress-unstress pattern if they are nouns, and an unstress-stress pattern if they

are verbs, as in \record" and \permit." Another interesting class of exceptional pro-

nunciations arises from high-frequency words [3]. Initial \th" is pronounced as /T/ (a

voiceless fricative) in many words (such as \thin," \thesis," \thimble"), but for very

frequent words such as the short function words (\the," \this," \there," \those"),

\th" is pronounced as /D/ (a voiced fricative). Similarly, \f" is always pronounced as

an /f/ (an unvoiced fricative) except for the single case \of." Finally, the �nal \s" in

\atlas" and \canvas" is realized as the unvoiced /s/, but for the function words \is,"

\was" and \has," it is realized as the voiced /z/.

As we can see, English orthographic-phonological correspondences seem to operate

through the intermediate levels of morphology and syllabi�cation, and contain both

regularities and irregularities. Irregularities arise due to the stress pattern of a word,

di�erent dialects (e.g. British and American English), lexical borrowings from other

languages and spelling reforms, to name a few reasons [53]. Since English is quasi-

regular in nature, it seems that a possible way to tackle the spelling-to-pronunciation

or pronunciation-to-spelling conversion problems is to capture regularities using rules

7These examples are borrowed from [53].
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and statistics, while accommodating irregularities using exception dictionaries. Any

attempt to determine the orthographic-phonological regularities in English must con-

sider the two important areas of representing and deriving such regularities. In the

next section, we will give an overview of the approaches adopted in previous attempts

to capture letter-sound regularities for the development of pronunciation and spelling

systems.

1.4 Previous Work

1.4.1 Letter-to-Sound Generation

A myriad of approaches have been applied to the problem of letter-to-sound gener-

ation. Excellent reviews can be found in [18], [29] and [41]. The various approaches

have given rise to a wide range of letter-to-sound generation accuracies. Many of

these accuracies are based on di�erent corpora, and some corpora may be more dif-

�cult than others. Furthermore, certain systems are evaluated by human subjects,

while others have their pronunciation accuracies reported on a per phoneme or per

letter basis. Insertion errors or stress errors may be included in some cases, and ig-

nored in others. There are also systems which look up an exceptions dictionary prior

to generation, and the performance accuracies of these sytems tend to increase with

the use of larger dictionaries. Due to the above reasons, we should be careful when

comparing di�erent systems based on the quoted performance values.

The following is a sketch of the various approaches with a few illustrative examples.

1. Rule-based Approaches

The classic examples of rule-based approaches include MITalk [3], the NRL

system [21], and DECtalk [17]. These use a set of hand-engineered, ordered

rules for transliteration. Transformation rules may also be applied in multiple

passes in order to process linguistic units larger than the phoneme/grapheme,

e.g., morphs. The rule-based approaches have by far given the best generation
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performance. MITalk rules have attained word accuracies ranging from 66% to

76.5% [38] (all phonemes and stress pattern correct). The system Speech Plus

Prose 2000 [32] has achieved a performance of 85% word accuracy using only its

letter-to-sound rules. Adding exceptions dictionaries helps improve the overall

performance noticeably | a 3000-word dictionary with rules gave a 97% word

accuracy. In general, rules operate on one-dimensional data structures. There

are also rules that operate on two-dimensional data structures, e.g., the Speech

Maker formalism [89] developed for Dutch. The two-dimensional rules in the

Speech Maker are modelled after the delta system [34]. The rules manipulate

the contents of a data structure known as the grid, which contains streams of

linguistic representations synchronized by markers.

Writing rule sets is an arduous process. As the rule set increases in size, the

determination of rule ordering and the tracing of rule interactions become more

di�cult. Furthermore, rules generally have low portability across domains or

languages. Therefore, there are also other approaches which try to automati-

cally infer these transcription rules, or the letter/sound correspondences which

they represent.

2. Induction Approaches

Induction approaches attempt to infer letter-to-sound rules from a body of

training data. The rules follow the form of generative phonology, which gives

a letter and its transcription under a speci�ed spelling context. Examples of

this approach can be found in [36], [40], [51], [61], [71] and [87]. The following

briey recounts a few of them.

Klatt and Shipman [40] used a 20,000 word phonemic dictionary to create letter-

to-sound rules of the form A![b]/CD EF, i.e., the letter \A" goes to the

phoneme [b] in the letter environment consisting of 2 letters on each side. If

there are rule conicts, the most popular rule in the conicting set is used. The

computer program organizes the rules into a tree for run-time e�ciency, and
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the system achieved an accuracy of 93% correct by letter.

Lucassen and Mercer [51] designed another letter-pattern learner using an infor-

mation-theoretic approach. The phonemic pronunciation is viewed as being

generated from the spelling via a noisy channel. The channel context consists

of 4 letters to the left and right of the current letter, and the 3 phonemes to the

left. A decision tree is constructed based on a 50,000 word lexicon, where at

each step, the tree includes the context feature with the maximum conditional

mutual information.8 They reported a performance of 94% accuracy per letter

on a test set of 5,000 words.

Hochberg et al. [36] devised a default hierarchy of rules, ranging from the

most general rule set at the bottom to the most speci�c rule set on top. The

bottom-level (Level 1) has 26 general rules, each being a context-independent

transcription of a single letter to its most frequent phoneme according to the

training corpus. At the next level up (Level 2), each rule includes as context

one letter to the left/right of the letter to be transcribed. Level 3 rules are a

natural extrapolation | they include up to 2 letters to the left or right of the

current letter. Therefore, the rules at level i contain (i� 1) letters as context.

Training identi�es the phoneme =x= in each rule to be the most frequently

occurring pronunciation in the training corpus. Each rule has a numerical value

computed as its \strength," which is based on the training corpus statistics.

Testing pronounces each letter sequentially, and rule applications are ordered

top-down in the hierarchy. Rule \conicts" are reconciled according to rule

strengths and a \majority rules" principle. The system was trained and tested

on disjoint sets of 18,000 and 2000 words respectively, and achieved an accuracy

of 90% by phoneme. A similar approach was also adopted at Martin Marietta

Laboratories [70].

8The conditional mutual information between u1, u2 and u3 is de�ned as log
P (u1 j u2; u3)
P (u1 j u3)

.
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3. Hidden Markov Models

Par�tt and Sharman [64] have cast the problem of spelling-to-pronunciation

generation in an HMM framework, which has been popular in speech recog-

nition sytems [67] [45]. For the generation task, the HMM has phonemes as

its hidden states, with trained transition and observation probabilities, and the

orthographic letters as its observed outputs. Based on disjoint training and test

sets totalling 50,000 words, the system developed at IBM, UK [64] reported a

performance of 85% accuracy per phoneme. Aside from this work, HMMs have

also been used for the alignment of orthography and phonemics prior to an

inductive learning transliteration procedure for Dutch [86]. Another approach

related to HMMs can be found in [52].

4. Connectionist Approach

A well-known example of this approach is NETtalk developed by Sejnowski and

Rosenberg [72]. NETtalk is a neural network that learns the pronunciations of

letters. The network consists of three fully connected layers: the input layer

takes in a 7-letter context window, where the middle letter is the one to be

pronounced and the other six serve as left and right context; the hidden middle

layer performs intermediate calculations, and the output layer gives a vector

indicative of a phoneme and a stress level (two degrees of stress are included).

The network was trained for 5 passes on 1,000 words and tested on a non-

disjoint dictionary of 20,012 words. The \best guess"9 performance was found

to be 90% correct by letter. NETtalk was also re-implemented by McCulloch

et al. [55] to become NETspeak, in order to examine the e�ects of di�erent

input and output encodings in the architecture, and of the word frequencies on

network performance.

Lucas and Damper [50] developed a system for bi-directional text-phonetics

9The dot products between the output vector and the code vector of every phoneme are computed.
The phoneme that has the smallest product is the "best guess" output.
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translation using two \syntactic" neural networks (SNN) to perform statistical

string translation. This system, unlike the others, does not require pre-aligned

text-phonetic pairs from training, but instead tries to infer appropriate segmen-

tations and alignments. The �rst SNN models orthography while the second

models phonemics. Training is done in three phases. In the �rst phase, each

SNN allocates a neuron node for the high-frequency substrings in its own do-

main. In the second phase, transition (bigram) probabilities corresponding to

the recurrent connections between neurons within an SNN are estimated. Fi-

nally, the third phase learns the translation probabilities between the nodes of

one domain and those in the other domain. The activation of a node takes

into account all the weighted recurrent connections to that node. The output

symbol corresponding to the node with the highest activation is selected as the

generated translation. In text-to-phonemics conversion, training and testing on

two disjoint 2000-word corpora gave a 66% phoneme accuracy and 26% word

accuracy.

5. Psychological Approaches

Dedina and Nusbaum [19] developed the system PRONOUNCE to demonstrate

the computational feasibility of the analogical model. This model is proposed by

Glushko [26] in psychology literature, which suggests that humans use a process

of analogy to derive the pronunciation for a spelling pattern, as an alternative

to the pronunciation-by-rule theory. PRONOUNCE uses a lexical database

of approximately 20,000 words. It does not have a training phase. Instead,

PRONOUNCE matches each spelling pattern in the test word against every

lexical entry, and if there are matching substrings, the corresponding phonetic

pattern is retrieved to build a pronunciation lattice. After the matching phase,

PRONOUNCE traverses the lattice to �nd the \best path," using the lengths

and frequencies of the subpaths as search heuristics. The system was evaluated

on a set of 70 nonsense monosyllabic words, and was found to disagree with
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human subjects on 9% of the set. Another system modelled after Glushko's

theory can be found in [10].

Sullivan and Damper [83] developed a system based on the dual-route theory

[68], where the duality refers to a set of context-free rules conjoined with lexical

analogies. Therefore, Sullivan and Damper's system draws phonemic analogies

in addition to orthographic analogies. The orthographic \analogiser"10 is similar

to PRONOUNCE, except that it uses a scoring mechanism based on the text-

phonemic mapping statistics, instead of a lexicographic function. The phonemic

\analogiser" begins with using a set of context-free rules to generate multiple

pronunciations, and these are re-ranked in a way similar to the lexical analogies.

The outputs from the orthographic and phonemic analogisers are eventually

combined to generate the result.

6. Case-based Reasoning and Hybrid Approaches

Case-based approaches generate a pronunciation of an input word based on

similar exemplars in the training corpus. The TTS system [16] developed at

Bell Labs adopts this approach for generating name pronunciations. It operates

primarily as a 50K dictionary lookup, but if direct lookup fails, the system will

try using rhyming analogies (e.g. \ALIFANO" and \CALIFANO"), perform

su�x-exchanges (e.g. \AGNANO" = \AGNELLI" - \ELLI" + \ANO") or

append su�xes (e.g. \ABELSON" = \ABEL" + \SON"). If everything fails,

then TTS will fall back on a rule-based system named NAMSA for pre�x and

su�x analysis and stress reassignment.

MBRtalk [78] [79] is a pronunciation system operating within the memory-

based reasoning paradigm. The primary inference mechanism is a best-match

recall from memory. A data record is generated for every letter in a training

word. Each record contains the current letter, the previous three letters, the

10This terminology is adopted from the reference [83].
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next three letters, and the phoneme and stress assigned to the current letter.

For each letter in the test word, the system retrieves the 10 data records that

are most \similar" to the letter under consideration. A special dissimilarity

metric is used for the retrieval. Weights are assigned to each of the 10 records

according to their dissimilarity to the current letter, whose pronunciation is

then determined from the records and their respective weights. Training on

4438 words and testing on 100 novel words gave a performance accuracy of 86%

per phoneme. Evaluation by six human subjects gave a word accuracy between

47% and 68%. An extension of this work is found in [80]. Another approach

using case-based reasoning can be found in [46].

Golding [29] proposed a hybrid approach based on the interaction of rule-based

and case-based reasoning and developed the system ANAPRON. Rules are used

to implement broad trends and the cases are for pockets of exceptions. The

set of rules is adapted from MITalk and foreign-language textbooks. Each

rule records its own set of positive and negative exemplars. In pronunciation

generation, the hand-crafted rules are applied to obtain a �rst approximation to

the output, and this is then re�ned by the case-base if any compelling analogies

are found. The judgement for compellingness is based on the ratio between the

positive and negative exemplars in the rules, and the similarity between the test

token and the negative exemplars. In this way, rules and the case-base form

nice complements. This approach was evaluated on a name pronunciation task,

with a case-library of 5000 names, and a separate set of 400 names for testing.

The percentage of acceptable pronunciations was measured and compared with

NETtalk and other commercial systems (from Bellcore [77], Bell Labs [16], and

DEC [17]). ANAPRON performed signi�cantly better than NETtalk in this

task, yielding a word accuracy of 86%, which is very close to the performance

of the commercial systems.

Van den Bosch et al. [88] experimented with two data-oriented methods for gra-
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pheme-to-phoneme conversion in Dutch. The �rst variant, known as instance-

based learning (IBL), is a form of case-based reasoning. During training it

constructs records of letters surrounded by di�erent graphemic windows, the

corresponding phonemic transcriptions and statistics. Testing involves retriev-

ing the record most similar to the test letter, using an information-theoretic

metric, and taking the most frequent phonemic transcription of the record as

the generation output. The second variant is a table-lookup method. For each

letter in the training data, the table stores the minimum context required to

arrive at an unambiguous transcription, up to �ve letters to the left and right

of the current letter (a 5-1-5 grapheme window). Testing is essentially a table

retrieval process. However, if retrieval fails to �nd a match, the test procedure

is supported by two \default tables," which use grapheme windows of 1-1-1 and

0-1-0 respectively. The reference also suggested the use of IBL to replace the

default tables. This idea is similar to Golding's method in that it is also a hy-

brid | between the table and the case-base, instead of rules and the case-base.

Using the table method on English transliterated (18,500 training words and

1,500 testing words) gave a 90.1% accuracy per letter.

1.4.2 Sound-to-Letter Generation

The development of spelling systems is a task rarely undertaken. We know of three

approaches that have previously been adopted:

1. A Combined Rule-based and Inductive Approach

The rule formalism in generative phonology is also used in generating spelling

rules [95]. Two lexicons of respective sizes 96,939 and 11,638 were transcribed

with one-to-one phoneme-to-grapheme matches, using the /null/ phoneme and

\null" letter when necessary. Upon analysis of the lexicons, it was felt that there

was insu�cient consistency for a rule-based system. Therefore, each lexicon was

split according to word phonemic length, and their respective rule sets were
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found as a function of phoneme position, in addition to the local phonemic

context. Therefore, the format of a typical rule is:

Rule : num; pos; P0; phoneme context; G

where num is the number of phonemes in the pronunciation, pos is the position

of the current phoneme P0, which maps to grapheme G under the speci�ed

phonemic context (up to two phonemes on either side P0). For example, the

rule f5, 3, /a¤ /, P�1 =/b/ and P�2 =/a/, \I"g states that the phoneme /a¤ /,

when preceded by the di-phoneme /a b/, generates the grapheme \I" (e.g. in

the word \abides", pronounced as /a b a¤  d z/).

The rules are searched sequentially, given the word length and phonemic po-

sition, in the general order of increasing phonemic context: (i) no neighboring

phonemes, (ii) one phoneme on the right, (iii) one phoneme on the left, (iv) one

phoneme on each side, (v) two phonemes on the right and (vi) two phonemes

on the left. The search proceeds until a unique grapheme is found. If there are

none, the system is considered to encounter a failure. Each rule set is tested

on the lexicon used for its generation. Word accuracies on the small and large

lexicons are 72.4% and 33.7% respectively. Another set of experiments were

conducted whereby the system can revert to a set of \default" rules upon fail-

ure. These rules are manually written with reference to the lexicons. Accuracies

rose to 84.5% and 62.8% for the small and large lexicons respectively.

2. Hidden Markov Models

HMMs have also been used by Alleva and Lee [4] for acoustics-to-spelling gen-

eration. The problem is formulated roughly as an inverse of the previous ap-

plication of HMMs on spelling-to-pronunciation generation | the surface form

is the acoustic signal, and the underlying form is the orthography. There-

fore the HMMs model the relationship between the acoustics and orthography
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of 15,000 continuously spoken sentences. Phonetic transcription is totally by-

passed, which makes the problem more di�cult. Quad-letter models are used

to represent the letter under consideration, two left letters and one right letter.

These are used in conjunction with a �ve-gram letter language model in the

Sphinx recognition system [45]. Testing on a disjoint corpus of 30 embedded

and end-point detected words gave a 72.7% letter accuracy, 39.3% letter error

rate and 21.2% string accuracy. Since the letter accuracy and error rate add up

to more than 100%, it is assured that insertion errors were omitted for letter

accuracy.

3. Connectionism

The aforementioned Syntactic Neural Network system [50], which is the only

reversible system we have found in the literature, gave a 71% letter accuracy

and 23% word accuracy when trained and tested on two disjoint 2000-word

corpora.

1.4.3 Summary of Previous Approaches

Tables 1.4.3 and 1.4.3 summarize the two previous subsections.

1.5 Thesis Goals

In essence, the common thread running behind most automatic generation systems is

the acquisition of transcription rules or swatches of letter/phoneme patterns, which

enfold local context for letter/sound generation. These entities (rules or patterns) can

either be written by linguistic experts or inferred from training data. If the window

of context involved is narrow, the entity tends to have high data coverage, i.e., it

is applicable to many test words. However, entities with narrow context windows

also have a lot of ambiguities. Disambiguation needs long-distance constraints, which

leads to the widening of the context windows. The corresponding rules/patterns hence
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Approach Example Corpora Word Phoneme
Systems Accuracy Accuracy

Rule-based MITalk 200 (test) 66%-77% |
SPP (rules only) 85% |
SPP (rules and 97% |
exceptions)

Induction Klatt & Shipman 20K | 93% per letter
Lucassen & Mercer 50K (train) | 94% per letter

5K (test)
Hochberg et al. 18K (train) | 90% per phoneme

2K (test)
HMM Par�tt & Sharman 50K (train and | 85% per phoneme

test)
Connectionist NETtalk 20K (train) | 90% per letter

1K (non-
disjoint test)

Lucas & Damper 2K (train) 38% 71% per phoneme
(SNN) 2K (test)

Psychological PRONOUNCE 70 nonsense 91% |
syllables

Case-based MBRtalk 4K (train) 47-68% 86%
Reasoning 100 (test)
Case and Rule Golding 5K (train) 86% |
Hybrid (ANAPRON) 400 (test)

Table 1.1: Previous Approaches for Letter-to-sound Generation

Approach Example Corpora Word Letter
Systems Accuracy Accuracy

Rule-based and Yannakoudakis 12K(train and test) 72% 85%
Inductive Hybrid & Hutton 97K(train and test) 34% 63%
HMM Alleva & Lee 15K sentences (train) 21% 61%

30 embedded words
(test)

Connectionist Lucas & Damper 2K (train) 23% 71%
(SNN) 2K (test)

Table 1.2: Previous Approaches for Sound-to-letter Generation
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become more speci�c. Speci�city implies low data coverage, and the large number of

distinct, speci�c rules or cases often poses computational problems. Decent generation

performance and coverage demands a good mix of general and speci�c rules and cases.

The use of this mixture entails elaborate e�orts in reducing redundancy and resolving

conicts, especially when the size of the rule-set or case library is large.

Phoneme accuracies of the data-driven systems generally hover around the low 90

percentages.11 This roughly translates to (0:9)6 = 53% word accuracy, if we assume

that an average word is 6 letters long, and the probability of pronouncing each letter

correctly in a word is independent of the other letters. It is therefore obvious that there

is quite a wide performance gap between the automatic systems and systems using

hand-crafted rules, which typically can attain word accuracies in the 80-90% range.

This tacitly reects the insu�ciency of local context for generation. It is mainly the

rule-based approaches which apply suprasegmental constraints to some signi�cant

extent. Suprasegmental rules operate on larger linguistic units, e.g. morphs and

syllables, to enforce long-distance constraints concerning morphology12 and syllable

stress patterns in a word. These rules also tend to be executed in a sequential manner,

adding further complexity to the existing rule speci�cation.

Reiterating our earlier statement, this thesis adopts a novel approach in spelling-

phonemics conversions which di�ers from the ordered transformations and local pat-

tern matchers. Relevant knowledge sources, including those beyond the local let-

ter/phoneme context, are united in a hierarchical framework, where each knowledge

source occupies a distinct stratum. All the constraints bene�cial to the generation

task at hand (from long-distance constraints for suprasegments to short-distance con-

straints for transcription) are administered in parallel.13 The advantages of this for-

11The accuracies quoted amongst the di�erent systems should not be strictly compared, because
some are measured on a per letter basis; others on a per phoneme basis, and with di�erent data sets.
We will address this later in the thesis.

12Morphotactics refers to the positional constraints for the morphs in a word. In general, the loca-
tion of morph boundaries are considered to be very important in letter-to-sound generation, because
generation rules which operate within a morpheme often break down across morph boundaries.

13This idea shares similarities with the synchronized rules in the Speech Maker formalism [89] for
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malism are three-fold:

1. The higher strata in the hierarchy embody longer-distance constraints. These

provide additional information to the limited context used in local string matches,

and may also help eliminate the large number of \speci�c" transcription rules.

2. Interactions between the variable-sized units from di�erent knowledge sources

(morphs, syllables, phonemes, graphemes, etc.) are harnessed in the hierarchy

framework. Hence, one can avoid the tedium of tracking rule interactions and

resolving rule conicts in the determination of a rule order. The framework

also o�ers a thorough description of the English word at various degrees of

resolution.

3. Serial, transformational rules generate arbitrarily many intermediate represen-

tations between the input form and the output form. Once a rewrite-rule is ap-

plied, the identity of the representation prior to the rewrite is lost. Therefore,

transformation from the input form to the output form is irreversible. Con-

trarily, the integrated framework is inherently bi-directional. The hierarchical

framework preserves the same constraints exercised in both letter-to-sound and

sound-to-letter generation. Consequently, the new formalism should be more

e�cient and economical.

Generation is performed in a parsing framework, which is suitable for providing a

hierarchical analysis of the input. The parser design is a hybrid which combines the

merits of a knowledge-based approach (i.e. high performance accuracy) with those of

a data-driven approach (i.e. automation and robustness), by incorporating simple and

straightforward linguistic rules into a probabilistic parser. The probabilistic parsing

paradigm is preferred for four reasons: First, the probabilities serve to augment the

text-to-speech synthesis, and the two-level rules found in the pc-kimmo system for morphological
analysis [5].
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known structural regularities that can be encoded in simple rules with other struc-

tural regularities which may be automatically discovered from a large body of training

data. Secondly, since the more probable parse theories14 are distinguished from the

less probable ones, search e�orts can selectively concentrate on the high probability

theories, which is an e�ective mechanism for perplexity reduction. Thirdly, proba-

bilities are less rigid than rules, and adopting a probabilistic framework allows us

to easily generate multiple parse theories. Fourthly, the exibility of a probabilistic

parser also permits us to automatically relax constraints to attain better coverage of

the data.

In short, the goals of this thesis are :

� to demonstrate the feasibility of assembling and integrating multiple linguistic

knowledge sources (lying within the scope of the English word) in a hierarchical

framework, and

� to illustrate the versatility and parsimony of this uni�ed framework in terms of

the bi-directionality in spelling-phonemics conversion via a probabilistic parsing

paradigm.

1.6 Thesis Outline

In this introductory chapter, we have given a brief overview of spoken language re-

search, placing particular emphasis on the interdisciplinary aspect of the problems

involved. We feel that it is desirable to combine and coordinate the suite of knowledge

sources to form a coherent framework for the various speech components, and will

proceed in the following to describe our attempts to achieve this goal. The rest of

the thesis is organized as follows:

Chapter 2 describes the lexical representation which we have created for the En-

glish word. It is a hierarchical representation designed to integrate di�erent levels of

14A parse theory suggests a possible way of parsing a word.
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lingustic representation, namely, morphology, stress, syllabi�cation, distinctive fea-

tures, phonemics and graphemics. Therefore, a collection of variable length units

such as morphs and syllables are used, in addition to phonemes and letters.

Chapter 3 explains the bi-directional, synthesis-by-analysis algorithm used to ac-

complish our generation tasks. It is based on a probabilistic parsing paradigm, entitled

the Layered Bigrams, which is used in accordance with the hierarchical lexical rep-

resentation. The parser is a hybrid of rule-based and data-driven strategies. Details

about the training phase, the testing phase, as well as the search mechanism, will be

provided.

Chapter 4 presents information about the data used for our experiments, and

the evaluation criteria by which we measure our performance. Results will also be re-

ported for both letter-to-sound and sound-to-letter generation, followed by an analysis

of some generation errors.

Chapter 5 lists a series of experiments which illustrate the advantages of using the

hierarchical framework by comparing it with an alternative \non-linguistic" analysis

based on variable length letter/phoneme n-grams. The hierarchical representation

supplies a collection of constraints which together enhance e�ciency and accuracy in

generation. In addition, it is a compact representation, requiring few system param-

eters as it promotes a high degree of sharing among di�erent words.

Chapter 6 addresses a major issue of concern, parser coverage, because a non-

parsable word spelling or pronunciation does not yield any generated output. We

have implemented a \robust" parser, which is capable of relaxing certain constraints

to handle the problematic words and broaden coverage.

Chapter 7 examines the extendability of the hierarchical layered bigrams frame-

work. It is a small step towards an existence proof that this framework can encompass

other linguistic levels in the full-edged speech hierarchy conceived in Figure 1-1. We

have added a phone layer to the layered bigrams framework, and shown how it is

possible to automatically capture phonological rules with probabilities trained from
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hand-labelled data.

Finally, Chapter 8 summarizes the thesis and discusses future extensions of the

proposed framework, as well as possible applications.



Chapter 2

The Lexical Representation

This chapter presents the lexical representation which we have designed for the bi-

directional generation tasks. The knowledge sources which have immediate relevance

to graphemic-phonemic mappings in the English word, and which form a subhierarchy

in Figure 1-1, are united and integrated into a succinct description. This description

also forms the infrastructure for generation, which is explained in the next chapter.

2.1 Integration of Various Linguistic Knowledge

Sources

The lexical representation is a hierarchical structure which assimilates the relevant lin-

guistic knowledge sources to capture the orthographic-phonological correspondences

in English. Each level of linguistic representation is composed of a small set of lexical

units, each serving a unique descriptive role. The several distinct and well-de�ned

layers in the lexical representation preserve the ordering of the knowledge sources in

Figure 1-1. The layers are de�ned from top-to-bottom in Table 2.1.1

1Phonemes are enclosed in / /, graphemes in #[ ], and phones in [ ] | as will be seen in Chapter
7. The categories for each layer are shown in Appendices A through F. If we de�ne a column history

42
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Layer No. of Categories Examples
1. Top Level 1 word

2. Morphs 5 pref, root, root2, suf

3. Stress 8 ssyl1, ssyl2, syl

4. Subsyllabic Units 5 onset, nucleus, coda

5. Broad Classes 7 stop, nasal

6. Phonemes 52 /@/, /k/
7. Graphemes 205 #[ck], #[gue], #[ai], #[kn]

Table 2.1: Table showing the di�erent layers in the lexical representation, the number
of categories in each layer and some example categories.

The size of lexical units decreases as we descend the hierarchy. A word consists

of one or more morphs, and di�erent words may share the same morph(s). The

same relationship is found between morphs and syllables. A given syllable is often

identi�ed with its level of stress, and each syllable has one or more syllable parts

(or subsyllabic units). The syllable structure provides tactics for phonology, which is

why the manner, place and voicing features are placed beneath the subsyllabic unit

level. Letters or graphemes are located at the bottom because they often have direct

correspondences with phonemes. The phonetic layer is considered to occupy the same

level as the graphemic layer in this hierarchical ordering.

The top level currently consists of a generic [word] category, but it can conceiv-

ably be used to encode semantic information such as word sense, or syntactic in-

formation such as part-of-speech or tense.2 Semantic and syntactic characterization

may change the pronunciations of words. For example, \bass" may be pronounced

as /b e s/ or /b @ s/, depending on whether we are referring to music or a �sh.

Homographs like \permit" and \record" are pronounced with complementary stress

patterns, depending on the part of speech (noun or verb forms). Similarly, \read"

to be a feature vector with seven categories, one from each level shown in the table, then there are
fewer than 1,500 unique column histories in our training data.

2Other information may also be included, such as the origin of loan words, should we decide to
model words of di�erent origins as separate categories.
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may be pronounced as /r i d/ or /r E d/, depending on the tense.

The second layer, morphology, embodies some morphophonemic e�ects. Letter-

to-sound mappings which are consistent within morphs may be altered across morph

boundaries. For example, the letter sequence \sch" in \discharge" is pronounced

di�erently from that in \scheme." The former \sch" sequence overarches a morph

boundary between \s" and \c" which separates the pre�x morph \dis-" and the root

morph \-charge," while the latter sequence belongs to a single root morph. Another

similar example is provided by the word \penthouse," where the letter sequence \th"

is not realized as a medial fricative, due to the presence of a morph boundary in

between the two letters. Morph composition also brings about spelling changes [59].3

For instance, the �nal \e" in the su�x \ize" of the word \baptized" is redundant with

the \e" of the inectional su�x \ed," and so one of the redundant letters is dropped.

Other cases of deletion are evidenced in the word \handful," derived from \hand"

and \full," and in the word \handicap," coming from the three words \hand," \in"

and \cap." There are also examples of insertions due to morph combinations, such

as the gemination of \g" in \begged," which did not appear in the root \beg."

The third layer is a sequence of stressed and unstressed syllables. Stress strongly

a�ects the identity of the vowel in a syllable, as can be seen by comparing the words

\�nite" and \in�nite." The �rst syllable in \�nite" is stressed and contains the

diphthong /a¤ /, but the corresponding syllable in \in�nite" becomes unstressed, and

the diphthong reduces to a front schwa /|/. In addition, stress a�ects the placement

of syllable boundaries, which is illustrated by the words \fabric" and \fabrication."

The letter \c" in \fabric" forms the coda of the second syllable. However, upon

the addition of a \stress-a�ecting su�x" such as \-ation,"4 \c" has been moved to

become the onset of the following stressed su�x syllable. This movement occurs

3These spelling change rules, however, have not been explicitly incorporated in our lexical
representation.

4When a morph is extended by a \stress-a�ecting" su�x, the syllable preceding the su�x is
forced to become unstressed.
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if we abide by syllabi�cation rules such as the Maximal Onset Principle and Stress

Resyllabi�cation.5 Furthermore, stress information is necessary for the application

of certain phonological rules. Schwa elision requires a stressed-unstressed-unstressed

pattern. For instance, if we consider words such as \di�erence" and \opera" to have

three syllables with the stressed-unstressed-unstressed stress pattern, the application

of the schwa deletion rule will reduce the words to two syllables, dropping the /|/ in

the middle syllable. Similarly, the apping rule requires a falling stress pattern, and

therefore the second /t/ is apped in \strategy" but not in \strategic."

The next couple of layers, with subsyllabic units in the fourth and broad manner

classes in the �fth, jointly de�ne the syllable structure of the word. The morph layer

is deliberately positioned above the syllable layer. This is because syllable theory

implicitly assumes that a given syllable can transition to any other syllable. However,

since there are only a �nite number of pre�xes and su�xes, morphology provides

constraints for the syllables. In addition, precise syllable boundaries are often hard

to locate. For example, the syllable boundary in \monkey" may be placed between

the phonemes /4/ and /k/, or between /k/ and /i/. In these circumstances, we

may be able to utilize morph boundaries to aid placement of the syllable boundaries.

According to our data,6 the word \monkey" is composed of the root morph \monk-"

and the su�x \-ey." Consequently, the selected syllabi�cation for the word \monkey"

places the syllable boundary between the phonemes /k/ and /i/. This is shown in

Figure 2-1.

The fourth layer, syllable parts, also provides tactics for the two successive layers

of distinctive features [22] [81]. The sequence of broad classes (manner features) in

the �fth layer bears the Sonority Sequencing Constraint. This rule states that the

relative prominence or \vowel-likeness" of a sound decreases as we move from the

5The Maximal Onset Principle states that the number of consonants in the onset position should
be maximized when phonotactic and morphological constraints permit, and Stress Resyllabi�cation
refers to maximizing the number of consonants in the stressed syllables.

6The morphological decomposition of our data is provided by Sheri Hunnicutt [59].
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onset

nasal

/m/

#[m]

nuc

vow

/^/

#[o]
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/4/

#[n]

stop

/k/

#[k]

suf

syl

nuc

vow

/i/

#[ey]

root

ssyl1

coda

word 1. top-level

2. morphs

3. stress

4. subsyllabic
     units

5. broad 
    classes

6. phonemes

7. graphemes

Figure 2-1: Lexical representation for the word \monkey" | shown here in a parse
tree format.
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syllable nucleus towards the syllable margins. Place and voicing features are encoded

as phonemes in the sixth layer.7 We think that it is important to include a layer of

phonemes for three reasons - (i) it serves to represent the pronunciation of a word, (ii)

the sequential ordering of the phonemes allow us to infer phonotactic constraints as

well as the ongoing articulatory processes during pronunciation, and (iii) it preserves

the language-dependent characteristics since the inventory of phonemes varies from

one language to another. In this work we have an inventory of 52 \phonemes", as

listed in Appendix E. The set includes both stressed and unstressed counterparts of

the vowels /i/, /o/ and /u/, as well as some pseudo-diphthongs such as /O r/ and

/y u/. The advantage of having these pseudo-diphthongs will become obvious in

the next chapter when we present our probabilistic parser. Essentially, the parser

makes use of bigram constraints, but the use of diphthongs and pseudodiphthongs

indirectly incorporates \trigram" constraints into the parser. Furthermore, if our

framework is to be applied to segment-based speech recognition systems, the use of

pseudo-diphthongs may pose an additional advantage because segment-based speech

recognizers often have di�culty delineating the boundary in between a phonemic or

phonetic pair such as /O r/, /y u/, /a l/ and /o l/, where only gradual acoustic

transitions are found.

Finally the seventh layer of terminal nodes represents the letters in a word spelling.

The graphemes acquired from the training data are listed in Appendix F. We will show

in Chapter 7 that if the terminal layer is used as a dual representation of letters and

phones, this hierarchical lexical representation can be used to capture phonological

rules between the preterminal and terminal layers of phonemes and phones.

7In some recently published experiments on tree-based unit selection for English speech synthesis,
Sagisaka et al. [91] con�rmed that syllabic stress, as well as the place and manner of voicing of the
preceding phonemes, are important context variables.
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2.2 Some Examples

In this section, we provide the lexical representations of some words in our corpus for

illustrative purposes.

Figure 2-2 shows the description for the word \dedicated." The sequence of

morphs | pre�x, root and su�x, constitutes the morphological composition. The

su�x contains an inectional su�x syllable.8 Primary stress is placed on the �rst

syllable, secondary stress on the third, while the second and the fourth syllables are

reduced. The special \moved-onset" m-onset category is found in the fourth layer.

It signi�es that the letter \c" should belong to the root \dic,"9 but has become a

moved onset of the next syllable due to the Maximal Onset Principle and the Stress

Resyllabi�cation Principle. In the terminal layer, we see the special terminal cate-

gory #[*], which is a graphemic \place-holder" introduced to maintain consistency

between the representations of the words \dedicated" and \dedicate" (compare Fig-

ures 2-2 and 2-3). Consistency enhances structural sharing among the representations

of di�erent words. Furthermore, the e�ects of morph composition on spelling changes,

such as the deletion of one of the redundant \e" letters from the su�x \-ate" and the

inectional su�x \-ed," is expressed indirectly by #[*].

Figure 2-4 shows the representation for the word \taxes." This is an instance

where a letter can map to more than one phoneme (i.e., \x" maps to /k/ and /s/).

Again, the graphemic place-holder #[*] is used to handle such examples.

In general, roots of words are de�ned as having one or two syllables. The second

syllable of the root is categorized as [root2]. It often consists of a single vowel

phonemically, optionally followed by a liquid, and is frequently unstressed. Figure

2-5 shows an exemplar occurrence of the [root2] category in \hero," and Figure

8Inectional su�xes are generally used to mark tense and number (i.e. plural forms). Examples
include \-ed" and \-s." They are placed at the syllable level because they may take the form of an
unstressed syllable or a subsyllabic unit.

9According to Webster's New World Dictionary, the root of \dedicated" is \-dic-," which is
derived from the Latin word \dicare."
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nuc

vow

/|/

#[i]

m-onset

stop

/k/

#[c]

ssyl2

nuc

vow

/e/

#[a]

suf

coda

stop

/t/

#[te]
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1. top-level

2. morphs
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4. subsyllabic
     units

5. broad 
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6. phonemes

7. graphemes

Figure 2-2: Lexical representation for the word \dedicated" - shown here in a parse
tree format, and with the di�erent linguistic layers indicated numerically.
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Figure 2-3: Lexical representation for the word \dedicate" - shown here in a parse
tree format.
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Figure 2-4: Lexical representation for the word \taxes" - shown here in a parse tree
format.
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onset

aspirant

/h/

#[h]

root

ssyl1

nuc

vow

/I/

#[e]

word

coda

semi

/r/

#[r]

root2

syl

nuc

vow

/o/

#[o]

Figure 2-5: Lexical representation for the word \hero."

2-6 shows the onset movement for /r/, incurred in \heroic" when the stress-a�ecting

su�x \-ic"10 is appended.

Pre�xes may sometimes be formed by adjoining a \connecting vowel" to a root or a

whole word structure, as exempli�ed by \accelerometer." In the lexical representation

for this word (Figure 2-7), the derivation of the pre�x \accelero-" is preserved, with

the intent of promoting structural sharing among words. The special categories,

[join], [join-ssyl] and [join-vow] are created for the description of the connecting

vowel \-o-", which is stressed, and pronounced as /a/.

The representations of compound words are simply the merger of the individ-

ual word representations. The parse tree for \headlight" is depicted in Figure 2-8.

The �rst root, \head," acquires primary stress, and the second root, \light," carries

10The attachment of the su�x \-ic" causes stress to be placed on the preceding syllable.
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Figure 2-6: Lexical representation for the word \heroic."
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Figure 2-7: Lexical representation for the word \accelerometer."
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Figure 2-8: Lexical representation for the word \headlight."

secondary stress.

The proper names which are present in our experimental corpus pose a problem.

The elements involved in the morph composition of proper names is quite dissimi-

lar to those of common English words. Our representations for proper names adopt

morphological decompositions which are concocted with preferences towards consis-

tency and structural sharing. Figures 2-9 and 2-10 portray two examples. The latter

example illustrates that a root with multiple syllables is treated as multiple roots.

A number of conventions are held while creating the hierarchical parse trees for

particular words. Amongst these are the words ending with the su�x \-ism." The

letters show a vowel for \i" being followed by a fricative and then a nasal, e.g. \bud-

dhism," \capitalism," \optimism," etc. If these three letters constitute a single sylla-

ble, the Sonority Sequencing Principle will be violated. In order to avoid this problem,
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Figure 2-9: Lexical representation for the name \Arkansas."
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Figure 2-10: Lexical representation for the name \Meredith."
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Figure 2-11: Lexical representation for the word \buddhism."

the letter \m" is isolated to become a separate syllable formed by the \syllabic m"

phoneme (/mÍ /), as shown in Figure 2-11.

Another principle concerns the use of a pure phonemic form in the parse tree. For

example, the parse tree for \national" (Figure 2-12) maps /s/ to \t" and /y/ to `i',11

instead of /S/ to \ti." The selected phonemes are closer to the underlying phonemic

correspondence for the letters, i.e. a strident fricative for \t" and a semivowel for

\i", and we expect to be able to obtain /S/ from /s y/ by the phonological rule

for palatalization.12 Therefore, we de�ne the phonemic pronunciation of \national"

to be /n @ s y | n | l/ which may become [n @ S | n | l] phonetically. This

11We have previously mapped /t/ to \t" and /y/ to \i" for cases like the word \national." The
change did not a�ect generation performance to any signi�cant extent.

12The place of articulation of the alveolar phoneme /s/ often changes to palatal (/S/), upon
coarticulation with the phoneme /y/.
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Figure 2-12: Lexical representation for the word \national."

principle enables us to conveniently handle words for which palatalization is optional.

The word \issue" (Figure 2-13) can either be pronounced as /I s y u/ (mostly in

British English), or /I S u/. If we had used the phoneme /S/ in \issue," then we

would be encumbered with a \depalatalization" rule for handling the non-palatalized

pronounciation. Likewise, the word \negotiation" can be pronounced as /n i g o s

y e S | n/ or /n i g o S y e S | n/, and the word \mature" may be pronounced as

/m | t y u r/ or /m | C y u r/.

We have also made an attempt to distinguish the context which calls for a long

vowel from that which calls for a short vowel. A long vowel tends to be succeeded by

a grapheme containing the letter \e", such as in the /a¤ / in \de�ne" being followed by

#[ne] (Figure 2-14) and /e/ in \dedicate" followed by #[te] (Figure 2-3). An e�ort

is made to preserve the context for \de�ning" (Figure 2-15), by using the terminal
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Figure 2-13: Lexical representation for the word \issue."



CHAPTER 2. THE LEXICAL REPRESENTATION 61

pre

syl

onset

stop

/d/

#[d]

nuc

vow

/i/

#[e]

word

onset

fric

/f/

#[f]

root

ssyl1

nuc

vow

/a /

#[i]

coda

nasal

/n/

#[ne]

y

Figure 2-14: Lexical representation for the word \de�ne."

#[n e]. These underbar terminals are restricted to the coda positions of stressed

syllables, and are predicted during the parsing process. Therefore, long vowels tend

to transition from left-to-right to the coda of a grapheme terminal ending with

the letter \e" or \underbar" terminal, because the bigram constraint disfavors the

advancement to a stressed m-onset such as in \de�nition" (Figure 2-16).

We have also created the unstressed counterparts for the long vowels /i/, /u/

and /o/. The unstressed /i/ is mainly reserved for su�xes, e.g., in \ivory" (Figure

2-17). Another example which also includes the unstressed /u/ is found in \superbly"

(Figure 2-18). Finally, an example for the unstressed /o/ is shown in Figure 2-19 for

\colorado."
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Figure 2-15: Lexical representation for the word \de�ning."
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Figure 2-16: Lexical representation for the word \de�nition."
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Figure 2-17: Lexical representation for the word \ivory." \u. /i/" denotes the un-
stressed version of /i/.
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Figure 2-18: Lexical representation for the word \superbly." \u. /u/" denotes the
unstressed version of /u/.
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Figure 2-19: Lexical representation for the word \colorado." \u. /o/" denotes the
unstressed version of /o/.
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2.3 Chapter Summary

In this chapter, we present our method of integrating di�erent linguistic knowledge

sources to describe English letter-to-sound mappings, with the objective of creating a

parsimonious lexical representation. Our design promotes extensive structural sharing

among words. The parse trees for words such as \predictable" and \preventable"

should be able to share the same structures in the morphology layer, the syllable

layer, and all the layers under the pre�x (and possibly the su�x).13 A compact

lexical representation with sharing capabilities is potentially applicable and desirable

for large-vocabulary speech recognition tasks. It also allows sharing of probabilities

which ameliorate the sparse data problem, under the assumptions that sharing takes

place among similar distributions only. In this work, the lexical representation is

combined with a parsing framework in order to cast the letter-to-sound generation

problem as directly symmetric to the sound-to-letter generation problem. We will

proceed to describe the parser in the following chapter.

13As will be seen in the next chapter, our system generates parse theories from left to right,
and the theories are right-branching, i.e., if there are two parse theories which di�er only at some
intermediate stage, data structures are shared on the left, but not on the right because identical
right structures are not merged. Implementation of a merging mechanism should allow structural
sharing between the su�xes of \predictable" and \preventable".



Chapter 3

The Parsing Algorithm

The hierarchical lexical representation presented in the previous chapter forms the

infrastructure upon which generation is carried out. The approach for generation is

one of synthesis-by-analysis in a parsing framework. An input spelling (or pronun-

ciation) is analyzed at all seven linguistic levels in terms of a parse tree, and the

generated pronunciation (or spelling) is then derived from the analysis. This chapter

describes our generation algorithm. The training procedure is a hybrid of rule-based

and data-driven strategies. A small set of context-free rules are written by hand, and

are used in accordance with a natural language parser to produce training parse trees

from the labelled training corpus | a subset of the 10,000 most frequent words in

the Brown corpus [43]. The parse tree produced serves as training data for a proba-

bilistic parsing algorithm based on the \layered bigrams" [74].1 The straightforward

constraints speci�ed by the rules, and other more subtle regularities embodied in

the training parse trees, are all converted by the training procedure into a set of

probabilities. Therefore, the advantage of the hybrid approach is to trade-o� the

expensive e�orts in providing an elaborate set of letter-to-sound rules from linguistic

1The layered bigrams have previously been used to parse sentences in the atis domain [66]. In
this thesis, a modi�ed version is developed for the subword parsing application.

68
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expertise, with a small set of simple rules augmented by constraints automatically

discovered from a body of training data. Probabilities prioritize some constraints over

others, and thus elegantly bypass problems with rule interactions and conicts.2 The

testing procedure uses a monolithic set of probabilities for enforcing constraints in

various linguistic levels for both letter-to-sound and sound-to-letter generation, which

are analogous processes. The non-overlapping test set and the development test set

are also subsets of the 10,000 most frequent words in the Brown corpus, and disjoint

from the training set. The following is a detailed account of our data preparation

processes in generating training parse trees, and the training and testing procedures

in the layered bigrams.

3.1 Data Preparation

This section describes the method used to generate training parse trees, which form

the rule-based aspect of our hybrid approach. The procedure involves labelling a

training corpus, writing a set of context-free rules, and boot-strapping with the nat-

ural language parser TINA [73]. TINA has previously been used with the summit

recognizer [97] to parse sentences in the voyager domain [98] for navigation, and the

atis domain [66] for retrieving air-travel information. The formalism of TINA derives

a network from a context-free grammar, and the connecting arcs in the network are

associated with probabilities. When a sentence is parsed, a set of parse nodes are

created and linked together in a hierarchical parse tree, while traversing explicit paths

through the grammar network. Therefore, TINA is also suited for producing hierar-

chical outputs for words in a parse tree format. In our current application, TINA is

only used in a boot-strapping procedure which does not involve trained probabilities.

Rather, the parser is constrained by the linguistic labels in the training corpus while

it operates on a small set of context-free rules.

2The bene�ts of using a probabilistic framework have been covered in Chapter 1.
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D!E=DI+@C?ATE++*D /dEdIket|d/
H!ER==O /hIro/
ST!AND$P?OINT /st@ndpO¤ nt/

Table 3.1: Examples of lexical entries in the training corpus.

The training corpus consists of about 8,000 words, which is a subset of the 10,000

most frequent words in the Brown Corpus. Table 3.1 shows several examples of the

lexical entries in the training corpus. The spellings are marked with symbols for

specifying syllable stress and morphological decomposition.3 The symbols include

markers for pre�x (=), root24 (==), su�x (+), inectional su�x (++), compound

word ($), moved onset (@), primary stress (!) and secondary stress (?).5 The linguistic

markings in Figure 3.1 for the word \dedicated" are quite straightforward. The pre�x

is found to the left of the pre�x marker (=). In this case, it is \DE," marked with

a primary stress. The su�x syllables are found to the right of the su�x syllable

markers (+). In between pre�x marker and the su�x marker is the root of the

word. Similarly, inectional su�x syllables are found to the right of the inectional

su�x marker (++). The �rst su�x syllable after the root, \ATE" is marked with

secondary stress, and also inherits the letter \C" as the moved onset from the root.

The graphemic place-holder [*] is inserted in place of the letter \E" in the inectional

su�x. The word \hero" shows the marking of the root2, \O", and \standpoint"

exempli�es the labelling for a compound word.

A small set of context-free rules are written for the TINA parser. These rules

serve to incorporate linguistic knowledge in the training parse trees. In Table 3.2, we

have included one exemplar rule for every pair of adjacent layers. The �rst rule in

the table states that the word category at the top layer can expand to an optional

prefix category, followed by the root category and an optional suffix category.

3The morphological decomposition of the training words are provided by Sheri Hunnicutt.
4The second unstressed syllable of the root.
5Unstressed syllables are not marked.
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1. word ! [pre�x] root [su�x]
2. root ! stressed-syllable [unstressed-syllable]
3. stressed-syllable ! [onset] nucleus [coda]
4. nucleus ! vowel
5. nasal ! (/m/, /n/, /4/)
6. /m/ ! (\m," \me," \mn," \mb," \mm," \mp")

Table 3.2: Examples of lexical entries in the training corpus.

The second rule states that the morph category root can expand to a stressed

syllable (layer 3) followed by an optional unstressed-syllable. The third rule states

that a stressed-syllable can expand into an optional onset, followed by a nucleus

and an optional coda. The fourth rule requires a nucleus to go to a vowel. The

�fth rule states that the broad class nasal (layer 4 in the lexical representation) can

go to one of three possible phonemes in layer 5, namely, /m/, /n/ or /4/. Finally, the

sixth rule states that the phoneme /m/ can correspond to one of the six graphemes

(\m," \me," \mn," \mb," \mm," \mp"). In total, about 100 rules are needed for all

words in the training corpus to be parsed into training parse trees. An exhaustive

listing of the rules is given in Appendix G.

TINA attaches probabilities only to sibling-sibling transitions in the context-free

rules. For example, a typical rule such as parent ! sibling1 sibling2, is bound

with two probabilites: P (sibling1 j start; parent), the transition probability from

the beginning of the rule to the �rst sibling, under the context of the parent; and

P (sibling2 j sibling1; parent), the transition probability from the �rst to the second

sibling, under the context of the parent. Therefore, the probabilities in TINA only

capture constraints between the two levels within a context-free rule. This proved to

be adequate for parsing sentences in the previous applications, where the probabilities

are augmented with a semantic grammar and syntactic features to ensure agreement.

Such elements are absent for our current task, and TINA's formalism led to a great

deal of overgeneration while parsing words [59]. We can compensate somewhat by
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writing a large number of explicit rules to �lter the generated hypotheses, but this

does not alleviate the heavy computational load in exploring partial theories that

would later fail. Therefore, we have reformulated tina in the paradigm of the \layered

bigrams" for our generation tasks. The new framework utilizes across-rule constraints

in addition to within-rule constraints for generation, as will be described in the next

section.

3.2 The Training Procedure

The training parse trees are used to train layered bigram probabilities, which consti-

tutes the data-driven aspect of our hybrid approach. The probabilities are the sole

parameters used by the parser. Therefore, the training procedure serves to convert

the constraints explicitly speci�ed in terms of the context-free rules and linguistic

markings, and augment them with more subtle constraints which are automatically

discovered from the training parse trees.

The training procedure is geared towards the implementation of a bottom-up,

left-to-right parser. We feel that this is a desirable order of processing | bottom-up

implies that the more generic categories are predicted based on the more speci�c cate-

gories, which should prevent overgeneration, and avoid generating parse theories that

would later fail. Bottom-up parsing is possible in this subword domain because the

parse trees have exactly seven layers everywhere.6 Left-to-right processing is inspired

by its success in the development of speech recognition systems.7 It allows computa-

6This was not the case when the layered bigrams were used to parse sentences [74], where some
columns in the parse tree have fewer layers than others. The problem is further complicated by the
need of a trace mechanism for long-distance movement, feature uni�cation to ensure agreement, and
other semantic constraints.

7An alternate from of processing, known as the \island-driven" approach, is preferred by some in
the speech recognition community. The island-driven approach begins by searching for anchor points
in a speech utterance where the con�dence level for correct recognition is very high. These anchor
points, or \islands of reliability," are then extended in a best-�rst manner into larger islands, until
the islands culminate the speech utterance. This approach was adopted in the Hearsay-II system
[48]. An island-driven approach may be better than left-to-right processing because the latter is often



CHAPTER 3. THE PARSING ALGORITHM 73

stop

/p/

#[p]

pre

syl

semi

/r/

#[r]

nuc

vow

u. /i/

#[e]

onset

stop

/d/

#[d]

word

root

ssyl1

nuc

vow

/I/

#[i]

stop

/k/

#[c]

stop

/t/

#[t]

nuc

vow

/|/

#[e]

coda

stop

/d/

#[d]

onset

isuf

syl

coda

Figure 3-1: A parse tree generated by TINA for the word \predicted." pre denotes
\pre�x," isuf denotes \inectional su�x," syl denotes \unstressed syllable," ssyl1
denotes \primary stressed syllable," and nuc denotes \nucleus."

tion to progress as the utterance is received, which is key towards the implementation

of real-time systems. Therefore, this bottom-up, left-to-right processing order in the

layered bigrams should be an attractive feature for e�cient generation in our current

tasks, and for potential applications in speech recognition.

In the analysis of a training parse tree, such as the typical example shown in

Figure 3-1, a basic 4-tuple is used. It consists of the elements:

1. Right-Sibling (RS): This can be any category in the parse tree.

2. Right-Parent (RP): The category above RS in the parse tree.

forced to deal with di�cult, unpromising portions of speech as they occur. Despite this, however,
left-to-right processing has remained popular and successful in recent speech recognition systems.



CHAPTER 3. THE PARSING ALGORITHM 74

stop

/p/

#[p]

pre

syl

semi

/r/

#[r]

nuc

vow

u. /i/

#[e]

onset

stop

/d/

#[d]

word

root

ssyl1

nuc

vow

/I/

#[i]

stop

/k/

#[c]

stop

/t/

#[t]

nuc

vow

/|/

#[e]

coda

stop

/d/

#[d]

onset

isuf

syl

coda

1 2 3 4 5 6 7 8 9

Figure 3-2: The parse generated by TINA for the word \predicted," shown in a parse
tree format in the previous �gure, but displayed here in layered bigrams format.



CHAPTER 3. THE PARSING ALGORITHM 75

3. Left-Sibling (LS): The category to the left of RS in the parse tree.

4. Left-History (LH): The entire column history (consisting of seven categories,

one from each layer) to the left of RS.

For illustrative purposes, Figure 3-2 shows the same parse tree as Figure 3-1, but

in layered bigrams format. The derivation of a terminal node, such as #[r] in column

2, is as follows:

word ! pre root isuf

pre ! syl

syl ! onset nuc

onset ! stop semi

stop ! /p/, semi ! /r/

/p/ ! #[p], /r/ ! #[r]

Therefore, if we regard the terminal #[r] as our current node, then the entire

�rst column, i.e. fword pre syl onset stop /p/ #[p]g, should consitute its left-

history (LH). The left-parent (LP) and left-sibling (LS) are respectively de�ned as

the phoneme /p/ and the letter #[p] in column 1, while the right-parent is de�ned as

the phoneme /r/ in column 2. Generally, the left and right parents may or may not

be identical. Notice that in this example the LP is di�erent from the RP, because this

4-tuple is derived from two di�erent context-free rules: /p/!#[p], and /r/!#[r].

As another example, consider the category nuc in column 5 in Figure 3-2. The

steps involved in its derivation are:

word ! pre root isuf

root ! ssyl1

ssyl1 ! onset nuc coda

It is obvious that column 4, i.e. fword root ssyl1 onsetg, should be the

LH, LS is onset, LP is ssyl1 and RP is same. Notice that in this case, the LP
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is identical to RP, because this 4-tuple is derived from a single context-free rule,

namely, ssyl1![onset] nucleus [coda]. In other words, a 4-tuple encodes \within-

rule" constraints in a derivation if LP and RP are equivalent. Otherwise, if LP and RP

are di�erent, such as in the example above, the 4-tuple corresponds to \across-rule"

constraints.

The design of our probabilistic formalism evolves around the bottom-up, left-to-

right parsing order. There are two independence assumptions made:

1. In left-to-right prediction, the probability of predicting the current category is

independent of all context except for its immediate left-history. We feel that the

use of the entire left-history integrates context from previous derivations, which

envelopes all the upper layers in the hierarchical structure. This is much more

constraining than the original TINA formalism which involves only a single

derivation. However, the context further left is shrouded. We choose to keep

the conditioning context simple to ease parsing, and to avoid serious sparse data

problems due to over-speci�city.

2. In bottom-up prediction, the predicted parent category is also conditioned on its

immediate left-history, as well as the child category. The prediction probability

is assumed independent of the context further beneath the child. The intent is,

once again, to promote sharing of training data.

The training probabilities are computed by tallying counts and then normalizing

them by the total counts. Each word in the lexicon is counted as a single occurrence.8

The set of training probabilities includes:

1. start terminal unigram Pstart terminal unigram(start terminal) | this is the uni-

gram probability over all the terminals that can start a word. In the letter-to-

sound generation case, the start terminal is a grapheme, e.g., the letter #[p]

8Another possibility is to take the word frequencies into account.
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starts the word \predict," and the grapheme #[ph] starts the word \philoso-

phy."

2. start column prediction probability Pr(RP j RS; LH = start) | this is

the bottom-up prediction probability given that we are at the start column of

the word. The \start column probability" is the product of the start terminal

unigram and all the bottom-up prediction probabilities in the start column, i.e.,

Pstart column = Pstart terminal unigram(start terminal) � (3.1)

Qr=7
r=2 P (RP(r�1) j RSr ; LH = start)

where r is the row-index, r = 7; 6; 5; :::1,

RSr is the right-sibling at row r,

(RS1 = word, RS7=start terminal)

RPr is the right-parent at row r.

3. column advance probability Pr(RS = next terminal j LH = current column)

| this is the bigram probability over all the terminals than can follow the cur-

rent column.9 The next terminal may be an end node.

4. column prediction probability Pr(RP j RS; LH) | this is the bottom-up pre-

diction probability conditioned on the left-history and the current (right-sibling)

category. The layered bigrams have been modi�ed to be driven entirely bottom-

up so that the \within-rule" statistics and \across-rule" statistics are merged.

The bottom-up prediction probability Pr(RP j RS; LH) makes a prediction

using the entire left-history as its left context. The \column probability" is the

product of the column advance probability and all the bottom-up prediction

9The use of pseudo-diphthongs in this case is favorable. Pseudo-diphthongs, such as /ol/, combine
two phonemes into one. Therefore, the advancement probability for pseudo-diphthongs is in reality
capturing trigram constraints.
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probabilities in the current column which we are trying to construct, i.e.,

Pcolumn = Pr(RS = current terminal j LH) � (3.2)

Qri
r=7 P (RP(r�1) j RSr ; LH)

where r is the row-index, r = 7; 6; 5; :::1,

RSr is the right-sibling at row r,

(RS1 = word, RS7 = terminal layer)

RPr is the right-parent at row r

RPri�1 = same.

Notice that we stop accumulating column prediction probabilities once we reach

RP = same. This is because from then on the right-history merges with struc-

tures which are already in place in the left-history due to previous derivations

from the context-free rules.

3.3 Testing Procedure

Bi-directional generation during testing is achieved by constructing a layered parse

structure based on the input spelling (or pronunciation), and the output pronunciation

(or spelling) is derived from the parse tree.

In letter-to-sound generation, the procedure commences by selecting the appro-

priate start terminal categories,10 and generating start columns bottom-up for each

of the terminals. Sound-to-letter generation begins by predicting the start column

bottom-up based on the �rst phoneme, and this partial history determines the ter-

minal categories that can go beneath it. A complete start column is then generated

10These are the terminal categories with the same letter sequence as the beginning of the input
word spelling. For example, in parsing the spelling \eight" from left-to-right, the terminals #[e],
#[ei] and #[eigh] (which maps to /e/ in \eight") are all considered.
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for each of the terminal categories. Every start column records its own start column

probability (Pstart column). The columns are pushed on a stack to become partial parse

theories while the start column probabilities become the stack scores.

At each iteration of the generation algorithm, the stack is sorted, and the partial

theory with the highest stack score is popped o� the stack. This theory is then ad-

vanced left-to-right. The advancement procedure checks to see if the previous column

of the partial theory (i.e. the entire LH) is valid top-down, and if it can reach any of

the possible terminal categories (RS) that follow.11 If either one of these conditions

is not satis�ed, the partial theory is eliminated. Otherwise, the partial theory is ad-

vanced to the next possible terminals, and each of these terminals will produce its own

history bottom-up. In essence, the original theory popped o� the stack will spawn o�

a handful of new partial theories, each constituting the original theory extended by a

new column. The stack scores for these new partial theories are computed using the

appropriate left-to-right advancement probabilities (Pr(RS j LH)) and bottom-up

prediction probabilities for generating a column (Pcolumn). The method of computa-

tion will be described in detail in the next section. The new partial theories are then

pushed back onto the stack and the process repeats. The iteration continues until

one or more complete theories are popped o� the stack. A complete theory is one

which can account for the entire input, i.e., it has the complete word spelling in its

terminal layer for letter-to-sound generation, or the complete phonemic sequence in

its pre-terminal layer for sound-to-letter generation. In addition, a complete theory

also contains an end node in its last column.

It can be seen that the layered bigrams algorithm applies very local probabilistic

constraints between adjacent layers in the lexical representation. Performing this

throughout the ordered layers in the hierarchy results in the implicit enforcement of

some long-distance \bigram" constraints. Speci�cally, if we examine closely some of

11The possible right-siblings (RS) include the underbar terminals which are predicted based on
the left-history (LH). A list of the underbar terminals can be found in Appendix F.
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the generated phoneme sequences provided in the next chapter, we should see that

bigram constraints in the morph layer and syllable layer have propagated downwards

to the phoneme layer. Should constraints beyond the bigram be desired, explicit

enforcement will be required through the use of �lters. For example, the syllable

stress layer permits a reduced syllable syl to follow another reduced syllable. If only

bigram constraints are applied during parsing, it will not be surprising to obtain a

parse output where all the syllables in a multi-syllable word are reduced, albeit with

low probability. There are also bisyllabic words with a prefix-root morphology,

where the nouns often have a syl-ssyl1 stress pattern, and the verbs have a ssyl1-

syl pattern (consider \permit," \record," etc.). Furthermore, there are the \stress-

a�ecting su�xes" such as \-ation," which tend to alter the stress contour of a word in

a predictable way (consider \combine" vs. \combination"). Stress �lters can be used

for these cases to eliminate any partial (or complete) theories which have illegitimate

stress patterns. Similarly, it is possible to use morph �lters to eliminate theories

which violate morphotactic constraints. Apart from allowing additional constraints

to be enforced, the exibility of the layered bigrams algorithm also allows us to relax

some constraints. This can be achieved by a \backo�" mechanism on the column

advancement probabilities to expiate sparse training data problems, and increase the

coverage of the parser. A robust parsing strategy for the layered bigrams will be

presented in Chapter 6.

3.4 An E�cient Search Algorithm

Our parsing procedure employs an ordered, best-�rst search algorithm. The ordering

is governed by an evaluation function for computing the stack score. The choice of this

evaluation function is important for maximizing search e�ciency and guaranteeing

admissibility of the search, as will be explained in the following.

De�ne the function f(c) at any column c in the layered bigrams parse tree to be
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the sum of the actual log-likelihood of an optimal path from the start column to c,

denoted by g(c), and the log-likelihood of an optimal path from n to an end node,

denoted by h(n), i.e.

f(c) = g(c) + h(c) (3:3)

The goal of the search is to �nd the path with the maximum log-likelihood. We

can choose an evaluation function f̂(c) to be an estimate of f(c) which is given by:

f̂(c) = g(c) + ĥ(c) (3:4)

where ĥ(c) is the estimate of h(c).

An obvious choice of g(c) is the highest log-likelihood from s to c found so far

by the algorithm. As for ĥ(n), the choice is quite inuential on search e�ciency. If

ĥ(n)=0, is used, then shorter partial paths will generally have better stack scores

than longer partial paths because they accumulate fewer log-likelihoods. The search

will then be thrust towards extending short partial paths and end up with a very

large stack, i.e., a uniform search will result. Therefore, it is important to have an

estimate of the future score of the path from the current column to the end. It can

be shown [60] that if ĥ � h, then the search algorithm is admissible, i.e., the �rst

complete path delivered by the search will be the path with maximum log-likelihood,

but admissibility is not guaranteed otherwise. If ĥ equals the tightest upper bound on

h, then the search will become the optimal A� search, and the number of extensions

required to obtain the best path is kept to a minimum.

Therefore, computing a look-ahead score which is a tight upper bound of the

future score would guarantee optimality and admissibility of the search. However,

this computation may also be costly, or even problematic in real-time applications

when we do not know where a path will end. Since e�ciency can often be gained at the

expense of forsaking admissibility, we are currently using an evaluation function which

invokes a score normalization mechanism. This mechanism aims at generating stack
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scores within a certain numeric range, and thus strives to achieve a fair comparison

on the goodness of a partial path between the shorter partial paths and the longer

ones. Scoring normalization may be accomplished by an additive correction factor in

some cases, and a multiplicative correction factor in others. In our implementation,

we use a \fading" scheme as shown in the equation:

f̂(c) = �f̂(c0) + (1� �)p(c0; c) (3:5)

where f̂(c) is the stack score from the start column to the current column c,

c0 is the column preceding c in the parse tree,

p(c0; c) is the log-likelihood associated with extending the parse tree

from c0 to c, and

� is some fading factor (0 < � < 1)

The idea is to have the stack score carry short term memory, where the new

column always contributes towards a certain portion of the stack score (according to

the pre-set weight of � = 0:95), while the remaining portion associated with the past

gradually fades away, so that the distant past contributes less to the stack score than

the recent history, and the score tends to remain quite stable over time. The outcome

of this search is that the ordering tends to place together parse theories with similar

distant columns and di�erent recent columns.

If multiple hypotheses are desired, the algorithm can terminate after a desired

number of complete hypotheses have been popped o� the stack. In addition, a limit

is set on the maximum number of theories (partial and complete) popped o� the

stack. The complete theories are subsequently re-ranked according to their actual

parse score. The idea is to �rst use the \fading" stack criterion as an inexpensive

means to obtain a handful of plausible complete hypotheses, and follow up with a more

careful means of ranking (with no fading) in order to �nd the \best" theory. Though

our search is inadmissible, we are able to obtain multiple hypotheses inexpensively.
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3.5 Chapter Summary

This chapter explains our generation algorithm, based on a hybrid approach. The

approach has a rule-based part, where a set of context-free rules are hand-crafted for

generating training parse trees. The approach also has a data-driven part, where the

training parse trees are used to train up the probabilities in a probabilistic parser,

christened the \layered bigrams algorithm." The training algorithm serves to encode

the constraints speci�ed in the rules into a set of probabilities. The probabilities also

augment the rules with other constraints automatically discovered from the training

parse trees. The testing algorithm adopts a best-�rst search strategy, and produces

a complete parse tree based on an input spelling/pronunciation, and from this the

output pronunciation/spelling is derived. In the next chapter, we will report on the

generation performance of this parser.



Chapter 4

Experimental Results

This chapter reports on the performance of our parser for both letter-to-sound and

sound-to-letter generation. Our experimental corpus consists of the 10,000 most fre-

quent words appearing in the Brown Corpus [43], and each lexical entry contains a

spelling1 and a single phoneme string as its pronunciation. The words are ordered

alphabetically, and entries which are marked as either function words (e.g. \A,"

\AM," \BY," and \HAVE") or abbreviations (e.g. \AUG," \CORP," \ETC.") are

discarded.2 Every tenth word is set aside as a future test set, and every tenth word of

the remaining set is aside as the development test set. The rest of the words (about

8,000 in total) are used for training. The results given in this chapter are based on the

development test set only, as slight improvements and a robust parsing mechanism

will ensue. The best con�guration of our system, based on the attainment of the

highest performance and broadest coverage on the development test set, is ultimately

tested on the real test set, and these results will be reported in Chapter 6.

The parser was set to terminate after obtaining up to a maximum of 30 com-

plete parse theories, or after the maximum number of theories (partial and complete)

1The word spellings are marked to indicate stress and morphological decomposition.
2There are 97 function words and 32 abbreviations in all. Function words are omitted because

they tend to have di�erent letter-to-sound mappings from other English words [3].

84
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popped o� the stack reaches 330, whichever happens �rst. These numbers are em-

pirically chosen as a limit on the depth of the search. The thirty hypotheses are

then re-ranked according to their actual parse score, and the performance accuracies

reported below are based on the new set of rankings.

In the following we will describe our evaluation criteria, report on the results

for letter-to-sound and sound-to-letter generation, and �nally provide an analysis of

errors for the generation tasks.

4.1 Evaluation Criteria

The two criteria which we use for evaluating letter-to-sound/sound-to-letter genera-

tion accuracies are similar to those used in the other systems reported previously.

1. Word accuracy | In the case of letter-to-sound generation, one can perform a

match between a generated phoneme string and the reference phoneme string

from the lexical entry of the word. Our experimental corpus provides only a

single reference pronunciation per word. Generation is correct if there are no

discrepancies between the two phoneme sequences. In the case of sound-to-letter

generation, a similar match is performed between the two letter sequences. This

is a strict evaluation criterion which does not permit alternate pronunciations

for words, as any deviation from the reference string is regarded as an error.

2. Letter/Phoneme accuracy | In order to indicate the extent to which a gener-

ated spelling or pronunciation is correct, phoneme accuracy should be a good

evaluation criterion to use for letter-to-sound generation, while letter accuracy

should be used for sound-to-letter generation. The generated string is aligned

with the \correct" string using a dynamic programming algorithm, which selects

the alignment with the minimum number of insertion, deletion and substitution

operations necessary to map the generated string to the reference string. The

accuracy is computed by subtracting the sum of the insertion (I), deletion (D)
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and substitution (S) error rates from 100%, i.e.

accuracy = 100%� (I +D + S)% (4:1)

This evaluation criterion is the one adopted by NIST for measuring the perfor-

mance of speech recognition systems.

The letter/phoneme accuracy evaluation criterion assumes that all discrepancies

between the reference and generated strings have equal costs. This may not be a

fair assumption because often a word has alternative pronunciations which are not

provided by the lexicon. Moreover, certain confusions tend to be more acceptable

than others. Vowel-vowel confusions in a reduced syllable, or confusions involving

few di�erences in distinctive features are often tolerable. For example, one would

probably allow the pronunciation for \proceed" to be transcribed as /p r o s i d/ as

well as /p r ^ s i d/, but this /o/ and /^/ confusion is unacceptable for the stressed

vowels in \boat" and \but". Therefore a better method of evaluation is to elicit

the opinions from human subjects. However, since this thesis does not emphasize

performance comparison with other systems,3 we have not undertaken the task of

conducting human evaluation.

It should also be noted that although there are quite a few existing spelling-to-

pronunciation systems, thus far there are no standardized data sets or evaluation

methods employed. As described in the section on previous work (Chapter 1), evalu-

ation criteria for letter/sound conversion that have previously been used include word

accuracy (which may be based on human judgement), spelling accuracy per letter,

pronunciation accuracy per phoneme and pronunciation accuracy per letter. Errors

in the generated stress pattern and/or phoneme insertion errors may be neglected

3A careful study comparing the performance of eight name-pronunciation system can be found
in [30].
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in some cases. However, the phoneme accuracy measurement which we use above

includes insertion penalties. To a certain extent, stress errors are also accounted for,

since some of our vowel phonemes are stress-loaded, i.e. we distinguish between their

stressed and unstressed realizations. In measuring pronunciation accuracy per letter,

silent letters are regarded as mapping to a /null/ phoneme. We believe that pro-

nunciation accuracy per letter would generally be higher than per phoneme, because

there are on average more letters than phonemes per word. In order to substantiate

this claim, we tested on our training set, and measured the performance using both

pronunciation accuracy per phoneme and per letter, based on the alignment provided

by the training parse trees. Our results show that using the per letter measurement

led to approximately 10% reduction in the quoted error rate. It should be kept in

mind that throughout the thesis, we will be quoting per phoneme results.

4.2 Results of Letter-to-Sound Generation

In letter-to-sound generation, about 6% of the development test set was nonparsable.

This set consists of compound words, proper names, and other words that failed

due to sparse data problems. Results for the parsable portion of the test set are

shown in Table 4.1. The 69.3% word accuracy corresponds to a phoneme accuracy

of 91.7%, where an insertion rate of 1.2% has been taken into account, in addition

to the substitution and deletion errors. Our phoneme accuracy lies within the low

90's percentage range of the automatic letter-to-sound generation systems described

in Chapter 1. The word accuracies of the rule-based approaches, which is typically in

the mid 80 percentage range, is considerably higher than our top-choice word accuracy,

but comparable to our N -best accuracy with N = 5. This may suggest that we can

seek performance improvement by means of better search procedures. Alternatively,

we can try to improve performance by using more contextual information during

parsing, or devise post-processes to select among the top few generated outputs.
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Accuracy top choice top 5 top 10
correct correct correct

train word 77.3% 93.7% 95.7%
phoneme 94.2% { {

test word 69.3% 86.2% 87.9%
phoneme 91.7% { {

Table 4.1: Letter-to-sound generation experiments: Word and phoneme accuracies
for training and testing data. Nonparsable words are excluded.

This will be further addressed in Chapter 8.

Figure 4-1 is a plot of cumulative percent correct of whole word theories as a

function of the N -best depth for the development test set. Although 30 complete

theories were generated for each word, no correct theories occur beyond N =18 after

re-sorting. Performance reaches an asymptotic value just beyond 89%.

4.3 Results on Sound-to-Letter Generation

In sound-to-letter generation, about 4% of the test set was nonparsable. Results for

the parsable words are shown in Table 4.2; top-choice word accuracy for sound-to-

letter is about 52%. This corresponds to a letter accuracy of 88.6%, with an insertion

error rate of 2.5% taken into account in addition to substitution and deletion errors.

Recall from Chapter 1 that sound-to-letter generation systems using disjoint training

and testing data sets typically report word accuracies in the 20 percent range. Using

this as a rough estimate, our system compares favorably with the other systems.

Figure 4-2 is a plot of the cumulative percent correct (in sound-to-letter genera-

tion) of whole word theories as a function of N -best depth of the test set. The asymp-

tote of the graph shows that the �rst 30 complete theories generated by the parser

contain a correct theory for about 83% of the test words. Within this pool, re-sorting

using the actual parse score has placed the correct theory within the top 10 choices

for about 81% of the cases, while the remaining 2% have their correct theories ranked
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Figure 4-1: Letter-to-sound generation experiments: Percent correct whole-word the-
ories as a function of N -best depth for the test set.

between N = 10 and N = 30. Re-sorting seems to be less e�ective in the sound-to-

letter case, presumably because many more \promising" theories can be generated

than for letter-to-sound. For example, the generated spellings from the pronuncia-

tion of \connector" i.e., the phoneme string /k | n E k t 5/, include: \conecter,"

\conector," \connecter," \connector," \conectar," \conectyr," \conectur," \connec-

tyr," \connectur," \conectter," \connectter" and \cannecter." A possible reason for

this is the ambiguity in phoneme-to-letter mapping, e.g., the phoneme /5/ above is

mapped to \er," \or," \ar," \yr" and \ur". Another reason is that geminant letters

are often mapped to the same (consonantal) phoneme, e.g., the phoneme /n/ above

can be mapped to \n" or \nn." Many of these hypotheses can be rejected with the

availability of a large lexicon of legitimate English spellings.
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Accuracy top choice top 5 top 10
correct correct correct

train word 58.8% 85.0% 89.3%
letter 90.6% { {

test word 51.9% 77.0% 81.1%
letter 88.6% { {

Table 4.2: Sound-to-letter generation experiments: Word and letter accuracy for
training and testing data

4.4 Error Analyses

Both of the cumulative plots shown above reach an asymptotic value well below

100%. Computation for the cumulative percentages include words for which the

generated output is \correct," as well as other words for which the \correct" theory

does not surface with top-rank, but is among the N -best. In some cases, di�erent

parse trees in the N -best pool may give the same output spelling/pronunciation, but

with di�erent higher level linguistic analyses. Therefore, another possible method

for N -best rescoring is to sum the independent probabilities of the di�erent parse

theories with the identical phonemes, and re-rank the generated pronunciations.

In order to retrieve the \correct" hypotheses from the N -best pool, we can per-

haps adopt a better stack criterion to target admissibility and curb search errors.

Alternatively, we can eliminate systematic errors and re�ne generation outputs by

post-processing with additional contextual information. A pilot experiment is con-

ducted along these lines, using a technique known as transformational error-driven

learning [9]. The study will be described in Chapter 8.

The words that belong to the portion of the test set lying above the asymptote

appear intractable | a correct pronunciation/spelling did not emerge as one of the

30 complete theories. We have grossly classi�ed the errors into four categories: (1)

Generated pronunciations that have subtle deviations from the reference strings. (2)

Unusual pronunciations due to inuences from foreign languages. (3) Generated pro-
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Figure 4-2: Sound-to-letter generation experiments: Percent correct whole-word the-
ories as a function of N -best depth for the test set

nunciations which agree with the regularity of English letter-phoneme mappings, but

were nevertheless incorrect. (4) Errors attributable to sparse data problems. Some

examples are shown in Table 4.3. It is interesting to note that much overlap exists

between the set of problematic words in letter-to-sound and sound-to-letter genera-

tion. This suggests that improvements made in one generative direction should carry

over to the opposite direction as well.

Certain pronunciation errors, such as the generated pronunciation for \acquiring,"

/| k w a¤  r | 4/, may be considered by some as correct. Likewise are other examples

such as /p @ s y | n e t/ generated from \passionate" instead of /p @ s y | n | t/,4

/k | r t u n/ for \cartoon" instead of /k a r t u n/, and /p i p lÍ/ for \people" instead

of /p i p | l/. These cases can perhaps be recti�ed if alternate \correct" pronunci-

ations were available. Spelling errors that are near misses | words like \viscossity"

(instead of the correct spelling \viscosity"), \abundent" (instead of \abundant"), \id-

4Recall from Chapter 2 that we are using the \underlying phonemic" form, and as a result the
/S/ phoneme is transcribed as /s y/ in \passionate".
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Category correct generated generated correct
spelling spelling pronunciation pronunciation

(1) Subtle acquiring equiring /|kwa¤ r|4/ /|kwa¤ 5|4/
balance balence correct /b@l|ns/
launch lawnch correct /lOnC/

pronounced pronounst /pr|na⁄ nst/ /prona⁄ nst/
(2) Unusual champagne shampain /C@mp|gni/ /S@mpen/

debris dibree /dibr|s/ /d|bri/
(3) Regular basis correct /b@s|s/ /bes|s/

elite aleat /|la¤ t/ /|lit/
violence viallence correct /va¤ |l|ns/
viscosity viscossity /vIskos|ti/ /vIskas|ti/

(4) Sparse braque brack /br@kwi/ /br@k/

Table 4.3: Some examples of generation errors.

iological" (instead of \ideological"), or names like \ilynoy" (instead of \illinois") or

\claten" (instead of \clayton"), can perhaps be salvaged by spell-checking or veri�-

cation.

4.5 Data Partitioning

One may presume that our method of partitioning the experimental data, which

has test words evenly distributed across the lexicon, would lead to higher generation

performance than other methods of partitioning.5 In order to address this question,

we ran a series of four experiments using only the training set, from which we held out

one tenth of the words for testing. In one experiment, the test words were extracted

as one of every ten words in the original training set, so that an \even" distribution

results. The word accuracy of this test set on spelling-to-pronunciation generation

was 64.4%. In the other three experiments, the test words were extracted randomly

5For example, if we were to train on the �rst half of the corpus and test on the second half, then
we would probably have di�culty parsing many more words, e.g., all the words that begin with the
letter \Z," since we have not observed parses which start with the grapheme terminal #[z] in the
training data.
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from the original training set. The mean word accuracy obtained was 65.3% with a

variance of 0.8. Therefore, selecting test words evenly from the lexicon does not raise

generation performance.

4.6 Chapter Summary

This chapter presents the performance of our parser for bi-directional generation

on the development test data. Results are reported based on word accuracies and

phoneme/letter accuracies. These are strict criteria which demand an exact match

between the generated string and the single \correct" reference string. Competitive

results are obtained for both generation tasks. Illustrative examples of generation

errors are provided.



Chapter 5

Evaluating the Hierarchy

In the previous chapters we have presented a system which is capable of automatic

bi-directional letter-sound generation. The design adopts a probabilistic parsing ap-

proach which incorporates a hierarchy of linguistic knowledge for capturing English

orthographic-phonological regularities. This framework has enabled us to formulate

letter-to-sound generation as a directly symmetric problem to sound-to-letter gener-

ation, thereby achieving reversibility in a single system. We believe that the higher

level linguistic knowledge incorporated in the hierarchy is important for our genera-

tion tasks. Consequently, we would like to empirically assess:

1. the relative contribution of the di�erent linguistic layers towards generation

accuracy, and

2. the relative merits of the overall hierarchical design.

This chapter describes two studies|the �rst investigates the importance of each layer

in the hierarchical framework, by observing how performance is a�ected by omitting

the layer. The second compares the hierarchical system with an alternative approach

which does not have access to higher level linguistic knowledge. We will refer to

it as the non-linguistic approach. These studies are conducted for letter-to-sound

94
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generation only. The implications of this study are expected to carry over to sound-

to-letter generation by virtue of the symmetry between the two tasks.

5.1 Investigations on the Hierarchy

In order to explore the relative contribution of each linguistic level in the generation

task (our current focus being letter-to-sound generation), we have conducted a series

of experiments whereby an increasing amount of linguistic knowledge (quanti�ed in

terms of the number of layers in the hierarchy) is omitted from the training parse

trees. The system is re-trained on the training set and re-tested on the development

test set for each reduced con�guration. Four measurements are recorded for each

experiment:

1. Top-choice word accuracy on the development test set, where a word is con-

sidered correct when there is an exact match between the generated phoneme

string and the single pronunciation provided by the lexical entry.

2. Perplexity, i.e., the average number of distinct possibilities for the next grapheme,

as predicted from the current grapheme, which may be interpreted as the ge-

ometric mean of the possible choices for the next grapheme. It is computed

as:

PP = expf
1

n
� ln(PT )g (5:1)

where PP is the perplexity,

T is the parse theory,

PT is the probability of the parse theory T , which

is the product of all the bottom-up prediction and

left-to-right advancement probabilities involved, and

n is the number of columns in the parse theory, including

the end column.
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3. Coverage of the test set, obtained by subtracting the percentage of nonparsable

words from 100%. Nonparsable words are those for which no complete parse is

generated.

4. The number of system parameters.

The top-choice word accuracy and perplexity reect the amount of constraint pro-

vided by the hierarchical representation, while coverage exhibits the extent to which

the parser can share training data across di�erent layers in the hierarchy, so that

it can generalize and process previously unseen structures. The number of system

parameters is a measurement from which one can observe the parsimony of the hi-

erarchical framework in capturing and describing English orthographic-phonological

regularities. It also provides some indication of the computational load required by

the con�guration of the system.

With the omission of each linguistic level, we expect to see two antagonistic ef-

fects on generation accuracy | the diminishing use of linguistic knowledge decreases

the amount of constraint provided for generation, which should cause degradation in

performance. On the other hand, relaxing constraints brings about more sharing of

training data across levels. This should help alleviate the sparse data problem and

enhance wider coverage, which may potentially contribute to performance improve-

ment.

5.1.1 Results

The experimental results on investigating the hierarchy are plotted in the Figures 5-1

to 5-4. The di�erent reduced con�gurations include:

1. no omission

2. omitting the morphology layer,

3. omitting the stress layer,
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4. omitting the broad class layer,

5. omitting the morphology and broad class layers,

6. omitting the stress and broad class layers,

7. omitting the morphology, stress and broad class layers, and

8. omitting the morphology, stress, syllable and broad class layers.

The system uses 26 letters, 1 graphemic place-holder and 52 phonemes (including

several unstressed vowels and pseudo diphthongs such as /Or/). Word accuracy refers

to the percentage of the test set for which a correct pronunciation is generated from

the word spelling. Nonparsable words are counted as errors. This is di�erent from

the word accuracy reported earlier in the previous chapter, which is computed based

on the parsable fraction of the test set. The number of system parameters in each

case is rounded to the nearest hundred.

The advantages of using higher level linguistic knowledge for letter-to-sound gen-

eration can be gleaned from the Figures 5-1, 5-2, 5-3 and 5-4. Each layer in the

hierarchical representation embodies one type of linguistic knowledge, and for every

layer omitted from the representation, linguistic constraints are usually lost, mani-

fested as a lower generation accuracy, higher perplexity and greater coverage. Fewer

layers also require fewer training parameters.

Such phenomena are generally true except for the case of omitting the layer of

broad classes (layer 5), which seems to introduce additional constraints, thus giving a

higher generation accuracy, lower perplexity and lower coverage. This can be under-

stood by realizing that broad classes can be predicted from phonemes with certainty,1

and therefore the broad class layer provides no additional linguistic constraint. The

1These unity probabilities are also counted as system parameters. Broad classes may still serve
a role as a \fast match" layer in recognition experiments, where their predictions could no longer be
certain, due to recognition errors.
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inclusion of the broad class layer probably led to too much smoothing across the

individual phonemes within each broad class, resulting in inferior performances.

Since we have discovered that omitting the layer of broad classes leads to slight

performance improvement, this reduced con�guration is maintained in all of our sub-

sequent experiments.

5.2 The Non-linguistic Approach

We also compared our current hierarchical framework with an alternative approach

which excludes higher level linguistic knowledge. This non-linguistic approach per-

forms transliteration using local letter context, and therefore bears resemblances with

the case-base approaches and psychological approaches presented in Chapter 1. The

approach is also designed to mirror the layered bigrams with fragment bigram con-

straints, as will be explained in this section.

The word is represented mainly by a spelling and an aligned phonemic transcrip-

tion, using the /null/ phoneme for silent letters. Consonant phonemes for geminate

letters, however, are duplicated. In general, alignment complies with the training

parse trees from the hierarchical approach. For instance, \bright" is transcribed as

/b r a¤  null null t/, and \spaghetti" as /s p | g null E t t i/.2 The word

is then fragmented exhaustively to obtain letter sequences (word fragments) shorter

than a set maximum length. During training, bigram probabilities and phonemic

transcription probabilities are then computed for each letter sequence. Therefore this

approach captures some graphemic constraints within each word fragment, but higher

level linguistic knowledge is not explicitly incorporated. Letter-to-sound generation

is accomplished by �nding the \best" concatenation of letter sequences which consti-

tutes the spelling of the test word. Mathematically, let l denote the spelling of the

test word, an si denote a letter sequence (or word fragment) with ti being its most

2The last vowel here is the unstressed /i/.
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probable phonemic transcription. Furthermore, let S be a possible concatenation

which constitutes l, i.e. l = S = s1s2:::sn which corresponds to the phonemic tran-

scription T = t1t2:::tn. The spelling-to-pronunciation generation process can then be

represented as:

T = max
S

P (T j S; l) P (S j l)

= max
S

nY

i=1

P (ti j si; l) P (si j si�1; l)
� (5.2)

In the above equation, � is a weighting factor for the language score and its

value was optimized using the training data. A bigram language model is used for

the letter sequences. In going from the �rst step to the second in Equation 5.2, we

have assumed that the prediction of the next letter sequence is dependent on the

current letter sequence only. This is purposely designed to conform with the layered

bigrams, where the current column is the only context applied in predicting the next

column. Another assumption is that the phonemic transcription of a letter sequence

is independent of the context outside the letter sequence itself, so that each letter

sequence is directly mapped to its single most probable phonemic transcription. The

testing procedure uses a Viterbi search to �nd the most probable segmentation for the

spelling of a word, drawing lexical analogies while capturing context through the use of

longer letter sequences, and eventually derives the generated phonemic transcription

from the top-scoring segmentation. Some examples of generated outputs from the

non-linguistic approach are tabulated in Table 5.1.

To ensure a fair comparison with the hierarchical approach, we use the same

training set and development test set to run spelling-to-pronunciation generation

experiments with the non-linguistic approach. Duplicated phonemes and the /null/

phoneme are removed from the generated pronunciations before matching against

reference pronunciations. Several di�erent value settings were used for the maximum
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Word Segmentation Generated Pronunciation
acquire #ACQUIR+E# /| k k w a¤  5/+/null/
bothered #BOTH+ERED# /b o T null/+/5 null d null/
bulletin #BULLE+TIN+# /b U l l |/+/t | 4 null/

enjoyment #ENJOY+MENT# /| n J O¤  null/+/m | n t/

Table 5.1: Examples of generated outputs using the non-linguistic approach

Max. Word Fragment Word Perplexity No. of
Length Accuracy Params.

4 60.5% 14.8 303,300
5 67.1% 13.9 508,000
6 69.1% 13.2 693,300

Table 5.2: Experimental results for spelling-to-pronunciation generation using the
non-linguistic approach

word fragment length. Generation accuracy is expected to improve as the maximum

word fragment length increases, because longer letter sequences can capture more

context. This should also be accompanied by an increase in the number of system

parameters due to the combinatorics of the letter sequences.

5.2.1 Results

The results for letter-to-sound generation using the non-linguistic approach are shown

in Table 5.2. The system includes 26 letters and 58 phonemes. The 6 extra phonemes

are: the /null/ phoneme, the pseudo phoneme /{ k/ which can map to the second

letter in \mcclellan", as well as 4 pseudo a�ricates, /k S/, /4 z/, /t z/ and /k s/, map-

ping respectively to the third letter in \luxury", \anxiety", \nazi" and \taxi". Thus,

letter-to-phoneme alignment is one-to-one, and no grapheme place-holder is needed.

There are no cases of nonparsability in testing because the non-linguistic approach

can \back o�" to mapping individual letters to their most probable phonemes.

Experiments were conducted with maximum word fragment lengths of 4, 5 and
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6 respectively.3 As a comparison, the two longest graphemes in the hierarchical

approach are 4 letters long { \ough" and \eigh", which are pronounced respectively

as /o/ and /e/ in \dough" and \eight".

We also conducted a baseline experiment for the non-linguistic approach by setting

maximum fragment length to 1 (i.e., the pronunciation of a word is obtained by

mapping each letter in the spelling to its most probable phoneme). This gave a

word accuracy of 0.8%, which indirectly shows that the non-linguistic approach relies

heavily on the use of long word fragments to capture contextual information for

letter-to-phoneme mappings.4

Table 5.3 shows some erroneous outputs of the single-layered approach. These

errors seem to be mostly a result of: (i) forcing a one-to-one letter-to-phoneme map-

ping, and (ii) the exhaustive fragmentation of the word spelling regardless of the

higher level linguistic organization of the word, e.g., its syllabi�cation. For instance,

the generated pronunciation for \bubble" lacks a syllable, and ends with the phoneme

sequence /b l/ which is not licit in English. The letter sequence \th" at the beginning

of a word like \thigh" should be a syllable onset, which is often pronounced as /D/

or /T/, but never the phoneme pair /t h/. Another example is the word \suds", in

which the letter sequence \uds" is transcribed as /d z/. Here, an analogy is drawn

from \clouds" /k l a⁄  null d z/ but the letters \ou" which should together map to

the syllable nucleus have been split. These kinds of errors are not found for the hier-

archical approach, because they are precluded by the higher level linguistic constraint

in the hierarchical framework.

The highest word accuracy obtained from the hierarchical approach (67.5%)5 out-

performs the single-layer approach with maximum word fragment length set at 4

3We did not investigate cases where maximum word fragment lengths are set beyond 6, due to
computational limitations, and the vast number of training parameters required.

4The mean fragment length used for the test set (with maximum fragment length set at 6) was
3.7, while the mean grapheme length in the hierarchical approach was 1.2.

56% of the errors in the hierarchical approach are due to parse failure. The next chapter presents
a number of robust parsing strategies to overcome this problem.
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Word Segmentation Generated Pronunciation
bubble #B+UBB+L+E# /b/+/^ b b/+/l/+/null/
suds #S+UDS# /s/+/null d z/
thigh #T+HIGH+# /t/+/h a¤  null null/

Table 5.3: Error examples made by the non-linguistic approach

and 5, but lies below that with maximum length set at 6. However, the hierarchical

approach is capable of reversible generation using about 32,000 parameters, while

the single-layer approach requires 693,300 parameters for uni-directional spelling-to-

pronunciation generation. In order to achieve reversibility, the number of parameters

needs to be doubled.

Given an input spelling, the hierarchical approach may generate multiple parses

with the correct pronunciation. Summing the probabilities of all the relevant parse

theories is computationally prohibitive, hence the perplexity values shown in Figure

5-2 are computed from the top-scoring parse theory only, and form upper bounds of

the true perplexity values. The hierarchical approach obtains its lowest perplexity

value of 8.0 while omitting the broad class layer, and the single-layer approach obtains

13.2 with the maximum fragment length set at 6. Though the hierarchical approach

seems to provide more constraints, direct comparison of these perplexity values may

not be entirely fair because the two approaches divide their probability spaces in

very di�erent ways. Perhaps a better comparison is to assume up front that partial

information (e.g. segmentation) about the top-scoring parse is provided, and focus on

the corresponding probability subspace. In this case, the perplexity values computed

for the hierarchical approach and the single-layer approach are 5.3 and 7.7 respectively.

The hierarchical approach is still substantially more constraining.
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5.3 Chapter Summary

The comparative experiments reported in this chapter have shown that each layer

in the hierarchy provides additional constraints for generation, which contributes

towards higher generation accuracy and lower perplexity. The only exception is the

broad class layer. Its inclusion seems to relax constraints and extend coverage by

sharing training data to a higher degree. The di�erent layers also interact together to

provide a parsimonious description of English orthographic-phonological regularities.

We made a comparison, based on spelling-to-pronunciation generation, between the

hierarchical lexical representation coupled with an inadmissible stack decoding search,

and an alternative, non-linguistic representation conjoined with a Viterbi search. By

virtue of the incorporated linguistic knowledge, the former has attained reversibility

and comparable performance with 20 times fewer parameters than the latter. In the

next chapter, we will attempt to extend the coverage of the parser in order to address

the sparse data problem.



Chapter 6

Robust Parsing

In a parsing paradigm there is a constant tradeo� between providing parsing con-

straints and obtaining su�cient coverage. Constraints are important to prevent over-

generation, but in order to account for previously unseen structures, it is necessary

to relax certain constraints and generalize. In this chapter, we will describe our

attempt to increase the coverage of our parser, so as to handle the \nonparsable"

words mentioned in previous chapters. These words are \nonparsable" because our

original parser cannot generate a complete parse tree based on the input spelling /

phonemic pronunciation, and hence no output is obtained from the letter-to-sound

/ sound-to-letter generation task. In letter-to-sound generation, about 6% of the

development test set was nonparsable, and in sound-to-letter generation, about 5%

was nonparsable.1 Examples of the nonparsable words can be found in Appendix G.

We have augmented our parser with a \robust parsing" capability in order to deal

with these problematic words. In the upcoming sections, we will �rst describe the

causes of parse failure, followed by the architecture of our robust parser and �nally

the performance improvement brought about by robust parsing.

1These percentages are based on experiments which have the layer of broad classes omitted from
the hierarchy.

108
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6.1 The Causes of Parse Failure

The sparse training data problem aggravates as we descend the hierarchy, because

terminal categories and nonterminal categories at the lower levels are more speci�c.

For example, the syllable-part category [onset] consists of subcategories including

all the consonant phonemes and grapheme/letter terminals that occur in the syllable

onset position. Hence, there is a conglomerate of statistics in the training data that

relates to the [onset] category and therefore the associated probabilities should be

quite robustly trained. Comparatively speaking, a grapheme terminal such as #[que]

in \critique" has a higher degree of speci�city and occurs less frequently. Other

speci�c categories may not appear in the training data at all.

Analysis of the nonparsable words in both letter-to-sound and sound-to-letter

generation has shown that the main cause of parse failure is zero advancement proba-

bilities, where the current column history cannot advance to the next right terminal,

i.e.

P (next terminal j current history) = 0 (6.1)

This is true for generation in either direction, and leads to much overlap between the

two sets of nonparsable words (about one-third of the words in either set). Based on

our analysis, we have characterized three conditions under which zero advancement

probabilities occur:

1. Compound words | words such as \cocktail," \everyday" and \typewriter"

etc., contain a \word boundary." Since our training set consists mainly of simple

words, the advancement from the column to the left of the word boundary to

the next grapheme terminal to the right of the word boundary often has zero

probability. An example can be found in the word \typewriter," for which we

would expect the output parse tree to be as shown in Figure 6-1. However, in
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nuc

/5/

#[er]

y y

Figure 6-1: Parse tree for the word \typewriter."

letter-to-sound generation, the advancement from the column history fword

root ssyl1 coda /p/ #[pe]g to the next terminal #[wr] has no previous

instances in the training data. With direct symmetry, parse failure also occurred

for the same reason in sound-to-letter generation, where the input pronunciation

is /t a¤  p r a¤  t 5/. Amongst the grapheme terminals which correspond to the

phoneme /p/, none can advance from left to right to another grapheme terminal

which predicts the phoneme /r/ bottom-up.

2. New grapheme terminals | we sometimes encounter new grapheme terminals in

the test set and these terminals are not associated with any trained probabilities.

For example, in the word \sioux," pronounced as /s u/, the last four letters in

the spelling should correspond to the second phoneme in the pronunciation. The

parser begins with the terminal #[s], mapping it to /s/), with several distinct

upper histories. Since the training data does not contain the terminal #[ioux],

the parser advances to the second terminal #[i], mapping it to /a¤ /, /y/ and /I/.
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#[ll]

onset

/l/

word

root

ssyl1

nuc

/o /

#[oy]

coda

/d/

#[d]

y

Figure 6-2: Parse tree for the word \lloyd."

Amongst these, only the columns containing f/a¤ / #[i]g could advance further

to the third terminal #[o], which is pronounced as either /|/ or the unstressed

/o/. However, none of these columns can push through to the next terminal

#[u], which led to a parse failure. Another example of new grapheme terminals

is the case of geminate letters, such as in the word \lloyd." The parse tree for

\lloyd" should be as shown in Figure 6-2. The parse begins with the grapheme

#[ll], and the geminate letters correspond to a single phoneme /l/. However, the

grapheme #[ll] has not been observed to start a word or advance to #[oy] in the

training data, and this has rendered the word \lloyd" nonparsable. Similarly,

parse failure in \embassy," \luggage," and \settling" are due to geminate letters.

The pronunciations of these words, however, are parsable in sound-to-letter

generation. The output spellings do not contain geminate letters. For example,

\loid" was generated from /l O¤  d/ (pronunciation for \lloyd"), \embicy" was

generated from /E m b | s i/ (pronunciation for \embassy"), \lugage" was
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y

Figure 6-3: Parse tree for the word \tightly."

generated from /l ^ g | J/ (pronunciation for \luggage"), and \setling" was

generated from /s E t l | 4/ (pronunciation for \settling").

3. Sparse training data | the third condition has to do with sparse training

data problems which do not befall the previous two conditions. For exam-

ple, \tightly" showed up as a nonparsable word in letter-to-sound generation.

The parse tree for \tightly" should be as shown in Figure 6-3. Parse failure is

caused by the zero advancement probability from the column history fword

root ssyl1 onset /t/ #[t]g to the next grapheme terminal #[igh]. In sound-

to-letter generation, the spelling outputs for the phoneme sequence /t a¤  t l i/

include \titely," \tytely" and \teitly." Another illustrative example is provided

by the word \cushion." In letter-to-sound generation, the output pronunciation

was /k ^ S | n/. In sound-to-letter generation with the input pronunciation /k

U S | n/, the �rst column with history fword root ssyl onset /k/ #[c]g

needs to advance to a grapheme terminal that can correspond to the second
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Figure 6-4: Parse trees for the word \cushion" | (left) from letter-to-sound genera-
tion and (right) from sound-to-letter generation.

phoneme /U/. According to the trained probabilities, the only such grapheme

terminal is #[oo]. However, a column with history fword root ssyl nu-

cleus /U/ #[oo]g cannot advance to a grapheme terminal corresponding to the

third phoneme /S/. Hence a parse failure results. This is illustrated in Figure

6-4.

Our robust parsing strategy is designed speci�cally for dealing with these three

conditions. A detailed description of the robust parser is provided in the next section.

6.2 The Robust Parser

The top-level architecture of our robust parser is shown in Figure 6-5. It contains the

basic modules of bottom-up prediction, left-to-right advancement and a stack, which

is similar to the original parser. We have augmented the regular path in left-to-right
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advancement with three other options, labelled as \end-start," \skip," and \partial-

history," in order to handle the three causes of parse failure as characterized from the

nonparsable words in the previous experiments. Typically, when a column advances

to the next terminal, each of the four options can be selected with �nite probability.

The values of these probabilities are empirically set to sum to 1, and to favor the

regular advancement path. The respective values are: P (regular) = 0:94, P (end-

start) = 0:025, P (skip) = 0:025, P (partial-history) = 0:01. The mechanisms

which take place along each of the three additional advancement paths are described

as follows:

1. End-Start | this advancement path expedites analysis of compound words. It

allows the parser to end a parse tree in the middle of a word spelling or phonemic

transcription and start a new parse for the remaining part of the input. This

is illustrated by the parse tree in Figure 6-6, which is the robust parse output

for the word \typewriter." In extending the left-history fword root ssyl1

coda /p/ #[pe]g to the \robust-end" node, the advancement probability is

computed as the product (or the sum of the logarithms) of the probability of

extending to [end] and the \end-start" penalty, i.e.

Probust end advancement = P (next terminal = [end] j left-history)

� P (end-start)

Subsequently, in extending the robust-end node to the next grapheme terminal

#[wr], the advancement probability is simply the unigram probability of starting

a parse with #[wr], i.e.

Probust start advancement = Pstart unigram(#[wr])

The new terminal node (with an empty history) created for #[wr] is then pushed

onto the stack.
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Figure 6-6: Robust parser output for the word \typewriter."

2. Skip | this advancement path deals with grapheme terminals which consist of

two geminate letters, e.g. #[gg] in \luggage" and #[ss] in \embassy." Con-

sonant phonemes can be mapped to their corresponding letter terminals or

geminate letter terminals.2 Consequently, the robust parser is designed to allow

skipping of one of the two geminate letters, and the word is parsed as though the

gemination is replaced by a single letter. As an illustration, Figure 6-7 shows

the output parse tree from the robust parser for the word \lloyd." In advancing

the column history fword root ssyl1 onset /l/ #[l]g to the next terminal

\#[l]-skip," the probability involved is simply the \skip" penalty P (skip), i.e.,

Probust skip advancement = P (skip)

and the new terminal node for \#[l]-skip" is pushed onto the stack.

2Note that a single letter grapheme which corresponds to a vowel is generally pronounced di�er-
ently from its geminate counterpart, e.g. #[o] is pronounced di�erently from #[oo], but #[s] and
#[ss] are pronounced identically.
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Figure 6-7: Robust parser output for the word \lloyd."

3. Partial | this path slackens constraints when the parser encounters zero ad-

vancement probabilities outside the two previously mentioned conditions. Con-

sider the parsable word \lightly," whose parse tree is shown in Figure 6-8. The

history in the �rst column, fword root ssyl1 onset /l/ #[l]g can transition

to the next grapheme #[igh] with non-zero probability. However, if we substi-

tute the phoneme and grapheme in the history to be /t/ #[t] respectively, as

in \tightly," then the transition probability to #[igh] becomes zero, resulting in

parse failure. In the robust parser, we circumvent such sparse data problem by

sharing advancement probabilities across phonemes and graphemes which be-

long to the same syllable part category. This is accomplished by \backing-o�"

to the syllable part level. As a result, the probabilities are conditioned only on

the partial left-history, i.e.

P (#[igh] j fword root ssyl1 onset /t/ #[t]g = 0

but
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Figure 6-8: Parse tree for the word \lightly."

P (#[igh] j fword root ssyl1 onsetg) > 0

The advancement from fword root ssyl1 onset /t/ #[t]g to #[igh] incurs

both the \backo�" advancement probability as well as the \backo�" penalty,

i.e.,

Ppartial history advancement = P (#[igh] j fword root ssyl1 onsetg)

� P (partial)

The new node created for #[igh] is then pushed onto the stack.

During robust parsing, the parser attempts to advance partial theories along all

four paths (regular, end-start, skip and partial). However, if a given terminal can

be reached via a regular advancement path, the partial advancement paths will not

be pursued. Sound-to-letter generation may tolerate additional constraint relaxation,

which allows the stressed and reduced versions of the vowels /u/, /o/ and /i/ be

interchanged.
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Task Coverage Word Phoneme/Letter
Accuracy Accuracy

Letter-to-sound (original) 94% 67.5% 87.6%
Letter-to-sound (robust) 100% 69.2% 91.3%
Sound-to-letter (original) 95% 52.9% 83.8%
Sound-to-letter (robust) 100% 53.7% 88.5%

Table 6.1: Performance improvement on the development test set with the addition
of robust parsing. Zero accuracies were given to nonparsable words.

6.3 Performance

The additional advancement options in the robust parser enable it to propose and

explore many more theories at a given instant than the original parser. Therefore,

due to e�ciency concerns, we revert to the robust parser only when the original parser

fails. We have also increased the limit on the number of stack-pops from 330 to 3000

to attune to the needs of robust parsing. This new coupled con�guration has attained

complete coverage of the development test set, and brought about a slight performance

improvement in the development test set as tabulated in Table 6.1. The nonparsable

words in the previous experiments (which did not attain complete coverage) had been

given a word accuracy and phoneme/letter accuracy of zero.3

The performance on the real test set is tabulated in Table 6.2. Using only the

original parser, about 7% of the real test set was nonparsable in letter-to-sound gener-

ation, and the corresponding value for sound-to-letter generation was 6%. Complete

coverage was attained with the inclusion of the robust parser.

In general, the word accuracies on the development test set are about 2-3% higher

than those of the real test set, and the phoneme/letter accuracies are about 1% higher.

Similar trends are observed in both test sets when robust parsing is incorporated.

3The percentage of nonparsable words in the development test set for sound-to-letter generation
rose from 4% to 5% upon omitting the layer of broad classes, while that for letter-to-sound generation
remains the same.
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Task Coverage Word Phoneme/Letter
Accuracy Accuracy

Letter-to-sound (original) 93% 65.0% 86.9%
Letter-to-sound (robust) 100% 66.3% 90.5%
Sound-to-letter (original) 94% 51.0% 82.6%
Sound-to-letter (robust) 100% 52.0% 87.9%

Table 6.2: Performance improvement on the development test set with the addition
of robust parsing. Zero accuracies were given to nonparsable words.

Robust parsing has brought about slight improvements in word accuracies (about 1%),

phoneme accuracies (about 3%) and letter accuracies (about 5%). The increment is

small because the nonparsable words seem to be a di�cult subset. Analysis of the

nonparsable words in the development test set shows that the robust parser achieved

a 28% word accuracy and 69.5% phoneme accuracy in letter-to-sound generation.

Figures 6-9 to 6-11 show examples of some errors in robust parsing. A \robust word

boundary" was inserted wrongly in \charlie," \henrietta" and \joe." In particular,

the correct parse for \joe," which gave the pronunciation /J o/, was ranked fourth on

the stack.

Similar analysis of the nonparsable words in the development test set from sound-

to-letter-generation showed that robust parsing gave a 15.6% word accuracy and

75.5% letter accuracy. We have also included some examples of the robust parsing

errors in Figures 6-12 to 6-14. A comparison of Figures 6-4 and 6-12 shows that

with robust parsing, the grapheme terminal #[oo] can now advance to #[sh] which is

under the phoneme /S/. The generated parse trees for \henrietta" and \typewriter"

in sound-to-letter generation are di�erent from those in letter-to-sound generation.

A robust word boundary is wrongly inserted in the two parse trees shown in Figures

6-13 and 6-14.
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Figure 6-9: Parse tree for the word \charlie" from robust letter-to-sound generation.
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Figure 6-10: Parse tree for the word \henrietta" from robust letter-to-sound genera-
tion.
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Figure 6-11: Parse tree for the word \joe" from robust letter-to-sound generation.
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Figure 6-12: Parse tree for the word \cushion" from robust sound-to-letter generation.
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Figure 6-13: Parse tree for the word \henrietta" from robust sound-to-letter genera-
tion.

6.4 Chapter Summary

In this chapter, we have described the design of a robust parser, which is used in asso-

ciation with the original parser to enlarge the overall coverage of test data. The three

main robust parsing mechanisms are: (i) inserting a word boundary in the parse to

handle compound words, (ii) skipping one letter in a geminate pair to deal with new

grapheme terminals of geminates and (iii) conditioning advancement probabilities

upon the partial left-history instead of the entire left-history when zero advancement

probabilities are encountered. These extensions have brought about complete cov-

erage as well as a slight performance improvement in both the development test set

and the real test data.
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Chapter 7

Extending the Hierarchy

We have thus far focused on a hierarchical structure for spoken English which con-

sists of multiple levels of linguistic representation, ranging from the generic English

word, through the intermediate categories of morphology and syllables, to the �ner

categories of phonemes and graphemes. However, as mentioned in the beginning of

the thesis, this hierarchical representation could be extended to encompass natural

language constraints, prosodic information and dialog modelling constraints on top,

as well as phonetics and acoustics below. In this chapter, we have taken a �rst step

towards demonstrating that the hierarchy is extendable. We have added a layer of

phones beneath the layer of phonemes in the hierarchy. Consequently, the termi-

nal layer in our hierarchical representation becomes dual in nature1 | it can be a

layer of phones or letters. Using the augmented hierarchical representation with the

layered bigram probabilities, we are able to capture some dialectal and phonological

variations both within a word and across word boundaries.

1The phonetic and graphemic layers both reside beneath the phoneme layer.
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7.1 Background

In the past, handling phonological variations in the development of speech recogni-

tion sytems has been accomplished mainly by phoneticians with a set of rewrite rules

[62] [99] that explains context dependencies. These rules transform phonemes into

phones, and phones into other phones. The identity of the phoneme/phone sequence

prior to a transformation is often not preserved, rendering the transformation irre-

versible. These transformations create alternate word pronunciations in the process.

The pronunciations are then matched against a speech recognizer output. A large

number of rules is often required to capture allophonic variations, as well as within-

and across-word phonological variations. Furthermore, the ordering of the rules in

the set is necessary and important for arriving at the correct phonetic output. This

approach is hampered by the di�culty in maintaining the ordered rules, especially

when the situation calls for the addition of a new rule. Determining the position

of a new rule requires close examination of how the rules interact with one another.

This involves following through successive rule applications, which is a di�cult task

because the rule transformations are irreversible and this makes back-tracing either

tedious or impossible.

A previous attempt has also been made which attaches probabilities to the rules

productions [93]. The probability of a given rule reects the number of times the

rule is actually applied, normalized over the number of times the rule can be applied.

Each rule is compiled to form a series of rule clauses specifying the rule's transfor-

mations on a phone lattice under di�erent contexts. Upon rule application, the rule

probability will be incorporated into the arc probabilities of the phone lattice. How-

ever, these rule probabilities assume that rule applications are independent of one

another, which is not valid for ordered rules. Instead, these production probabilities

should be dependent on the preceding rule productions, which may perhaps make the

probabilities more complicated and less trainable.
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7.2 Motivation

We feel that the layered bigrams procedure will be a useful paradigm for characterizing

phonological variation. Much of the information provided by the hierarchical lexical

representation can be used to account for phonological variations. For example, letter-

to-sound mappings tend to be less predictable at morphological boundaries | the

phoneme /p/ in \display" is aspirated, while that in \displace" is not. The identity

of the phonemes before transformation is preserved by the layered bigrams framework

in the context upon which the probabilities are conditioned. Therefore, phoneme-

to-phone transformations that have taken place within a particular context can be

clearly observed from the parse tree. The hand-crafted, ordered rewrite rules are

replaced by probabilities which can be automatically trained. Hence, the system is

unburdened of the tedium of updating and maintaining the ordered rewrite rule set.

This has motivated us to extend the hierarchical lexical representation with a phone

level beneath the phoneme level. The objective is to illustrate how layered bigrams

can potentially be used to capture phonological rules, with the tacit assumption that

these phonological rules are conducive to speech recognition.

7.3 Experimental Corpus

To conduct this pilot study, we wanted to concentrate our e�orts on a small set of

data carefully selected for potential validation of our approach. Rather than compli-

cating the experiment with a recognition task, we have selected as our experimental

corpus the \sa" sentences of timit, for which carefully transcribed phonetic labels

are available. These sentences are designed especially for the study of dialectal vari-

ations. They also provide phoneme-to-phone alignments for generating our training

parse trees, and the phonetic transcriptions are labelled manually through listening

tests along with visual aids of the spectrogram and waveform [44]. The two \sa"

sentences are:
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1. \She had your dark suit in greasy wash water all year."

2. \Don't ask me to carry an oily rag like that."

The speakers come from 8 di�erent dialectal regions,2 namely, New England,

Northern, North Midland, South Midland, Southern, New York City, Western and

\Army Brat." In our study, we use 362 training speakers, and a disjoint set of the 24

NIST designated \core" test speakers. The test set consists of 3 speakers from each

of the 8 dialectal regions.

7.4 Phonological Variations

The two \sa" sentences are especially designed for the study of phonological variations.

In this section, we provide a brief description of such variations as observed in our

training data.

Some of the phonological variations in the \sa-1" sentences are illustrated in Figure

7-1. For example, on either side of the word boundary between \had" and \your,"

the phoneme /d/ transitioning to the phoneme /y/ can be realized as [C]-[null], [d›]-

[y], [d]-[y], [º]-[y], [J]-[null], [J]-[y] or [null]-[y].3 Therefore, we observe cases where the

alveolar stop /d/ is palatalized to become either the a�ricate [C] or [J], followed by

the semi-vowel /y/, which may be deleted. Another example concerns the vowel in

\wash." It can be realized as [O], [U], [^], [5], or [a]-[r], with retroexion inserted in

the last two cases.

Similarly, we �nd much variation in the \sa-2" sentences, as illustrated in Figure

7-2. On either side of the word boundary between \Don't" and \ask," the phoneme

/t/ transitioning to /@/ can be realized as [t]-[@], [t›]-[@], [?]-[@], [null]-[a], [null]-[E],

[null]-[a⁄ ], [null]-[@], [null]-[e], and [d]-[@]. Here we observe several di�erent allophones

2This is the geographical dialect area where the subject spent the most years between ages 0 and
10.

3[null] denotes the null phone.
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Figure 7-1: Some phonological variations occurring in the sa-1 training sentences |
\She had your dark suit in greasy wash water all year." dcl and kcl denote d-closure
and k-closure respectively.
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Figure 7-2: Some phonological variations occurring in the sa-2 training sentences
| \Don't ask me to carry an oily rag like that." tcl and kcl denote t-closure and
k-closure respectively.

for the phoneme /t/ in \don't." It may be released in the phone [t] or [d], unreleased

in [t›], glottalized to become [?], or deleted as in [null]. The subsequent vowel /@/

may also take many di�erent forms. Finally, the vowel in \like," /a¤ /, may assume

various identities, including [@], [a¤ ], [i], [a] and [^].

We would like to capture such dialectal and phonological variations in the \sa"

sentences, by extending both the hierarchical lexical representation and the layered

bigrams framework. Our experiments attempt to parse the phonetic transcription

(with no indication of the word boundary locations) of an \sa" sentence. The purpose

is to obtain the sequence of words in the sentence without prior knowledge of the

lexicon. There are two arti�cial aspects in this experimental setup:

1. The experimental data are sparse because only the two \sa" sentences are used.
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More data will be needed to validate the applicability of the approach for speech

recognition.

2. Only a single phonetic sequence is used as an input. In a real recognition

task, the recognizer provides alternative phones for a given segment of speech.

Consequently the parser should be less prone to failure.

The objective of these experiments is to project the idea of using the layered bigrams

for capturing phonological rules, and as a framework for speech recognition. The

proposed experiment is a modest �rst step, which should be followed by further,

more in-depth studies.

7.5 Extending the Hierarchical Representation

The two \sa" sentences together consist of 21 distinct words which constitute the

vocabulary of our current task. For each word in our limited vocabulary, we generate

a parse tree from the word level down to the phoneme level, using our letter-to-sound

generation system. The parse tree is then extended to the phone level based on

the phoneme-to-phone alignments provided by timit. The parse tree for an entire

training sentence is then obtained by concatenating the parse trees for each word in

the sentence. An example of the training parse tree of an \sa-2" sentence is shown in

Figures 7-3 and 7-4.

The extended parse tree has the generic category sentence at the top level,

followed by a layer of word categories separated by the word boundary terminal #.

Some of the phonological variations described in the previous section can be observed

from this sentence parse tree. For example, the phoneme /t/ in the word \don't," and

the phoneme /k/ in the word \ask" have been deleted, and the vowel /u/ in the word

\to" has been devoiced. In the word \carry," the phoneme /k/ illustrates the case

where one phoneme is mapped to multiple phones ([k›]4 and [k]), and the phone [5]

4k-closures may be denoted as [k›] or [kcl].
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Figure 7-3: The sentence parse tree of the �rst half of a training \sa-2" sentence |
\Don't ask me to carry..." | with a terminal phonetic layer.
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illustrates the case where one phone corresponds to multiple phonemes. Phonological

rules specify variations in the arena of the two bottom layers of phonemes and phones,

and are extracted automatically and implicitly during training by the layered bigram

probabilities.

7.6 Extending the Layered Bigrams Parser

The layered bigrams are extended to parse the phonetic transcription of an entire

sentence into a sentence parse tree depicted in Figures 7-3 and 7-4. The main aug-

mentations encompass training, robust parsing during testing, as well as lexical access.

7.6.1 Training in the Extended Layered Bigrams

The layered bigram probabilities trained from the training parse trees remain essen-

tially the same, with the addition of the following:

1. Word boundary prediction probabilities

We have created a special terminal # to denote a word boundary. Similar to

other terminal categories, the prediction probability for # is conditioned on the

left-history only, i.e.,

Pword boundary prediction = P (next terminal = # j current history) (7.1)

2. Across-word prediction probabilities

The prediction probability for the phoneme-phone pair to the right of a word

boundary is conditioned upon the phoneme-phone pair to the left. We reckon

that the identities of the left-phoneme and left-phone are critical factors in

determining the right-phoneme and right-phone. Moreover, the assumption

justi�es sharing data amongst left phoneme and phone pairs with di�erent his-

tories, which should help alleviate the sparse data problem prevailing at word
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boundaries.

Pacross�word prediction = P (R phoneme � phone j L phoneme� phone) (7.2)

7.6.2 Testing in the Extended Layered Bigrams

Testing in the extended layered bigrams amounts to creating a complete parse tree

for the phonetic transcription of a testing \sa" sentence. Each phonetic transcription

of timit is a single phone sequence, unlike the output of a speech recognizer which

provides a phone lattice with alternative phone choices for each time segment. Phone

sequences which have not been previously observed in the training data lead to parse

failures, unless alternate phone choices are provided. We may therefore be penalizing

ourselves by using the phonetic transcription as our input instead of the phone lattice

from a speech recognizer. The process of parsing the phones of a sentence is essentially

identical to that of parsing the phonemes of a word. The parser operates in a bottom-

up, left-to-right fashion, extending each partial parse tree by one column at a time.

Word boundaries are predicted during the process. Furthermore, the parser has no

knowledge of the vocabulary | only the left-column is used as context for left-to-right

advancement, including the advancement to a word boundary terminal #. This is the

way we envision the layered bigrams operating with a recognizer, proposing plausible

words bottom-up for later veri�cation.

In the event of a partial theory not being able to advance to the next input

phone (i.e. the left-to-right advancement probability equals zero), the robust parsing

capability allows skipping the phone, and ending the partial parse with a \robust-end"

node which incurs a penalty score. The \robust-end" node is subsequently pushed

onto the stack. When this node is later popped o� the stack for extension, the

robust parser proceeds by creating a \robust-start column" based on the input phone

following the skipped phone. Bottom-up prediction in the \robust-start column"
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involves multiplying the context-independent probabilities, i.e.,

Probust start column =
r=2Y

r=7

P (RP(r�1) j RSr; LH = start) (7.3)

where r is the row-index, r = 7; 6; 5; :::1,

RSr is the right-sibling at row r,

(RS1 = word, RS7=terminal layer)

RPr is the right-parent at row r.

Using the robust-start column, the parser proceeds to generate a parse tree to

account for the rest of the sentence. Figure 7-5 shows an example of a sentence

parse tree which contains skipped phones. The parse shows the �rst half of an \sa-

1" sentence, whose phonetic transcription is missing a vowel for \She," and missing

retroexion in the word \your." At both locations, we see a skipped phone, followed

by a \robust-end" node, and the parse is continued with a \robust-start" node. Figure

7-6 shows the rest of the sentence.

Once again, the best-�rst search procedure is used. The �rst complete parse tree

popped o� the stack is taken as the output. The sentence parse hypotheses are often

subjected to penalty scores due to skipped phones and robust-end nodes. The penalty

score is set to a low probability, so the robust partial parse theories will get lower

scores and rank low on the stack. In this way the robust parse theories are disfavored

and the search mechanism encourages the parser to pursue other theories prior to

robust parsing. At the moment, it is unclear how the computation of the actual parse

scores for the robust parse theories should include the robust penalties, to contend

a fair comparison with other parse theories for N -best rescoring. Consequently, no

N -best rescoring based on the actual parse score is used in this study. When this

framework is used in recognition experiments, the scoring/search issue will need to
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be explored further.

7.6.3 Lexical Access in the Extended Layered Bigrams

Lexical access in the extended layered bigrams is a straightforward table-lookup pro-

cedure. For each of the 21 words in the vocabulary, the table stores the spelling

and a single phoneme sequence as the pronunciation. Given a complete sentence

parse tree, lexical access involves extracting the phoneme sequences between adjacent

word-end or robust-end nodes, and mapping each phoneme sequence into a word

spelling. For example, referring to Figure 7-5, the �rst three phoneme sequences are

/S/, /@ d/ and /y/ respectively, none of which can map to any word. The fourth

phoneme sequence, /dark/, maps to \dark," and so forth. Therefore, lexical access

based on this parse tree outputs the word sequence \nil nil nil dark suit in greasy

wash water all year."

Analysis of the training data reveals that under certain circumstances, the skipped

phones should be incorporated into the parse. For example, in Figure 7-5 the skipped

phone [H] precedes a robust-end node. If this phone is incorporated into the sub-tree

corresponding to the subsequent word, we should be able to salvage a correct parse for

the following word \had." Therefore we have included a \second pass" in our parsing

algorithm, which scans the complete parse tree of a sentence, and tries to incorporate

the skipped phones into the subsequent word sub-trees. The output word sequence

now becomes \nil had nil dark suit in greasy wash water all year," and the word

accuracy has risen from 72.7% (8 out of 11 words) to 81.8% (9 out of 11 words).

7.7 Captured Phonological Variations

The phonological variations captured using the layered bigrams can be observed by

examining the trained probabilities. Three types of variations have been brought into

consideration | (i) allophonic variations, referring to the di�erent realizations of a
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phoneme in the context of the neighboring phones/phonemes, (ii) across-word phono-

logical variations, which account for the changes in a word pronunciation depending

on the neighboring words, and (iii) within-word phonological variations, which con-

tributes to alternative pronunciations for words.

7.7.1 Allophonic Variations

The di�erent allophonic variations of a phoneme can be found by the enumeration of

column histories. For example, the phoneme /t/ can be found in the words \suit,"

\water," \don't" and \that," in the context of fword root ssyl1 codag | the

coda of a stressed syllable in a root morph. According to our training data, this

phoneme can be realized as several di�erent phones | [?] [º], [d›] [d], [t›], [t] and [null].

The number of occurrences in each case is tabulated in Figure 7-7. In particular,

the number of [d›]'s and [d]'s are the same because they both come from the same

instances of released [d]'s. The number of [t›]'s is much higher than the number of [t]'s

because there are abundant unreleased [t]'s in the training data. Certain allophones

tend to dominate in particular contexts of neighboring phonemes or phones. This

will be addressed in the next two subsections.

7.7.2 Across-word Phonological Variations

Across-word phonological variations refer to the allophonic changes that take place

across a word boundary. Recall that in the layered bigrams, the prediction probability

for the phoneme-phone pair towards the right of a word boundary is conditioned on

the phoneme-phone pair to the left. This is based on the assumption that across a

word boundary, the realization of the right-phoneme is dependent only on the left-

phoneme and its realization. The advantage of making this assumption is that we

can share training data across the left phoneme-phone pairs with di�erent histories.5

5An implicit word-end condition is realized since the pooling is only done at word boundaries.
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left-phone # occurrences of right-phone
the left context

[null] 1 [y]
[º] 3 [y]
[d›] 60 [y]
[d] 127 [y]
[C] 1 [null]
[J] 170 [y]

[null]

Table 7.1: Across-word phonological variations for the word sequence \had your."

By virtue of this assumption, across-word phonological variations can be observed by

enumerating the di�erent combinations of left phoneme, left phone, right phoneme

and right phone. For example, at the word boundary between \had" and \your" in

an \sa-1" sentence, we have found seven distinct combinations in our training data,

as listed in Table 7.1.

The total number of occurrences of all left contexts is 362 in Table 7.1, equal to

the number of training speakers and thus the number of training \sa-1" sentences

which contain the speci�c word boundary. Three combinations in Table 7.1 show

cases of palatalization, where the alveolar phoneme /d/ is realized as a palatal phone,

i.e. [C] or [J]. The single count of palatalization with [C] is followed by a deleted

/y/. According to the trained probabilities, palatalization with /J/ is followed by a

deleted /y/ 96% of the time (Pacross�word prediction(/y/-[null] j /d/-[J]) = 0:96). There

is strong indication in the probabilities that when /d/ is palatalized, the following

/y/ is almost certain to be deleted.

7.7.3 Within-word Phonological Variations

The layered bigram probabilities also elicited within-word phonological variations,

which may occasionally form alternate word pronunciations. These variations are

exhibited by the distinct three tuples which correspond to a particular bottom-up
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right-phoneme(RP ) right-phone(RS) P (RSjLH)

/a¤ / [^] 0.006
/a¤ / [a] 0.006
/a¤ / [i] 0.002
/a¤ / [@] 0.002
/a¤ / [a¤ ] 0.984

LH = fword root ssyl1 onset /l/ [l]g

Table 7.2: Within-word phonological variations for the word \like."

prediction probability. For example, bottom-up prediction of the phoneme /a¤ / in

the word \like" is conditioned on (i) the right sibling, which can be one of the �ve

possible allophones of /a¤ / in this context | [^], [a], [i], [@] or [a¤ ], and (ii) the left

history, fword root ssyl1 onset /l/ [l]g. This is summarized in Table 7.2. The

table indicates that over 98% of the time, the phone [a¤ ] succeeds the left-history

fword root ssyl1 onset /l/ [l]g. Evidently, the phoneme /a¤ / in \like" is often

distinctly pronounced.

Similarly, in the word \had," the distinct 3-tuples which correspond to the bottom-

up prediction of /@/ are summarized in Table 7.3. We see that the phoneme /h/ can

be pronounced as the aspirant [h], a voiced aspirant [H], or it can be deleted. The next

vowel /@/, is more often mapped to either [@] or [E]. The last case in the middle row

in Table 7.3, where both /h/ and /@/ are deleted, comes from a contraction where

\She'd your..." was uttered instead of \She had your...." The statistics in Table 7.3

indicate that the tense vowel /@/ in \had" is often realized as either the tense phone

[@] or the lax phone [E]. If the left phoneme /h/ is either [h] or [null], the transition

probabilities to [@] and [E] are roughly 0.5 and 0.4 respectively. However, if the

left phoneme /h/ is voiced to become [H], it becomes more probable for /@/ to be

pronounced as [@] rather than [E] (0.7 versus 0.3 probability). This may suggest that

if the speaker is articulating carefully enough to voice the /h/, then it is more likely

for the tenseness of the /@/ to be preserved.
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left-phone # occurrences of right-phone(RS) P (RSjLH)
left-history

[h] 52 [@] 0.560
[E] 0.400
[e] 0.020
[|] 0.020

[null] 16 [@] 0.50
[E] 0.440

[null] 0.060
[H] 294 [@] 0.694

[E] 0.303
[I] 0.003

LH = fword root ssyl1 onset /h/ left-phoneg

Table 7.3: Within-word phonological variations for the word \had."

7.7.4 Capturing Phonological Rules

To illustrate how the layered bigrams capture a typical phonological rule, such as the

apping of /t/, we should examine and compare the words \don't," \suit," \water," as

well as the word pairs \don't ask" and \suit in." In general, apping of the phoneme

/t/ occurs in an intervocalic position. Thus we should observe apping in \suit"

\water" and \suit in," but not \don't" or \don't ask."

In the word \don't" of an \sa-2" sentence, the phoneme /n/ is produced either as

[n] or [nÍ ] in the training data (refer to Figure 7-3). The column fword root ssyl1

coda /n/ [n]g can advance to [null], [d›], [t›], [t], or [?] with non-zero advancement

probabilities (P (RS j LH)), but the advancement probability to the ap [º] is zero.

The situation is di�erent for \suit" and \water." The vowel /u/ in the word \suit"

is realized as [uÚ ], [|] and [u] in the training data. Each of these phones can advance to

[º] with non-zero probability. Pooling the data across the three di�erent left phones,

the probability of apping in \suit" following the left context of fword root ssyl1

nucleus /u/ g is about 0.09. If we inspect the across-word prediction probabilities
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with the apped /t/ as the left context, i.e. (Pacross�word prediction(right phoneme �

phone j /t/�[º])), we see that the right-phoneme can only be /I/, coming from the

word sequence \suit in." Since the word \don't" does not terminate with the ap

(i.e. the phone [º]), the word pair \don't ask" does not contribute to the probability

for apping across a word boundary).6

Similarly, the di�erent allophones corresponding to the vowel /O/ in the word

\water" include [a], [O], [{], [r], [U] and [^], and each of these distinct left-histories can

transition to a ap [º] with non-zero probabilities. The overall probability of apping

in \water" following the context of fword root ssyl1 nucleus /O/ g is about

0.32.

The gist of this subsection is to illustrate how the layered bigram probabilities en-

code phonological rules, using the apping rule as an example. Flapping is prohibited

for the /t/ in \don't" because the nasal in the left-history shows that the context is

not intervocalic. The word pair \suit in" provides an intervocalic, across-word con-

text, and therefore apping is possible. The word \water" provides an intervocalic,

within-word context and apping is more likely. We believe that the probabilities

used for parsing should help prioritize the applications of di�erent phonological rules.

This should be veri�ed by conducting experiments using larger data sets.

7.8 Experimental Results

We measured both the word accuracies and sentence accuracies for our test set. A

sentence is correct if lexical access yields a word sequence identical to the reference

sentence. Figure 7-8 plots the performance values as the amount of training data

is increased. As we increase the number of training speakers from 20 to 362 (the

full set), the word accuracies for the \sa-1" and \sa-2" sentences rose by about 9%

and 6% respectively, while the sentence accuracies increased by roughly 22% and

6Instead, the set of phonetic realizations for the phoneme /t/ in \don't ask" is composed of [t],
[t›], [?], [d] and [null].
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Figure 7-8: Word and sentence accuracies of the layered bigrams in parsing sentences,
plotted as a function of increasing training data.

30% respectively. This indicates that the layered bigrams can capture more phono-

logical variations from wider exposure to training data, leading to improvements in

performance.

Most of the errors in the sentence parse trees are due to sloppy articulation in

continuous speech. When the full training set is used, the mistakes made while

testing the \sa-1" sentences, \She had your dark suit in greasy wash water all year,"

are exhaustively displayed in the following:

� The input phone sequence was:

[S i H @ d› d y I d› d a r k› k s uÚ F I n g› g r i s i w O S w O F 5 O l y I 5]

Lexical access did not yield the word \your" due to the missing retroexion.

� The input phone sequence was:
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[S i @ d› J } d› d a r k› k s uÚ t› 4Í g› g r i z i w a S w O F 5 O y I }]

Error occurred with the word \all" due to the missing phone [l].

� The input phone sequence was:

[S I d› J | d› d a r k› k s uÚ F | 4 g› g r i s i w a S w O F } O l y I }]

The parser did not get the word \had" in the �rst complete parse tree popped

o� the stack, due to the absence of the phones [h] and [@]. However, searching

deeper into the stack showed that the second complete parse tree popped o�

would have inserted the phonemes and obtained the word \had." The word

\your" was also an error caused by the missing phones [y] and [r].

� The input phone sequence was :

[S i H @ d› J } d› d a r k› k s uÚ t› I n g› g r I z i w O S w a F 5 a l y I }]

The problem encountered with this utterance is with the word \greasy." It was

pronounced with the phone sequence [Iz], which did not occur in the training

data.

� The input phone sequence was:

[S H E d› J | d› d a r k› k s uÚ F | 4 g› g r i z i w a S w O F } O l y I }]

This case is similar to the �rst example. The parser failed to recognize \your"

due to missing retroexion.

� The input phone sequence was:

[S i H @ d› J uÚ d› d a r k› k s uÚ t› t I n g› g r i s i w a S w a F 5 O l y I }]
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The occurrence of the vowel [uÚ ] for the word \your" was not observed during

training. Consequently the phone was skipped, leading to a word error for this

utterance.

� The input phone sequence was:

[S i H @ d› J} d› d a r k› k s uÚ F | 4 g› g r i s iw a S w O F 5 O l y | 5]

The problematic word here is \year," realized as the phone sequence [|5], and

the probability going from the phone [|] to [5] is 0.

Similarly, mistakes made while testing the \sa-2" sentences - \Don't ask me to

carry an oily rag like that," are as follows:

� The input phone sequence was:

[d o n t› t @ s k› k m i F | k› k E r i n O¤  l i r @ g› g l a¤  k› k D @ t› t]

The top-choice theory did not parse the word \in" correctly, based on the single

phone [n]. The parse tree inserted the phonemes /h/ and /@/ before /n/, map-

ping them both to [null] phones. However, /h@n/ did not map to a legitimate

word according to the lexical access table-lookup procedure. The second best

parse tree, however, did give the correct answer by inserting only the phoneme

/@/ before the /n/. The same error occurred in two other utterances:

[d o n @ s m i F | k› k E r i n O¤  l i r @ g› g l a¤  k› D @ t›]

and

[d o nÍ @ s m i F | k› k E r i n O¤  l | r @ g› g l a¤  k› D @ t›]

Again, the top-choice hypotheses in each case missed the word \in," but the

second-choice hypotheses recognized the correct word sequence.

� The input phone sequence was:
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[d o nÍ @ s k› m i F i k› k E r i | nÍ o l i r @ g› g l a¤  k› k D @ t› T]

The use of the vowel /i/ for the word \to" is unusual, and as a result the vowel

was skipped in the parse tree, resulting in a word error.

� The input phone sequence was:

[d o n @ s k› i F | k› k E r e ? @ n O l i r @ g› g l a¤  k› D @ ?]

This phone sequence contains the rare omission of the phone [m] from the

pronunciation of \me," which led to a word error.

It is perhaps worthwhile to recapitulate that our experimental results are based

on the top-choice hypothesis from an inadmissible search procedure, and performance

may potentially be improved if measures are taken to select amongst the top N

hypotheses. Another possible source of improvement may be the provision of alternate

phonetic choices with a recognizer, to take the place of the single phone sequence as

input. Should the \top-choice" phone (based on the acoustics) be an uncommon

occurrence (based on the layered bigram probabilities), the partial parse theory may

still be able to survive by extending to other phones with lower acoustic rankings.7

Consequently the parser should be less prone to fail or err.

7.9 Chapter Summary

This chapter describes a pilot study in which we attempt to demonstrate how the

current research paradigm can be generalized to include other layers in the grand

speech hierarchy. In particular, we have chosen to extend our the hierarchical lexi-

cal representation downwards to the phonetic level in order to capture phonological

7For example, it may happen that a reduced vowel in \like" is realized as [{] and therefore this
phoneme is most favored by the recognizer, over other options like [^] and [a]. However, according
to Table 7.2, the advancement probability of the left-history fword root ssyl1 onset /l/ [l] g
to [{] is zero. So if only the top-choice phone is provided for advancement, the partial theory will
perish. But if the alternative choices are provided as well, the partial theory will survive.
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rules. Our experiments utilize the \sa" sentences of the timit corpus, and the lay-

ered bigrams are trained and then used to parse the phonetic transcriptions of the sa

sentences. The parsing process is permissive of dialectal variations and coarticulatory

e�ects like palatalization and deletion. The output word sequence is extracted from

the top-choice parse theory. Within the scope of the small experimental data set,

our results show that the layered bigrams can successfully capture a greater variety

of phonological e�ects from an increasing amount of training data, bringing improve-

ments to word and sentence accuracies. The extended layered bigrams can potentially

be adapted for use in speech recognition, to analyze the phone lattice provided by

the recognizer. A parse tree can be generated bottom-up, left-to-right based on the

lattice, while the layered bigrams propose underlying phonemes for each phone it

encounters, simultaneously enforcing the probabilistic phonological rules. Proceeding

upwards, the layered bigrams can propose syllable parts, stress, and morphs, applying

syllabi�cation rules, stress and morphological constraints based on the probabilities.8

A complete column history can then be advanced in its entire form to the next phone.

In this way, the process of decoding the phone lattice, and the administration of lex-

ical constraints can be elegantly united. The tedium of applying ordered rules thus

becomes dispensable.

8This can be extended further upwards along the speech hierarchy, from the word level to syntactic
and semantic constraints at the sentence level, from the sentence level to the discourse level, and so
forth.



Chapter 8

Conclusions and Future Work

8.1 Thesis Summary

This thesis proposes a methodology for incorporating di�erent linguistic knowledge

sources into a common hierarchical framework for representing speech. This frame-

work can potentially serve as a representation applicable to many areas of speech re-

search, including recognition, synthesis and understanding. Having a uni�ed approach

for the di�erent tasks not only minimizes redundancy in e�ort, but improvements in

one particular task are inherited by the other tasks as well.

The feasibility of implementing this hierarchical representation for speech is demon-

strated with a substructure of the grand hierarchy, on the test-bed of bi-directional

letter-to-sound/sound-to-letter generation. We began with the design of a hierar-

chical lexical representation for the English word, as described in Chapter 2. Only

a substructure of the grand hierarchy proposed for speech is included in the design

as strati�ed linguistic representations | the generic English word unit, morphol-

ogy, stress, syllabi�cation, broad manner classes, phonemes and graphemes. These

linguistic knowledge sources play an inuential role in the determination of English

word pronunciations in relation to the word spellings. Each level in the representa-

150
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tion propagates its own set of linguistic constraints|morphological decomposition,

stress contour, syllabic constraints such as Sonority Sequencing, the Maximum Onset

Principle and Stress Resyllabi�cation, phonotactics and graphotactics. Therefore, the

lexical representation aggregates the descriptive power of variable-sized units, which

range from coarse to �ne as we descend the hierarchical parse tree.

Chapter 3 continues to describe the parsing algorithm used in conjuction with the

lexical representation to achieve letter-to-sound and sound-to-letter generation. The

idea is to combine the two tasks in a single parsing framework. An input spelling (or

pronunciation) is analyzed to obtain a complete parse tree, from which the output

pronunciation (or spelling) is derived. The parser, which is referred to as the \layered

bigrams," is a hybrid of rules and statistics. A natural language parser, tina, is used

to generate training parse trees according to the linguistic markings of the training

corpus and a set of hand-crafted, context-free rules. The training parse trees are

then used for training the layered bigram probabilities. These probabilities capture

not only the straightforward constraints speci�ed by the context-free rules, but also

the more subtle constraints that are automatically discovered from the training parse

trees during the training procedure. Therefore, the constraints propagated along each

layer in the hierarchical lexical representation, as well as the constraints governing

the interactions between successive layers, are assimilated as probabilities.

During testing, the parser creates a parse tree based on the input. The various

constraints are enforced within the lexical representation, and the parse tree is a

complete analysis of the input word (spelling or pronunciation) at the seven lingusitic

layers in the hierarchy. Many partial parse theories are produced and placed on a

stack during parsing, and a best-�rst search strategy is used to determine the order in

which the di�erent partial theories are pursued. A longer theory tends to have a lower

score than a shorter theory, because the former score includes more probabilities in

the product. To facilitate the comparison of partial theories of di�erent lengths, a

\fading" evaluation criterion is used to \normalize" the stack score of each partial
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theory with respect to its length. The experimental results reported in Chapter 4 show

that aside from a small proportion of nonparsable words in the development test set,

the layered bigrams parser has attained competitive performance for generation in

both directions.

The importance of the higher-level linguistic knowledge in our generation tasks

is empirically veri�ed in Chapter 5. Two comparative studies were conducted based

on letter-to-sound generation | the �rst investigates the relative contribution of the

di�erent linguistic levels of representation towards generation accuracies, and the

second examines the merits of the hierarchical framework in comparison with a non-

linguistic approach.

In the �rst study, we discovered that as di�erent layers are omitted from the train-

ing parse trees, linguistic constraints are lost, manifested as a decline in generation

accuracy and an increase in perplexity and coverage. The converse is true when the

layer of broad classes is omitted|generation accuracy was gained, while perplexity

and coverage decreased. The exception of the broad class layer may be caused by

the fact that the broad classes can be predicted from the phonemes bottom-up with

certainty. Their inclusion may have led to excessive smoothing in the subsequent

predictions in the upper levels of the hierarchy.

In the second study, the hierarchical parsing framework is compared with a non-

linguistic approach. This alternative approach does not utilize any higher-level lin-

guistic knowledge such as morphology, stress or syllabi�cation. Instead, it requires

a one-to-one letter-to-phoneme mapping for each training word as a priori informa-

tion. The training procedure creates a record of all possible word \fragments"(up to

a pre-set maximum fragment length)|each containing a partial word spelling, the

corresponding partial transcription, a bigram language score and a phonemic tran-

scription score. Generation involves a Viterbi search across all the possible ways in

which the spelling of the test word can be reconstructed from the partial spellings

in the word fragments. Therefore, contextual information is captured within the
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word fragments, but no higher level linguistic knowledge is explicitly used. It was

observed that the two di�erent approaches to letter-to-sound generation gave compa-

rable performance, but the hierarchical approach requires 20 times fewer parameters

for bi-directional generation, when compared to the number of parameters required by

the non-linguistic approach for uni-directional generation. This indicates that the use

of higher-level linguistic knowledge helps impose structure on the lexical representa-

tion, which becomes a more parsimonious description of English graphemic-phonemic

mappings.

In Chapter 6 we proceed to investigate how constraints can be relaxed in the lay-

ered bigrams framework to widen the parser's coverage for nonparsable words. The

layer of broad classes is omitted from the hierarchical lexical representation for the

subsequent experiments, since we have discovered that this omission leads to slight

performance improvement. Analysis of the nonparsable words in our previous ex-

periments has shown that they are the outcome of zero left-to-right advancement

probabilities, which mainly arise in the context of compound words, words with gem-

inate letters, and words with sparse data problems. Consequently, a robust parsing

strategy is targeted at handling these three situations. Compound words are com-

posed of one or more individual words in tandem to become a new distinct word.

Since data is most sparse at the boundaries of concatenation, a natural way to parse

a compound word is to allow a partial parse to end at the word boundary in the

compound, and start another parse to account for the next word(s). Geminate letters

which are pronounced as a single consonant constitute a single graphemic terminal

in the corresponding parse tree of the word. These geminate letter terminals tend to

have rarer occurrences than their single letter counterparts, but their pronunciations

are often identical. Therefore, if we allow relaxation of the graphemic constraints to

replace a geminate letter terminal with the corresponding single letter terminal, we

can often resolve nonparsability and produce a reasonable phonemic pronunciation.

As regards the rest of the nonparsable words which have sparse data problems, we
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o�er the solution of sharing probabilities amongst similar left contexts, by condition-

ing the left-to-right advancement probabilities on the partial left-history in place of

the entire left-history.

This robust parsing strategy is invoked as a backup mechanism for the original

parser. By so doing we can minimize the number of partial theories explored. Exper-

imentation with this con�guration yielded coverage and slight performance improve-

ments for both the development test set and the real test set. This set of experiments

serves to illustrate how generation constraints can be easily relaxed within the prob-

abilistic parsing framework to attain better coverage of the data.

Chapter 7 describes a pilot study which demonstrates the generalizability of the

layered bigrams parsing paradigm to other linguistic levels in the hierarchy. In par-

ticular, a layer of phones is added to the hierarchical lexical representation. The

layered bigrams are also extended so that phonological rules are captured in terms

of probabilities between the layers of phonemes and phones. The scope of this pilot

study is restricted to the two \sa" sentences in the timit corpus, which are espe-

cially designed for the study of phonological and dialectal variations. The layered

bigrams generate a parse tree from the phonetic transcription of an entire sentence,

and from the tree we extract the sequence of spoken words. Results indicate that as

the amount of training data increases, a greater diversity of within- and across-word

phonological variations is observed and captured in the layered bigram probabilities,

leading to marked improvements in sentence and word accuracies. The results of this

preliminary study are promising, but due to the limited amount of data involved,

further experimentation is necessary.

The ultimate goal of this thesis is to propose a grand speech hierarchy, which

incorporates a wealth of linguistic knowledge, to be used as a common framework

for speech synthesis, recognition and understanding. The work presented only repre-

sents an initial attempt in utilizing the proposed framework for letter-to-sound and

sound-to-letter generation. This work can be further pursued in a number of future
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directions. Several ideas are o�ered in the following sections.

8.2 Performance Improvement

The contextual information utilized by the layered bigram parser for generation is

limited only to the left history. There is much room for performance improvement

as more elaborate contextual information is considered. The parsing procedure can

be modi�ed so as to carry richer context for incremental prediction. Alternatively,

the layered bigrams can be viewed as an inexpensive means for generating multiple

plausible hypotheses, and re�nement processes can follow. The re�nement can ex-

ploit various kinds of \future context" | letters, phonemes, syllables, su�xes, etc.,

which is considered by some to be more important than the left context [3]1, [36].

The combination of left and right contexts is vital for tracing stress dependencies,

which are known to spread over a long range of several syllables [12] and thus can-

not be determined locally. Therefore post-processes can use additional contextual

information to �lter the hypotheses, select the most desirable one from the pool,

or correct systematic generation errors. We have made a preliminary trial attempt

to design a post-process of such ilk using a typical induction technique known as

\transformation-based error-driven learning." This is a learning algorithm previously

used for part-of-speech tagging [9]. In this work the learning algorithm is used for

the automatic inference of re�nement rules for generated pronunciations.

The learning algorithm trains on two sets of letter-to-phoneme alignments | the

\correct" alignments from the layered bigrams training parse trees, and the \gen-

erated" alignments from the layered bigrams output.2 The translation of a train-

ing parse tree into a letter-to-phoneme alignment follows a simple convention. If a

phoneme in the training parse tree maps to a grapheme of more than one letter, then

1The �rst of three passes in MITalk's letter-to-sound rules strips su�xes in a right to left direction.
2This is the top-choice pronunciation output for each training word, with the layered bigrams

trained on the full training set.
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the �rst letter will claim the phoneme, and the rest will get the /null/ phoneme.

Consonant phonemes which map to geminate letters3 in the parse tree are treated

slightly di�erently. Both letters will get the same phoneme in producing the one-

to-one letter-to-phoneme alignment. For example, the \correct" letter-to-phoneme

alignment for the word \blocked" is:4

B L O C K E D
/b/ /l/ /a/ /k/ /k/ /t/ /null/

The generated parse tree for \blocked" does not have the correct pronunciation.

The generated alignment is:

B L O C K E D
/b/ /l/ /a/ /k/ /k/ /|/ /d/

The learning algorithm seeks to learn re�nement rules to correct the generated

alignments. The procedure is summarized in the following steps:

1. Compare the \current" and \correct" alignments and record all errors. The

\current" alignments are initialized as the layered bigram alignments.

2. Propose re�nement rules based on a set of rule templates and the errors ob-

served. The rule templates are shown in Table 8.1. These rules look beyond

the left column history, to include context up to three phonemes/letters to the

left/right of the current phoneme.

3This also applies to the letter sequence \ck" even though it is not a geminate. This is because
the letters `c' and `k' are often pronounced as the phoneme /k/, similar to two geminate letters
being pronounced as the same phoneme.

4In cases where more than one letter is mapped to a phoneme, the alignment follows the con-
vention that the �rst letter gets mapped to the phoneme, and the other letters are mapped to
/null/.
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Change P0 from /A/ to /B/ if P�1 = /C/ and P1 = /D/.
Change P0 from /A/ to /B/ if P�2 = /C/ and P�1 = /D/.
Change P0 from /A/ to /B/ if L0 = c and L2 = d.
Change P0 from /A/ to /B/ if L1 = c.
Change P0 from /A/ to /B/ if L0 = c and P2 = /D/.
Change P0 from /A/ to /B/ if P1 or P2 is /C/.
Change P0 from /A/ to /B/ if P1 or P2 or P3 is /C/.
Change P0 from /A/ to /B/ if L1 = c and L2 = d.
Change P0 from /A/ to /B/ if P1 = /C/ and P2 = /D/.
Change P0 from /A/ to /B/ if L�1 = c and L�2 = d.
Change P0 from /A/ to /B/ if P�1 = /C/.
Change P0 from /A/ to /B/ if L1 or L2 is c.
Change P0 from /A/ to /B/ if L0 = c and P�1 is /D/.
Change P0 from /A/ to /B/ if P�1 or P�2 or P�3 is /C/.
Change P0 from /A/ to /B/ if L0 = c and P2 = /D/.
Change P0 from /A/ to /B/ if P1 = /C/.
Change P0 from /A/ to /B/ if P�1 = /C/ and P�2 = /D/.

Table 8.1: Some examples of rule templates for transformational error-driven learn-
ing. These rules include context up to a window of seven phonemes/letters cen-
tered at the current phoneme/letter, i.e. the windows are P�3P�2P�1P0P1P2P3 and
L�3L�2L�1L0L1L2L3, where P0 is the current phoneme, and L0 is the current letter.

3. The re�nement rule which brings about the maximum number of corrections is

learnt and used to update all the current alignments.

4. The process repeats until the incremental improvement drops below a threshold.

A total of 86 rules are learnt based on the training data. Their application to

the generated outputs on the development test set brought the word accuracy from

71.8% to 73.5%, and the phoneme accuracy from 92.5% to 93.1%. In particular, two

rules are used to correct the pronunciation error for \blocked". Recall that the initial

letter-to-phoneme alignment is:

B-/b/ L-/l/ O-/a/ C-/k/ K-/k/ E-/|/ D-/d/

Application of the �rst rule:

Change P0 from /|/ to /t/ if P�1 = /k/ and P1 = /d/.



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 158

results in the intermediate alignment:

B-/b/ L-/l/ O-/a/ C-/k/ K-/k/ E-/t/ D-/d/

Application of the second rule:

Change P0 from /d/ to /null/ if P�2 = /k/ and P�1 = /t/.

gives the correct pronunciation in the alignment:

B-/b/ L-/l/ O-/a/ C-/k/ K-/k/ E-/t/ D-/null/

Similar results have been obtained by Huang et al. [37]. Their experiments

adopted a similar learning algorithm (with similar rule templates) for letter-to-sound

generation with 3,600 training words and 425 testing words. The experimental cor-

pora consist of the CMU Pronunciation Dictionary [84] and the high-frequency words

in the Brown Corpus. The initial alignments for the training procedure are obtained

by mapping each letter in a word spelling to its most frequent phoneme. A total of

580 rules were learnt and a phoneme accuracy of 87.3% was achieved.5

In addition to the neighboring letters and phonemes, other contextual information,

such as part of speech, stress contour �lters, morph �lters, and spelling change rules or

spell checkers, etc. should also be propitious for automatic letter-to-sound and sound-

to-letter generation. Much work can potentially be done in developing post-processes

to re�ne generation outputs.

8.3 Large Vocabulary Speech Recognition

The framework proposed in this thesis should be suitable for large-vocabulary speech

recognition in a variety of ways. The lexical representation is an attractive candidate

for large-vocabulary tasks because it has the advantage of extensive structural sharing

5Although the two experiments should not be strictly compared due to the use of di�erent data
sets, the deviation in performance accuracies may suggest that certain constraints captured in the
layered bigrams are not acquired by using the learning algorithm alone.
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among words which should lower storage requirements. Words in a highly inected

language like English can be collapsed together according to similar morphological

compositions. Allen has estimated a savings factor of 10 if a lexicon stores morphemes

instead of all possible forms of words [2] [13]. Suhm et al [82] performed a study on

the orthographic transcriptions in the Wall Street Journal (WSJ) domain. They clas-

si�ed more than 1,000 words that lie outside a known vocabulary of approximately

14,000 words, and found that 45% were inections of in-vocabulary words, and 6%

were concatenations of in-vocabulary words. The hierarchical lexical representation

can be extended through the phone level to the acoustic level, possibly by way of

phonetic classi�cation to bridge the mapping between the discrete set of phones and

the continuously varying acoustics. Bottom-up, left-to-right processing in the lay-

ered bigrams can tightly couple lexical constraints with the search algorithm in the

phonetic recognizer. The layer of broad manner classes can be used for rapid lexical

access (fast match) by narrowing down possible word candidates to a short list which

belong to the same cohort [75]. Probabilistic phonological rules captured between

the phoneme layer and the phone layer can o�er alternate word pronunciations for

decoding, and this should be intrinsic because the probabilities belong to part of a

coherent whole in the layered bigrams framework. Automatic bi-directional letter-

to-sound/sound-to-letter generation can be useful for tackling the out-of-vocabulary

problem in speech recognition. A spoken language system cannot be expected to

be able to fully specify its active vocabulary based on a static initial set. In the

event that an out-of-vocabulary word is detected by the speech recognizer, the cor-

responding phone subsequence or subnetwork can be extracted from the phonetic

recognizer, from which possible spellings can be generated. These spellings can then

be veri�ed against dictionaries, databases or directories. Alternatively, pronuncia-

tions can be generated when given the spellings of new words. The vocabulary of a

large-vocabulary system can subsequently be dynamically updated with the generated

spellings/pronunciations.
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8.4 Interface with Pen-based Systems

The layered-bigrams paradigm, being probabilistic in nature, can accomodate un-

certainty in the input. Therefore, it is a possible means of interfacing speech-based

systems with pen-based systems, such as constructing handwriting-to-speech gen-

erators. The outputs from a handwriting recognition system (or optical character

recognition system) can be channelled along with their respective probabilities to be-

come the input of a letter-to-sound generation system. The top-choice pronunciation

corresponding to a written or scanned input can be selected based on the combined

scores of the handwriting system and the layered bigrams. A slightly modi�ed ap-

plication for pen-based systems is to use the layered bigrams as a language model

to guide \letter-pair" prediction with lexical constraints. The e�ectiveness of the

layered bigrams as a predictor of the next letter/character is roughly estimated by

measuring the perplexity per letter/character of the development test set. We ob-

tained a perplexity of 8.3 which is more constraining than a standard bigram language

model (perplexity = 11.3), and comparable with a standard trigram language model

(perplexity = 8.3).

8.5 Multilingual Applications

It should be possible to apply our system methodologies to multilingual systems

whenever the letter-sound correspondences and context interact in the same way6 as

our current monolingual system [27], e.g. generating English name pronunciations in

terms of the Japanese Katakana pronunciation alphabet. Some resemblances can be

found between our formalism and the Speech Maker Formalism for Dutch [89]. Speech

6This is, of course, dependent on the language. Some languages, such as Chinese, do not lend
themselves easily to translating graphemes into phonemes. Some other languages may have a close
�t between its graphemic and phonemic forms, e.g. Spanish can be thoroughly characterized by
approximately 35 to 40 letter-to-sound rules [90]. English, in comparison, is much more complicated,
due to numerous loan words that are not anglicized.
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Maker is used for text-to-speech synthesis, and supports a multi-level synchronized

data structure called a grid. The grid contains streams, or levels which contain in-

formation about word accent, word class, and the morphemes, syllables, phonemes

and graphemes constituting the word. Each stream is also synchronized with other

streams in the grid by sync marks, i.e. the vertical bars as illustrated in Figure 8-1,

which shows a portion of a grid. Generation in the Speech Maker is achieved by com-

plex, two-dimensional rules which can operate on more than one stream at a time,

modelled after the delta language [34]. An example is shown in Figure 8-2, which

is a rule stating that an \A", followed by any sequence of characters pronounced as

a single consonant, followed by an \E", which is root �nal, should be pronounced as

/e/.

The rules in our hybrid approach di�er from the Speech Maker in that they are less

cumbersome. Each rule in the small rule set characterizes the derivations in a single

linguistic layer, and is later converted into probabilities. The probabilistic parser

utilizes multiple levels in the hierarchical lexical representation simultaneously during

parsing, as it advances each column in the parse tree uniformly from left to right. By

virtue of this, sync marks are unnecessary in our framework.7 The set of probabilities

used in the parser are conditioned upon an elaborate but easily speci�ed left context,

the entire left column history, which provides lingustic constraints for generation.

Consequently, complex rules are inessential provided that we have su�cient data for

training.

7Some may consider that sync marks are implicit in our framework, because the bottom-up pre-
diction process identi�es the locations where the predicted category merges with previously generated
structures.
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+                  

                                 adjective

     pref                         root                         suf

o      u      t      s      t      a      n      d      i      n      g 

Word:

Class:

Morpheme:

Grapheme:

Figure 8-1: A portion of the Speech Maker grid representing the word \outstanding."

Morpheme:

Grapheme:

Phoneme:

                                             root

     a                                           e

                <+cons>                                               /e/

    
^ ^ ^ ^

Figure 8-2: An example of a two-dimensional rule in Speech Maker. The upward
arrows delineate the letter to be transcribed and the corresponding phoneme. The
rule expresses that the letter \a" which precedes an arbitrary number of consonants
and ending with the letter \e" should be pronounced as /e/.
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8.6 Speech Generation, Understanding and Learn-

ing in a Single Framework

As was previously mentioned, the dimensions of the hierarchical representation can

potentially be extended upwards to encompass natural language constraints [74],

prosody, discourse and even perhaps dialogue constraints, and augmented downwards

to include a layer capturing phonetics and acoustics. The full speech hierarchy can

provide a common framework for speech generation, understanding and learning. This

thesis has mainly covered the facet of generation. Understanding may be achieved

because semantic and syntactic information can be extracted from the morphology

layer. New words may be learnt and their regular inectional and derivational forms

can be automatically generated in the layered bigrams framework. There is ample

room for further development in the quest for an integrated framework for speech

generation, understanding and learning.



Appendix A

List of Morphs

pref (i.e., pre�x)

root

root2 (i.e., second unstressed syllable of the root)

suf (i.e., su�x)

join (denotes the concatenation of words into compound words)
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Appendix B

List of Syllables

ssyl1 (i.e., syllable carrying primary stress)

ssyl2 (i.e., syllable carrying secondary stress)

syl (i.e., unstressed syllable)

join-ssyl1 (i.e., syllable containing the \connecting vowel" which carries primary

stress, e.g. \accelerometers")

join-syl (i.e., syllable containing the \connecting vowel" which is reduced, e.g.

\horizontal")

isuf (i.e., inectional su�x, which is always an unstressed syllable)

dsuf (i.e., derivational su�x)
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Appendix C

List of Subsyllabic Units

onset

nuc (i.e., nucleus)

coda

m-onset (i.e., \moved" onset)

join-vow (i.e., \connecting vowel")
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Appendix D

List of Broad Manner Classes

affr (i.e., a�ricate)

fric (i.e., fricative)

semi (i.e., semi-vowel)

vow (i.e., vowel)

aspirant

nasal

stop
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Appendix E

List of Phonemes

This appendix lists the set of phonemes used in this thesis. There are 52 \phonemes"

in total.

/h/ \ham" /i/ (stressed) \creed"

/C/ \church" /i/ (unstressed) \city"

/J/ \enjoy" /I/ \bits"

/m/ \madame" /e/ \brave"

/n/ \name" /E/ \bread"

/4/ \planning" /@/ \cab"

/mÍ / \realism" /^/ \club"

/w/ \wage" /a/ \cobb"

/l/ \lyrics" /O/ \crawl"

/y/ \youth" /o/ (stressed) \crowd"

/r/ \run" /o/ (unstressed) \domain"

/lÍ/ \rifle" /u/ (stressed) \cool"

/b/ \baby" /u/ (unstressed) \superbly"
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/d/ \daily" /U/ \took"

/g/ \gain" /|/ (/|/ and /{/ collapsed) \tilted"

/p/ \pace" /a⁄ / \towns"

/t/ \table" /a¤ / \tribes"

/k/ \cookie" /O¤ / \voice"

/f/ \fabric" /5/ \actor"

/v/ \vague" /O r/ \port"

/T/ \wealth" /I r/ \fear"

/D/ \this" /E r/ \air"

/s/ \this" /a r/ \arm"

/z/ \zone" /y u/ \vue"

/S/ \wish" /a l/ \salt"

/Z/ \regime" /o l/ \polls"



Appendix F

List of Graphemes

This appendix lists the set of graphemes used in this thesis. There are 205 graphemes

in total.

� Regular graphemes:

#[you] #[wr] #[eh] #[wo] #[cc] #[eir] #[aigh] #[irr] #[eare] #[sch] #[ah] #[rh]

#[uer] #[pt] #[ps] #[ayer] #[erre] #[qu] #[ort] #[eur] #[ju] #[eu] #[eo] #[uor]

#[ieu] #[awr] #[aur] #[fe] #[oh] #[is] #[on] #[iew] #[ugh] #[owe] #[hou] #[ho]

#[ole] #[ste] #[ire] #[gu] #[eor] #[oe] #[aul] #[io] #[eye] #[gh] #[wh] #[eigh]

#[oub] #[ot] #[ut] #[eb] #[urr] #[oll] #[mp] #[ei] #[mm] #[olo] #[gne] #[oal]

#[aire] #[st] #[tte] #[augh] #[gue] #[ia] #[pe] #[ye] #[zz] #[uy] #[yr] #[tch]

#[ddh] #[ui] #[igh] #[dg] #[dt] #[our] #[orr] #[mb] #[bb] #[�] #[ew] #[che]

#[lle] #[err] #[gg] #[eer] #[eau] #[the] #[rr] #[arr] #[ore] #[et] #[be] #[aw]

#[are] #[mn] #[au] #[ck] #[ere] #[ph] #[gn] #[me] #[ii] #[as] #[ue] #[pp]

#[ear] #[que] #[wer] #[oy] #[nne] #[nn] #[z] #[ze] #[ay] #[ough] #[al] #[ey]

#[ll] #[all] #[ke] #[th] #[ol] #[k] #[ne] #[de] #[ea] #[ee] #[ar] #[w] #[oo]

#[x] #[air] #[f] #[aer] #[ae] #[sc] #[tt] #[ir] #[oi] #[j] #[h] #[dd] #[ge] #[re]

#[ai] #[q] #[dge] #[ow] #[kn] #[v] #[ie] #[ch] #[*] #[ss] #[ng] #[er] #[se]
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#[ur] #[c] #[te] #[ce] #[s] #[p] #[u] #[oa] #[r] #[ve] #[ou] #[g] #[or] #[sh]

#[oar] #[le] #[y] #[es] #[l] #[i] #[t] #[e] #[m] #[ed] #[o] #[d] #[n] #[b] #[a]

� Underbar graphemes:

#[ar e] #[k e] #[th e] #[p e] #[c e] #[n e] #[z e] #[g e] #[v e] #[s e] #[r e]

#[m e] #[d e] #[t e] #[l e] #[b e]



Appendix G

Context-free Rules

This appendix lists the context-free rules used to generate the training parse trees.

word ! [pre] root [suf]

word ! root [suf] join root

word ! pre join root

word ! [pre] root root-marker root2 [suf]

word ! root root-marker root2 [suf] join root

join ! compound-marker [join-ssyl1]

join ! compound-marker [join-syl]

join-syl ! [m-onset-marker] [m-onset] join-vow

join-ssyl1 ! [m-onset-marker] [ssyl1-marker] join-vow

join-vow ! vow

root ! (ssyl1 syl) (ssyl1 syl)

root ! ssyl2
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root2 ! (ssyl1 ssyl2 syl)

ssyl1 ! [onset] ssyl1-marker nuc [coda]

ssyl1 ! m-onset-marker m-onset ssyl2-marker nuc

syl ! [onset] nuc [coda]

syl ! m-onset-marker m-onset nuc

m-onset ! [fric] [stop] semi

m-onset ! fric

m-onset ! nasal

m-onset ! stop

m-onset ! affr

isuf ! [nuc] coda

isuf ! nuc

isuf ! m-onset-marker m-onset nuc

dsuf ! coda

pre ! (ssyl1 ssyl2 syl) pre-marker (ssyl1 ssyl2 syl) pre-marker

suf ! dsuf-marker (ssyl1 ssyl2 syl dsuf) dsuf-marker (ssyl1 ssyl2 syl)

suf ! dsuf-marker (ssyl1 ssyl2 syl dsuf)

suf ! dsuf-marker (ssyl1 ssyl2 syl dsuf) isuf-marker isuf

suf ! isuf-marker isuf

suf ! isuf-marker isuf isuf-marker isuf
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onset ! [aspirant] [nasal] [fric] [stop] semi

onset ! fric [fric]

onset ! fric [nasal]

onset ! fric [semi]

onset ! stop [semi]

onset ! (nasal affr)

onset ! (aspirant

nuc ! vow

coda ! [nasal] (stop fric affr)

coda ! (nasal fric affr)

coda ! (nasal fric) stop

coda ! [stop] (fric) stop)

coda ! semi (fric) affr nasal stop)

fric ! (/f/ /v/ /T/ /D/ /s/ /z/ /S/ /Z/)

stop ! (/p/ /t/ /k/ /b/ /d/ /g/)

affr ! (/C/ /J/)

nasal ! (/m/ /n/ /4/)

semi ! (/w/ /r/ /l/ /y/)

vow ! (/I/ /E/ /@/ /a/ /O/ /^/ /U/ /5/ /lÍ/ /mÍ / /a⁄ / /o/ /O¤ / /a¤ / /e/ /i/
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/u/ /|/ /y u/ /E r/ /O r/ /I r/ /a l/ /o l/ /a r/ /i/(unstressed) /u/(unstressed)

/o/(unstressed))

aspirant ! (/h/)

/w/! (#[u] #[a] #[w] #[wh] #[o] #[we] #[*] #[ugh] #[e] #[i] #[ub] #[l] #[t] #[ju])

/l/ ! (#[l] #[ll] #[le] #[lle] #[l e])

/lÍ/ ! (#[al] #[l] #[le] #[l e])

/h/ ! (#[h] #[wh])

/r/ ! (#[r] #[re] #[rr] #[r e] #[rh] #[wr])

/y/ ! (#[*] #[i] #[e] #[y] #[a] #[u] #[t] #[ea] #[gh] #[igh] #[ou])

/I/ ! (#[i] #[e] #[a] #[y] #[*] #[ae] #[ea] #[ai] #[ee] #[ui] #[u] #[ia] #[hi] #[ie]

#[ei] #[o])

/|/ ! (#[u] #[e] #[y] #[a] #[au] #[i] #[o] #[ai] #[*] #[ae] #[on] #[ou] #[ah]

#[ea] #[ough] #[ol] #[ei] #[ui] #[io] #[ia] #[eo])

/E/ ! (#[a] #[e] #[ae] #[ai] #[ea] #[u] #[eb] #[eh] #[ei] #[ie] #[oe] #[ay])

/@/ ! (#[a] #[o] #[ae] #[al] #[ho] #[au])

/a/ ! (#[o] #[augh] #[a] #[ow] #[i] #[ah] #[y] #[u] #[al] #[e] #[eye] #[ea] #[ho]

#[oh] #[a])

/a r/ ! (#[ar] #[arr])
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/^/ ! (#[e] #[u] #[o] #[ou] #[a] #[*] #[ia] #[oo] #[ai] #[io] #[iou] #[ae] #[ol]

#[on] #[ah] #[ough])

/O/ ! (#[ou] #[aw] #[ough] #[o] #[ao] #[oa] #[a] #[au] #[as] #[augh] #[hau]

#[aul] #[eo] #[al])

/U/ ! (#[oo] #[*] #[o] #[u] #[ou])

/5/ ! (#[or] #[ur] #[er] #[re] #[ir] #[r] #[ar] #[wer] #[our] #[yr] #[olo] #[urr]

#[ear] #[ire] #[err] #[ure] #[uor] #[eur] #[irr] #[orr])

/a⁄ / ! (#[ou] #[ow] #[aw] #[oub] #[hou] #[owe])

/o/! (#[o] #[ough] #[oa] #[ow] #[ou] #[eau] #[ot] #[oe] #[ol] #[oh] #[owe] #[ew]

#[o])

unstressed /o/ ! (#[o] #[ow] #[eau])

/o l/ ! (#[ol] #[oal] #[oll] #[ole])

/a l/ ! (#[ol] #[all] #[al])

/O¤ / ! (#[oy] #[oi])

/a¤ / ! (#[i] #[y] #[eye] #[igh] #[eigh] #[ui] #[ie] #[ye] #[uy] #[is] #[ei])

/e/ ! (#[ay] #[a] #[ai] #[ey] #[eigh] #[au] #[eh] #[ea] #[e] #[ee] #[et] #[ae]
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#[ei] #[aigh])

/i/ ! (#[i] #[y] #[e] #[ie] #[ee] #[ey] #[ae] #[ea] #[is] #[ei] #[ii] #[ay] #[eo]

#[oe] #[eh])

unstressed /i/ ! (#[i] #[y] #[e] #[ey] #[ie] #[ee] #[ay])

/u/ ! (#[u] #[oo] #[o] #[ew] #[ui] #[ue] #[ou] #[ieu] #[eu] #[wo])

unstressed /u/ ! (#[u] #[ew] #[ou] #[ieu] #[o])

/y u/ ! (#[u] #[eau] #[ew] #[ugh] #[ou] #[ut] #[ue] #[iew] #[eu] #[you])

/E r/ ! (#[aer] #[air] #[ar] #[er] #[ere] #[are] #[arr] #[ear] #[err] #[ur] #[aire]

#[erre] #[ayer] #[ar e] #[eir])

/O r/ ! (#[oar] #[or] #[ar] #[ore] #[orr] #[our] #[eor] #[aur] #[awr] #[ort] #[uer]

#[arr])

/I r/ ! (#[ear] #[ere] #[eer] #[ier] #[er] #[eare] #[eir])

/z/ ! (#[s] #[z] #[es] #[ze] #[se] #[*] #[x] #[zz] #[z e] #[s e] #[ss])

/s/ ! (#[s] #[ss] #[t] #[se] #[ce] #[c] #[sc] #[*] #[st] #[sse] #[ste] #[z] #[c e]

#[ps] #[s e])

/S/ ! (#[sh] #[ti] #[ss] #[ch] #[t] #[s] #[*] #[sch])
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/Z/ ! (#[z] #[s] #[ge] #[t] #[ti] #[si] #[g])

/f/ ! (#[ph] #[f] #[gh] #[fe] #[�])

/T/ ! #[th]

/D/ ! (#[th] #[the])

/v/ ! (#[v] #[ve] #[v e] #[ph] #[f])

/p/ ! (#[p] #[pe] #[pp] #[p e])

/t/ ! (#[t] #[te] #[ed] #[d] #[tt] #[th] #[dt] #[tte] #[*] #[t e] #[z] #[s] #[pt])

/k/ ! (#[c] #[k] #[ck] #[q] #[ke] #[che] #[x] #[ch] #[que] #[k e] #[qu] #[cc])

/d/ ! (#[d] #[de] #[ed] #[dd] #[ddh] #[d e] #[z] #[zz] )

/b/ ! (#[b] #[be] #[bb] #[b e)

/g/ ! (#[g] #[gg] #[x] #[gue] #[gh] #[gu])

/J/ ! (#[ge] #[j] #[dge] #[g] #[dg] #[gg] #[g e])

/C/ ! (#[ch] #[tch] #[che] #[t] #[c])

/m/ ! (#[m] #[me] #[mn] #[mb] #[mm] #[mp] #[m e])
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/mÍ / ! #[m]

/n/ ! (#[n] #[ne] #[kn] #[nn] #[nne] #[gn] #[gne] #[on] #[n e] #[mn])

/n/ ! (#[ng] #[n])

pre-marker ! =

root-marker ! ==

isuf-marker ! ++

dsuf-marker ! +

compound-marker ! $

ssyl1-marker ! !

ssyl2-marker ! ?

m-onset-marker ! @



Appendix H

Nonparsable Words

This appendix lists examples of nonparsable words in letter-to-sound and sound-to-

letter generation.

H.1 Nonparsable Words in Letter-to-sound

Generation

AESTHETIC

AH

ALBUMIN

ANSWERED

ARCHAEOLOGY

BATHROOM

BOYCOTT

CALCIUM

CARNEGIE

CHAMPAGNE

CHARLIE

180
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COCKTAIL

DAWN

DRIVEWAY

DYLAN

EH

EMBASSY

EVERYDAY

FAIRLY

FIERCE

FOOTBALL

FULFILLMENT

HANDKERCHIEF

HAY

HENRIETTA

JOE

JOYCE

KATIE

KERN

KIRBY

LLOYD

LUGGAGE

MCCLELLAN

MILKMAN

NEWT

OUTGOING

REORGANIZATION

SERIOUSNESS

SETTLING
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SHEAR

SHOE

SIOUX

STUBBORN

THIGH

THURSDAY

TIGHTLY

TOUGHER

TYPEWRITER

UPWARD

WARSAW

WHOLLY

ZINC

H.2 Nonparsable Words in Sound-to-letter

Generation

AESTHETIC

ALBUMIN

ARCHAEOLOGY

BATHROOM

BEGGED

BOYCOTT

CARNEGIE

COALITION

CONTINUITY

CUSHION

DRAGGED
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DRIVEWAY

ENTHUSIASM

EVERYDAY

FAIRLY

FIERCE

FOOTBALL

GIGANTIC

HANDKERCHIEF

HENRIETTA

JANUARY

LABORATORIES

MANAGEMENT

MILKMAN

MIMESIS

NEVERTHELESS

NIGHTMARE

OUTGOING

PENINSULA

PICTURESQUE

PREJUDICE

PROJECT

REORGANIZATION

RESIDUE

ROUTINE SEGREGATION

SERIOUSNESS

SHRUGGED

SMOOTH

THEOREM
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TYPEWRITER

UNNECESSARY

UPWARD

VAGINA

WITHOUT
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