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Abstract

The acoustic-phonetic modeling component of most current speech recognition sys-
tems calculates a small set of homogeneous frame-based measurements at a single,
�xed time-frequency resolution. This thesis presents evidence indicating that recog-
nition performance can be signi�cantly improved through a contrasting approach
using more detailed and more diverse acoustic measurements, which we refer to as
heterogeneous measurements.

This investigation has three principal goals. The �rst goal is to develop heteroge-
neous acoustic measurements to increase the amount of acoustic-phonetic information
extracted from the speech signal. Diverse measurements are obtained by varying the
time-frequency resolution, the spectral representation, the choice of temporal basis
vectors, and other aspects of the preprocessing of the speech waveform. The second
goal is to develop classi�er systems for successfully utilizing high-dimensional hetero-
geneous acoustic measurement spaces. This is accomplished through hierarchical and
committee-based techniques for combining multiple classi�ers. The third goal is to
increase understanding of the weaknesses of current automatic phonetic classi�cation
systems. This is accomplished through perceptual experiments on stop consonants
which facilitate comparisons between humans and machines.

Systems using heterogeneous measurements and multiple classi�ers were evalu-
ated in phonetic classi�cation, phonetic recognition, and word recognition tasks. On
the TIMIT core test set, these systems achieved error rates of 18.3% and 24.4% for
context-independent phonetic classi�cation and context-dependent phonetic recogni-
tion, respectively. These results are the best that we have seen reported on these
tasks. Word recognition experiments using the corpus associated with the jupiter
telephone-based weather information system showed 10-16% word error rate reduc-
tion, thus demonstrating that these techniques generalize to word recognition in a
telephone-bandwidth acoustic environment.

Thesis Supervisor: James R. Glass
Title: Principal Research Scientist
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Chapter 1

Introduction, Goals, and

Motivation

1.1 Introduction

Automatic speech recognition (ASR) systems are designed to convert a speech wave-

form into text. Accomplishing this task requires several knowledge sources. Acoustic-

phonetic knowledge provides a mapping from the speech waveform to hypothesized

phonetic units. Lexical knowledge enables the system to combine the phonetic units

into words. A language modeling component stores information about the likeli-

hood of di�erent word sequences. This thesis presents new techniques for the de-

velopment and implementation of the �rst of these knowledge sources, namely, the

acoustic-phonetic modeling component. Acoustic-phonetic modeling for ASR has

been studied extensively, and a number of viable solutions have emerged which are

being used in a growing commercial market for speech recognition products. These

systems typically calculate a small set of homogeneous frame-based measurements at

a �xed time-frequency resolution. In spite of the success of these techniques, this

thesis presents evidence indicating that recognition performance can be signi�cantly

improved through the use of more detailed and more diverse acoustic measurements

which we refer to as heterogeneous measurements. These heterogeneous measure-

ments are combined in such a way as to capture the complementary information
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which they contain.

From a statistical pattern recognition viewpoint, the entire process of extracting

acoustic measurements from the speech waveform can be referred to as preprocessing.

In general, preprocessing techniques are designed to reduce the dimensionality of the

input data while at the same time retaining as much discriminative information as

possible. Of course, these are con
icting conditions, and choosing the proper balance

between them is an important aspect of the art of designing pattern recognition

systems.

In the speech recognition community, the typical tradeo� between data reduction

and information retention has evolved over decades of research. There are a large

number of studies in the literature which describe and compare various preprocess-

ing algorithms [5, 11, 34, 50, 51, 60, 61, 69, 76, 84, 89, 90, 96], and these citations

are only a small sampling. Some of these studies examine acoustic measurements

for particular sound classes, such as the 13 monophthong vowels in [60], or the stop

consonants in [69]. These phone-class-speci�c studies lead naturally to the notion

of using di�erent measurements in di�erent phonetic classes. This notion has gener-

ally not been pursued by researchers who address the problem of word recognition,

in part because data reduction took priority over other factors. To illustrate this

point, consider the 1993 survey and tutorial paper \Signal Modeling Techniques in

Speech Recognition" by Picone [77]. This paper provides a good overview of the copi-

ous literature on acoustic-phonetic modeling, including 116 references and thorough

coverage of many systems. The entire paper assumes that one set of acoustic mea-

surements will be used with a single classi�er for the acoustic-phonetic modeling of

all phonetic classes. Thus, the ASR researchers cited in Picone's paper did not make

use of acoustic measurements that were designed for particular phonetic subclasses.

In addition, researchers have generally not considered the possibility that competing

acoustic measurement candidates may in fact contain complementary information,

so that the optimal choice may be to produce a system which can use a variety of

measurements simultaneously.

In this thesis, we advocate methods for tipping the scales of the preprocessing

18



tradeo� away from data reduction and toward retention of discriminative information.

This change is seen as necessary in order for machines to approach human levels

of performance. In addition, this direction for research is being facilitated by the

ever increasing computational power of computers. In fact, the current conventional

approach, which limits itself to low classi�er dimensionality, has been shaped in part

by consideration of the feasibility of the computation assuming the use of machines

that are now several generations old.

In addition to retaining more acoustic-phonetic information from the speech wave-

form, the design of experiments in this thesis was guided by two ideas about the

evaluation of acoustic measurements. The �rst idea is that measurements should be

evaluated in several di�erent tasks, such as vowel classi�cation and obstruent clas-

si�cation, in addition to the typical overall phonetic classi�cation task. This allows

for the possibility that measurements will have di�erent strengths and weaknesses

in the various phonetic subclasses. The second idea is that measurements should be

considered not only for their own individual merit, but also for how they might be

used to complement the information in another set of measurements.

1.2 Thesis Goals

The �rst goal of this thesis is to develop heterogeneous acoustic measurements to

increase the amount of acoustic-phonetic information extracted from the speech sig-

nal. Diverse measurements are obtained by varying the time-frequency resolution,

the spectral representation, the choice of temporal basis vectors, and other aspects of

the preprocessing of the speech waveform. The time-frequency resolution contributes

to determining which acoustic attributes of the speech will be blurred and which will

be retained in the spectral representation. The temporal basis results in additional

temporal blurring of acoustic information. The choice of basis determines which as-

pects of the temporal trajectory of spectral parameters are actually visible to the

classi�er. Fundamental frequency and zero-crossing rate are also considered in order

to add diversity to the acoustic measurements.
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The second goal of this thesis is to develop classi�er systems for successfully uti-

lizing high-dimensional heterogeneous acoustic measurement spaces. This is accom-

plished through the combination of multiple classi�ers. In one approach, classi�ers

are combined in a hierarchical tree with classi�ers at each non-leaf node to determine

the probabilities on the branches leaving that node. Committee-based approaches

using voting, linear combination, or an independence assumption are also presented.

Finally, hierarchical and committee-based combination techniques can be combined

to form hybrid techniques.

The third goal of this thesis is to increase understanding of the weaknesses of

current automatic phonetic classi�cation systems. This is accomplished through per-

ceptual experiments on stop consonants which facilitate comparisons between humans

and machines. Error analysis is performed, including examination of particular ex-

amples of stop consonants that were classi�ed di�erently by humans and machines.

1.3 Motivation

Three sources of motivation for this work are presented in this section. Each of these

areas contributed to the conception of the ideas for the experiments in this thesis.

1.3.1 Comparisons between Humans and Machines

This section contains comparisons between the performance of humans and machines

in various speech recognition and classi�cation tasks. It is known that humans per-

form better than machines in word recognition tasks, but there are several deeper

questions to address: How much better at speech recognition are humans when com-

pared with machines? What are the reasons for the di�erence in performance? How

much of the di�erence can be attributed to higher-level knowledge such as semantics

and syntax? How much to lexical knowledge? And �nally, how much to low-level

acoustic-phonetic analysis capability?

The last of those questions is the most important for this thesis. We would like to

know how humans and machines compare at the low-level task of acoustic-phonetic
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Vocabulary Recognition Machine Human
Corpus and Description Size Perplexity Error (%) Error (%)

TI Digits: Read Digits 10 10 0.72 0.009
Alphabet Letters: 26 26 5 1.6
Read Alphabetic Letters
Resource Management: 1; 000 60 3.6 0.1
Read Sentences
(Word-pair Grammar)
Resource Management: 1; 000 1,000 17 2
Read Sentences
(Null Grammar)
Wall Street Journal: 5,000 45 7.2 0.9
Read Sentences
North American Business Unlimited 160 6.6 0.4
News: Read Sentences
Switchboard: Spontaneous 2,000{ 80{150 43 4
Telephone Conservations Unlimited

Table 1.1: Human versus Machine Speech Recognition Performance, after Lipp-
mann [53, 54, 55]

analysis of speech segments, when higher-level knowledge sources are not available.

From the literature and from our own work described below, we demonstrate that

humans are performing signi�cantly better than machines. This implies that there is

low-level phonetic information in the speech signal which machines are not currently

extracting, and so this provides motivation for the research performed in this thesis.

Speech Recognition by Humans and Machines

By drawing upon machine recognition and human perception literature, Lippmann

[53, 54, 55] has gathered together machine recognition results from several talker-

independent speech recognition corpora and paired them with comparable human

perception results. Table 1.1 summarizes the characteristics of the corpora and several

performance comparisons. The table indicates that machines perform 80 times worse

than humans at recognizing digits [12, 48], 5 times worse for alphabetic letters [15,

18], 36 times worse for the 1000-word Resource Management task with a word-pair

grammar [37, 72, 100], 9 times worse for Resource Management with a null-grammar

[37, 56, 62, 72], 8 times worse for a 5000-word Wall Street Journal task [22, 38, 73],
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17 times worse in a 65000-word North American Business News task [20, 94], and 11

times worse for the Switchboard spontaneous speech corpus [52, 57, 58, 74].

In fact, these estimates of error rate di�erences are conservative, since the ma-

chines were allowed to train on closely matched data. While these results clearly

indicate that humans are superior to machines, it is di�cult to isolate the acoustic-

phonetic component from these experiments, since people may be using higher-level

knowledge sources. For this reason, the next section examines phonetic classi�cation

in order to observe comparisons of low-level acoustic-phonetic analysis capabilities.

Phonetic Classi�cation by Humans and Machines

We expect that humans will perform better than machines in acoustic-phonetic anal-

ysis. Hence, human performance often serves to provide an existence proof, showing

that the resulting performance level is achievable. This reasoning would indicate, for

example, that if humans achieve 95% in a classi�cation task, then obviously 95% accu-

racy is achievable based on the given information. However, the converse of the above

statement is not necessarily true. That is, if 95% is achievable based on the given

information, humans may �nd it di�cult or perhaps impossible to achieve 95%. Put

another way, this means that human performance in phonetic classi�cation should

not be regarded as a strict upper bound on achievable performance. The principal

reasons for this conjecture are practical. First, phonetic classi�cation, as opposed to

word recognition, is an unnatural task for humans. Second, if the number of phone

candidates is large, it stresses a human's ability to sift all the phonetic candidates

in the given time. Third, humans may be a�ected by inattention and fatigue in

experimental trials.

Ideally, we would like to compare machine classi�cation and human perception

performance on identical speech data over all phonetic sounds. Unfortunately, we did

not �nd any studies in the literature which �t that description, nor was it possible

to glean such comparisons by combining the work of several researchers. We did

�nd human and machine results in the task of vowel classi�cation which share many

similarities, although the test sets are not identical. We were able to construct human
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and machine comparisons for stop consonants by comparing perceptual results from

the literature with our own machine classi�cation results.1

Vowel Classi�cation by Humans and Machines

Cole [16] has performed perceptual studies on vowels excised from TIMIT[40] . For

this study, 16 vowel labels from TIMIT were selected, and 168 tokens of each were

extracted, for a total of 2688 tokens. The 16 vowels were [iy ih ey eh ae er ah ax

aa ao uh uw ow aw ay oy].2 There were sixteen subjects participating in the experi-

ment, each of whom participated in 10 1-hour sessions over a two-week period. Each

subject classi�ed all of the 2688 tokens. The results show that vowels presented in

isolation were identi�ed with 54.8% accuracy, while vowels presented with one seg-

ment of context were identi�ed with 65.9% accuracy. Cole notes that these perception

results are in close agreement with other experiments using excerpts of speech from

TIMIT [65, 75, 88, 89].

In [16], the vowel classi�cation accuracy metric is referred to as \listener-labeler"

agreement, thus highlighting the fact that it is problematic to claim a single correct

phonetic labeling of an utterance (as is done in TIMIT for scoring purposes), since

some segments will be ambiguous and experts will not agree on the phonetic label.

This is particularly a problem for vowels, due to the nature of the acoustic space from

which vowel distinctions are made. This explains part of the reason why listener-

labeler agreement is so much lower for vowels than it is for stops, as we describe in

the next section.

A number of researchers have reported machine classi�cation results on a 16 vowel

classi�cation task from TIMIT [5, 13, 30, 49, 59]. Unfortunately, these machine clas-

si�cation studies and Cole's study did not use the same set of 16 vowels, although the

sets di�er by only one element; the machine studies included [ux] where Cole used [ax]

instead. In addition, the test sets for the human perception and machine results are

1Chapter 6 provides additional results on stop consonants, where we performed both the human
and the machine components of the experiments.

2See Table 2.1 for the International Phonetic Alphabet (IPA) symbols corresponding to these
ARPAbet symbols.
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not identical. For these reasons, it is di�cult to make direct comparisons, yet general

comparisons are still valuable. Goldenthal [30] reported performance of 68.9% using

gender-speci�c models. Carlson and Glass [5] reported 68.7% incorporating speaker

normalization information. Chun [13] reports 67.6% using speaker-independent mod-

els. Meng [59] and Leung [49] reported 65.6% and 64%, respectively, using auditory

models.

With human perceptual results at 65.9% accuracy and machine classi�cation re-

sults at 64-68.9%, we conclude that listener-labeler error and machine-labeler error

for vowel classi�cation under matched conditions produce very similar performance.

It is di�cult to be conclusive because of di�erences in the task ([ax] in the perceptual

experiments is probably considerably more confusable with other candidates than

the [ux] used in the machine studies) and the test sets. Also, with 16 choices, the

unnaturalness of the task and the di�culty involved in carefully considering every

vowel candidate in the required time on every trial may have reduced the human's

performance. This hypothesis is supported by the fact that the humans in Cole's

study [16] appeared to show some improvement over time, thus indicating that they

were learning how to perform the task more accurately. In contrast to these similar

human and machine performance results for vowels, we will see in the next section

that the di�erences in performance for stop consonants are much larger.

Stop Classi�cation by Humans and Machines

Nossair and Zahorian [69] have compared human and machine performance in the task

of classi�cation of syllable-initial stops in isolated CVC syllables. They collected a 30-

speaker database containing isolated CVC syllables. Each of the 6 stops appears with

each of eleven vowels for a total of 66 relevant tokens per speaker. With these highly

constrained conditions, they obtained machine error rates that were approximately 2

times worse than human performance, although this result is dependent upon which

conditions in the perceptual experiments are considered comparable to the machine

experiments.

In [41], Lamel reported results from perceptual experiments on stop consonants
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Error Rate
Phonetic Human Machine Increase
Context Error (%) Error (%) Factor

V{S{V 3.4 11.3 3.3
V{F{S{V 12.2 32.9 2.7
V{N{S{V 7.6 18.7 2.5

Table 1.2: Human vs machine stop classi�cation, after [31]: Comparing the baseline
system from Chapter 3 with Lamel's perceptual results[41]

extracted from TIMIT. Machine comparisons with Lamel's results were reported by

this author in [31]. The comparisons are summarized in this section. Lamel's percep-

tual results are broken down according to phonetic context. We will consider three

phonetic contexts, namely syllable-initial stops in a vowel-stop-vowel sequence, vowel-

fricative-stop-vowel sequences, and non-syllable-initial stops in homorganic nasal clus-

ters. Only short speech segments of three phones (V{S{V) or four phones (V{F{S{V

and V{N{S{V) were presented to the listener. These sequences were sometimes across

word boundaries, so listeners could not use lexical, syntactic, or semantic information.

We obtained a list of the testing tokens so that we could use the same set. We trained

our classi�er on speakers that were not in the test set under consideration to ensure

that the system remains speaker-independent. The machine classi�er is the baseline

system which will be presented in Chapter 3. The system was trained on stops from

all contexts to provide a context-independent result.

Table 1.2 summarizes the results. For syllable-initial singleton stops followed by a

vowel, Lamel reports that human listeners achieved 3.4% error. The machine classi�er

performed more than three times worse, obtaining 11.3% error. For vowel-fricative-

stop-vowel sequences, human listeners obtained 12.2% error, while the machine clas-

si�cation performed more than two and a half times worse, obtaining 32.9% error.

For non-syllable-initial stops in homorganic nasal clusters, human listeners obtained

7.6% error on TIMIT tokens, while the machine obtained 18.7% error, which is two

and a half times worse than the humans.

These results indicated that, for stop consonants, there is a signi�cant amount of
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low-level acoustic phonetic information which the automatic classi�er is not e�ectively

extracting. This experimental outcome is consistent with results in the literature com-

paring human and machine performance in a variety of speech recognition tasks [54].

These results motivated our attempts to extract more low-level acoustic-phonetic

information from the speech signal through the use of heterogeneous measurements.

1.3.2 Time-Frequency Resolution Considerations

Analysis of the performance of classi�cation systems shows that within-phone-class

performance is dependent upon the time-frequency resolution of the Fourier analysis.

Furthermore, the optimal settings for individual phone classes di�er substantially [31].

Figure 1-1 shows stop and nasal classi�cation error versus the Hamming window

duration of the short-time Fourier analysis. Stop classi�cation is optimized with

increased time resolution, while the nasal classi�cation performance favors increased

frequency resolution. This result indicates that using acoustic measurements with

a single �xed time-frequency resolution is suboptimal, and suggests that the use of

heterogeneous measurements may lead to classi�cation improvements.

1.3.3 Typical Classi�er Confusions

Figure 1-2 is a bubble plot of a confusion matrix from a TIMIT phonetic classi�-

cation experiment. Nearly 80% of the confusions occur by choosing an alternative

within the same manner class.3 Another 7% occur due to confusions involving the

closure/silence class. This illustrates that phonetic classi�cation can be broken down

into the subproblems of vowel classi�cation, nasal classi�cation, etc. Performance im-

provements within these subtasks should result in overall performance improvements,

since there is only a small amount of \leakage" error which occurs between di�erent

subclasses. In general, the lower the error between classes, the greater con�dence

we can have that subtask improvement will lead to overall improvement. Thus, one

might consider an easier breakdown into classes, such as sonorants, obstruents, and

3See Chapter 2 for a listing of the phonetic labels with their manner class membership.
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Figure 1-1: Comparison of within-class stop and nasal classi�cation as a function of
Hamming window duration. The vertical bars show one standard deviation in the
performance calculated over �ve trials of mixture model training.

silence.

The hierarchical methods presented in this thesis directly pursue the approach

of improving classi�cation within phonetic manner classes. The committee-based

methods do not do this directly.

1.4 Thesis Structure

This thesis examines new techniques in acoustic-phonetic modeling of speech. Chap-

ter 2 provides background information for the experimental work. Chapter 3 presents

hierarchical approaches. Chapter 4 presents acoustic measurements designed for use

in committee-based systems, and presents several committee-based and hybrid tech-

niques for combining multiple classi�ers. Chapter 5 presents experiments evaluating

the various classi�er combination techniques in the task of TIMIT phonetic classi-
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Figure 1-2: TIMIT phonetic classi�cation confusions, with radii linearly proportional
to the error. The largest bubble is 5.2% of the total error.

�cation. In addition, this chapter contains TIMIT phonetic recognition results and

word recognition results on utterances spoken to MIT's jupiter weather information

system [101]. Chapter 6 contains the design and results from perceptual experiments

with stop consonants, comparisons with machine classi�ers, and an analysis errors

made by machines. Chapter 7 summarizes the thesis and discusses contributions and

ideas for future work.
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Chapter 2

Experimental Background

This chapter contains background information for the experimental work presented

in this thesis. This includes information about the TIMIT and jupiter databases,

the summit speech recognition system, and the training of acoustic models.

2.1 The TIMIT Database

The TIMIT acoustic-phonetic continuous speech corpus [40] was recorded at Texas

Instruments (TI), transcribed at the Massachusetts Institute of Technology (MIT),

and veri�ed and prepared for CD-ROM production by the National Institute of Stan-

dards and Technology (NIST). It contains speech from 630 speakers representing 8

major dialect divisions of American English, each speaking 10 phonetically-rich sen-

tences. There are 438 male speakers and 192 female speakers. The corpus includes

the speech waveform �les with corresponding time-aligned orthographic and phonetic

transcriptions.

2.1.1 TIMIT Phones and Phone Classes

Table 2.1 shows the IPA and ARPAbet symbols for the 61 phones in the TIMIT

corpus. The ARPAbet symbols will be used throughout the thesis. In accordance

with common practice [43], we collapsed the 61 TIMIT labels into 39 labels before
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IPA ARPAbet Example IPA ARPAbet Example
[�] aa bob [+] ix debit
[�] ae bat [iy] iy beet
[�] ah but [��] jh joke
[=] ao bought [k] k key
[�w] aw bout [k ] kcl k closure
[�] ax about [l] l lay
[�h] ax-h potato [m] m mom
[�] axr butter [n] n noon
[�y] ay bite [8] ng sing
[b] b bee [D~] nx winner
[b ] bcl b closure [ow] ow boat
[�c] ch choke [oy] oy boy
[d] d day [p] p pea
[d ] dcl d closure [ ] pau pause
[�] dh then [p ] pcl p closure
[D ] dx muddy [b] q glottal stop
[�] eh bet [r] r ray
[lj] el bottle [s] s sea
[mj] em bottom [�s] sh she
[nj] en button [t] t tea
[8j] eng Washington [t ] tcl t closure

[ ] epi epenthetic silence [S] th thin
[� ] er bird [V] uh book
[ey] ey bait [uw] uw boot
[f] f f in [�u] ux toot
[g] g gay [v] v van
[g ] gcl g closure [w] w way
[h] hh hay [y] y yacht
[$] hv ahead [z] z zone
[*] ih bit [�z] zh azure
- h# utterance initial and �nal silence

Table 2.1: IPA and ARPAbet symbols for phones in the TIMIT corpus with example
occurrences
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scoring. The mapping is shown in Table 2.2. In addition, glottal stops were ignored

for classi�cation experiments, but included for recognition experiments. We have

decided to divide the TIMIT phonetic labels into 6 broad, manner classes: vowels

and semivowels (VS), nasals and 
aps (NF), strong fricatives (SF), weak fricatives

and aspirants (WF), stops (ST), and closures. Alternatively, we have partitioned the

phones into three broad classes: sonorants (SON), obstruents (OBS), and silences

(SIL). Table 2.3 shows the membership of each of these phonetic classes.

1 iy 20 n en nx
2 ih ix 21 ng eng
3 eh 22 v
4 ae 23 f
5 ax ah ax-h 24 dh
6 uw ux 25 th
7 uh 26 z
8 ao aa 27 s
9 ey 28 zh sh
10 ay 29 jh
11 oy 30 ch
12 aw 31 b
13 ow 32 p
14 er axr 33 d
15 l el 34 dx
16 r 35 t
17 w 36 g
18 y 37 k
19 m em 38 hh hv

39 bcl pcl dcl tcl gcl kcl q epi pau h# not

Table 2.2: Mapping from 61 classes to 39 classes for scoring of results, after [43].

2.1.2 TIMIT Data Sets

The sentences in the TIMIT corpus are divided into three types: dialect (SA),

phonetically-compact (SX), and phonetically-diverse (SI). The dialect sentences were

designed to reveal the dialectical variation of the speakers, and were read by all 630
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# TIMIT
Phone Class labels TIMIT labels

Vowel/Semivowel (VS) 25 aa ae ah ao aw ax axh axr ay eh er ey ih
ix iy ow oy uh uw ux el l r w y

Nasal/Flap (NF) 8 em en eng m n ng nx dx
Strong Fricative (SF) 6 s z sh zh ch jh
Weak Fricative (WF) 6 v f dh th hh hv
Stop (ST) 6 b d g p t k
Closure (CL) 9 bcl dcl gcl pcl tcl kcl epi pau h#

Sonorant (SON) 33 Vowel/Semivowel + Nasal/Flap
Obstruent (OBS) 18 Strong Fric + Weak Fric + Stop
Silence (SIL) 9 Same as Closure

Table 2.3: Phonetic subsets which will be used in subsequent esperiments.

speakers. The two dialect sentences were \She had your dark suit in greasy wash

water all year." and \Don't ask me to carry an oily rag like that." The phonetically-

compact (SX) sentences were hand-designed to be phonetically comprehensive as well

as compact, in the sense of brevity. The phonetically diverse (SI) sentences were se-

lected from existing text sources. Table 2.4 indicates the number of unique sentence

orthographies of each type, the number of speakers per unique sentence orthography,

and the number of sentences of each type spoken by each speaker.

Sentence # Speakers/ # Sentences/
Type # Sentences Sentence Total Speaker

Dialect (SA) 2 630 1260 2
Compact (SX) 450 7 3150 5
Diverse (SI) 1890 1 1890 3

Total 2342 - 6300 10

Table 2.4: TIMIT speech material according to sentence type.

The core test set was selected to include 2 males and 1 female from each of the 8

dialect regions. Table 2.5 shows the 24 speakers in the core test set, along with their

dialect region. There are 8 texts for each speaker (dialect sentences were excluded),

for a total of 192 utterances in the core test set.
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Dialect Speakers

New England mdab0 mwbt0 felc0
Northern mtas1 mwew0 fpas0
North Midland mjmp0 mlnt0 fpkt0
South Midland mlll0 mtls0 fjlm0
Southern mbpm0 mklt0 fnlp0
New York City mcmj0 mjdh0 fmgd0
Western mgrt0 mnjm0 fdhc0
Army Brat mjln0 mpam0 fmld0
(moved around)

Table 2.5: 24 speakers in the TIMIT core test set, with their dialect region.

1 faks0 11 fdac1 21 fjem0 31 mgwt0 41 mjar0
2 mmdb1 12 mmdm2 22 mpdf0 32 fcmh0 42 fkms0
3 mbdg0 13 mbwm0 23 mcsh0 33 fadg0 43 fdms0
4 fedw0 14 mgjf0 24 mglb0 34 mrtk0 44 mtaa0
5 mtdt0 15 mthc0 25 mwjg0 35 fnmr0 45 frew0
6 fsem0 16 mbns0 26 mmjr0 36 mdls0 46 mdlf0
7 mdvc0 17 mers0 27 fmah0 37 fdrw0 47 mrcs0
8 mrjm4 18 fcal1 28 mmwh0 38 fjsj0 48 majc0
9 mjsw0 19 mreb0 29 fgjd0 39 fjmg0 49 mroa0
10 mteb0 20 mjfc0 30 mrjr0 40 fmml0 50 mrws1

Table 2.6: 50 speakers in the TIMIT development set.

The NIST \complete" test set was formed by including all 7 repetitions of the SX

texts in the core test set. This procedure resulted in adding another 144 speakers to

the core set, for a total of 168 speakers in the complete test set. This set was not used

in this thesis. The reason for this is that we made use of a development set which

overlaps with this de�nition of the \complete" test set.

The NIST training set consists of the 462 speakers which are not included in

either the \core" or \complete" test sets. With the exception of the dialect (SA)

sentences, which are excluded from classi�cation and recognition experiments, there

is no overlap between the texts read by the training and testing speakers.

We made extensive use of a 50-speaker development set. The core set was reserved
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Set # Speakers # Utterances # Hours

Train 462 3,696 3.14
Development 50 400 0.34
Core Test 24 192 0.16
\Full" Test 118 944 0.81

Table 2.7: Number of speakers, utterances, and hours of speech in the TIMIT training,
development, core test, and \full" test sets.

462-speaker 50-speaker 24-speaker 118-speaker
Phones Train Development Core \full" Test

VS 58,840 6,522 3,096 15,387
NF 14,176 1,502 731 3,566
SF 13,157 1,326 661 3,169
WF 8,990 1,014 467 2,323
ST 16,134 1,685 799 4,022
CL 28,928 3,008 1,461 7,230
glottal(q) 2,685 277 118 650

Total 142,910 15,334 7,333 36,347

Table 2.8: Token counts in phonetic subclasses for the TIMIT training, development,
core test, and \full" test sets.

for �nal testing in order to avoid biasing results toward the core set. Thus, experi-

ments for system design and modi�cation were performed using the development set.

The speakers in this set are disjoint from both the training set and the core test set.

Table 2.6 lists the 50 speakers in the development set. In Chapter 3, we make use of a

118-speaker test set which consists of the \complete" test set, minus our development

set. We refer to this 118-speaker set as the \full" test set.

Table 2.7 summarizes the number of speakers, the number of utterances, and the

number of hours of speech in each of the sets used in the experiments in this thesis.

Table 2.8 indicates the number of tokens in each of the data sets. These totals are

helpful for the detailed results in Section 5.1.3, where the exact number of errors is

reported along with the percent error.
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2.2 The Jupiter Database

Word recognition experiments were performed on the database associated with the

jupiter telephone-based weather information system [101, 29]. Jupiter allows a

user to access and receive on-line weather information over the phone. The system

has weather information for more than 500 cities, mostly within the United States,

but also selected major cities around the world. It can give a weather report for a par-

ticular day or several days, and answer speci�c questions about weather phenomena

such as temperature, wind speed, precipitation, pressure, humidity, sunrise times, etc.

Table 2.9 shows an example dialogue between a user and jupiter. Data has been

collected from calls made to the system via a toll-free number. Apart from a small

amount of read speech collected for initial system development, these utterances are

spontaneous speech from self-trained or untrained users.

Table 2.10 indicates the number of utterances and the number of hours of speech

in the training and test sets. From the standpoint of the number of hours of speech,

the jupiter corpus is considerably larger than the TIMIT corpus. The recognition

vocabulary had 1893 words. A class-bigram language model was used, which has

a perplexity of 15.2 on the test set. The test set included only within-vocabulary,

spontaneous utterances collected from the operational system.

Experiments using the jupiter database are included in order to demonstrate

that the acoustic-phonetic modeling techniques developed in this thesis generalize to

word recognition. In addition, at the same time, these experiments show that these

techniques are e�ective in a telephone-bandwidth acoustic environment.

2.3 The Summit Speech Recognition System

The experiments in this thesis were carried out using the summit segment-based

speech recognizer [27]. One of the potential advantages of a segment-based approach

over conventional frame-based methods is that it provides more 
exibility in choosing

what acoustic attributes to extract, and where to extract them from the speech signal.
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User: Hello, what is the weather in Philadelphia today?
jupiter: \In Philadelphia today: partly sunny and hot with 30 percent chance
of thunderstorms afternoon. high mid 90s center city. tonight: partly cloudy with
30 percent chance of thunderstorms evening. lows mid or upper 70s center city. Is
there something else?"
User: What about the hurricane?
jupiter: \Hurricane advisories have been issued for the following places today:
South Carolina, and Georgia. Please choose one if you'd like to know more."
User: How about South Carolina?
jupiter: \Hurricane advisories have been issued for the following places in South
Carolina today: Charleston, and Myrtle Beach. Please choose one if you'd like to
know more."
User: What what is the wind speed in Atlantic City New Jersey?
jupiter: \In Atlantic City today: wind southwest 15 miles per hour. tonight:
wind southwest 10 miles per hour. What else?"
User: What is it like in San Francisco?
jupiter: \In San Francisco tonight: coastal low clouds and fog spreading over the
city through the night. lows 50s. today: low clouds and patchy fog most areas.
high 60s the coast and low 70s in the warmest areas. tonight. low clouds spreading
in the evening over the city. lows 50s. Can I help you with something else?"
User: What about Chile?
jupiter: \I know of only one city in Chile: Santiago. today: partly cloudy. high
59 and low 40. Is there something else I can do for you?"

Table 2.9: Example of user interaction with the JUPITER weather information
system.

It is believed that this 
exibility enhances the system's ability to take full advantage

of the acoustic-phonetic information encoded in the speech signal.

The essential element of the segment-based approach is the use of explicit seg-

mental start and end times in the extraction of acoustic measurements from the

speech signal. In order to implement this measurement extraction strategy, segmen-

tation hypotheses are needed. The summit system has made use of a variety of

segmentation algorithms [28, 7, 46] for producing segmentation hypotheses. In one

algorithm [28, 46], major segment boundaries are hypothesized when a measure of

spectral change exceeds a global threshold. Minor segment boundaries are hypothe-

sized between the major boundaries based again upon spectral change, but this time
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Data Set # Utterances # Hours

Train 17,807 16.2
Test 1,806 1.6

Table 2.10: Number of utterances and number of hours of speech in the training and
test sets used for the jupiter word recognition experiments.

utilizing a local threshold which depends on the analysis of the signal between the

major boundaries. All segment boundaries between major boundaries are fully in-

terconnected to form a network of possible segmentations. The size, or depth, of

the network is determined by the thresholds. This segmentation algorithm may be

referred to as \acoustic segmentation," since it depends on acoustic distance met-

rics. The jupiter word recognition experiments presented in this thesis make use

of the acoustic segmentation. In more recent work [7, 46] a technique called \prob-

abilistic segmentation" has been developed which produces a segment graph as a

result of frame-based recognition processing. This recognition processing does not

necessarily need to be full word recognition, but might instead be phonetic recog-

nition, or even further backed-o� to phonetic broad-class recognition. In general, it

has been found that probabilistic segmentation techniques produce much more accu-

rate segment networks than acoustic segmentation techniques. The TIMIT phonetic

recognition experiments in this thesis all make use of probabilistic segmentation.

Frame-based measurements from the speech signal give rise to a sequence of obser-

vations. Since there is no overlap in the observations, every path through the network

accounts for all observations. In contrast, segment-based measurements from a hy-

pothesized segment network lead to a network of observations. For every path through

the network, some segments are on the path and others are o� the path. To maintain

probabilistic integrity when comparing di�erent paths it is necessary for the scoring

computation to account for all observations by including both on-path and o�-path

segments in the calculation. In [29], all o�-path segments are accounted for by the

use of a single antiphone model. In [7], o�-path segments are accounted for by the
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use of near-miss models.1 The TIMIT phonetic recognition experiments presented in

this thesis make use of both antiphone and near-miss modeling techniques.

2.4 Training of Acoustic Models

Throughout this thesis, normalization and principal components analysis were per-

formed on the acoustic measurement vectors in order to whiten the space prior to

modeling. The whitened measurement vectors were modeled using mixture distribu-

tions composed of multivariate Gaussian probability density functions. The general

form of the n-dimensional Gaussian probability density function (pdf) is:

N (~f ;�;�) =
1

(2�)n=2j�j1=2
exp

�
�
1

2
(~f � ~�)T��1(~f � ~�)

�
(2.1)

where ~� is the n-dimensional mean of the distribution, and � is the n� n covariance

matrix. A mixture Gaussian pdf containing M components is given by

p(~f) =
MX
m=1

!mN (~f ;�m;�m) (2.2)

where the mixture weights, !m, satisfy

MX
m=1

!m = 1 (2.3)

0 � !m � 1: (2.4)

The use of M Gaussian kernels in a mixture Gaussian pdf may be referred to as \M

components," \M mixture components," or even \M mixtures," although the �nal

form is not preferable since it can be ambiguous in some contexts.

In most of the experiments reported in this thesis, the covariance matrix was

restricted to be diagonal. In comparison with full covariance Gaussian kernels, the use

of diagonal covariance Gaussian kernels enables the use of more mixture components

1Appendix B explains antiphone modeling and near-miss modeling in greater detail.
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because there are many fewer parameters to train per component. In addition, the

computations required, per component, for training and testing become simpler and

require fewer operations.

Gaussian mixture models were trained by a two-step process. In the �rst step,

the K-means algorithm [21] was used to produce an initial clustering of the data.

In the second step, the results of the K-means algorithm were used to initialize the

Estimate-Maximize (EM) algorithm [19, 21] which iteratively maximizes the likeli-

hood of the training data and estimates the parameters of the mixture distribution.

The EM algorithm converges to a local maximum. There is no guarantee of achiev-

ing the global optimum. The outcome of the EM algorithm is highly dependent on

the initial conditions obtained from the K-means algorithm. In order to improve

the performance and robustness of the mixture models, we used a technique called

aggregation, which is described in Appendix C.

2.4.1 Acoustic Modeling Parameters

The acoustic modeling parameters used for the various experiments in this thesis

are summarized in Table 2.11. The modeling parameters were standardized for the

committee-based and hybrid experiments in Chapters 4 and 5. The aggregation of 4

models at a time was a design decision based on the tradeo� between the increased

performance versus greater computation that comes with aggregation. In general,

aggregation produces diminishing returns as more and more models are aggregated.

Thus, the aggregation of a very large number of acoustic models as in Chapters 3 and

6 is not usually advisable. Those large models were a result of experiments testing

the limits of how aggregation a�ects performance. The particular number of models

aggregated varies because it was chosen to optimize performance on the development

set.
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Maximum # Minimum # # of
Full or Mixture Data Vectors Models

Experiment/ Diagonal Components per per Mixture Aggre-
Measurements Covariance Phonetic Unit Component gated

Chapter 3:
SB Full 12 500 20
SV Full 12 500 27
SN Full 12 500 23
SS Full 12 300 20
SF Full 12 500 20
VTLN:SB Diagonal 96 61 8

Chapters 4 & 5:
TIMIT:
S1-S8,SVa,SN,SS,SF Diagonal 96 61 4
B1-B5 Diagonal 100 10 4
JUPITER:
B1,B3a,B4 Diagonal 50 50 1

Chapter 6:
System A Full 12 500 20
System B Full 12 300 20
System C Full 12 500 10
Heterogeneous As in Chapters 4 & 5

Table 2.11: Table of the acoustic modeling parameters used for the experiments in
this thesis, except where indicated otherwise in Section 5.1.4.
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Chapter 3

Hierarchical Methods:

Measurements, Classi�er

Structures, and Experiments

Hierarchical approaches to the problems of measurement selection and classi�er com-

bination are presented in this chapter. Hierarchical approaches emphasize the notion

that the overall phonetic classi�cation task can be subdivided into smaller tasks.

Figure 1-2, as discussed previously, shows that most automatic classi�cation errors

occur within the correct phonetic manner class. If the division into subtasks can be

performed reliably, then it follows that a hierarchical scheme can be used to take

advantage of classi�ers which are designed for individual subtasks. This is the strat-

egy which is explored in this chapter. Related work and the design of class-speci�c

acoustic measurements are discussed �rst, followed by a presentation of hierarchical

approaches for the combination of classi�ers. Class-speci�c vocal tract length nor-

malization is presented as a variation on the idea of using di�erent measurements

for di�erent phonetic classes. All of these techniques are evaluated on the TIMIT

phonetic classi�cation task.
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3.1 Related Work

There have been a number of attempts to solve the phonetic classi�cation problem by

a hierarchical approach. Some early work in this direction addressed the problem of

isolated-word, alphanumeric classi�cation. This task has only a 36-word vocabulary

(the English letters A through Z and the digits zero through nine), yet it is di�cult

because all but three of the items are monosyllabic, and it contains several highly

confusable subsets [42]. The following six confusable subsets have been identi�ed [79]:

(a) fB C D E G P T V Z 3g, (b) f A J K 8 Hg, (c) fL M Ng, (d) fF S X 6g, (e)

fI Y 5g, and (f) fQ U 2g. Nearly all errors occur within these sets. The �rst of

these confusable sets is known as the \E set." This is analogous to the existence

of confusable sets pointed out in Figure 1-2 for the overall phonetic classi�cation

problem. In both cases, the observation suggests a hierarchical approach.

In a paper by Cole, Stern, and Lasry (1986) [17], a hierarchical system called

feature is described which addresses the problem of classifying letters and digits.

They make reference to earlier work by Rabiner and Wilpon (1981) [80] which used

a two-pass approach for the same problem. The �rst pass assigned the utterance to

one of a group of pre-de�ned confusable sets. The second pass attempted to provide

optimal separation among members in each class. Recognition improvements of 3%

to 7% were obtained. Bradshaw, Cole, and Li [4] (1982) used a similar procedure on

the \E set," and obtained a decrease in recognition error from 37% to 16% on that

set. Returning again to the feature system, it made use of Bayesian decisions at

each node of a hierarchical decision tree. The decisions at each node were based upon

a subset of 50 acoustic measurements. Each node could use a di�erent subset based

upon which were considered most bene�cial for discrimination among the letters at

that node. The overall set of 50 acoustic measurements were developed through the

incorporation of knowledge from spectrogram reading. Their �nal results on an 8-

speaker database resulted in a speaker-independent error rate of 11% on the task

of classifying alphabetic letters (without the numbers). The system achieved 16.7%

error on the confusable \E set." Regardless of whether one deemed the feature
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system to be a success or not, there are several observations that are relevant for the

work in this thesis. First, the use of a Bayesian hierarchical decision tree classi�er is

computational equivalent to the MAP hierarchical approach presented in this thesis,

although the theoretical justi�cation is not identical. Second, the feature system did

not address the full phonetic classi�cation problem. Third, in the years following 1986,

hierarchical approaches were not widely used in the speech recognition community.

More recently, Chun [13] (1996) explored hierarchical approaches for the full pho-

netic classi�cation problem. Although Chun's systems produced small gains of less

than half a percent in absolute performance, none of the changes were reported to be

statistically signi�cant. For vowels, the baseline MFCC-based acoustic measurements

were �rst replaced by a measurement vector consisting of frequencies, amplitudes,

and derivatives of formants, log duration, and fundamental frequency. This measure-

ment vector performed worse than the baseline. This is not surprising, since formant

measurements are known to be subject to greater risk of severe measurement errors,

such as mistaking the third formant for the second formant. Chun's system did not

have a mechanism for handling these types of formant measurement errors. As an

alternative, the MFCC-based feature vector was augmented with fundamental fre-

quency. Measurement vectors for improving the classi�cation of the [s z],[sh zh], and

[ch jh] pairs were also explored, again without producing any statistically signi�cant

improvements.

In [96], Zahorian (1997) reports TIMIT phonetic classi�cation results using a single

large neural network (LNN) versus using binary-pair partitioned neural networks

(BPP). The phones were scored using 39 phone classes, so there were \39 choose

2" pairs of phones, which is 741. One small network was trained for each of these

741 phone pairs. The LNN took 8 times longer to train than the BPP system. The

BPP structure made it possible to use di�erent acoustic measurements for each of

the pairwise phonetic distinctions. Two experiments were performed. In the �rst

experiment, the LNN and BPP systems used the same set of 60 measurements. The

LNN obtained 23.0% error on the core set, which was slightly better than 23.5% error

for the BPP. In the second experiment, 35 measurements were selected for each phone
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pair, out of a pool of 96 measurements. The measurements were selected in an attempt

to optimally discriminate between each pair of phones. The performance with the

\best 35" measurements was 24.3% error, which is only a small drop in performance

considering the drop in dimensionality from 60 to 35. Some other experiments were

also reported, but the use of phone-pair speci�c measurements never surpassed the

23.0% error obtained using a single set of 60 measurements.

In summary, interest in hierarchical approaches for phonetic classi�cation was

strong in the late 1970's and early 1980's. However, papers from that time generally

did not address the complete phonetic classi�cation task. In addition, hierarchical

approaches have been relatively uncommon since that time. The recent work by

Chun and Zahorian did not produce statistically signi�cant improvements in perfor-

mance. Thus, at the time of the work performed in this thesis, there was a de�nite

lack of recent experimental studies using hierarchical approaches which demonstrate

improvements in performance in the full phonetic classi�cation task.

3.2 Heterogeneous Measurements for Hierarchical

Systems

There are at least two potential advantages to the use of hierarchical methods with

class-speci�c measurements. First, the use of hierarchical measurements provides

the opportunity to develop diverse measurements which focus on the phonetically

relevant information for discriminating among sounds in a particular phone class.

For example, stop measurements could focus on the burst. Vowel measurements

could either encode the gradual temporal evolution of the formants or attempt to

capture vowel landmarks [86, 85], i.e., target formant locations. Second, class-speci�c

measurement design permits the removal of dimensions that are unnecessary in a

particular sound class, thus making better use of the training data and reducing the

computational requirements of the system. For example, in the experiments in this

chapter we �nd 50-dimensional stop consonant measurements which perform better
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than the baseline 61-dimensional measurements.

The measurements used in this section are calculated using a two step process.

The �rst stage is referred to as frame-based processing. In this stage, a spectral rep-

resentation of the speech signal is calculated at regular intervals (usually 5 ms in this

work). The second stage is segment-level processing. In segment-level processing, a

frame-based spectral representation and knowledge of hypothesized segment bound-

aries are combined to produce segmental measurements. We will examine these two

stages separately.

3.2.1 Frame-based Spectral Representations

Short-time spectral representations of the speech signal have been widely used for

speech recognition. In this thesis we make use of two well-known representations, Mel-

frequency cepstral coe�cients (MFCCs) [61] and perceptual linear prediction cepstral

coe�cients (PLPCCs) [34], as well as a third MFCC-like representation described

in [96, 90, 68] which we refer to as \Discrete Cosine Transform Coe�cients" (DCTCs).

In this chapter, we will restrict ourselves to MFCCs and DCTCs.

The steps used to calculate the MFCCs can be summarized as follows:

1. Remove the DC component and normalize the magnitude of the waveform.

2. Preemphasize the waveform with the �nite impulse response �lter

y[n] = x[n]� 0:97x[n� 1]:

3. Calculate the magnitude squared of the STFT with a frame interval of 5 ms

and a Hamming window of length 10{30 ms.

4. Compute the Mel-Frequency Spectral Coe�cients (MFSCs) using inner prod-

ucts with triangular basis functions, illustrated in Figure 3-1. These MFSCs

are designed to incorporate a Mel-warping of the frequency axis [77]

f 0 = 2595 log10

 
1 +

f

700

!
:
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5. Compute the logarithm of the MFSCs, 10 log10(�).

6. Take the cosine transform of the log MFSCs to obtain the Mel-frequency cepstral

coe�cients (MFCCs). Let s[k] be the log MFSCs for k = 0; 1; : : : ; K � 1, then

the MFCCs c[k] are given by

c[m] =
K�1X
k=0

cos

 
�m(k � 1

2
)

K

!
s[k]:
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Figure 3-1: Illustration of 40 \Triangular" Mel-scale basis vectors which were used
for the calculation of MFSCs from the magnitude of the STFT.

The DCTCs are similar to the MFCCs, in that each step of processing has an

analogous step in the MFCC calculation, except for the morphological dilation in

the fourth step. The steps used to calculate the DCTCs [96] can be summarized as

follows:

1. Remove DC component and normalize the magnitude of the waveform.

2. Preemphasize the waveform with the in�nite impulse response �lter

y[n] = x[n]� 0:95x[n� 1] + 0:494y[n� 1]� 0:64y[n� 2]:
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3. Take the magnitude squared of the STFT at a 3ms frame rate and a 10 ms

Hamming window.

4. Apply a morphological dilation operation [68] to the output of the magnitude of

the STFT. This has the e�ect of emphasizing local spectral peaks and eliminat-

ing local minima. To de�ne this operation, let f be a continuous independent

variable, and let B represent the width over which the dilation is performed.

Given a function s[f ], the dilated function sd[f ] is de�ned for each fo as

sd[fo] = max
jf�foj<B

s[f ]:

For the discrete case, we perform a discrete maximization analogously. The

dilation width is 80 Hz.

5. Compute the logarithm of the dilated STFT values, 10 log10(�).

6. Apply a bilinear-warped cosine transform in the frequency dimension. This is

analogous to combining the MFSC and MFCC transforms into a single step.

Figure 3-2 shows the shape of the �rst �ve of these basis vectors, using a bilinear

warp factor of 0:45.

The calculation of the PLPCCs is described in detail in [34]. This technique

incorporates three perceptual e�ects: the critical-band spectral resolution, the equal-

loudness curve, and the intensity-loudness curve. PLPCCs use a Bark-scale warping

of the frequency axis [83]

f 0 = 6 ln

8><>: f
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The purpose of this warping is analogous to that of the Mel-scale warping used for

MFCCs. PLPCC analysis makes use of linear prediction analysis to produce an all-

pole model of the spectrum, and is therefore model-based. Finally, the linear predic-

tion coe�cients are converted to cepstral coe�cients corresponding to the cepstrum

of the impulse response of the all-pole model.
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Figure 3-2: Illustration of basis vectors used to calculate the DCTCs, after [96].

3.2.2 Vocal Tract Length Normalization (VTLN)

Vocal tract length normalization (VTLN) has proved to be a useful method to account

for across-speaker variations in the speech signal [23, 44, 45, 91, 98, 99]. VTLN is an

e�cient form of speaker adaptation, in that it only requires one parameter per speaker.

In this work, we seek to extend the VTLN concept within a hierarchical framework

by allowing a small number of phone-class-speci�c parameters per speaker. At �rst,

it may seem counterintuitive to allow two or more VTLN warping parameters, since

clearly each speaker has only one vocal tract. However, this strategy is reasonable

because the relevant portion of the vocal tract can be di�erent for di�erent sounds. For

example, when producing an [s], the length of the cavity in front of the articulatory

constriction is crucial, but the length of the cavity behind the constriction is less

relevant. Furthermore, empirical results show that iterative optimization of the VTLN

warp parameters produces di�erent results for di�erent sound classes.

There are a variety of ways to implement VTLN. In each case, the fundamental

idea is to linearly warp the frequency axis of the speech spectral data. In these

experiments, the warping is implemented through interpolation of the short-time
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Fourier transform (STFT) representation for the signal. Let f represent the original

frequency axis, normalized such that f = 1 corresponds to � in the discrete-time

STFT. Let f 0 correspond to the warped frequency axis. Let k be the warp factor,

with k = 1:0 corresponding to no warping. Warp factors less than one correspond to

frequency compression, and are frequently chosen for female speakers. Male speakers

usually have warp factors greater than one, which corresponds to frequency expansion.

The mapping f ! f 0 is piecewise linear, given by

f 0 =

8><>: kf if 0 < f < `

hf + (1� h) if ` < f < 1

where ` = 0:875 and the slope h is given by h = (k(1 � `))=(k � `). The use of two

linear segments was suggested in [91]. Figure 3-3 illustrates this frequency warping

for several values of k.
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Figure 3-3: Illustration of frequency warping with warp factor ranging from 0.88 to
1.12, and l=0.875 determining boundary between the two linear segments.
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In the implementation, we want to produce the values of the STFT at

f 0 =
2n

N
; n = 0; 1; � � � ;

N

2
:

For each such f 0, we use the inverse mapping f 0 ! f to obtain f . Generally, the

DFT will not be calculated at exactly the desired frequencies. To obtain the desired

value, linear interpolation is performed based on the two neighboring values in the

calculated DFT. The bin resolution of the DFT should be large enough to achieve

good interpolation results. The bin resolution can be increased by zero-padding the

short-time section and taking a longer DFT. Note that increased bin resolution does

not increase the frequency resolution of the STFT. The frequency resolution is given

by the length and the shape of the data window. In these experiments there were

1024 frequency bins for normalized frequency in the range 0 � f � 1 to use in the

interpolation.

3.2.3 Segmental Measurements for Baseline System

A baseline classi�er was �rst established using homogeneous measurements. This

measurement set is based on previously reported phonetic classi�cation work [50, 13].

A 61-dimensional homogeneous measurement vector was calculated for each phonet-

ically labeled segment in the TIMIT transcriptions. These segmental measurements

were calculated from the frame-based MFCC measurements calculated with a 5 ms

frame rate and a 20.5 ms Hamming window. The measurement vector consisted of

three MFCC averages computed approximately over segment thirds (actually in a

3{4{3 proportion), two MFCC derivatives computed over a time window of 40 ms

centered at the segment beginning and end, and log duration. The derivatives of the

MFCC tracks were calculated using linear least-squared error regression. Let c[n; k]

represent the MFCCs, with k indexing the cepstral number in \quefrency" [2], and n

indexing the temporal sequence of frames. Let ni and nf represent the frame indices

for the start and end times of the derivative calculation, and let N = nf � ni + 1.
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Reference % of Hypotheses in the
Phone Partition Incorrect Phone Class
fSON,OBS+SILg 1.7
fSON,OBS,SILg 2.3
fVS,NF,ST,SF+WF+CLg 3.4
fVS,NF,SF,WF,ST,CLg 4.1

Table 3.1: Shows the percentage of errors made by the baseline classi�er when dividing
the development set into each of several phonetic partitions.

The expression for the derivative [10, 78, 66] is:

�(k) =
NSxy � SxSy
NSxx � S2

x

where Sx =
n=nfX
n=ni

n; Sy =
n=nfX
n=ni

c[n; k]; Sxx =
n=nfX
n=ni

n2; Sxy =
n=nfX
n=ni

n c[n; k].

This baseline con�guration obtained classi�cation errors of 21.1% and 21.6% on

the development and core test sets, respectively. These results will be used for com-

parison with phone-class-speci�c measurements described in the next section.

3.2.4 Choosing Phonetic Subsets

Measurement design was carried out in two stages. First, a partitioning of the phones

into subsets was chosen. Second, measurements were developed for each of the chosen

subsets.

Consider the �rst stage, where the division of the phones into subsets was cho-

sen. One would like to have many di�erent subsets in order to make the acoustic

measurements as speci�c as possible to particular phonetic confusions. On the other

hand, one would like a baseline classi�er to be able to reliably sift unknown phonetic

tokens into the proper phone class. Placing tokens into the correct class becomes

more and more di�cult as the number of classes increases. Thus, these conditions

are con
icting, and therefore the design will try to achieve a compromise solution. In

the experiments, the phonetic classes that were considered were: sonorants (SON),
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Reference % of Hypotheses % of Hypotheses % of Phonetic
Phone which were which were Errors which were
Class Out-of-Class Phonetic Errors Out-of-Class
SON 1.4 26.6 5.2
OBS 3.6 23.7 15.3
SIL 3.2 3.2 100.0
OBS+SIL 2.1 14.9 13.9
VOW 1.4 27.7 5.2
NAS 6.8 21.5 31.6
SFR 2.3 20.7 11.3
WFR 19.9 27.0 74.2
STP 5.8 24.2 23.8
SFR+WFR+SIL 4.0 12.0 33.0
SFR+WFR+ 2.4 14.1 17.1

SIL+NAS

Table 3.2: For each reference phone class on the left, the three columns show what
percentage of the hypotheses were outside of the given reference phone class, what
percentage of the hypotheses were phonetic errors, and what percentage of the pho-
netic errors were out-of-class.

obstruents (OBS), silents (SIL), vowels/semivowels (VS), nasals/
aps (NF), weak

fricatives (WF), strong fricatives (SF), stops (ST), and closures (CL). Table 2.3

shows the membership of these classes. As usual in phonetic classi�cation experi-

ments, the glottal stop is ignored. Given these classes, partitions of the phone space

can be notated as fSON,OBS,SILg, fSON,OBS+SILg, fVS,NF,SF,WF,ST,CLg, or

fVS,NF,ST,SF+WF+CLg. Table 3.1 shows the errors that occur when the base-

line classi�er divides the development set into each of these partitions. The division

into only 2 or 3 classes given by the fSON,OBS+SILg or fSON,OBS,SILg partitions

achieve only 1.7 or 2.3% error, but these classes are so broad that a further division

into smaller subsets was desirable. The fVS,NF,SF,WF,ST,CLg partition was judged

to have a su�ciently small number of classes for class-speci�c measurement develop-

ment, but the number of errors was too high when the phones were partitioned into

these classes. Looking at Table 3.1, 4.1% error seems, on the surface, to be reliable

enough partitioning. This classi�er has an overall phonetic error rate of 21.1%, shown

later in Table 3.4. Since (21:1� 4:1)=21:1 = 0:81, this implies that 81% of the errors
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occur within the correct manner class. However, Table 3.2 shows the within-class

error performance in more detail, where it can be seen that 74% of the weak fricative

errors were in the wrong class. This was judged to be far too high a percentage.

To alleviate this problem, the weak fricatives, strong fricatives, and closures were

combined into a single class. This subset has 33% of the errors out-of-class, which

is much improved from 74%. More reduction in the percentage of out-of-class errors

could have been achieved by also merging the nasals with the fricatives and closures.

Phonetic knowledge tells us that there are very signi�cant di�erences between nasals

and fricatives, and thus it was desirable to keep them separate for the measurement

development.

3.2.5 Phone-class-speci�c Segmental Measurements

The results in Tables 3.1 and 3.2 led to the selection of the fVS,NF,ST,SF+WF+CLg

partition of the phones into four subsets for the purposes of measurement develop-

ment. These symbols represent phonetic manner classes, as de�ned in Table 2.3.

This partition is derived from the six manner classes except that the weak fricatives,

strong fricatives, and closures have been combined into a single class. In the follow-

ing paragraphs we describe phone-class-speci�c measurements and report within-class

classi�cation error on the development set. We compare the performance of these

measurements to the baseline and also report the McNemar [26] signi�cance level of

the di�erence.

For vowel/semivowel measurements, we used 62 dimensions. The �rst 60 dimen-

sions were calculated as in [96]. These involve calculation of MFCC-like frame-based

measurements, followed by a cosine transform in the time dimension to encode the

trajectories of the frame-based features. The use of a tapered, �xed length (300ms),

centered temporal window for the cosine transform results in capturing some con-

textual information which can be modeled in an unsupervised manner through the

mixtures in the Gaussian models. In addition to these 60 measurements, duration and

average pitch were also included for a total of 62 measurements. The pitch measure-

ment was calculated using a cepstral-based method. These measurements resulted in
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Measurement # STFT Spectral Temporal
Set Dims [ms] Representation Basis

Baseline (SB) 61 20.5 12 MFCCs 3 averages (3-4-3),
2 derivatives

Vowel/Semivowel 62 10 12 DCTCs 5 tapered cosines
(SV) 300ms wide
Nasal/Flap (SF) 62 28.5 12 MFCCs 3 averages (3-4-3)

2 derivatives
Stop (SS) 50 10 12 MFCCs 2 averages (halves)

2 derivatives
Fricative/Closure/ 62 26.5 12 MFCCS for averages 3 averages +
Silence (SF) 11 MFCCs for derivatives 2 derivatives

Table 3.3: Summary of baseline (SB) and hierarchical segmental measurements. See
text for full description, including additional dimensions such as energy, log duration,
zero-crossing rate, and low-frequency energy.

a vowel/semi-vowel error of 25.7% on the development set, which improves upon the

26.9% (0.02 signi�cance level) obtained by the baseline system, and is competitive

with previously reported results [82].

For nasals, baseline measurements were altered by changing the Hamming window

duration to 28.5 ms and adding a measure of average pitch, giving a total of 62

measurements per segment. These nasal-optimized measurements achieved 14.8%

on the development set, compared to 16.6% obtained by the baseline system (0.001

signi�cance level).

In our stop classi�cation experiments, we increased the time resolution by using

a 10 ms Hamming window, and used a 50 dimensional feature vector, composed of

MFCC averages over halves of the segment (24 dimensions), time-derivatives of the

MFCC tracks at the segment boundaries and at the start of the previous segment (24

dimensions), a measure of low-frequency energy in the previous segment (1 dimen-

sion), and log duration. We found that averaging over halves of the segment instead

of thirds did not cause a drop in performance for the stops. Due to smaller dimen-

sionality (50 dimensions), we adjusted the classi�er by lowering the minimum number

of tokens per Gaussian kernel from 500 to 300. In a six-way stop classi�cation task,
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these measurements obtained an error of 16.6% on the development set, compared to

20.4% for the baseline (10�4 signi�cance level), and compare favorably to previously

reported results [90].

For fricatives and closures, a 26.5 ms Hamming window was used for frame-based

calculations. Time derivatives of only 11 MFCCs (instead of 12) were extracted at

the segment boundaries. Three new measurements were added: the zero-crossing

rate, the total energy of the entire segment (which is similar but not the same as

the information in the �rst MFCC coe�cient), and a time derivative of the low

frequency energy at the beginning of the segment. This 62-dimensional measurement

set obtained 8.8% on the development set, compared to 9.1% for the baseline (0.1

signi�cance level).

Table 3.3 summarizes the key points about these measurement sets. In the table,

the measurement sets are given labels (SB, SV, etc.) for ease of reference.

3.3 Hierarchical Classi�er Combination

3.3.1 MAP Hierarchical Scoring

P (Cjj~f (0))

P (�ijCj; ~f
(1)
j )
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Figure 3-4: Portion of a hierarchical tree for classi�cation.

The second major challenge which must be addressed in order to use heterogeneous

measurements is to de�ne a framework for overall classi�cation which makes use of
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these diverse measurements. The goal of phonetic classi�cation is to determine the

most probable phone, ��, given the acoustic feature vector ~f . We can expand the

decoding procedure over a set of phone classes Ci according to the expression

�� = argmax
�

P (�j~f) = argmax
�

X
i

P (�jCi; ~f)P (Cij~f):

If each phone belongs to only one class, then the summation over i becomes trivial

since for each phone there is only one i such that P (�jCi; ~f) is nonzero.

In these expressions, ~f represents all of the measurements that might be used by

the system. Thus, each set of heterogeneous measurements is a subset of ~f . In fact,

we can cast the above decoding as a hierarchical process [13]. Thus, at level zero, a

single measurement set ~f (0) � ~f is used to determine the probability of membership

in class j at level one, that is

P (C
(1)
j j~f) � P (C

(1)
j j~f (0)):

In this expression we have decided to approximate P (C
(1)
j j~f) by P (C

(1)
j j~f (0)) based

on practical considerations, such as problems with high classi�er dimensionality and

super
uous measurement dimensions. These considerations led us to the assumption

that each class probability can be more accurately estimated in practice using a

subset of the features contained in ~f . This assumption does not necessarily hold from

a purely theoretical standpoint, where issues stemming from �nite training data can

be ignored. Continuing at level one, the feature set used to determine the conditional

probability of level two class membership can depend upon the conditioning level one

class index, j. We indicate the feature set dependence on j using the notation ~f
(1)
j .

Thus the conditional probability of level two class membership is obtained using the

approximation

P (C(2)
i jC(1)

j ; ~f) � P (C(2)
i jC(1)

j ; ~f (1)j ):

Using this notation and the above approximations, our previous decoding equation
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becomes

C
(2)
i� = argmax

i

X
j

P (C
(2)
i jC(1)

j ; ~f
(1)
j )P (C

(1)
j j~f (0)):

Figure 3-4 illustrates this decoding computation. This process can be iterated to as

many stages as desired. In the present implementation, the level two classes C
(2)
i are

the individual phones, so no further iteration is required.

3.3.2 Using Binary Decisions

The MAP hierarchical scoring procedure above makes a \soft-decision" at each node

of the tree. In contrast, we also implemented a procedure which �nds the maximum

score at each non-terminal level of the tree and only explores candidates further down

the tree from that point. This can be regarded as a variation of the MAP procedure.

Referring to Figure 3-4, it implies that

P (Cjj~f
(0)) =

8><>:
1 for j = jo

0 for j 6= jo

where

jo = argmax
j

P (Cjj~f
(0)):

3.4 Experimental Results

In this section, we examine the performance of the measurements and classi�er struc-

tures presented in this chapter in the task of TIMIT phonetic classi�cation.

3.4.1 TIMIT Phonetic Classi�cation Hierarchical Scoring

Tables 3.4 and 3.5 summarize the performance of the MAP hierarchical scoring tech-

nique. This MAP framework for combining heterogeneous measurements achieved

20.0% error on the development set compared to 21.1% for the baseline (10�5 sig-

ni�cance level), and was also used for �nal testing on the NIST core set to obtain

21.0%. When compared to the NIST core baseline of 21.6%, the signi�cance level
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% Error on dev set
Task Baseline Heterogeneous Signi�cance

Overall 21.1 20.0 0.00001
Vowel/Semivowel 26.9 25.7 0.02
Nasal/Flap 16.6 14.8 0.001
Stop 20.4 16.6 0.0001
Fric/Clos/Sil 9.1 8.8 0.1

Table 3.4: Classi�cation error on the 50 speaker development set

% Error on full test set
Task Baseline Heterogeneous Signi�cance

Overall 21.6 21.0 0.001
Vowel/Semivowel 27.8 27.3 0.18
Nasal/Flap 16.5 15.4 0.004
Stop 19.6 17.9 0.002
Fric/Clos/Sil 9.1 8.8 0.06

Table 3.5: Classi�cation error on the 118 speaker test set.

was 0:16. However, we suspected that the small size of the core set made signi�cance

testing somewhat coarse. Therefore, we also compared the baseline and heteroge-

neous framework results on the 118 speaker test set, which includes all data not in

the training or development sets, with results summarized in Table 3.5. The overall

results of 21.6% and 21.0% were the same as for the core set, but with better signi�-

cance levels. These results con�rm that heterogeneous measurements are producing

signi�cant improvements on independent testing data.

The above MAP framework allows for some interaction between the scores at

di�erent levels. Alternatively, we have implemented a strict framework in which the

�rst classi�er makes a hard decision about the level one class membership. This strict

framework also achieved 20.0% error on the development set, and fewer than 1% of

the testing tokens were classi�ed di�erently from the MAP framework. The strict

framework requires the computation of only one level one feature set ~f (1)j for each

segment, which provides an opportunity for computational savings compared to the
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MAP framework. This strict framework can be thought of as a strategy for pruning

the full MAP framework, and other pruning strategies could also be devised which

save computation with minimal e�ect on performance [13].

3.4.2 TIMIT Phonetic Classi�cation with Class-speci�c VTLN

Vocal Tract Length Normalization (VTLN) is an e�cient speaker normalization tech-

nique. We experimented with using phone-class-speci�c VTLN in order to determine

if there could be any bene�t from using a normalization factor in di�erent phonetic

classes. The baseline acoustic measurements described in this chapter were used in

all of these experiments.

VTLN warp factors for the training data were developed based on three di�erent

phonetic classes: sonorants (SON), obstruents (OBS), and sonorants and obstruents

together (S+O). Table 2.3 indicates the division of the TIMIT phone set into sonorant,

obstruent, and silence classes. Figure 3-5 indicates the trajectory of the average warp

factors over the training speakers under each training condition. There are di�erences

between the average male and female warp factors under each condition.

Figure 3-6 summarizes the error rate reduction that was achieved under the three

di�erent training conditions, for the case of using the reference transcription together

with 8 utterances for each speaker at testing time. Using the reference transcription

removes any possible deleterious e�ects from determining the testing warp factors on

incorrectly labeled data. We wanted to be sure to use correctly labeled data in order

to see if class-speci�c VTLN warpings provide any advantages over using a single

VTLN warp factor. Also, it can be seen from Table 3.6 that signi�cant error rate

reduction can also be achieved using hypothesized transcriptions and instantaneous

adaptation. For the overall and sonorant tasks, training the warp factors on sonorants

only is best. For the obstruent classi�cation task, VTLN warping produced only small

changes in performance under all three training conditions.

Before presenting more detailed results, the training and testing procedures will

be described. The warping of the training data was obtained using the following

procedure:
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1. Initialization: Assign one warping factor, kn to each training speaker. Let

kn(i) denote the warping factor for the The boundary models

n-th speaker on the i-th iteration. Initialize warp factors to 1.0, that is, kn(0) =

1:0 8 n.

2. Train models with current warp factors: Train models using kn(i).

3. ML choice of new warping factors: For each speaker, and for each warp

factor, obtain the acoustic likelihood of that speaker's training data. For each

speaker, �nd the warp factor which produces the maximum acoustic likelihood.

That speci�es kn(i + 1).

4. Increment i, and repeat steps 2 and 3 until the change in the warp factors is

below a threshold.

To make the training iterations speci�c to a particular phone class, such as sonorants,

only sonorants are used in step 3.

Once the warp factors for the training data have been determined by the procedure

above, models can be trained using the warped data. The testing procedure includes

three steps:

1. Transcribe using neutral warping: Obtain a transcription of the test data

using a warping factor of 1.0 on the test data, which is equivalent to no warping

2. ML search for warp factor. Using the transcription from the previous step,

select the warp factor which produces the highest acoustic likelihood.

3. Re-transcribe using the warp factor from ML search. The result of this

transcription is the �nal answer.

There are a number of variations on this procedure. In step 1, models trained on

warped data or unwarped data could be used. It is better to use models trained on

unwarped data, but it requires having two sets of models, since the models trained

on warped data will be used in step 2. In step 2, for development purposes, the
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reference transcription could be used instead of a hypothesized transcription. Testing

can also be done \instantaneously," where the warp factor for each testing utterance

is determined independently, or in \batch" mode, where a group of utterances which

are known to be from the same speaker are used to choose the warp factor. The

results will be given for both instantaneous adaptation and batch adaptation using

eight utterances at a time.

Sonorants               
Sonorants and Obstruents
Obstruents              

2 4 6 8 10 12 14 16 18 20
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Figure 3-5: Trajectory of the average warp factors of the training speakers as a
function of the training iteration. The legend indicates which phonetic labels were
used in the warp factor training procedure. Males and females are graphed separately.
Average male warp factors are greater than one, average female warp factors are less
than one.

Table 3.6 shows detailed absolute error rate performance on the development set

for a variety of training and testing conditions. The baseline classi�cation level of

21.7% is di�erent from the 21.1% in Table 3.4 because the classi�ers are di�erent.

61



0 10 20

−2

0

2

4

6

8

10

12

Training Iteration

Overall Classification
E

rr
or

 R
at

e 
R

ed
uc

tio
n 

(%
) 

in
 O

ve
ra

ll 
C

la
ss

ifi
ca

tio
n 

T
as

k

Warp Trained on:

Sonorants
Son & Obs
Obstruents

0 10 20

−2

0

2

4

6

8

10

12

Training Iteration

Sonorant Classification

E
rr

or
 R

at
e 

R
ed

uc
tio

n 
(%

) 
in

 S
on

or
an

t C
la

ss
ifi

ca
tio

n 
T

as
k

Warp Trained on:

Sonorants
Son & Obs
Obstruents

0 10 20

−2

0

2

4

6

8

10

12

Training Iteration

Obstruent Classification

E
rr

or
 R

at
e 

R
ed

uc
tio

n 
(%

) 
in

 O
bs

tr
ue

nt
 C

la
ss

ifi
ca

tio
n 

T
as

k

Warp Trained on:

Sonorants
Son & Obs
Obstruents

Figure 3-6: Results of phone-class-speci�c vocal tract length normalization experi-
ments

In this section, the classi�er uses diagonal-covariance Gaussian models with 8-fold

aggregation, whereas the 21.1% result used full-covariance Gaussian models with

20-fold aggregation.1 These classi�er parameters are summarized in Section 2.4.1.

Table 3.6 is particularly helpful for showing the performance di�erences stemming

from di�erent training and testing conditions. The results con�rm that it is better to

use models trained on unwarped data for the �rst-pass classi�cation. When the warp

factor was trained on sonorants and the reference transcription of the test utterance

was used to �nd the warp factor of the test utterance, the system obtained 19.7%

1Aggregation is described in Appendix C.
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overall classi�cation error. When the transcription hypothesis of the testing utterance

was given by unwarped models and a bigram phonotactic model, the system obtained

19.9%. These two results are quite similar and correspond to 9.2% and 8.4% relative

error rate reduction, respectively. The similarity indicates that warp factors can be

found reliably even when the true transcription is not known.

In conclusion, these results do not indicate that using di�erent VTLN warpings for

di�erent phone classes will be helpful. On the positive side, they show that training

the warp factor on sonorants is the best of the three training conditions. They also

show that the standard linear warping produces very little performance improvement

in the obstruents.

3.5 Summary

These experiments demonstrate the viability of using heterogeneous, phone-class-

speci�c measurements to improve the performance of acoustic-phonetic modeling

techniques. In order to be able to compare with other results in the literature, we do

not include vocal tract length normalization. The hierarchical system achieved 21.0%

error on the core test set in the task of context-independent phonetic classi�cation.

This performance compares favorably with the best results reported in the literature.

Zahorian [96] reports 23.0% on the core test set, while Leung et al. [50] report 22.0%

on a di�erent test set.

This chapter explored hierarchical approaches to the two challenges of measure-

ment development and classi�er combination. Heterogeneous measurements were

used across di�erent phone classes. In subsequent chapters, we will apply heteroge-

neous measurements both within and across phonetic classes in committee-based and

hybrid approaches.
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Warped Overall Sonorant Obstruent
Warp models Classi�cation Classi�cation Classi�cation
Trained Testing for �rst
on: Conditions pass? Error ERR Error ERR Error ERR

SON baseline { 21.74 { 27.4 { 23.8 {
SON 8/ref { 19.73 9.2 24.2 11.8 22.7 4.6
SON 1/ref { 19.89 8.4 24.3 11.5 23.1 3.2
SON 8/hyp(bi) Yes 20.18 7.2 24.9 9.2 22.9 3.8
SON 1/hyp(bi) Yes 20.34 6.4 25.0 8.8 23.3 2.3
SON 8/hyp(uni) Yes 20.27 6.8 25.1 8.7 23.0 3.5
SON 1/hyp(uni) Yes 20.46 5.9 25.2 8.0 23.3 2.3
SON 8/hyp(bi) No 19.92 8.4 24.5 10.6 22.7 4.6
SON 1/hyp(bi) No 20.08 7.6 24.6 10.2 23.1 3.2
SON 8/hyp(uni) No 19.92 8.4 24.5 10.7 22.8 4.4
SON 1/hyp(uni) No 20.14 7.4 24.6 10.2 23.2 2.7

OBS baseline { 21.74 { 27.4 { 23.8 {
OBS 8/ref { 20.56 5.4 25.4 7.5 23.6 0.8
OBS 1/ref { 20.69 4.8 25.8 6.0 23.3 2.2
S+O baseline { 21.74 { 27.4 { 23.8 {
S+O 8/ref { 20.28 6.7 24.9 9.3 23.4 1.9
S+O 1/ref { 20.14 7.3 24.7 9.9 23.3 2.3

Table 3.6: Error rate performance and relative error rate reduction (ERR) of VTLN
under a variety of training and testing conditions. The second column indicates the
number of utterances from the current speaker used at testing time to determine the
warp factor for that utterance and the method of obtaining the \�rst-pass" tran-
scription of the testing utterance so that the warp factor could be chosen. \ref"
refers to using the reference transcription, \hyp(uni)" refers to using a transcription
hypothesized with a unigram phonotactic model, and \hyp(bi)" refers to using a
transcription hypothesized with a bigram phonotactic model. The third column also
pertains to testing and indicates whether warped or unwarped models were used for
the \�rst-pass" transcription.
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Chapter 4

Committee-based and Hybrid

Methods: Measurements and

Classi�er Structures

Measurements and classi�er structures for committee-based and hybrid combinations

of multiple classi�ers are presented in this chapter. First, some related work from

the literature is discussed. Second, a variety of acoustic measurement algorithms are

described. Third, methods for combining classi�ers are presented.

4.1 Related Work

There has recently been an increase in interest in committee-based methods in speech

recognition. These e�orts have taken a variety of forms, such as combining phone-

based and syllable-based recognizers [95], combining recognizers operating in di�erent

frequency bands [3], or combining the outputs of recognizers developed at di�erent

research sites [25]. In [95], the phone-based and syllable-based recognizers were com-

bined at the whole-utterance level. On the OGI numbers corpus, the phone-based

system had 6.8% error, the syllable-based system had 9.8% error, and the combined

system had 5.5% error, so the combination was successful for reducing the error rate.

In [3], recognizers operating in di�erent frequency bands could be combined at a va-
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riety of levels. The results do not show improvements in performance, but they do

show increased robustness to narrow-band noise.

Committee-based approaches gained greater attention following the February 1997

Large Vocabulary Continuous Speech Recognition (LVCSR) Hub5-E Benchmark Test

Evaluation conducted by the National Institute of Standards and Technology (NIST).

Each site participating in the evaluation submitted their speech recognition output

to NIST, including a word transcription with a con�dence score for each word. NIST

developed a post-processing system that takes multiple recognition outputs and com-

bines them to yield a new transcription [25]. The system is referred to as \ROVER,"

standing for \Recognizer Output Voting Error Reduction." The ROVER system had

several variations, depending on how the con�dence scores were used. In system

NIST1, con�dence information was ignored so that ties were resolved by frequency of

occurrence. In system NIST2, the system resolved ties by a weighted average between

frequency of occurrence and average con�dence for each word. In NIST3, the system

used a weighted average between frequency of occurrence and the maximum con�-

dence scores. The ROVER system was used to post-process 5 submissions to the 1997

Hub5-E Benchmark Test Evaluation. The submissions were from BBN, Carnegie Mel-

lon University (CMU), Cambridge University (CU-HTK), Dragon Systems, and SRI,

with word error rates of 44.9%, 45.1%, 48.7%, 48.9%, and 50.2%, respectively. The

ROVER systems achieved error rates of 39.7%, 39.5%, and 39.4% for NIST1, NIST2,

and NIST3, respectively. These results are relative error rate reductions of 11.8%,

12.0%, and 12.5%, respectively, compared to the best individual system word error

rate of 44.9%. Recall that the NIST1 system does not use any con�dence information,

but rather is based only on voting with frequency of occurrence.

The favorable results from the NIST ROVER system resulted in others adopting

some form of ROVER-like aspect to their individual systems in more recent evalua-

tions. System descriptions from the September 1998 evaluation on Switchboard and

CallHome corpora [67] indicate that at least three sites used ROVER-like approaches

in their systems. BBN rescored N-best lists using di�erent frame rates at the acoustic

modeling level (80, 100, or 125 frames per second), then combined the results using a
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modi�ed ROVER system which has weights on the three scoring results. HTK used

ROVER to combine the outputs from a triphone and a quinphone system. AT&T

used ROVER to combine two systems based on di�erent lexicons.

In summary, committee-based methods for speech recognition have been explored

along a variety of dimensions, and favorable results have been obtained. However,

most of these approaches have been limited to combining �nal word recognition out-

puts. The techniques proposed in this thesis use multiple classi�ers at the acoustic

modeling level, so that the change in acoustic modeling is invisible to the remainder

of the system. In addition, performing the combination at the acoustic modeling

level allows the system to provide more accurate acoustic-phonetic information to the

�rst-stage search.

4.2 Measurements

This section presents a variety of measurement sets which were designed to contain

complementary phonetic information. This design was accomplished through pho-

netic and signal processing knowledge combined with empirical veri�cation. The

measurement sets presented here vary in several ways, namely, using di�erent time-

frequency resolutions, di�erent temporal basis vectors, and/or di�erent spectral repre-

sentations. This section describes the algorithms for calculating these measurements

and presents the performance of individual measurement sets in phonetic classi�cation

tasks.

The measurements in this section make use of Mel-frequency cepstral coe�cient

(MFCCs) and perceptual linear prediction cepstral coe�cients (PLPCCs) spectral

representations. The calculation of these representations is described in Chapter 3.

Recall that PLPCCs make use of an all-pole model of the spectrum and a Bark

frequency scale. In contrast, MFCCs are not model-based and make use of a Mel-

frequency spectrum. In addition, PLPCCs attempt to account for addition perceptual

e�ects through the use of the intensity-loudness power law. In summary, MFCCs and

PLPCCs are similar, but it is hypothesized that the variation between them will cause
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them to contain some complementary information.

Both MFCCs and PLPCCs use a Hamming window

w[n] = 0:54� 0:46 cos(2�n=M); 0 � n � M

in the initial short-time Fourier analysis of the speech signal. The functional form

and the length of w[n] determines the frequency resolution of the spectral represen-

tation. Let W (ej!) be the discrete-time Fourier transform (DTFT) of w[n]. When

the short-time section of speech is multiplied by w[n], the corresponding operation in

the frequency domain is a convolution of the DTFT of the speech signal withW (ej!).

The width of the mainlobe of W (ej!) is 8�
M

in digital radian frequency. Thus, if

the Hamming window has a length of 10, 20, or 30 milliseconds, the corresponding

mainlobe widths in Hertz (given a sampling rate of 16 kHz) are 200, 100, and 66

Hz, respectively. This frequency resolution will a�ect all of the subsequent process-

ing. Any details in the speech signal which are blurred because of poor frequency

resolution cannot be recovered in subsequent processing. For this reason, we calcu-

late multiple measurement sets using di�erent Hamming window lengths in order to

achieve a variety of time-frequency resolutions.

We divide the acoustic measurements obtained from the spectral representations

into two types: segmental measurements, which are calculated based on a start and

end time, and boundary, or landmark, measurements which are calculated using a

single reference time speci�cation. Table 4.1 summarizes the characteristics of eight

segmental (S1{S8) and �ve boundary (B1{B5) measurements used in subsequent ex-

periments. In all measurements, a frame rate of 200 frames per second (5 ms per

frame) was used for short-time Fourier transform (STFT) analysis. The �rst column

is a label for ease of reference. The second column indicates the number of dimensions

in the measurement set. For B1 and B2, the notation 104) 60 indicates that princi-

pal components analysis was used to reduce the dimensionality of the measurements

from 104 to 60. The third column indicates the duration in milliseconds of the Ham-

ming window for short-time Fourier transform analysis. The fourth column includes
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# STFT Spectral Temporal
Dims [ms] Representation Basis

S1 61 10 12 MFCC 5 avg
S2 61 30 12 MFCC 5 avg
S3 61 10 12 MFCC 5 cos � 30ms
S4 61 30 12 MFCC 5 cos � 30ms
S5 64 10 9 MFCC 7 cos � 30ms
S6 61 30 15 MFCC 4 cos � 30ms
S7 61 20 12 PLPCC 5 avg
S8 61 20 12 PLPCC 5 cos � 30 ms

B1 104 30 12 MFCC+ 8 avg
) 60 energy 5 10 20 40

B2 104 20 12 PLPCC+ 8 avg
) 60 energy 5 10 20 40

B3 60 30 12 MFCC 5 cos � 75ms
B4 60 30 12 MFCC+ZC+ 4 cos � 50ms

energy+LFE
B5 60 10 10 MFCC 6 avg 20 20 20

Table 4.1: Segmental and boundary measurement set summary.

the spectral representation, which may include MFCCs or PLPCCs, energy, low fre-

quency energy (LFE), and/or zero-crossing (ZC) rate. The �fth column indicates

the temporal basis that was applied. In each case, the temporal basis was applied

as an inner product with the frame-based spectral representation. For the segmental

measurements, the cosine temporal basis extends 30 ms beyond the start and end

of the segment on both sides, indicated by �30. For the boundary measurements,

the cosine basis extended 50 or 75 ms to either side of the boundary. For segmental

measurements, the \5 avg" basis consists of averages over the segment in a 3-4-3

proportion, and also includes a 30 ms average on either side of the segment. For the

boundary measurements, the \8 avg" basis consists of symmetric, non-overlapping

averages over 5, 10, 20, and 40 milliseconds (indicated by 5 10 20 40) [27], for a

total extension of 75 ms to either side of the boundary. The width of the average is

increasing as the distance from the boundary increases. Similarly, the \6 avg" basis

consists of symmetric, non-overlapping averages over 20, 20, and 20 milliseconds, for

a total extension of 60 ms to either side of the boundary.
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Table 4.2 shows classi�cation results for each of the eight segmental acoustic mea-

surements. For each measurement set, the error rates shown are all from a single

classi�cation experiment, and thus the results for phonetic subclasses are for the case

of unrestricted hypotheses. This implies, for example, that some of the errors in

reference stop consonants may be due to hypothesizing a phone which is not a stop.

This is in contrast to the case where the hypotheses are restricted to be within-class,

thus creating a smaller classi�cation problem. In the case of stops, the \restricted

hypothesis" case is a 6-way classi�cation task. Results using restricted hypotheses

are reported in Section 5.1.3 and Chapter 6.

Examination of the within-class performance of these measurement sets, as shown

in Table 4.2, reveals di�erences among them. In the sonorants, the use of a cosine

basis in the time dimension in sets S3 and S4 is superior to the use of a piecewise-

constant basis, as in S1 and S2. In the weak fricatives and stops, the piecewise

constant temporal basis of measurement sets S1 and S2 is superior to the cosine basis

of S3 and S4. These results indicate that these measurements contain complementary

information. When examining only the overall classi�cation results, these di�erences

are not apparent, since all four of S1-S4 have very similar overall classi�cation error

rates. This is an example of the importance of examining detailed performance results

when looking for di�erences among classi�ers. Measurements S5 and S6 both perform

slightly worse than S1-S4, but they were retained because they are designed to cap-

ture di�erent acoustic information. S5 has increased time resolution and decreased

frequency resolution through the use of a 10ms Hamming window, a smaller number

of MFCCs, and a greater number of temporal cosine basis vectors. S6 has decreased

time resolution and increased frequency resolution through the use of a 30 ms Ham-

ming window, more MFCCs, and a smaller number of temporal basis vectors. S7 and

S8 are comparable to S5 and S6 in overall performance. S7 and S8 are based on the

PLPCC spectral representation instead of the MFCCs. As in S1-S2 versus S3-S4, the

cosine basis in S8 produces better performance in the sonorants in comparison to the

piece-wise constant basis in S7.
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Acoustic % Error: Unrestricted Hypotheses
Measurements ALL VOW NAS SFR WFR STP SIL SON OBS
S1 21.52 28.4 22.4 19.8 26.9 23.7 3.8 27.3 23.2
S2 21.60 28.9 22.2 18.2 28.4 23.7 3.4 27.7 23.1
S3 21.46 27.9 20.4 18.9 29.0 26.5 3.8 26.5 24.6
S4 21.47 27.9 20.7 19.5 30.1 24.8 4.0 26.6 24.4
S5 22.10 28.8 23.1 20.2 30.0 24.9 3.6 27.8 24.6
S6 22.64 28.4 24.6 20.8 32.5 26.6 4.4 27.7 26.2
S7 22.68 29.6 25.7 20.4 30.3 25.2 3.3 28.9 24.9
S8 22.08 28.3 25.8 19.4 30.3 24.6 3.9 27.8 24.3

Table 4.2: Context-independent classi�cation performance on the development set for
each of the 8 segmental measurement sets shown in Table 4.1.

4.3 Committee-based Classi�er Structures

In this section we present several committee-based methods for combining multiple

classi�ers. The methods covered are voting, weighted linear combination of likelihood

ratios (WLCLR), and �nally the use of an independence assumption. In each case,

the methods are structured so that the acoustic scores are combined before the search.

This allows the changes in acoustic modeling to be invisible to the remainder of the

system.

We will now de�ne the notation that will be used in this section to describe

the algorithms for combining classi�ers. Let A = f�1; �2; : : :g be an ordered set of

linguistic labels. Let jAj denote the number of elements in A. Consider N classi�ers

which have been trained to discriminate among the elements of A. These classi�ers

may, in general, be de�ned over di�erent measurement input spaces. Thus, for each

input token and each n 2 f1; 2; : : :Ng there is a corresponding vector of measurements

we denote by ~fn. For each token, let ~f be the column vector containing all of the

measurements, that is,

~f = [ ~fT1
~fT2 : : : ~fTn ]

T ; (4.1)

where �T denotes the transpose operator. For each � 2 A and each classi�er n, let

pn( ~fnj�) be the scalar value of the conditional probability density function (pdf) of
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~fn. For notational convenience, we form these conditional pdf values into a matrix.

Let P denote the jAj �N matrix of conditional pdf values

P =

2666666664

p1(~f1j�1) p2(~f2j�1) � � � pN( ~fN j�1)

p1(~f1j�2) p2(~f2j�2)
...

. . .

3777777775
(4.2)

For each input token, the output of the acoustic modeling system is a vector of scores

with one entry for each linguistic unit, that is,

~s =

2666664
s(�1)

s(�2)
...

3777775 : (4.3)

The acoustic scores ~smay be an arbitrary function ofP and other parameters a�ecting

the combination of pdf values, which we denote by �. Thus, we can write

~s(~f) = F(P;�): (4.4)

The dependence of ~s on all of the input measurements ~f is shown explicitly for empha-

sis. Each of the following sections will describe a di�erent algorithm for the function

F which produces the scores from the classi�er outputs and other free parameters.

4.3.1 Voting

Voting is the simplest of the procedures presented here. In spite of its simplicity,

there are two issues which need to be resolved. First, the algorithm needs to output a

vector of scores for each linguistic unit, as opposed to the naive voting concept which

would imply returning only the single most \popular" linguistic unit. Secondly, a

method for resolving tied votes is needed. These two issues are addressed in the

following algorithm.
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Let ~b = [b1b2 : : : bN ]
T be de�ned as

bn = arg max
k2f1;2; ::: jAjg

pn( ~fnj�k); (4.5)

which is the index of the most likely phonetic label for each classi�er. Let ~v be a

jAj-dimensional integer-valued vector which is used to count votes. The individual

elements of ~v are given by

vk =
NX
n=1

�[bn � k]; 8 k 2 f1; 2; : : : jAjg (4.6)

where the discrete delta function � is given by

�[n�m] =

8><>:
1; for m = n

0; otherwise
(4.7)

Let v� = maxk2f1;2;:::jAjg vk. Let ` be the smallest integer such that v` = v�. The

output scores ~s(~f) are the `th column of P, that is,

~s(~f) =

2666664
p`(~f`j�1)

p`(~f`j�2)
...

3777775 : (4.8)

To state it in words, the tie is resolved by �nding the classi�er with the lowest index

among all those classi�ers whose top scoring linguistic unit received at least as many

votes as any other linguistic unit.

4.3.2 Weighted Linear Combination of Likelihood Ratios

The weighted linear combination of likelihood ratios (WLCLR) method makes use of

additional parameters, �, in de�ning the function F , as introduced in Equation 4.4.
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The equation for the WLCLR scores is

s(�k) =
NX
n=1

gk;n

0BBB@ pn( ~fnj�k)X
a2A

pn( ~fnja)

1CCCA ; (4.9)

where the weights gk;n have the property

NX
n=1

gk;n = 1 8k; (4.10)

so that each row of the jAj �N parameter matrix

� =

2666666664

g1;1 g1;2 � � � g1;N

g2;1 g2;2
...

. . .

3777777775
(4.11)

will sum to one. In the general case, the weights can be classi�er-speci�c and/or

linguistic-unit speci�c. If equal weights are used, then

gk;n =
1

N
8k; n: (4.12)

Alternatively, the weights could be trained on a development set using a Maximum

Likelihood (ML) or Linear Least-Square Error (LLSE) criterion. The likelihood ratio

serves to normalize the absolute magnitude of the pdf values across classi�ers.

4.3.3 Assuming Statistical Independence

Let ~x and ~y be random vectors. Let ~z = [~xT~yT ]T . If ~x and ~y are statistically

independent, then the joint density p(~z) can be factored

p(~z) = p(~x)p(~y): (4.13)

74



In a similar fashion, one method of combining classi�ers is to assume statistical inde-

pendence among the n random vectors ~f1; ~f2; : : : ~fn which leads to the expression

s(�k) =
NY
n=1

pn( ~fnj�k) 8k: (4.14)

The feature vectors ~f1; ~f2; : : : ~fn in our experiments will seriously violate the indepen-

dence assumption. Empirical results demonstrate that in spite of the faulty assump-

tion in the derivation, this algorithm is still an e�ective method for combining the

outputs of multiple classi�ers.

In practice, the combination method in Equation (4.14) can be implemented by

summing the log probabilities. Furthermore, in this thesis, the implementation was

altered to average the log probabilities. In the case of phonetic classi�cation with

unigram priors, this alteration produces no change in performance. However, in

systems with a language model, the dynamic range of the acoustic scores will interact

with the language model. Averaging the log scores keeps the same dynamic range

in the sense that if all input classi�ers had the same score vector, the output score

vector would be identical to each of the inputs.

We would like to gain some insight into how to interpret the use of the indepen-

dence assumption in this context, where we know that the random vectors are not

truly independent. In particular, we would like to understand the di�erences between

training a single classi�er using the entire vector ~f versus training multiple classi�ers

using ~fn and combining the likelihood estimates using Equation (4.14). First, if all of

the vectors were modeled with a Gaussian distribution, then assuming independence

among the ~fn would be identical to assuming a block-diagonal structure for the co-

variance matrix of the overall feature vector ~f . The actual situation is considerably

more complicated, however, because the experiments use mixture Gaussian models to

parameterize the probability density function of the random vectors.

Given the use of mixture Gaussian models, let us consider what conditions lead

to equivalent models when training a single classi�er using the entire vector ~f versus

training multiple classi�ers using ~fn and combining with Equation (4.14). Assume
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that each pn( ~fnj�) is modeled as a mixture of Gaussian probability density functions

with Ln components,

pn( ~fnj�) =
LnX
`=1

!n;` N ( ~fn;�n;`;�n;`); (4.15)

where N (~f ;�;�) denotes a Gaussian (Normal) distribution with mean vector � and

covariance matrix �. The statistical independence assumption implies

p(~f j�) =
NY
n=1

"
LnX
`=1

!n;` N ( ~fn;�n;`;�n;`)

#
: (4.16)

We now show by construction that there exists an equivalent mixture Gaussian prob-

ability density function for p(~f j�) of the form

p(~f j�) =
X
s2S

!s N (~f ;�s;�s) (4.17)

Consider the integer-valued n-tuples (1; 1; : : : 1) through (L1; L2; : : : LN ). There are

a total of (
QN
n=1 Ln) of these n-tuples. Denote the set of all of these n-tuples by the

letter S, and let s 2 S with s = (s[1]; s[2]; : : : s[N ]). To complete the construction,

let

!s = !1;s[1] !2;s[2] : : : !N;s[N ] (4.18)

�s = [�T1;s[1] �T2;s[2] : : : �Tn;s[N ]]
T (4.19)

and

�s =

26666666666664

�1;s[1] 0 0 � � �

0 �2;s[2] 0

0 0 �3;s[3]

...
. . .

�N;s[N ]

37777777777775
(4.20)

where 0 refers to zero-matrices of the appropriate dimensions to maintain the block-

diagonal structure of �s.

Consider the following example. Assume we have trained 8 classi�ers (N = 8)
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where each has 100 mixtures (L = 100), yielding a model in the form of Equation

(4.15). The above construction says that it would take 1008 mixtures to construct

precisely the same model in the form of Equation (4.17). Of course, due to physical

limitations, it is not possible to construct such a large model, which in this case would

require 100 million billionmixtures. In contrast, the original set ofN = 8 independent

models in Equation (4.15), using a total of 800 mixtures, is very practical. Consider

further the case in which all covariance matrices �n;` are diagonal. In this case,

correlations among dimensions within a particular ~fn are modeled completely by the

placement of the mean vectors, with no contribution from o�-diagonal elements in

the covariance matrix.

In conclusion, the decision regarding how to partition the full acoustic measure-

ment space ~f into subspaces ~fn is equivalent to deciding which correlations to model.

Put another way, it is equivalent to deciding which correlations are important for

discriminating among classes.

4.4 Hybrid Classi�er Structures

Two types of hybrid classi�er structures were implemented which combine hierar-

chical and committee-based techniques. The �rst method is to build a hierarchy-of-

committees, where a committee of classi�ers is used at each node of a hierarchical tree.

The second method is to use a hierarchical classi�er as one member of a committee

of classi�ers.

4.5 Summary

This chapter presented measurements and classi�er structures for committee-based

and hybrid approaches for using heterogeneous measurements. Voting, linear com-

bination, and the use of an independence assumption are the three committee-based

methods that were presented. The next chapter presents empirical evaluation of

classi�er structures for combining multiple measurement sets.
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Chapter 5

Committee and Hybrid Methods:

Experiments

This chapter begins with an evaluation of committee-based and hybrid methods for

incorporating heterogeneous measurements in the task of TIMIT phonetic classi�ca-

tion. The most promising methods are then further evaluated in TIMIT phonetic

recognition and jupiter word recognition tasks.

5.1 TIMIT Phonetic Classi�cation

Comparisons among the algorithms for combining classi�ers were performed on the

TIMIT phonetic classi�cation task. Unigram, bigram, and trigram phonotactic mod-

els were used in order to observe the interaction of these techniques with higher-level

knowledge sources.

5.1.1 Comparing Voting, WLCLR, and Independence

We compare the results of using voting, linear combination with equal weights, or

an independence assumption for combining multiple classi�ers in the task of TIMIT

phonetic classi�cation. Figures 5-1, 5-2, and 5-3 show the performance of all possible

subsets of the eight segmental measurements sets S1{S8 listed in Table 4.1. Error
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Figure 5-1: Performance of classi�er combination using voting for all possible subsets
of 8 classi�ers. Error rate is shown as a function of the number of classi�ers in the
set. Results are shown for both unigram and bigram phonotactic model conditions.

rates are shown as a function of the number of classi�ers in the subset. In each

�gure, individual data points are evenly spaced along the x-axis in the vicinity of the

appropriate value of k, where k represents the number of classi�ers being combined.

Lines connect the mean values. The total number of experiments for each phonotactic

model is
8X

k=1

0B@ 8

k

1CA =
8X

k=1

8!

k!(8� k)!
= 255:

As k varies from 1 to 8, the number of individual classi�cation experiments is 8, 28,

56, 70, 28, 8, 1, respectively. In addition to Figures 5-2 and 5-3, Table 5.1 summarizes
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Unigram: 16% change in mean
Bigram: 13.3% change in mean
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Figure 5-2: Performance of classi�er combination using linear combination for all
possible subsets of 8 classi�ers. Error rate is shown as a function of the number of
classi�ers in the set. Results are shown for unigram, bigram, and trigram phonotactic
model conditions.

some of the best CI classi�cation results.

Voting can produce di�erent results depending upon the ordering of the classi�ers

which is used to resolve tied votes. Figure 5-1 shows the performance where the

classi�ers were ordered from best to worst based on their individual performance.

This explains why the mean of the voting performance with two classi�ers (which is

actually equivalent to replacement with the �rst classi�er) is better than the mean

with one classi�er. For k = 3; 4; : : : ; 8, the average absolute di�erence in error rate

between the voting results using a \best-to-worst" versus a \worst-to-best" ordering
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Figure 5-3: Performance of classi�er combination using an independence assumption
for all possible subsets of 8 classi�ers. Error rate is shown as a function of the
number of classi�ers in the set. Results are shown for unigram, bigram, and trigram
phonotactic model conditions.

is only 0.04%. Therefore, the ordering is not crucial to the comparison of voting with

other methods.

In the unigram case the three methods of voting, WLCLR, and independence

produce similar performance. In contrast, in the bigram case, voting with 8 classi-

�ers obtained 18.9%, which is actually worse than the 18.6% that was obtained with

voting in the unigram case. This is probably because voting lacks soft-decision ca-

pability, and thus it does not improve the quality of the entire vector of scores, but

rather focuses only on the quality of the top choice. The WLCLR and independence

methods produce favorable trends with all three phonotactic models, although the in-
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% Error
Methods Dev core

Voting (S1{S8) 18.6 {
Linear Combination (S1{S8) 18.4 {
Independence (S1-S8) 18.5 {
Hybrid: Committees at nodes of tree 18.3 {
Hybrid: S1{S8 + Hierarchy 18.1 18.3

Table 5.1: Summary of TIMIT CI classi�cation results.

dependence assumption performs slightly better on average. The results indicate that

indirect learning of phonotactic information has very little e�ect, since using multiple

classi�ers improves phonetic discrimination regardless of which phonotactic model is

used. In addition, the independence method is less expensive to implement, since the

log scores can simply be added together, and it does not require calculation of a like-

lihood ratio. For these reasons, the remaining experiments with hybrid techniques,

phonetic recognition, and word recognition all use the independence assumption to

combine committees of classi�ers.

5.1.2 Hybrid Methods

In this section, two ways to combine hierarchical and committee-based approaches

are tested. The �rst hybrid approach uses a committee of classi�ers at each node of

a hierarchical tree. This approach might also be called a \hierarchy-of-committees."

We implemented phone-class speci�c classi�ers which use di�erent measurements

for di�erent phonetic classes, as listed in Table 3.3, except that MFCCs were used

as the spectral representation for the vowel measurements instead of DCTCs. The

performance of each is similar. Let us refer to these phone-class-speci�c hierarchi-

cal measurement sets as SVa (the lower-case \a" indicating the alteration to use

MFCCs), SN, SF, and SS, representing segmental vowel, nasal, fricative, and stop

measurements, respectively. A hierarchy-of-committees classi�er was formed using:

S1, S2, S4, and S5 at the root node; SVa, S1, S4, S6, and S8 at the vowel node; SN,

S2, S3, and S4, at the nasal node; SF, S1, S2, and S3 at the fricative/closure node;
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and SS, S1, S2, S5, and S8 at the stop node. Each of the committees was combined

using an independence assumption. This resulted in a performance of 18.3% on the

development set, as shown in Table 5.1. This hierarchical con�guration suggests that

computation can be reduced with minimal degradation in performance by targeting

the measurements toward particular phone classes.

The second hybrid approach is to use a hierarchical classi�er as one member of

a committee. A hierarchical classi�er was constructed using one set of measure-

ments at each node. The measurements were S2, SVa, SN, SS, and SF for the root,

vowel/semivowel, nasal/
ap, stop, and fricative/closure nodes, respectively. This

hierarchical classi�er was added as a ninth member to the previously 8-member seg-

mental measurements committee. The 9 classi�ers were combined using independence

to obtain 18.1% on the dev set, and 18.3% on the core set. Table 5.1 summarizes these

results. This result is a 12.9% improvement over our previous best reported result of

21.0% [31]. The next best result that we have seen in the literature reporting TIMIT

CI classi�cation on the core test set is 23.0% [97].

5.1.3 Detailed Phonetic Classi�cation Performance Metrics

Context-independent phonetic classi�cation on the TIMIT database has been used

extensively for comparing and contrasting various classi�cation techniques. This is

made possible over time through detailed reporting by various researchers. In order

to facilitate a variety of performance comparisons by future researchers, this section

includes more detail about the performance of our best context-independent classi-

�cation result on both the core test set and the development set. These results are

from the hybrid system which is a 9-member committee consisting of classi�ers using

measurements S1-S8 plus a hierarchical classi�er using phone-class-speci�c measure-

ments. The overall error rates of 18.1% and 18.3% on the development and core test

sets, respectively, are shown in Table 5.1. Complete confusion matrices are given in

Appendix D.

Tables 5.2 and 5.3 show detailed results of classi�er performance within various

phonetic classes. All of these results use the 39-classes in Table 2.2 for scoring. The
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performance depends upon whether the hypotheses are restricted to be within the

correct phonetic class or not. The column of results labelled \unrestricted hypotheses"

all came from a single classi�cation experiment over all phones. The \restricted

hypotheses" columns came from experiments where the hypotheses were restricted

to be within the same phonetic class as the reference. For example, the restricted

hypothesis experiment for stops is a 6-way classi�cation experiment. Restricting

the hypotheses makes the task easier, leading to lower error rates. The \restricted

hypotheses" results are good for comparing with studies that look only at one sound

class.

Another way to look at the results is to see how well the system can sort the

phones into one of various phonetic partitions. Table 5.4 shows these results, which

can be compared with the results from the baseline system in Chapter 3, shown in

Table 3.1. Thus, there is 3.3% error when dividing the development set into phonetic

manner classes. Interestingly, summing up the \restricted hypotheses" errors listed

in Table 5.2, it can be seen that given perfect phonetic manner class partitioning,

the phone-class speci�c classi�ers presented here could achieve classi�cation error of

15.6% on the development set.

Reference Unrestricted Restricted
Phonetic Hypotheses Hypotheses
Class # Errors % Error # Errors % Error

All 2729 18.1 2729 18.1
Sonorant 1835 22.9 1795 22.4
Obstruent 791 19.6 716 17.8
Vowel/Semivowel 1584 24.3 1544 23.7
Nasal 251 16.7 197 13.1
Strong Fricative 223 16.8 207 15.6
Weak Fricative 242 23.9 112 11.1
Stop 326 19.4 287 17.0
Silent 103 3.4 0 0

Table 5.2: Detailed context-independent classi�cation results on the development set
for the hybrid system composed of a nine-member committee. \Restricted hypothe-
ses" refers to constraining the classi�er to choose a phone in the same phonetic class
as the reference. Scores are calculated using the 39-classes in Table 2.2.

85



Reference Unrestricted Restricted
Phonetic Hypotheses Hypotheses
Class # Errors % Error # Errors % Error

All 1320 18.3 1320 18.3
Sonorant 900 23.5 879 23.0
Obstruent 381 19.8 345 17.9
Vowel/Semivowel 768 24.8 741 23.9
Nasal 132 18.1 110 15.1
Strong Fricative 108 16.3 100 15.1
Weak Fricative 118 25.3 48 10.3
Stop 155 19.4 131 16.4
Silent 39 2.7 0 0

Table 5.3: Detailed context-independent classi�cation results on the core test set for
the hybrid system composed of a nine-member committee. \Restricted hypotheses"
refers to constraining the classi�er to choose a phone in the same phonetic class as
the reference. Scores are calculated using the 39-classes in Table 2.2.

5.1.4 Training One High-dimensional Classi�er

This section addresses an issue that often arises when considering the results in the

previous sections. We have shown signi�cant improvements by combining multiple

classi�ers. However, the number of acoustic measurements and the total number of

model parameters vary greatly between the single classi�er and the multiple classi�er

systems. Acoustic modeling experiments often try to keep the number of measure-

Reference % of Hypotheses in the
Phone Incorrect Phone Class
Partition Development Core
fSON,OBS+SILg 1.3 1.3
fSON,OBS,SILg 1.9 1.7
fVS,NF,ST,SF+WF+CLg 2.7 2.9
fVS,NF,SF,WF,ST,CLg 3.3 3.4

Table 5.4: Shows the percentage of errors made by the 9-member committee hy-
brid classi�er when dividing the development and core test sets into each of several
phonetic partitions.
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ments and the size of the acoustic models constant in order to make comparisons as

equitable as possible. It is generally expected that using more measurements and/or

increasing the number of parameters in the models provides potential for improve-

ment, as long as the resulting measurement/modeling combination is still su�ciently

trainable. This section shows that typical techniques for utilizing all the measure-

ments within a single classi�er do not lead to similar performance improvements.

Three segmental measurement sets were selected for this comparison. They are S2,

S4, and S5 from Table 4.1. Table 5.5 shows that the error rate performance of these

measurements when tested separately is 21.5{22.7%. When these measurements were

combined using independence, the error rate is 18.9%. The model parameters shown

in Table 5.5 are: the minimum number of data points per mixture component, the

maximum number of mixtures per phone, the number of training trials aggregated.1

The labels A1{A4 have been used for ease of reference to the four \all-in-one" mea-

surement and classi�er con�gurations. The \)" notation refers to dimensionality

reduction through the use of principal components analysis. First, in conditions A1

and A2, which use all 185 measurements, the performance is poor. This is probably

due to the poor trainability of the models due to high dimensionality. That is, the

models tend to over�t the training data and thus they do not produce good generaliza-

tion performance on the test data. The minimum number of data points per mixture

component was adjusted between A1 and A2 in order to attempt to circumvent the

over�tting problem and to adjust the model size (in megabytes, MB) in order to have

a model which is comparable in size to the total models of the S2+S4+S5 system.

Conditions A3 and A4 try an alternate approach, where dimensionality reduction is

used to attempt to capture the information from the 185 measurements in a reduced

set of 61 measurements. This approach was better than A1 and A2, but did not

come close to performing as well as the S2+S4+S5 system. These results indicate

that conventional techniques for training a single classi�er from a large number of

measurements are not successful. Thus, the multiple classi�er techniques presented

in this thesis are producing results that single classi�ers have not been able to achieve.

1Aggregation is described in Appendix C.
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Section 4.3.3 provides theoretical insight into why the \all-in-one" modeling of

185 measurements leads to lower performance than the separate modeling of the

three measurement sets. From one vantage point, it is simply the exponential growth

of the space which comes with high-dimensionality. From another viewpoint, it is

shown in Section 4.3.3 that with mixture Gaussian models and typical numbers of

mixture components, it would require an impractically large number of mixtures

for the \all-in-one" model to produce an acoustic model which is equivalent to the

acoustic model produced by modeling S2, S4, and S5 separately, then combining them

using independence.

Model
Acoustic Model Size
Measurements # Dims Parameters [MB] % Error

S2: 61 61/96/4 4.8 21.5
S4: 61 61/96/4 4.8 21.5
S5: 64 ) 61 61/96/4 4.8 22.7
S2+S4+S5: Independence 14.4 18.9

A1: \all-in-one" 185 185/96/4 4.6 24.6
A2: \all-in-one" 185 61/96/4 12.8 23.9
A3: \all-in-one" 185 ) 61 61/96/4 4.8 21.4
A4: \all-in-one" 185 ) 61 61/96/12 14.4 21.0

Table 5.5: Comparing training of a single classi�er with 185 dimensions versus using
three separate classi�ers. The model parameters are: minimum # of data points per
mixture, maximum # mixtures per phone, # of training trials aggregated. The arrow
\)" indicates dimensionality reduction through principal component analysis.

5.1.5 Deciding which Measurements to Combine

Figures 5-2 and 5-3 indicate that combining measurements nearly always produces

improvements in performance, regardless of which of the S1{S8 are combined. Look-

ing more closely, it can be seen that some combinations of measurements perform

better than others, which suggests that it would be advantageous to be able to pre-

dict which measurement combinations will perform the best. In this section, we test

two methods of predicting classi�er combination performance. The �rst is based on
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the average performance of the constituent classi�ers, the second is based on a gener-

alized distance metric which measures the degree of agreement among the constituent

classi�ers.

Value of correlation coe�cient
Number of Classi�ers Avg

2 3 4 5 6 7 j � j

(a) Avg Individual Error 0.15 -0.07 -0.10 -0.13 -0.20 -0.21 0.14
(b) Distance Metric -0.61 -0.63 -0.58 -0.55 -0.54 -0.45 0.56

Table 5.6: Correlation coe�cients between the error rate of systems using the com-
bination of multiple classi�ers and (a) the average error rate of the individual con-
stituent classi�ers, and (b) a generalized distance metric measuring the diversity of
the hypotheses of the individual constituent classi�ers. The �nal column shows the
average magnitude of the correlation coe�cients. These results are for combination
using independence with a unigram phonotactic model.

We de�ne a generalized distance metric in the following way. Consider a pair-

wise distance metric between classi�ers as the number of tokens which they classify

di�erently on the development set. Now generalize this metric to N classi�ers by

adding the pairwise distance between all classi�er pairs in the set. This generalized

distance metric measures how much diversity there is among the hypotheses made by

the classi�ers.

Consider �rst what correlations we expect to observe. First, naively one might

expect to see that the performance of the combined classi�ers is positively correlated

with the performance of the constituent individual classi�ers. However, we do not

expect to see this since we hypothesize that the diversity among classi�ers is the

more important factor. Thus, we expect to see only weak correlation between the

error rates. Second, we expect that a greater distance metric implies more diverse

information and thus the potential for greater improvement when those classi�ers are

combined. This corresponds to expecting a signi�cant negative correlation between

the distance metric and the error rate.

Table 5.6 shows the correlation coe�cients calculated for the case of combining

classi�ers with independence using only unigram phonotactic information. The corre-
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Core Test set
Acoustic Measurements % Error % Sub

avg of 1 seg + antiphone 30.1 19.0
avg of 1 seg + near-miss 28.7 18.0
5 segs + antiphone 27.7 16.7
avg of 1 bound 27.1 16.5
5 segs + near-miss 26.4 16.1
5 bounds 24.9 14.9
5 segs + 5 bounds + near-miss 24.8 15.0
5 segs + 5 bounds + antiphone 24.4 14.7

Table 5.7: Summary of TIMIT phonetic recognition results obtained in this work.

lation coe�cients must be in the range -1 to 1, with 1 representing perfect correlation.

As expected, the results in the second row, labelled (b), show signi�cant negative cor-

relation between the error rate of the classi�er combination and the distance metric,

with the average magnitude of the correlation being 0.56. This implies that the dis-

tance metric is useful as a predictor of which classi�er combinations are likely to

perform well. Now consider the results in the �rst row, labelled (a). When the num-

ber of classi�ers was in the range 3 through 7, it was actually the case that a better

average performance of the constituent classi�ers was correlated with worse perfor-

mance of the combination. This is counter to the naive expectation, but consistent

with our hypothesis that diversity of the constituent classi�ers is more important than

looking for the best individual classi�ers. It is also consistent with our hypothesis

because the average magnitude of the correlations was relatively small, only 0.14.

In conclusion, given a set of classi�ers, the generalized distance metric can be

used to predict which classi�er combinations are likely to perform well. This infor-

mation makes it likely that combinations that perform well can be found without an

exhaustive experimental search.

5.2 TIMIT Phonetic Recognition

Our TIMIT phonetic recognition experiments make use of a segment network pro-

duced by a �rst-pass recognition system. We refer to this step as probabilistic segmen-
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tation [6, 7, 47]. Either antiphone modeling [27] or 1-state near-miss modeling [6, 7]

was used with segment models in order to account for both on-path and o�-path

segments in the segment network. Antiphone modeling and near-miss modeling are

described in more detail in Section 2.3 and Appendix B. The phonetic recognition

results make use of a phone bigram with a perplexity of 15.8 on the core set.

Table 5.7 summarizes a series of phonetic recognition experiments. The acoustic

features for these experiments were S1, S2, S4, S5, S7 and B1{B5 from Table 4.1.

The \avg of 1 seg" and \avg of 1 bound" rows refer to the average performance over

5 experiments where each measurement set was used by itself. For the segmental per-

formance, we report cases of using both near-miss modeling and antiphone modeling.

When using the antiphone, combining 5 segmental measurements reduced the error

rate from 30.1% to 27.7%, which is a 7.9% reduction. This change in performance is

smaller than what was observed in classi�cation. However, the substitution error fell

from 19.0% to 16.7%, which is a 12.1% reduction. Thus, combining multiple classi-

�ers has a signi�cant e�ect in reducing substitution errors. Combining 5 boundary

measurements reduced the error rate from 27.1% to 24.9%, and substitution errors

fell from 16.5% to 14.9%. Adding segment models to the boundary models did not

produce much additional gain, probably because the segment models were context in-

dependent (CI), while the boundary models were context dependent (CD). Near-miss

models were better than the antiphone when using only segment models, but were

worse when using segment and boundary models together. The �nal phonetic recog-

nition result of 24.4% compares favorably with results in the literature. Table 5.8

compares this result with the best results reported in the literature.

5.3 Jupiter Word Recognition

Finally, we performed experiments using the database associated with the telephone-

based jupiter weather information system [101, 29]. This evaluation is important

because it demonstrates two types of generalization of the previous work. First,

changing the task from phonetic classi�cation or recognition to word recognition
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% Error
Method core

Triphone CDHMM [39] 27.1
Recurrent NN [81] 26.1
Bayesian Triphone HMM [64] 25.6
Near-miss [7] 25.5
Heterogeneous Measurements 24.4

Table 5.8: Comparison of phonetic recognition results on TIMIT core set with the
best results from the literature.

Acoustic Measurements # Dimensions % Error % Sub

B1 104)50 11.3 6.4
B4 60)50 12.0 6.7
B3 (altered) 60)50 12.1 6.9

3 bounds: B1 + B4 + B3(alt) - 10.1 5.5

Table 5.9: Summary of jupiter word recognition results.

corresponds to linguistic or lexical generalization. Secondly, there are signi�cant

changes in the nature of the speech data, the acoustic environment, and the bandwidth

of the system. Speci�cally, TIMIT contains clean, read speech recorded with a close-

talking microphone at a 16kHz sampling rate. In contrast, the jupiter database

contains noisy, spontaneous speech recorded over-the-telephone at an 8kHz sampling

rate.

For the experiments in this thesis, the recognizer was con�gured to use an 1893-

word vocabulary and a class bigram language model with a perplexity of 15.2 on the

1806 utterances in the test set. Additional information about the training and test

sets is available in Chapter 2. In [29], a word error rate performance of 11.8% was

reported based on the same test set as in this work, but with a larger training set.

Their training set consisted of 20,064 utterances, which is about 13% larger than the

17,807 utterances that were used for training for the experiments in this thesis.

We trained three sets of boundary acoustic models (see Table 4.1), corresponding

to B1, B4, and a variation of B3 with the STFT analysis window changed to 10 ms.

Principal components analysis was used to reduce the dimensionality of each of these

individual measurement sets to 50 dimensions. Table 5.9 summarizes the results.
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Individually, the three systems achieved 11.3%, 12.0%, and 12.1% word error rate.

These results are consistent with the 11.8% reported in [29]. Combining these three

boundary models led to a word error rate of 10.1%. This corresponds to word error

rate reductions of 10{16%, and substitution error rate reductions of 14{20%. It is

encouraging to see that the reduction in substitution errors is similar to the error rate

reductions that were observed in the TIMIT phonetic classi�cation experiments.

These results con�rm that the techniques proposed in this thesis generalize well

to word recognition in a telephone bandwidth acoustic environment. One of the

strengths of these methods is that they are extremely general. The experiments in

this thesis report only a small sampling of the practically limitless possibilities of sys-

tem designs which incorporate the same principles: multiple complementary acoustic

measurements harnessed through multiple classi�ers for improved recognition. This

particular set of three measurement sets for use with the jupiter system was chosen

for its diversity, with good results. It is likely that further research will lead to better

results as more acoustic measurement combinations are explored.

5.4 Summary

We have shown that heterogeneous measurements can be incorporated using commit-

tee-based and hybrid methods to improve the performance of phonetic classi�cation,

phonetic recognition, and word recognition systems. Diverse measurements were ob-

tained by using di�erent time-frequency resolutions, di�erent temporal basis vectors,

and/or di�erent spectral representations. Empirical results con�rmed that these mea-

surements contain complementary acoustic-phonetic information.
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Chapter 6

Stop Consonant Classi�cation by

Humans and Machines

The stop perception experiments described in this chapter were designed to achieve

two goals. The �rst goal was to provide a benchmark for comparison with machine

performance. We did not expect humans or machines to be able to achieve perfectly

correct classi�cation because of inherent phonetic ambiguity in the speech signal.

Thus, given any particular classi�cation result, it is often di�cult to know how much

room there is for improvement. Human perceptual experiments alleviate this uncer-

tainty by providing a high benchmark which is known to be achievable based on the

acoustic evidence. The second goal of these experiments was to facilitate analysis of

the classi�cation errors made by machines, with a view toward postulating how these

errors might be avoided in future systems.

The stop consonants for these experiments were extracted from the TIMIT data-

base with no special conditions on the phonetic contexts. This is important in order

to consider the full phonetic diversity that occurs in continuous speech.
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6.1 Related Work

There are a number of studies in the literature which examine stop perception per-

formance by human listeners, but none has all of the characteristics which are needed

to �t the design goals of these experiments. Some studies severely restrict the pho-

netic context of the stop consonants. In other cases it is not possible to obtain an

automatic classi�cation result on the same database for the purposes of compari-

son. In the \Rhyme Test" and \Modi�ed Rhyme Test," Fairbanks (1958) [24] and

House(1965) [36], respectively, worked with limited contexts. Work by Nusbaum

(1984) [70], Miller and Nicely (1955) [63], and Clark (1983) [14] all considered CV

syllables. Winitz (1972) [92] worked with voiceless stops isolated from conversational

speech, but obtaining the database for calculating a corresponding machine result is

di�cult.

The most relevant perceptual studies are those by Lamel (1988) [41], and Nossair

and Zahorian (1991) [69]. Nossair and Zahorian's paper [69] is particularly relevant

because it includes comparisons between humans and machines. Unfortunately, how-

ever, their experiments were limited to syllable-initial singleton stops. In [41], Lamel

reported detailed perceptual results from a variety of contexts. Not all contexts were

represented, but some of the stops were from the TIMIT database, which made it con-

venient to obtain corresponding machine results. In fact, machine comparisons with

Lamel's results were reported by this author in [31], and summarized in this thesis in

Section 1.3.1. Note that Lamel performed the perceptual experiments, then we per-

formed corresponding machine experiments about ten years later. The experiment

was helpful for illuminating the gap between human and machine stop classi�cation

performance. However, there were some elements that were awkward because the

comparisons with machines were added as an afterthought, instead of being inte-

grated into the experimental design. Out of this experience, we decided to design

a joint experiment which would include both perceptual experiments and automatic

classi�cation by machine. The jointly designed experiments are the main subject of

this chapter.
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6.2 Perceptual Experiment Design

6.2.1 Data Set Selection

The selection of speci�c stop consonant tokens for inclusion in these perceptual ex-

periments was guided by the desire to learn about phonetic classi�cation performance

di�erences between humans and machines. There was also a desire to keep the total

number of stops to a small enough number so that the volunteer human subjects

would not experience too much inattention or fatigue. The most interesting examples

are tokens where humans perform well but machines perform poorly. In order to

increase the likelihood of �nding these situations, tokens were selected on the condi-

tion that they were di�cult for machines to classify. Stop consonant candidates were

classi�ed by three di�erent automatic stop consonant classi�cation systems. Tokens

were selected if they were misclassi�ed by at least one of the systems.

For ease of reference, the three automatic systems used in the token selection pro-

cess were designated as systems A, B, and C. All three systems used the 462-speaker

NIST training set for training. The stop consonant tokens for this perceptual experi-

ment were drawn from the 50-speaker development set in order to avoid any overlap

with the standard training set, which would disturb the ease of making comparisons

with machines. Table 6.1 indicates the number of tokens of each stop in the training

and development sets.

Table 6.2 summarizes the characteristics of the measurements used in these three

systems. Systems A and B use measurements which are the baseline and stop-speci�c

measurements, respectively, described in Chapter 3 on hierarchical techniques. The

measurements for system C are similar but not identical to measurements used else-

where in this thesis. System C uses 5 tapered, centered, cosine basis vectors which

are 300 ms long. These basis vectors are identical to those used in measurement set

\SV" in Table 3.3. This measurement vector was supplemented with average pitch,

log duration, log energy, and zero-crossing rate for a total of 64 dimensions.

The acoustic modeling for systems A, B, and C made use of a full-covariance

mixture Gaussian classi�er with phone priors from the training data (e.g., a phone
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Stop Training Development

b 2,181 249
d 2,432 239
g 1,191 127
p 2,588 281
t 3,948 413
k 3,794 376
Total 16,124 1,685

Table 6.1: Token counts for training and development sets

unigram). Normalization and principal component analysis were performed to whiten

the feature space. For each trial of model training, a maximum of 12 full-covariance

Gaussian kernels were allowed per phone. The mixture kernels were seeded via ran-

domly initialized K-means clustering and trained using the EM algorithm. The num-

ber of mixtures was selected to achieve a minimum of approximately 500 tokens per

kernel for systems A and C, 300 tokens for system B. Multiple trials of model training

were aggregated to produce more robust models, as summarized in Section 2.4.1.1

# STFT Spectral Temporal
Dims [ms] Representation Basis

A: \SB" in 61 20.5 12 MFCCs 3 averages (3-4-3),
Table 3.3 2 derivatives

B: \SS" in 50 10 12 MFCCs 2 averages (halves),
Table 3.3 2 derivatives

C: 64 20.5 12 MFCCs 5 tapered cosines
300 ms wide

Table 6.2: Segmental measurements for systems A, B, and C used in design of per-
ceptual experiments. See text for full details.

Table 6.3 summarizes the results for the automatic systems, and shows several

subsets of the development data that can be de�ned according to these results. For

these perceptual experiments, we chose to use the 490 stops for which at least one

automatic classi�er made an error. These tokens are listed on the second-to-last line

1Aggregation of acoustic models is described in Appendix C.
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of the table, referred to as the \hard+harder+hardest" tokens. There are no special

conditions on the phonetic context of these tokens. Appendix A provides a complete

list of these tokens along with the human and machine hypotheses collected in these

experiments.

Description of token sets Error Rate (%)
Number of Classi�ers (out Number Voting
of systems A, B, and C) of using
that correctly identi�ed stop System System System A, B,
these tokens tokens A B C and C

exactly 3 correct (easy) 1,195 0.0 0.0 0.0 0.0
exactly 2 correct (hard) 223 48.0 23.8 28.3 0.0
exactly 1 correct (harder) 131 76.3 68.7 55.0 93.1
exactly 0 correct (hardest) 136 100.0 100.0 100.0 100.0

hard+harder+hardest 490 70.0 56.9 55.3 52.7
All of the development set 1,685 20.4 16.6 16.1 15.3

Table 6.3: De�nition of token subsets according to performance of automatic systems.

6.2.2 Preparation of Acoustic Data

The choice of how much context to provide to the listener in the perceptual exper-

iment is important. The �rst objective was to make it di�cult for humans to use

phonotactic or lexical knowledge. To reach this goal, the contexts had to be short.

The second objective was to provide approximately as much context as the automatic

classi�cation systems use. To reach this objective, the contexts had to be su�ciently

long so that they would be comparable to that of the automatic systems which make

use of information from the segment boundaries in the measurement extraction pro-

cess. Obviously, a balance was needed between these two con
icting conditions.

The �nal design resulted in the following waveform preparation. First, for each

stop token, three or four phonetic segments from the TIMIT phonetic transcription

�les were selected. These three or four segments included the stop itself, one segment

after the stop, and either one or two segments before the stop. If the segment im-

mediately preceding the stop was a closure, then two segments before the stop were
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included. In all other cases, only one segment before the stop was included. Next,

15% of the �rst and last segments were trimmed away. The purpose of this is to

avoid situations where the next sound on either side can be inferred from hearing

the phonetic transition. If these sounds could be identi�ed, then as many as �ve

phonemes might be inferred, which would potentially foil the objective of not allow-

ing subjects to make use of lexical knowledge. Next, the beginning and ending 15

ms of each speech segment were tapered in time using a raised cosine window. This

was done to avoid the perception of \clicking noises" at the beginning and end of the

example. The waveforms were normalized so that the loudness of the examples would

be approximately consistent across tokens.

6.2.3 Presentation of Acoustic Data

The 490 tokens were randomly divided into 5 lists of 98 tokens. The �rst ten tokens

were repeated at the end, so that there were a total of 108 examples to respond to

in each list. For scoring, the �rst �ve and the last �ve responses were disregarded.

The test was administered using headphones at a computer workstation. A response

was required for every token before the computer would proceed to the next example.

Each example was played twice, with a 1 second interval between �rst and second

playback. Subjects could request to have the example replayed as many times as

desired before giving their response. Each subject was asked to take the test at their

convenience at their workstation, spreading the lists over several days.

The instructions were:

INSTRUCTIONS: Over the headphones you will hear short segments

of speech. Each example will be played twice. Your task is to

identify the stop consonant which occurs during this brief speech

segment. You must enter one of the six choices (p,t,k,b,d, or

g) before the computer will proceed to the next speech segment.

Each list of stops has 108 stops to identify, which normally

takes about 15-20 minutes to complete.

These stop consonants were extracted from continuous speech, and

can occur in any phonetic context. For example, they may be word

internal, across word boundaries, or at the start or end of a
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sentence. This variety of context may occasionally make iden-

tifying the stop difficult. Usually, but not always, you will

hear some brief sounds on either side of the stop. Generally,

you will be on your own, except for one rule and one hint:

RULE: If you perceive any mismatch between the stop closure and

the stop release (or burst), you should make your choice based

upon your best assessment of the identity of the BURST.

HINT: If the stop is at the very beginning of the speech seg-

ment, then you will be alerted of this fact with the message:

Listen for the stop at the beginning of the segment. Of the

108 stops in each list, only between 5 and 9 of the stops will

be in this category.

Finally, listen carefully. In this experiment we would like to

measure the best that humans can do at identifying these stops.

Press any key to start when you are ready to begin.

6.2.4 Characteristics of Human Listeners

The test was taken by 7 students and sta� in the Spoken Language Systems group

at MIT during the summer of 1997. Two of the subjects had no background in

speech science. The other subjects had some knowledge of acoustic-phonetics. Any

advantage gained from knowledge of speech science is acceptable, since the experiment

is designed to measure achievable perceptual performance, not \typical" performance.

6.3 Perceptual Experiment Results

Figure 6-1 indicates the results for each of the seven listeners in the tasks of 6-way

stop identi�cation, 3-way place identi�cation, and 2-way voicing identi�cation. The

average performance and the performance obtained by voting are shown in Table 6.4

over the same three tasks. The average performance is generated from all 7� 490 =

3430 listener responses. Table 6.5 shows the total listener responses in a confusion

matrix. Table 6.6 shows the confusion matrix resulting from the majority vote. In

the process of generating the voting results, there were seven cases where a tie needed

to be broken. In each case, the reference was favored. This could a�ect the score by

as much as 1.4% (7=490) in stop identi�cation. Only �ve of these ties involved place
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Figure 6-1: Perceptual results across seven listeners.

identi�cation, so the bias toward the reference in tie-breaking could have changed the

place-identi�cation score by 1.0% (5=490).

Task
Stop Place Voicing

Average Listener 28.9 6.3 24.7
Listener Voting 23.1 2.2 21.2

Table 6.4: Error rate results for the average of the 7 listeners and for a majority vote
result from the 7 listeners.

Tables 6.7, 6.8, and 6.9 indicate the McNemar signi�cance of the performance dif-

ference between each pair of listeners for each of the three tasks. The \Y," for \Yes,"

indicates that the di�erence is statistically signi�cant at the 0.05 level, which implies

that there is less than a �ve percent chance that the two error rates are equivalent.
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Number Percent Listener's response
Answer of tokens Error b p d t g k

b 70 35.5 316 122 18 11 19 4
p 100 19.3 114 593 7 9 3 9
d 68 36.9 7 4 442 219 19 9
t 105 29.8 4 11 137 447 20 18
g 91 25.2 4 1 5 2 356 108
k 56 27.3 4 6 5 17 75 285

Total 490 28.9

Table 6.5: Human listener confusion matrix for all 490 tokens and all seven subjects,
showing the average performance.

Number Percent Hypothesis
Reference of tokens Error b p d t g k

b 70 31.4 48 19 2 1
p 105 7.6 8 97
d 100 36.0 1 64 34 1
t 91 22.0 2 16 71 1 1
g 68 20.6 54 14
k 56 23.2 1 1 11 43

Total 490 23.1

Table 6.6: Majority vote among human listeners for all 490 tokens.

Conversely, the \N," for \No," indicates that the di�erence between the two perfor-

mance levels is not statistically signi�cant. An \N" implies that the listener's results

are equivalent. Looking at Table 6.7, we see that there is no signi�cant di�erence

between listeners 2 through 6. Listeners 1 and 7 are outliers, performing the best

and worst, respectively. The signi�cance results are similar, though not identical, for

the place of articulation and voicing tasks. Note that the actual signi�cance levels

are given in small print. Choosing a cuto� level of 0.05 for the binary \Y" or \N"

decision is arbitrary, but it is helpful in providing a high-level view of the di�erences

between pairs of listeners.
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Pairwise McNemar Signi�cance: 6-way Stop Consonant Identi�cation
2 3 4 5 6 7

1 N 9:7�10�2 Y 4:1�10�2 Y 4:6�10�3 Y 1:8�10�3 Y 1:9�10�4 Y 5:3�10�7

2 N 9:1�10�1 N 4:0�10�1 N 2:6�10�1 N 5:7�10�2 Y 1:5�10�4

3 N 5:2�10�1 N 3:6�10�1 N 7:9�10�2 Y 5:7�10�4

4 N 8:4�10�1 N 3:2�10�1 Y 3:5�10�3

5 N 4:9�10�1 Y 7:6�10�3

6 Y 4:1�10�2

Table 6.7: McNemar signi�cance of the di�erence between listeners in stop identi�ca-
tion. Listeners are referenced by numerical indices corresponding to Figure 6-1. \Y"
or \N" indicates whether or not the di�erence is signi�cant at the 0.05 level. The
exact signi�cance level is given in small print.

Pairwise McNemar Signi�cance: 3-way Stop Place Identi�cation
2 3 4 5 6 7

1 N 6:4�10�2 N 1:1�10�1 N 1:7�10�1 Y 3:3�10�3 Y 1:6�10�6 Y 9:0�10�6

2 N 1:0 N 8:7�10�1 N 3:2�10�1 Y 3:1�10�3 Y 9:4�10�3

3 N 1:0 N 2:7�10�1 Y 2:6�10�3 Y 1:0�10�2

4 N 1:8�10�1 Y 1:4�10�3 Y 5:5�10�3

5 N 8:1�10�2 N 1:3�10�1

6 N 9:0�10�1

Table 6.8: McNemar signi�cance of the di�erence between listeners in identifying the
place of articulation of stop consonants. Listeners are referenced by numerical indices
corresponding to Figure 6-1. \Y" or \N" indicates whether or not the di�erence is
signi�cant at the 0.05 level. The exact signi�cance level is given in small print.

6.4 Stop Classi�cation using Heterogeneous Mea-

surements and Multiple Classi�ers

We now describe a system using heterogeneous measurements which will be compared

with the perceptual results. We chose to use segmental measurements S1-S8 and

boundary measurements B1-B5, as listed in Table 4.1. The multiple classi�ers were

combined using an independence assumption. A bigram phonotactic model was used.

The segmentation was taken from the TIMIT transcriptions in order to produce a

context-dependent classi�cation result of 15.0%. Note that the bigram makes use of
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Pairwise McNemar Signi�cance: 2-way Stop Voicing Identi�cation
2 3 4 5 6 7

1 N 2:8�10�1 N 2:1�10�1 Y 1:0�10�2 Y 1:4�10�2 Y 4:7�10�2 Y 8:7�10�5

2 N 1:0 N 2:1�10�1 N 2:6�10�1 N 4:3�10�1 Y 1:4�10�3

3 N 2:5�10�1 N 3:2�10�1 N 4:9�10�1 Y 3:8�10�3

4 N 1:0 N 7:4�10�1 N 5:7�10�2

5 N 8:2�10�1 Y 4:3�10�2

6 Y 2:2�10�2

Table 6.9: McNemar signi�cance of the di�erence between listeners in identifying the
voicing of stop consonants. Listeners are referenced by numerical indices correspond-
ing to Figure 6-1. \Y" or \N" indicates whether or not the di�erence is signi�cant at
the 0.05 level. The exact signi�cance level is given in small print.

hypothesized phonetic context. This use of hypothesized context is in contrast to

some context-dependent classi�cation work in the literature which may have used

reference context in the application of the phonotactic model [8, 9]. A context-

dependent classi�cation error rate of 17.7% is reported in [8, 9], using a non-standard

test set consisting of a 20-speaker subset of the NIST TIMIT training set.

Context-dependent classi�cation performance is a good indicator of the substi-

tution error that will occur in TIMIT phonetic recognition. The 15.0% error result

obtained above is the same as or close to the 15.0% and 14.7% substitution error re-

sults reported in the last two lines of Table 5.7. This correspondence was also found

with other acoustic measurements. This correspondence is important because it vali-

dates the use of phonetic classi�cation results for the purpose of improving phonetic

recognition.

In order to make direct comparisons with the perceptual results, the Viterbi search

was altered. This is necessary since humans were performing six-way classi�cation,

whereas normally the recognizer is considering all phone candidates for every segment.

Thus, for this purpose, the reference transcription was consulted. If the reference

phone was a stop consonant, then the hypothesis was restricted to be one of the six

stop consonants. This allowed the phones surrounding the stop bursts (including the

stop closures) to be hypothesized over the full phone set, while at the same time
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restricting the hypotheses for the actual stop bursts. Using this restriction on the

stop consonants, the system achieved 14.8% classi�cation error on the development

set. The performance on the stop consonants was 11.1%, as shown in Table 6.10.

6.5 Progress in Machine Classi�cation of Stops

Literature/ Task
Experiment stop voicing place

Johnson,1996[32] - - 11.0
Chun,1996[13] 21.6 - -
System A 20.4 15.1 7.2
Zahorian,1996[90] 18.8 - -
System C 16.1 10.9 6.5
Voting: A, B, and C 15.3 - -
Heterogeneous 11.1 7.8 3.8

Table 6.10: Stop consonant identi�cation, voicing, and place identi�cation error rates
on the development set.

Table 6.10 summarizes progress in the automatic classi�cation of stop consonants.

Conveniently, there are three results from the literature which report on the same

training and development sets as used in this thesis. The system reported by John-

son [32] with a place identi�cation error rate of 11% makes use of only 10 manually

extracted formant and burst spectral measurements. The classi�cation was performed

using linear discriminant analysis. Johnson found that the place identi�cation error

using this small set of measurements degraded signi�cantly to 24% when these mea-

surements were automatically extracted. The system reported by Chun [13] uses

measurements identical to those used in system A, shown in Table 6.2, except that

Chun may have averaged the MFCCs literally over thirds of the segment rather than

a 3-4-3 proportion. Chun's results are considerably worse than system A because sys-

tem A makes use of the aggregation of multiple trials in the classi�er, as mentioned

in Section 6.2.1, resulting in a model which is larger and considerably more accurate.

Zahorian's results reported in [90] made use of a frequency-dependent time-warping

106



in the acoustic measurements and a binary-pair partitioned neural network classi�er.

The \Voting: A, B, and C" line in Table 6.10 indicates the performance of obtained

by voting with systems A, B, and C.

The heterogeneous result is not directly comparable to the other machine system

results since it includes the addition of a bigram and context-dependent models. How-

ever, the purpose in this section is not to separate the contributions of heterogeneous

measurements, the bigram, and the context-dependent models. The purpose, rather,

is to obtain a system which is suitable for comparison with the human perceptual

results. Ideally, the human and machine systems would have access to identical infor-

mation. It seems reasonable that humans would make use of phonotactic knowledge.

Therefore, a bigram is included. The precise conditions which would give the hu-

mans and machines access to the same information are, in fact, di�cult to determine

and subject to debate, especially when one considers the possible intrusion of higher-

level phonotactic and lexical knowledge. In summary, the heterogeneous system is a

reasonable candidate for comparison with humans.

6.6 Narrowing the Gap: Human versus Machine

Performance

Figure 6-2 shows the comparison of 4 machine systems versus the average listener

performance and the majority vote listener performance. Machine systems A, B,

and C were used in the data set selection. The fourth machine is the system using

heterogeneous measurements discussed in Sections 6.4 and 6.5. Consider �rst the

comparison of machine systems A, B, and C with the human listeners. It can be

seen that automatic stop place identi�cation is 3.5 to 10 times worse than that of

humans. At the beginning of this investigation, this result provided motivation, since

it indicates that there is signi�cant room for improvement in automatic identi�cation

of place of articulation. In contrast, voicing identi�cation by machine is only 1.5 to

2.4 times worse than listeners. The net result of these two kinds of errors (place and
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Figure 6-2: Comparing 4 machine systems (A, B, C, and heterogeneous measure-
ments) with human listeners (average and voting).

voicing) leads to 6-way stop identi�cation by machine that is 1.9 to 3.0 times worse

than listeners. All of these results indicate that much improvement of machines is

needed in order to reach human levels of performance.

The heterogeneous measurements system produces error rate reductions of 38%,

50%, and 33% relative to system C in the tasks of stop, place, and voicing identi�-

cation, respectively. Due to those very signi�cant improvements, the heterogeneous

measurements system is now much closer to the human listener results. Place identi-

�cation is 1.8 to 5.1 times worse, voicing identi�cation is only 1.0 to 1.2 times worse,

and 6-way stop identi�cation is 1.2 to 1.5 times worse.

Figure 6-3 compares the heterogeneous measurements system with each individ-

ual listener. Table 6.11 shows the McNemar statistical signi�cance of the di�erence

between the heterogeneous measurements system and the individual listeners for each
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Figure 6-3: Comparing seven individual listeners with heterogeneous measurements
machine result. Note that the machine is sometimes better than the listeners.

of the three tasks. In the voicing identi�cation task, statistical signi�cance tests show

that the machine is equivalent to 5 of the listeners, better than the worst listener, and

worse than the best listener. Thus, all in all, the machine is the same or better than

6 out of 7 listeners in voicing identi�cation. The voicing identi�cation performance

of listener number one is 21.0%. This is the best result. Even the majority vote

perceptual result was no better, at 21.2%. An error rate reduction of only 15% in the

machine system would result in performance equal to the perceptual voting system.

Thus, the gap between human and machine voicing identi�cation performance under

these conditions is very small, but not entirely eliminated.

There is still a signi�cant gap between human and machine place identi�cation

performance. The machine is never better than any of the listeners, but signi�cance

tests indicate that there is no signi�cant di�erence between two of the listeners and
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McNemar Signi�cance
Speaker # Stop Voicing Place

1 Y 6:8�10�6 Y 5:9�10�2 Y 1:2�10�6

2 Y 1:8�10�3 N 3:8�10�1 Y 6:4�10�4

3 Y 3:6�10�3 N 4:5�10�1 Y 2:3�10�4

4 Y 1:6�10�2 N 9:2�10�1 Y 1:9�10�4

5 Y 4:2�10�2 N 1:0 Y 1:4�10�2

6 N 1:6�10�1 N 9:2�10�1 N 4:4�10�1

7 N 5:7�10�1 Y 5:1�10�2 N 3:3�10�1

Table 6.11: McNemar Signi�cance of di�erence between automatic system using het-
erogeneous measurements and each of seven human listeners for each of three tasks.
\Y" and \N" indicate presence or absence of a signi�cant di�erence at the 0.05 level.

the machine system. This achievement is less important due to the fact that there is

a very wide range in place identi�cation performance among the listeners. Listener

number 6 is 2.9 times worse than listener number 1. The perceptual majority vote

result of 2.2% error is the best. An error rate reduction of 80% is still required to

make the machine performance equivalent to the voting system, and this is in spite

of the fact that the heterogeneous measurements system has already bene�ted from

a voting-like procedure through the use of multiple classi�ers.

The 6-way stop identi�cation task is, or course, a blending of the voicing and

place results discussed above. The heterogeneous measurements system achieves per-

formance which is statistically equivalent to listeners 6 and 7. The listener voting

result of 23.1% is only slightly better than the best individual listener, 23.5%. An

error rate reduction of 33% is required to make the machine system achieve the same

performance as the perceptual voting result. Although this sounds promising, the

analysis above shows that the actual situation is more di�cult, since voicing identi�-

cation is comparable, but place identi�cation has a lot of ground to cover in order to

�ll in the gap in performance.

The interpretation of results comparing human and machine performance is sub-

ject to some debate due to varying viewpoints regarding the equity of the comparison.

Phonetic classi�cation of excerpts of speech is an unnatural task for humans, which

110



is a disadvantage for humans. On the other hand, the machines in these experiments

have access to only about 16,000 examples of stop consonants for training, whereas

the human subjects have listened to millions of examples over the course of their

20 or more years of life. Future work might consider the e�ects of giving humans

task-speci�c training, or training a machine classi�er with millions of examples. The

results obtained here are conclusive within the scope of the parameters of the exper-

iment.

In summary, the heterogeneous measurements system achieves voicing identi�ca-

tion equivalent to 6 out of 7 listeners. Place and stop identi�cation were equivalent to

2 out of 7 listeners. Future work in stop consonant identi�cation should continue to

focus on the place identi�cation problem in order to achieve human-like performance.

6.7 Examining Place of Articulation Errors

The results from the previous section show that place of articulation errors are the

biggest source of di�erence between human and machine performance. In this section,

particular examples of errors are examined. For the purpose of this analysis, the

performance of the heterogeneous measurements system will be contrasted with the

perceptual majority vote result. The results will be generically referred to as from

\humans" or \machines," for ease of reference.

The errors can be divided into three categories based on whether they were incor-

rectly classi�ed by humans only, machines only, or both humans and machines. Out

of the 490 tokens in the data set, both humans and machines were correct for 427

tokens. There were 52 tokens where only the machine was wrong, 8 where only the

humans were wrong, and 3 where both were wrong. These errors are examined in

more detail in the sections which follow.

6.7.1 Humans correct, Machine incorrect

Table 6.12 lists the 52 tokens where the perceptual majority vote had the correct place

of articulation, but the heterogeneous measurements system was incorrect. A large
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number of these are situations where the phonetic context may have contributed to

the di�culty. More speci�cally, 22 have adjacent liquids or glides, 14 have adjacent

fricatives or aspirants, 6 have adjacent nasals, and 6 are phonemic double-stops,

leading to a mismatch between the closure and burst. Some of these contexts occur

together, such that there are 10 additional stops which don't fall into any of the

above-mentioned categories. Of these, 4 occur at the beginning of the sentence, one

occurs at the end, and that leaves just 6 that are simply intervocalic singleton stops.

One way to categorize the machine errors is to see if any humans made the same

error. Recall that the tokens in the list being considered here are those for which

the heterogeneous measurements system is always wrong, and at least one of the

machine systems A, B, or C must also be incorrect since that was a condition for

inclusion in this perceptual experiment. The remaining 2 machine hypotheses may

be correct or incorrect. In order to characterize the performance, each of the four

machine hypotheses can be placed into one of three categories. First, the hypothesis

may be correct. Second, the hypothesis may be incorrect, but at least one human may

have made the same error. Third, the hypothesis may be incorrect, and no human

made the same error. Using this division, the hypotheses were 29% correct, 21% with

errors in common with humans, and 50% errors not in common with humans. The

errors not in common with humans are of the greatest concern. In fact, there are

11 cases where all four machine hypotheses were incorrect and no humans made the

same errors. These are numbers 7, 11, 13, 16, 26, 31, 32, 34, 40, 42, and 50. If we

include one case with context of [hv], then all of these tokens have a context of a

fricative, a liquid, or a glide. This result indicates that these contextual situations

create a great deal of di�culty for machines while at the same time humans do not

have the same problem. Consider the spectrograms of several of these cases:

� Figure 6-4 shows number 7 from Table 6.12. The machines substituted [t] or [k]

for the [p] at 1.78 seconds in \syrup for." The machines probably had di�culty

because the time resolution of most of the automatic measurement algorithms

was such that the frication from the [f] could interfere with the acoustic evidence

for the [p] burst.
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� Figure 6-5 shows number 11 from Table 6.12. This realization of the /k/ at

0.45 seconds in \include" lacks a true velar closure because of the [n] on the

left. Thus, the acoustic evidence for the [k] occurs in and after the burst. The

extreme formant locations of the [l] result in a [k] burst which is atypical with

respect to all [k] bursts, and thus di�cult for the machine.

� Figure 6-6 shows number 16 from Table 6.12. The high second formant in the

[iy] and the low third formant in the [r] produce an unusual [t] at 1.1 seconds

in \retract." There is a larger proportion of energy in the region of the second

and third formant than is typical for all /t/ bursts. This change in the energy

spectrum made the [t] look somewhat like a [k]. The machines made this error,

but the humans were able to account for the context and know this was a [t].

� Figure 6-7 shows number 32 from Table 6.12. The machines mistook the [k]

at 1.45 seconds in \panic they" for a [d]. This situation is similar to number

7 in Table 6.12 in that acoustic evidence from a right context fricative causes

machines to give the place of articulation as alveolar. Humans did not have any

problem with this. It seems that the machine is not able to perform the burst

analysis in a su�ciently short-time manner.

After looking at these examples, two hypotheses emerge which may help to explain

the remaining gap between human and machine place of articulation identi�cation

performance. The �rst hypothesis is that extreme formant locations in neighboring

phones produce stop tokens which are statistical outliers. The classi�ers in this study

typically do not have enough training data to robustly model the \edges" of the

acoustic space. This problem is made more acute when, for example, an outlier of

a [t] is similar to a typical [k], as in number 16 in Table 6.12. If this is simply an

issue of training data, then these problems with outliers will be alleviated through

the addition of more training data. The second hypothesis is that the machines are

not able to accurately measure and model the extremely short-time phenomena at

the stop burst which are sometimes critical to correct identi�cation of a stop conso-

nant. The phonemic double stops in Table 6.12 support this hypothesis. The humans
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Figure 6-4: This is a spectrogram of \syrup for," corresponding to number 7 from
Table 6.12. The burst of the [p] is located at 1.78 seconds. The machines substituted
[t] or [k] for the [p]. This was probably due to the e�ects of the neighboring [f].
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Figure 6-5: This spectrogram of \include," corresponding to number 11 from Ta-
ble 6.12, shows the lack of a true velar closure because of the [n] on the left of the [k]
burst at 0.45 seconds.
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Figure 6-6: Spectrogram of \retract," corresponding to number 16 in Table 6.12. The
/t/ within the word \retract" is the sound of interest. The high second formant in
the [iy] and the low third formant in the [r] produce an unusual [t], at about the 1.1
second mark, that is di�cult for the machines to classify.
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Figure 6-7: Spectrogram of \panic they," corresponding to number 32 in Table 6.12.
The machines mistook the [k] at 1.45 seconds for a [d]. Acoustic evidence from the
right-context fricative may have been the cause of the migration to an alveolar place
of articulation. It seems that the machine was not able to perform the burst analysis
in a su�ciently short-time manner.
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were able to recognize the mismatch between stop closure and stop burst informa-

tion and choose the place of the burst. The machine systems were generally not

able to separate the acoustic evidence from the burst and the closure. For example,

the acoustic measurements for the closure include information from both before and

after the closure. Thus, the burst acoustics are included with the closure acoustics.

Machine systems need a mechanism for very time-localized analysis at burst and clo-

sure locations. Phonemic double-stops are also statistical outliers, so clearly the �rst

hypothesis plays a role in these cases as well. However, there are other examples

where the chief problem for machines seems to be the short-time nature of the most

important acoustic evidence.

6.7.2 Humans incorrect, Machine correct

There were 8 tokens where the perceptual majority vote was incorrect, but the het-

erogeneous measurements system was correct. In the previous section, the severity

of the machine errors was gauged by whether humans made the same errors. In this

case, the severity of the human errors can by gauged by looking at how many of the

humans were incorrect. It turns out that there is only one example where all the

humans were incorrect. Thus, in 7 out of these 8 cases, at least one human did select

the correct place of articulation.

Spectrograms will not be provided for all of these tokens, but several examples

will be discussed:

� Number 1 in Table 6.13: A phonemic double stop, the [k] closure confused some

listeners. The non-speech scientists who took the test may not have been clear

about the distinction between listening for the burst identity as opposed to the

closure. In fact, 3 out of 4 listeners were correct, and there are 6 examples

of phonemic double stops in Table 6.12 where the majority of humans were

correct. Thus, it seems likely that the incorrect listener hypotheses here could

have been from misunderstanding or fatigue.

� Number 2 in Table 6.13: This instance of /b/ in the word "ability" sounds and
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# in TIMIT Machine Perceptual
Appendix Phonetic Hypotheses Hypotheses

A Utterance Tag labels Orthography A,B,C,Hetero 7 subjects

1 31 si497-b-mers0 ah pcl p ax-h s the puppets delight bppt pppppbp
2 35 sx44-b-mbwm0 axr tcl t ey n an entertaining sport ttkk ttttttt
3 39 sx403-b-mjfc0 r dcl d r ow her wardrobe consists gggg dgdddgd
4 42 sx413-b-mdlf0 # h# d ae f # daphne's swedish bddb ddddddd
5 47 si1454-b-fcmh0 ay pcl p sh y main types used pkkt bbbbbbb
6 56 si1555-b-mmdm2 iy pcl p iy v a sleepy voice ppkk ppbpppp
7 63 si728-b-mjar0 ah pcl p f axr this syrup for ttkt ppppppp
8 74 si1542-b-mpdf0 # h# d ih f # the feet dbpb ddddtdd
9 75 si1542-b-mpdf0 iy tcl t w ao the feet wore dddg tgttttt
10 96 si1628-b-mdls0 r bcl d w ey an absorbed way kbbb dgdgddd
11 101 si860-b-fkms0 n kcl k l ux these include leaves tttt kkkkkkk
12 114 sx298-b-fsem0 n bcl b iy ow than be overcharged dbdd bdbbbbb
13 121 sx389-b-fmah0 ih gcl g hv aw a big house dddd gkkkgkg
14 131 si1084-b-fedw0 ey pcl p s iy other shapes evolve dpdt bpppbbp
15 146 sx113-b-mbdg0 s kcl k ix l a muscular abdomen dgdt ktkkkkk
16 165 sx119-b-fmah0 iy tcl t r ae was retracted with kkkk ttttttt
17 166 sx119-b-fmah0 ae kcl t axr dcl was retracted with tktk tdttdtt
18 176 si859-b-mrjm4 n kcl k en tcl non contributory plan gkkd kkkkkkk
19 179 sx396-b-mdvc0 iy pcl p f r to leap frantically ttdt tpbpppp
20 183 sx279-b-mgwt0 ow tcl t w axr is noteworthy # pppk pdtdkdt
21 194 sx313-b-faks0 # h# d r aa # drop �ve tddb ddddddd
22 203 sx383-b-fdrw0 ah gcl g h# # oriental rug # kkkd ggggggg
23 207 sx298-b-mmjr0 n bcl b iy ow than be overcharged ggbd ppdbdbp
24 233 sx113-b-fdrw0 uh dcl d f axr is good for kdkg tgddddd
25 238 si1181-b-fjmg0 uh kcl k ih z present book is kttt ggggggg
26 241 si2255-b-mmdb1 f tcl t iy n some �fteen feet kkkk ttttttt
27 245 si494-b-mwjg0 s tcl t w ah at least one pptk ttttttt
28 295 sx101-b-fjmg0 # h# k ih n # kindergarten children kpkt kkkkktk
29 299 si1670-b-fmml0 # h# g aa q # got no kbpp gggggkg
30 306 sx228-b-fdms0 uh kcl k dh iy viewpoint overlooked the kptp bgttgkg
31 333 sx379-b-mcsh0 z dcl d r ay gives driving lessons gggp dttdtdd
32 335 si1502-b-fdms0 ih kcl k dh ey exactly panic they dddd kkkkkkk
33 338 sx110-b-frew0 aa bcl b l ax extra problems # gbbd bbbbbbb
34 343 sx208-b-fsem0 aa bcl b s eh # rob sat tddd bbbbbbb
35 346 si818-b-fgjd0 ix tcl p ao r transmit poorly and tppt ppppppp
36 352 si1133-b-mteb0 eh kcl t l ao can project long kkkk tttktkt
37 382 sx143-b-mdlf0 ux gcl g el s jennifer's bugle scared gbgb ggggggg
38 410 sx28-b-fsem0 ae tcl g aa r that guard for ggdd ggggggg
39 412 sx28-b-fsem0 v gcl g ae s of gas # kttt dgggggg
40 417 sx102-b-mmdm2 ae pcl p axr s from kidnappers # gggg bbbppdt
41 419 sx47-b-mroa0 s tcl t r ao mom strongly dislikes kktk ttttttt
42 428 si677-b-mroa0 el tcl t r eh comparable trends can kkkk ttttttt
43 442 si1910-b-frew0 ix n b r iy and breathed for bgbg bbbbbbb
44 449 sx233-b-mrcs0 ng gcl g h# # same thing # dddd gkdggdg
45 455 sx413-b-mteb0 iy dcl d ix sh daphne's swedish needlepoint ggdg ddddddd
46 461 sx365-b-mmdb1 ae tcl g ah n at gunpoint for tgdt gggggtk
47 465 sx29-b-mers0 ax-h pcl p ax-h tcl of potatoes # pttt pptpttp
48 466 sx29-b-mers0 ax-h tcl t ey dx of potatoes # ttpp ttttttt
49 470 si2275-b-mthc0 ih dcl d l uh all did look bddb ddgdddd
50 471 si2275-b-mthc0 ih pcl p sh ey and shipshape # kggk bpppppp
51 484 si459-b-mmwh0 n tcl t el hh for experimental hospitals tddp ttttdtt
52 486 sx282-b-mrjr0 axr gcl g aa tcl fairy forgot to ggdd ggggggg

Table 6.12: 52 tokens where perceptual majority vote had the correct place of artic-
ulation but heterogeneous measurements system was incorrect.
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looks confusable with a [d]. Perhaps the speaker made an alveolar closure before

closing the lips. Both machine and human labellings are mixed.

� Number 3 in Table 6.13: This sentence-�nal [t] in \employment" is very weak

in energy. This may explain in part why some listeners confused it with [p] in

the absence of prosodic context. All automatic systems chose alveolar place of

articulation.

� Number 4 in Table 6.13: Some humans thought that this [d] in \reads" was a

[b]. This is apparently related to the high-front vowel left context obscuring

formant motion toward alveolar place, combined with a very short voice onset

time moving into the [z]. The machine systems all had the correct place of

articulation.

� Number 5 in Table 6.13: The alveolar place of the left context [z], and the right

context reduced vowel [ix] result in faint or missing formant transition cues for

labial place. Faint cues still favor [b], but [d] is a very close second choice. Both

human and machine hypotheses are mixed.

� Number 6 in Table 6.13: The acoustic evidence for [k] in the word \strength"

in this example is almost non-existent. This could perhaps be better labeled

as a [kcl], without a stop burst, followed immediately by a [th]. None of the

humans chose velar place. Some chose alveolar, and others chose labial. Three

out of the four machines were also incorrect, which is understandable based on

the lack of evidence.

� Number 7 in Table 6.13: The [t] at the end of \viewpoint" was mistakenly

labeled [g] by 5 out of the 7 listeners. Perhaps the combination of formant

motion in the /oy/ and the presence of a glottal stop after the /t/ led listeners

to choose velar place. The machines all chose alveolar place.

� Number 8 in Table 6.13: Three out of 7 of the listeners were correct, but the

other four mistook the second [t] in \exultantly" for a [p]. The combination
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# in TIMIT Machine Perceptual
Appendix Phonetic Hypotheses Hypotheses

A Utterance Tag labels Orthography A,B,C,Hetero 7 subjects

1 60 si649-b-fadg0 eh kcl t f er and respect for dkkt kkkttkt
2 77 sx279-b-fgjd0 ax bcl b ih l alice's ability to bbdb tdbbddd
3 94 sx229-b-mrjm4 n tcl t h# # for employment # tddd dpppdpp
4 135 sx278-b-mdls0 iy dcl d z dh occasionally reads the ttdd bddbdbb
5 161 si2119-b-mrjm4 z bcl b ix n has been lost ddbb dbbdddt
6 273 sx409-b-mrjm4 ng kcl k th m increases strength miraculously pddk tptppdp
7 305 sx228-b-fdms0 oy n t q ow the viewpoint overlooked dddd ggdgdgg
8 368 si1496-b-mrws1 ix n t l ix was exultantly easy kdtd tpppddp

Table 6.13: 8 stop consonant examples where the majority vote of the humans gave
the incorrect place of articulation, but the heterogeneous measurements system had
the correct place of articulation.

of nasal and liquid context along with a very short voice onset time may have

mislead listeners. One machine system chose velar place.

In summary, the human errors are usually due to acoustic-phonetic ambiguity,

or a combination of misunderstanding and fatigue in identifying a phonemic double-

stop. There was only one case where all the humans were wrong, and in that case

the acoustic evidence was simply absent (number 6). Thus, humans are making very

e�cient use of the available information.

6.7.3 Humans incorrect, Machine incorrect

There were 3 tokens in which both the perceptual majority vote and the heterogeneous

measurements system were incorrect. Consider each of these cases:

� Number 1 in Table 6.14: The [y] in the right context led some humans and

machines to mistake the [b] in \vocabulary" for a [g]. The hypotheses of both

humans and machines were mixed.

� Number 2 in Table 6.14: The [d] in \seemed foolish" has ambiguous acoustic

cues. There is a concentration of energy at the burst that makes it look possibly

velar. Both human and machine hypotheses were mixed.

� Number 3 in Table 6.14: The initial stop in \combine" was unanimously recog-

nized by humans as [t]. This is probably due to misarticulation by the speaker.
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# in TIMIT Machine Perceptual
Appendix Phonetic Hypotheses Hypotheses

A Utterance Tag labels Orthography A,B,C,Hetero 7 subjects

1 55 sx53-b-mrcs0 ae bcl b y ax simple vocabulary contains gddg gbdgggg
2 256 si2203-b-faks0 m dcl d f uw dive seemed foolish dkdk gpgkkkt
3 340 sx118-b-mmjr0 # h# k ax bcl # combine all tttp ttttttt

Table 6.14: 3 stop consonant example where both the majority vote of the humans
and the heterogeneous measurement system had the wrong place of articulation.

This example will be examined again in the section concerning the role of pho-

netic ambiguity.

In summary, these situations were caused by di�cult contexts, ambiguous phonetic

cues, and/or misarticulation.

6.8 Role of Phonetic Ambiguity

Phonemes are linguistic categories which are the building blocks of the lexicon. In

contrast, phones are acoustic categories which are used by linguistics to describe the

actual sounds which occur in speech. For example, consider the question \Did you?"

which can be transcribed phonemically as /d ih d y uw/. This phrase might be

realized phonetically as [d ih dcl d y uw] or [d ih dcl jh ax].

There are times when the phonetic evidence con
icts with the phonemic repre-

sentation in the lexicon. In this study, these instances were found when all human

listeners agreed about the identity of the phone, but their unanimous conclusion dis-

agreed with the reference transcription. Table 6.15 lists the 27 tokens that had this

experimental outcome. In general, in cases with incomplete or con
icting acoustic

evidence, the TIMIT reference transcriptions are biased toward the phonemic cate-

gory. This is in spite of the fact that the TIMIT reference transcriptions were created

with the goal of obtaining a true phonetic transcription. The perceptual results are

more likely to produce the true phonetic category, since they are based only on acous-

tic evidence. Thus, these examples show con
icts between phonetic and phonemic

categories.
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# in TIMIT Machine Perceptual
Appendix Phonetic Hypotheses Hypotheses

A Utterance Tag labels Orthography A,B,C,Hetero 7 subjects

1 3 sx290-b-mjsw0 s bcl b r ow this brochure is bppp ppppppp
2 32 si497-b-mers0 s dcl d ax l puppets delight the tttt ttttttt
3 47 si1454-b-fcmh0 ay pcl p sh y main types used pkkt bbbbbbb
4 65 sx191-b-fjmg0 th dcl d r ao # withdraw all ttgt ttttttt
5 84 si2120-b-fkms0 z dcl d pau dh he paused then tttt ttttttt
6 125 si1994-b-mtdt0 z tcl t ix gcl was to get dddd ddddddd
7 128 si773-b-fcal1 s dcl d r ay projects dry slowly tttt ttttttt
8 149 si909-b-mgwt0 n tcl t eh tcl compulsory retirement at dddd ddddddd
9 180 sx319-b-mrjm4 ow tcl t q ay big goat idly dddt ddddddd
10 186 sx364-b-fjem0 iy tcl t ix ng a heating system dgdd ddddddd
11 206 sx298-b-mmjr0 aa tcl b ay dh not buy these pppp ppppppp
12 208 sx298-b-mmjr0 jh dcl d h# # be overcharged # ttdt ttttttt
13 209 si2064-b-mteb0 z gcl g ih f was gifted with ggkg kkkkkkk
14 238 si1181-b-fjmg0 uh kcl k ih z present book is kttt ggggggg
15 246 si1653-b-fedw0 ow kcl k s uw he spoke soothingly dkkk ggggggg
16 261 si1946-b-majc0 v dcl d h# # means solved # tttt ttttttt
17 270 sx214-b-fdac1 n dcl d ax-h pau web glistened in tttt ttttttt
18 313 sx379-b-fadg0 s dcl d r ay gives driving lessons tttt ttttttt
19 340 sx118-b-mmjr0 # h# k ax bcl # combine all tttp ttttttt
20 348 sx102-b-mpdf0 ae pcl p axr z from kidnappers # gggp bbbbbbb
21 350 sx109-b-fadg0 ng kcl k el q her ankle on kgkk ggggggg
22 401 si2293-b-mjfc0 eh tcl t q ao ones that all dddd ddddddd
23 403 si2293-b-mjfc0 eh tcl t l aw laughed at loudest dbdd ddddddd
24 421 sx14-b-fcmh0 z dcl d ih z before thursday's exam tttt ttttttt
25 431 sx189-b-fgjd0 # h# d ih s # destroy every ttdt ttttttt
26 453 sx317-b-mroa0 ih tcl t iy ih very pretty in dddd ddddddd
27 463 si904-b-mglb0 n tcl t ix v came into view dddd ddddddd

Table 6.15: Tokens with questionable TIMIT reference transcriptions.

When Table 6.15 is examined more closely, it can be seen that most of these

instances are caused by voicing ambiguity, but not place ambiguity. In fact, 26 out of

27 involve only voicing errors. There is only one that involves a place of articulation

error (number 19 in Table 6.15). In many cases, the machine results agreed with the

same phonetic category as the perceptual results.

Now consider a few particular examples.

� Number 5 in Table 6.15: This is a good example of a con
ict between the

phonemic and phonetic evidence. The orthography is \he paused then," and

the relevant phoneme is the /d/ at 0.93 seconds in \paused." Figure 6-8 shows a

spectrogram of these words. Examination of the spectrogram shows that there

is no pre-voicing before the stop burst, and the voice onset time is not available

because the speaker actually paused after saying the word \paused." Thus,

acoustic-phonetic evidence indicates that this phone is [t], and both humans
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and machines con�rmed this. The people labeling the TIMIT transcriptions,

however, were biased toward the phonemic /d/ indicated by the word \paused."

� Number 10 in Table 6.15: Figure 6-9 shows the spectrogram of \heating." The

/t/ at 4.30 seconds was transcribed as [tcl t] in spite of the presence of voicing

and a short voice onset time. Perceptual results indicate that it is closer to

a [dcl d]. From a speech production point of view, this example was almost

realized as a 
ap, [dx], which is common for intervocalic /t/ or /d/ sounds.

� Number 18 in Table 6.15: This is an example of contextual e�ects leading to

an apparent phonetic/phonemic con
ict for two phones in a row. Figure 6-10

shows the spectrogram of \gives driving." The portion of interest the /d/ at

0.79 seconds in /z dcl d r ay/. The TIMIT transcribers decided that voicing

was absent from the /z/, so they labeled it as [s]. However, they still labeled

the stop as [dcl d]. Perceptual results show that this stop was perceived as [tcl

t]. Humans may have been biased toward perception of [t] because /s t r/ is

allowable at the start of a syllable, whereas /s d r/ is not. The human listeners

were told that the stops could have been extracted across syllable boundaries,

but without training it may have been di�cult for humans to suppress the

intuitive perception of short segments as being syllable-initial. On the other

hand, there are other cases, such as number 109 in Appendix A, where some

listeners did overcome a similar bias involving /s b/ versus /s p/.

� Number 19 in Table 6.15: This is interesting because it is the one case where

there was a unanimous place of articulation error. Figure 6-11 shows a spec-

trogram of the beginning of the word \combine." The stop of interest is the

sentence initial /k/ at 0.14 seconds. This example appears to be a case of

misarticulation. The change in place of articulation cannot be attributed to

contextual e�ects since it occurs at the beginning of the sentence. In spite

of the phonemic /k/, what the speaker actually produced is apparently much

closer to a phonetic [t].
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In practice, word recognition systems have several di�erent ways of handling the

variability in the way that people pronounce words. Some systems absorb the vari-

ability into context-dependent acoustic models. Other systems attempt to model

the lexicon more precisely by explicitly considering alternative pronunciations. The

results here illuminate the di�culty involved in creating a single \true" phonetic tran-

scription in light of phonetic ambiguity, and highlight the need for appropriate ways

to deal with these e�ects in word recognition.

6.9 Summary

Perceptual experiments with stop consonants were designed in order to explore di�er-

ences between human and machine performance. The experiments focused on tokens

which were di�cult for machines to classify.

Comparisons of listener results with a machine system using heterogeneous mea-

surements showed that voicing identi�cation performance by machine was equivalent

or better than that of six out of seven listeners. Place identi�cation performance was

equivalent to that of two out of seven listeners. Heterogeneous measurements were

helpful in narrowing the gap between human and machine performance. More work

is needed in order to improve place of articulation performance to the point where it

is comparable to human performance.

Particular errors in place of articulation identi�cation by humans and machines

were examined. Two hypotheses were developed to explain why there is still a signif-

icant gap between human and machine place of articulation identi�cation. The �rst

hypothesis has to do with the lack of training data for rare phonetic contexts. The

second hypothesis asserts that current systems do not adequately measure and model

extremely short-time phenomena such as is found at the stop burst. This is not a

problem for most stops, since there are typically several redundant acoustic cues for

the place of articulation. There are times, however, when these short-time cues are

non-redundant and critical to the identity of the place. In these situations, the short-

comings of the machines are apparent. These two hypotheses should be helpful in the
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design of future systems which aim to eliminate the gap between human and machine

performance in place of articulation identi�cation. In addition, the investigation also

uncovered examples of phonetic ambiguity, misarticulation, and questionable TIMIT

reference transcriptions.

This investigation and the speci�c examples herein provide perspective regarding

the acoustic di�culties and phonetic ambiguities which arise in continuous speech,

and hypotheses regarding how to potentially improve future systems.

126



kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

kHz kHz

0 0

8 8

16 16
Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Figure 6-8: Spectrogram of the words \he paused then," corresponding to number 5
in Table 6.15. The stop consonant of interest is the /d/ at 0.93 seconds in \paused."
There is no pre-voicing before the stop burst, and the voice onset time is not avail-
able because the speaker actually paused after saying the word \paused." Thus,
acoustic-phonetic evidence indicates that this phone is [t], and both humans and ma-
chines con�rmed this. This is an example of con
ict between phonemic and phonetic
evidence.
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Figure 6-9: Spectrogram of \heating," corresponding to number 10 in Table 6.15.
The /t/ 4.30 seconds was transcribed as [tcl t] in spite of the presence of voicing and
a short voice onset time. Perceptual results indicate that it is closer to a [dcl d]. From
a speech production point of view, this example was almost realized as a 
ap, [dx],
which is common for intervocalic /t/ or /d/ sounds.
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Figure 6-10: Spectrogram of \gives driving," corresponding to Number 18 in Ta-
ble 6.15. The stop of interest is the /d/ at 0.79 seconds. This is an example of
contextual e�ects leading to an apparent phonetic/phonemic con
ict for two phones
in a row. The TIMIT reference transcribers decided that voicing was absent from the
/z/, so they label it as [s]. However, they still labeled the stop as [dcl d]. Perceptual
results show that this stop was perceived as [tcl t].
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Figure 6-11: Spectrogram of \combine," corresponding to Number 19 in Table 6.15.
The stop of interest is the sentence initial /k/ at 0.14 seconds. This is the one case
in Table 6.15 where there was a unanimous place of articulation error by humans.
It appears to be a case of misarticulation. In spite of the phonemic /k/, what the
speaker actually produced is apparently much closer to a phonetic [t].
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Chapter 7

Conclusion

7.1 Summary and Contributions

The work in this thesis was motivated by three observations. First, perceptual exper-

iments showed that humans are still much better than machines in low-level acoustic

phonetic tasks. Second, experiments using a variety of time-frequency resolutions

showed that the typical, �xed time-frequency resolution used in most systems is a

compromise among the settings that are optimal in di�erent phonetic classes. Third,

most phonetic confusions occur within the correct manner class, so the phonetic

classi�cation task can be broken up into smaller subproblems. These motivational

observations may also serve to mobilize and guide the e�orts of other researchers.

Two ideas regarding the evaluation of classi�ers set this work apart from other

acoustic modeling studies. The �rst idea 
ows from the third motivation. Simply

stated, it is the notion that one should not simply look at the overall phonetic clas-

si�cation results of a particular classi�er, but should also examine the performance

within phonetic subclasses in order to more completely evaluate the strengths and

weaknesses of each particular classi�er. This analysis resulted in additional insights

into the design of good acoustic measurements. For example, in Section 4.2, exam-

ining the performance of classi�ers within phonetic manner classes resulted in the

observation that cosine temporal basis vectors were better than linear or constant

basis functions for the encoding of MFCC trajectories of sonorants. Examining only
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the overall classi�cation result does not reveal this. The second change in the way

that classi�ers were evaluated is even more important than the �rst. In the past,

acoustic measurement evaluation experiments were carried out with the objective of

�nding and using the one-best acoustic measurement set. In contrast to this, the

committee-based experiments in this thesis explicitly aim to develop a suite of acous-

tic measurement vectors that can be used simultaneously in order to take advantage

of the complementary information among them. In fact, acoustic measurements were

designed with the objective of maximizing the complementary phonetic information.

This design objective produces a new way of thinking in which di�erent measurement

sets are no longer viewed as independent and in competition, but rather as interre-

lated and complementary. Di�erent measurement sets should now be designed jointly,

not independently. Instead of having to choose one single time-frequency resolution,

we select several which will extract di�erent information from the speech signal. This

change in the evaluation of acoustic measurements is implicit in the design of all of

the committee-based experiments.

The notion of using multiple acoustic information sources has led to encouraging

results in a wide variety of experiments. These include experiments using di�erent

lexical representations such as incorporating syllabic knowledge [95], or using di�erent

phonetic inventories (AT&T), di�erent frame rates (BBN), multiple levels of acous-

tic context (triphone and quinphone, HTK), and the ROVER system as originally

proposed by NIST [25].1

Hierarchical approaches to measurement development and classi�er combination

were explored in Chapter 3. Classi�ers were combined by expanding the usual MAP

decoding over a set of phonetic classes. Phone-class-speci�c acoustic measurements

were developed through phonetic knowledge combined with experimental veri�cation

for four phone subsets: vowels/semivowels, nasals/
aps, stops, and fricatives/closures.

Increasing the time resolution and lowering the dimensionality of the segmental stop

consonant measurements was particularly e�ective, leading to 8.7% error rate reduc-

1The systems from AT&T, HTK, and BBN were part of the September 1998 Benchmark Tests [67]
mentioned in Chapter 4.
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tion relative to the baseline on the full test set. Overall, these techniques achieved

21% error on the TIMIT core test set, which was the best reported result at that

time [31].

Several committee-based approaches for combining multiple classi�ers were de-

scribed in Chapter 4, including voting, linear combination, and the use of an inde-

pendence assumption. This chapter also presented 8 segmental measurement sets

and 5 boundary measurement sets which were designed to contain complementary

acoustic-phonetic information. A theoretical discussion looked at the di�erences be-

tween attempting to train one classi�er using the union of the measurements in the

individual feature vectors, versus training separate classi�ers followed by combining

the outputs of the classi�ers. In addition to the committee-based approaches, two hy-

brid approaches which combine elements of the committee and hierarchy approaches

were also presented.

Techniques for committee-based classi�er combination were evaluated in Chap-

ter 5. Both the linear combination and independence assumption techniques per-

formed well in comparative experiments in the task of TIMIT phonetic classi�cation.

A hybrid system using a a nine-member classi�er committee produced the best pho-

netic classi�cation result of 18.3% error on the TIMIT core test set, which is a 12.9%

improvement over our previous best reported result of 21.0% [31]. The next best re-

sult that we have seen in the literature reporting TIMIT CI classi�cation on the core

test set is 23.0% [97]. Subsequent experiments in TIMIT phonetic recognition and

jupiter word recognition used an independence assumption for combining multiple

classi�ers. The �nal TIMIT phonetic recognition result of 24.4% on the core test set

is the best that has been reported in the literature. In the jupiter telephone-based

word recognition task, word error rate reductions of 10-16% were observed using a

committee of three classi�ers. The experiments with jupiter are important because

they show the generalization of these techniques to word recognition in a telephone-

bandwidth acoustic environment.

Several sections in Chapter 5 make additional contributions. Section 5.1.3 provides

detailed performance results from our best context-independent, classi�cation system
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without vocal tract length normalization. Section 5.1.4 shows experimentally that

training a single high-dimensional classi�er is typically not a successful way to utilize

high-dimensional measurement spaces due to the exponentially growing size of high-

dimensional spaces. Section 5.1.5 shows that individual classi�ers which show mutual

diversity are good candidates for classi�er combination. Given a set of individual

classi�ers and their performance on a development set, one would like to be able to

predict which subset of those classi�ers might perform well when combined into a

single system. We found that the diversity among a subset of classi�ers was a good

predictor of the success of the combination of those classi�ers. In fact, diversity was

a better predictor than the individual classi�er performance on the development set.

This is reasonable, since two classi�ers which have very good performance but are

nearly identical will not lead to much bene�t when they are combined because they

do not contain much complementary information.

Perceptual experiments on stop consonants and comparable machine classi�cation

results are presented in Chapter 6. The �nal results comparing our best machine

classi�cation results with humans shows that machines perform almost as well as

humans in identi�cation of voicing of stops, but still lag by a factor of 1.8-5.1 in

identifying the place of articulation. Error analysis of the di�erences between human

and machine performance resulted in two hypotheses about why there remains a gap

between human and machine stop classi�cation performance. The �rst hypothesis

is that machines do not adequately handle cases where there are extreme formant

locations in neighboring phones. These cases produce statistical outliers which are

generally not adequately modeled based on the limited amount of training data. The

second hypothesis is that the machines are not able to accurately measure and model

the extremely short-time phenomena at the stop burst which are sometimes critical

to correct identi�cation of a stop consonant. The error analysis investigation also

uncovered examples of phonetic ambiguity, misarticulation, and questionable TIMIT

reference transcriptions. Taken as a whole, the perceptual studies provide perspective

concerning the acoustic di�culties and phonetic ambiguities which arise in continuous

speech. These studies will help to guide the direction of further research.
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7.2 Future Extensions

There are a large number of areas for extension of this work. The concept of design-

ing and jointly using heterogeneous measurements and multiple classi�ers is relatively

new and unexplored. Acoustic measurements from the past need to be re-evaluated in

the context of a search for complementary phonetic information. New measurements

need to be developed which may excel at particular phonetic distinctions, without be-

ing concerned that they are poor for other distinctions. New techniques are needed for

utilizing high-dimensional acoustic spaces. This thesis used the paradigm of combin-

ing multiple classi�ers which were trained separately. Intuitively, it should be possible

to improve this classi�er structure through a mechanism for joint training of all clas-

si�ers in a uni�ed framework. This uni�ed framework may be able to eliminate the

notion of multiple classi�ers and replace it with a single high-performance classi�er

structure which is able to overcome the di�culties normally associated with training

a classi�er of such high-dimensionality. Alternatively, other classi�er structures could

be explored, such as the use of stacked generalization [93].

The ROVER system [25], which was developed by NIST and used by a number of

research sites, combines the �nal word recognition output from multiple recognizers.

In contrast, the methods in this thesis combine multiple classi�ers at the acoustic

modeling level, so that the changes in acoustic modeling are invisible to the rest of

the system. Future research might compare and contrast these two approaches in a

large vocabulary word recognition task. Early combination of acoustic models should

provide better information for the search. On the other hand, late combination

allows one to potentially bene�t from the independent interaction of each acoustic

measurement set with the remainder of the system.

Multiple acoustic measurements could be sought for the purpose of improving

the noise robustness of a system. This requires the design of measurements which

are robust to a variety of types of noise. There is work in the literature which

combines acoustic measurements based on multiple independent frequency bands [87,

3, 71]. Those studies usually do not show performance improvements, but they do
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show increased noise robustness. This method of achieving noise robustness could

potentially be extended by adding other types of measurements.

The techniques presented in this thesis should be useful for speech scientists who

develop specialized acoustic measurements. These researchers could augment existing

measurement sets with the alternative measurements they develop. This allows them

to seek complementary information, rather than competing directly with conventional

acoustic measurements. There are studies which have moved in this direction, such

as combining formant measurements and MFCCs [32, 35, 82], but they have not used

powerful multiple classi�er structures such as those presented here.

In this thesis, we have not been concerned about the computational complexity

of using multiple classi�ers. If all computation is performed, then using N classi�ers

will increase the acoustic modeling cost of a recognizer by a factor of N . It should

be possible to realize much of the performance improvement from multiple classi�ers

without full computation of every classi�er for every acoustic observation, using ideas

analogous to \phonetic fast-match." Conventional fast-match results in evaluating

the acoustic models for only a subset of all the possible phones. This new fast-match

would retain that quality, but add another dimension, in which a variable number of

classi�ers may be consulted for each acoustic observation. The variable number could

be driven by a measure of con�dence or some other criterion.

Exploration of the use of heterogeneous measurements and multiple classi�ers is

inherently more complex and time consuming than the acoustic measurement studies

in the past which only attempted to �nd a one-best measurement set. This is, in

part, due to the fact that the space of possible sets of measurements and ways of

combining them is subject to combinatorial explosion. Consider, for example, the

exhaustive search experiments in this thesis, where every possible subset of 8 segmen-

tal measurements was combined in a variety of ways. The number of experiments

required to try all classi�er combinations was

8X
k=1

0B@ 8

k

1CA =
8X

k=1

8!

k!(8� k)!
= 255:
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If one wanted to do a similar exhaustive search over all combinations of 24 sets of

measurements, it would require over 16 million experiments, rather that 255. Thus,

exhaustive search quickly becomes impractical. In spite of these di�culties, we ex-

pect that future research will continue to uncover sets of measurements which are

particularly suited for joint use with multiple classi�ers.

7.3 Final Comments

This thesis provides motivation for new directions in acoustic modeling research. It

has been demonstrated empirically that typical homogeneous acoustic measurements

do not capture some of the low-level acoustic phonetic information in the speech

signal. The solution to this problem is to retain more information, at the expense of

having more measurements. In this thesis, signal processing knowledge and acoustic-

phonetic knowledge were combined to motivate a new agenda for acoustic modeling

research. That new agenda is to design heterogeneous measurements to maximize

the coverage of the acoustic input space and to design classi�er structures in order to

use those measurements simultaneously. In the future, acoustic-phonetic knowledge

should continue to guide the process of determining where more acoustic detail is

needed. Signal processing knowledge should be used to determine how to obtain

that level of detail. Data-driven techniques, such as the evaluation on the TIMIT

and jupiter databases in this thesis, should continue to be used to evaluate the

e�ectiveness of various measurement sets. Acoustic modeling according to this broad

strategy is a fertile area for further research.

There is still a large gap between human and machine speech recognition ability.

In automated systems, the blurring or loss of low-level acoustic-phonetic information

cannot be regained by subsequent processing, although the loss of acoustic-phonetic

information may be masked by the application of higher-level lexical or linguistic

constraints. Consideration of the results in this thesis in light of the fundamental

limits on time-frequency resolution and the non-invertibility of most preprocessing

algorithms suggests that speech recognition systems of the future will be designed to
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incorporate heterogeneous acoustic measurements. This will result in the retention

of more acoustic-phonetic information from the speech signal, and ultimately in the

narrowing of the gap between human and machine speech recognition performance.
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Appendix A

Results of Perceptual Experiments

This appendix provides the raw data from the perceptual experiments and the com-

parison with machine performance. The table on the following pages lists each token

individually with the utterance tag, TIMIT phonetic labels, the orthography, and the

machine and human hypotheses from these experiments. Chapter 6 presents these

results in summary form along with error analysis and discussion.
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TIMIT Machine Perceptual
Phonetic Hypotheses Hypotheses

Utterance Tag labels Orthography A,B,C,Hetero 7 subjects

1 sx53-b-fcal1 m pcl p el v a simple vocabulary ggbb bbbbbpp
2 sx139-b-fnmr0 ng gcl g ax l the bungalow was dggg ggggggg
3 sx290-b-mjsw0 s bcl b r ow this brochure is bppp ppppppp
4 sx290-b-mjsw0 ih kcl k ix l is particularly informative gkkk kkkgkkk
5 sx290-b-mjsw0 s pcl p eh kcl a prospective buyer bbpp pbppppp
6 sx290-b-mjsw0 eh kcl t ix v a prospective buyer tdtt tttttdt
7 sx320-b-mrws1 aa tcl b iy w not be within pbpb bbbbbbp
8 si2270-b-mjsw0 ao gcl g z dcl # dogs did kgkg ggggggg
9 si2270-b-mjsw0 z dcl d ih dcl dogs did something ddtd tdttttt
10 si2270-b-mjsw0 ng tcl t ax w something to one's ttdt tttddtt
11 sx410-b-mbns0 iy kcl d ey m each weekday morning tddt dddddkd
12 si1301-b-mmwh0 # h# d iy n # deans can tddd ddddddd
13 si1301-b-mmwh0 en tcl b r ih important bridge between pbpb bbbbbbb
14 si1301-b-mmwh0 ae kcl k el tcl the faculty # pgkk kgkkkkk
15 sx410-b-fkms0 # h# g r eh # greg buys kggg gkkgkgk
16 sx410-b-fkms0 l kcl k q iy fresh milk each ggkk kkkkkkk
17 sx410-b-fkms0 iy kcl d ey m each weekday morning ddgd ddddkkd
18 sx140-b-fmml0 ux dcl d ix dcl unevenly distributed # tttd tddddtd
19 sx94-b-fedw0 ah ng g s tcl # youngsters love kkkg ggkkgkk
20 sx94-b-fedw0 n dcl d iy q common candy as dbdd dddddbd
21 si1218-b-fdms0 axr dcl d w eh moreover dwell on tttt dddddtd
22 sx143-b-fcal1 ux gcl g el s jennifer's bugle scared dggg ggggggg
23 si1539-b-mgwt0 el dcl d hv ih �sts pummeled him tdbd ddddddd
24 si1539-b-mgwt0 s tcl t ae gcl he staggered forward dttt ttttttt
25 si1539-b-mgwt0 axr dcl d f ao he staggered forward tddd dgddddd
26 si2166-b-mmjr0 w iy t hh aa look sweetheart some dddd dtddddd
27 si2166-b-mmjr0 r tcl t pau s look sweetheart some dddt tgtttdt
28 si497-b-mers0 # h# d ix s # displayed as tddd ddddtdd
29 si497-b-mers0 s pcl p l ey # displayed as bppp pbppppp
30 si497-b-mers0 m pcl p s pau as lamps the dpgp bpbpppb
31 si497-b-mers0 ah pcl p ax-h s the puppets delight bppt pppppbp
32 si497-b-mers0 s dcl d ax l puppets delight the tttt ttttttt
33 sx44-b-mbwm0 # h# b ae s # basketball can pbbb bbbtbbb
34 sx44-b-mbwm0 ix tcl b ao l # basketball can pppp ppbpppp
35 sx44-b-mbwm0 axr tcl t ey n an entertaining sport ttkk ttttttt
36 sx44-b-mbwm0 s pcl p ao r entertaining sport # bppp ppppppp
37 sx28-b-mmjr0 eh tcl g aa r that guard for kkkg kgggkgg
38 sx28-b-mmjr0 v gcl g ae s of gas # kkkk gkggggg
39 sx403-b-mjfc0 r dcl d r ow her wardrobe consists gggg dgdddgd
40 sx408-b-fdms0 ey pau b ah dx subway but i dbbb bbbbbbb
41 sx408-b-fdms0 ax n t ix n i haven't enough dddd ttttttt
42 sx413-b-mdlf0 # h# d ae f # daphne's swedish bddb ddddddd
43 sx413-b-mdlf0 s kcl k aa r needlepoint scarf matched kkgg kkkkkkk
44 si674-b-mbwm0 s pcl p eh kcl no spectator type ttpp pbppppp
45 si674-b-mbwm0 eh kcl t ey dx no spectator type ttpt ttttttt
46 si674-b-mbwm0 ay pcl p ix kcl spectator type experience ppbp ppppppp
47 si1454-b-fcmh0 ay pcl p sh y main types used pkkt bbbbbbb
48 si1454-b-fcmh0 m pcl p ax z various compositions of tpbp ppppppp
49 si1454-b-fcmh0 v pcl p aa l of polyesters # bbbp ppppppp
50 sx19-b-fadg0 n bcl b iy f often be 
imsy bddb bbbbbbb
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TIMIT Machine Perceptual
Phonetic Hypotheses Hypotheses

Utterance Tag labels Orthography A,B,C,Hetero 7 subjects

51 sx274-b-mtdt0 ah gcl g zh y the luxurious massage gdgg ggggggg
52 sx134-b-mbwm0 # h# d ix s # december and tdtd ddddddd
53 sx134-b-mbwm0 ah n t s tcl nice months to dddd ttttttt
54 sx134-b-mbwm0 s pcl p eh n to spend in tttp pbppppp
55 sx53-b-mrcs0 ae bcl b y ax simple vocabulary contains gddg gbdgggg
56 si1555-b-mmdm2 iy pcl p iy v a sleepy voice ppkk ppbpppp
57 si649-b-fadg0 ae kcl k ix v a lack of bkkk gkgkggk
58 si649-b-fadg0 er pcl p ix s of purpose and btpp ppbbppp
59 si649-b-fadg0 s pcl p eh kcl and respect for bbtb ppppppp
60 si649-b-fadg0 eh kcl t f er and respect for dkkt kkkttkt
61 si649-b-fadg0 ix kcl k l iy for heroic leadership gkkk kgkkkkk
62 si649-b-fadg0 ih pcl p h# # heroic leadership # pptp bpbppbb
63 si728-b-mjar0 ah pcl p f axr this syrup for ttkt ppppppp
64 si728-b-mjar0 s pau d r ey minutes drain them tddt tdttttd
65 sx191-b-fjmg0 th dcl d r ao # withdraw all ttgt ttttttt
66 sx191-b-fjmg0 ae kcl k y ix phony accusations at kpkk kkkkkkk
67 sx50-b-fkms0 ix kcl k pau eh # catastrophic economic tkkk kkkgkkk
68 sx50-b-fkms0 eh kcl k ax n catastrophic economic cutbacks ddtk kkkkkkk
69 sx50-b-fkms0 ih gcl g l eh cutbacks neglect the tggg ggggggg
70 sx143-b-mrcs0 z bcl b y ux jennifer's bugle scared bbpb bpbbbbp
71 sx143-b-mrcs0 s kcl k eh r bugle scared the gkkg kkkkkkk
72 sx143-b-mrcs0 ae n t el ow the antelope # kdkd tktkttt
73 sx143-b-mrcs0 ow pcl p h# # the antelope # tptp bpppppp
74 si1542-b-mpdf0 # h# d ih f # the feet dbpb ddddtdd
75 si1542-b-mpdf0 iy tcl t w ao the feet wore dddg tgttttt
76 si1542-b-mpdf0 s dcl d ih s obvious disrepair # tttt tdttttt
77 sx279-b-fgjd0 ax bcl b ih l alice's ability to bbdb tdbbddd
78 sx279-b-fgjd0 uw pcl p er v without supervision is ppkp ppdpppp
79 sx364-b-fedw0 ax bcl b r ey the breakdown of ppbb bbbbbbb
80 sx364-b-fedw0 ey kcl d aw n the breakdown of tddd ddddddd
81 sx364-b-fedw0 r tcl t h# # system part # ttdt tgttttt
82 sx43-b-mjfc0 l dcl d uh l # elderly people bddd ddddddd
83 si1015-b-mthc0 iy dcl d h# # livestock feed # tdtd dtddddd
84 si2120-b-fkms0 z dcl d pau dh he paused then tttt ttttttt
85 si2120-b-fkms0 ih dcl d pau eh then added everything tddd ddddddd
86 si2120-b-fkms0 ih pcl p pau ih a ship is ddtp bbpbpbp
87 si2120-b-fkms0 eh pcl p ax n a weapon # bppp pbbpppp
88 si844-b-fdac1 s pcl p eh n the expense of bbbp pbppppp
89 si844-b-fdac1 s pcl p ih r actual experience # bbbp pbppppp
90 sx53-b-mdlf0 m pcl p el v a simple vocabulary bbbb ppbbbpp
91 sx314-b-mbwm0 iy pcl p el w if people were ppbp ppppppp
92 sx205-b-mthc0 s pcl p eh kcl are expected to bppp ppppppp
93 sx229-b-mrjm4 m pcl p l oy for employment # pggp ppbpppp
94 sx229-b-mrjm4 n tcl t h# # for employment # tddd dpppdpp
95 si1628-b-mdls0 m dcl d hv ix he informed him dtdd tptddgk
96 si1628-b-mdls0 r bcl d w ey an absorbed way kbbb dgdgddd
97 sx200-b-mjsw0 s tcl t aa pcl the stopwatch from ddtt tdttttt
98 sx293-b-fdrw0 # h# p l iy # please take kppp pkppkpk
99 sx293-b-fdrw0 s dcl d er dx this dirty tablecloth tttt tdttttt
100 sx293-b-fdrw0 ey bcl b ax kcl dirty tablecloth to dbdb bbbbbgb
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Phonetic Hypotheses Hypotheses

Utterance Tag labels Orthography A,B,C,Hetero 7 subjects

101 si860-b-fkms0 n kcl k l ux these include leaves tttt kkkkkkk
102 sx407-b-mroa0 f pau d ae n laugh dance and bbbd ddddddd
103 si1280-b-frew0 l tcl t axr sh the shelter shown tdtt ttttttt
104 si1280-b-frew0 axr tcl t eh kcl fallout protection # ttkt tttkttt
105 sx320-b-mbns0 aa pcl b iy w not be within pbpb bbbbbbb
106 sx383-b-mbdg0 r pcl p ix tcl the carpet cleaners bppp ppppppp
107 sx383-b-mbdg0 m pcl p uw dx cleaners shampooed our ptpp ppppppp
108 sx313-b-mjfc0 # h# d r aa # drop �ve tttd gdddgdd
109 sx313-b-mjfc0 s bcl b ax-h f box before you bbpp bppbpdp
110 sx313-b-mjfc0 iy gcl g ow aw you go out dggg ggggggg
111 sx369-b-mgwt0 ey pcl p axr dcl bob papered over pbpp pbppppp
112 sx281-b-mgjf0 ae gcl g w ix played tag with kkkk ggggggg
113 sx281-b-mgjf0 ch bcl b ao l beach balls for pppp bgbbpbb
114 sx298-b-fsem0 n bcl b iy ow than be overcharged dbdd bdbbbbb
115 sx372-b-mrjr0 s tcl t ah dx much study # pttt ttttttt
116 si1750-b-mrtk0 m bcl b ae s the investor himself bbdb tgbtbbt
117 si1750-b-mrtk0 f bcl b iy dh himself be the pkpp pbppptp
118 si1750-b-mrtk0 ax pcl p r ay the prime minister pkpp ppppppp
119 sx278-b-mjar0 s tcl t iy dcl his prestige he dttt tdttttt
120 sx389-b-fmah0 ah bcl b ih gcl a big house dddb bbbbbbb
121 sx389-b-fmah0 ih gcl g hv aw a big house dddd gkkkgkg
122 sx229-b-fnmr0 em pcl p l oy for employment # ppkp ppppppp
123 si1988-b-mjar0 s tcl t r ay how's it strike tktt ttttttt
124 sx99-b-fgjd0 z bcl b ey s was based on tbtp pbppppp
125 si1994-b-mtdt0 z tcl t ix gcl was to get dddd ddddddd
126 si1994-b-mtdt0 s pcl p eh n you just spent bbbp pbppppp
127 sx230-b-fmml0 axr pau b ix tcl here but rationalize pbpb pbtbptp
128 si773-b-fcal1 s dcl d r ay projects dry slowly tttt ttttttt
129 si593-b-mrcs0 n tcl t hh ae the gallant half tddd ttttdtt
130 si593-b-mrcs0 z dcl d ay ih is dying on tttd dtddddd
131 si1084-b-fedw0 ey pcl p s iy other shapes evolve dpdt bpppbbp
132 sx394-b-fdac1 s tcl t r ao teeth strong # dttt ttttttt
133 sx278-b-mdls0 # h# t ux f # to further kttt ttttttt
134 sx278-b-mdls0 z pcl p r eh his prestige he ptpp pppppbp
135 sx278-b-mdls0 iy dcl d z dh occasionally reads the ttdd bddbdbb
136 si500-b-mrws1 ae kcl k s aa obvious nymphomaniacs on dkkk kkkgggk
137 sx95-b-mmdb1 iy gcl g w aa # iguanas and kggg gkggggk
138 sx95-b-mmdb1 ix gcl g ey dx and alligators are kkkk ggkgkbk
139 sx364-b-mglb0 ey kcl d aw nx the breakdown of ttdt dddddgd
140 sx364-b-mglb0 em pcl p aa r system part # bbbp ppppppp
141 sx49-b-mrjm4 th dcl d ey w twelfth day we'll ttdt tdttttt
142 sx94-b-fjem0 n dcl d iy eh common candy as gdgd ddddddd
143 si1490-b-fkms0 ae pcl p s ax # perhaps it pkpp ppppppb
144 si1490-b-fkms0 ae pcl p s ix right perhaps it tdkp bbbpbbb
145 sx409-b-fnmr0 iy tcl t iy ng # eating spinach ttkt ttttttt
146 sx113-b-mbdg0 s kcl k ix l a muscular abdomen dgdt ktkkkkk
147 sx113-b-mbdg0 z gcl g uh dcl is good for kkkk kgkkkgg
148 sx113-b-mbdg0 uh dcl d f axr is good for kdgd ddddddd
149 si909-b-mgwt0 n tcl t eh tcl compulsory retirement at dddd ddddddd
150 si909-b-mgwt0 eh tcl t s ih retirement at sixty ttkt tgttttt
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Utterance Tag labels Orthography A,B,C,Hetero 7 subjects

151 si909-b-mgwt0 ih kcl k s tcl at sixty �ve gggk tkkkgkk
152 si1648-b-mmjr0 el dcl d ix s electrical display in ddtd ddddddd
153 si1648-b-mmjr0 s pcl p l ey electrical display in pbpp ppppppp
154 sx410-b-fmml0 # h# g r eh # greg buys kggg ggggggg
155 sx410-b-fmml0 ix kcl k dcl d each weekday morning tttk kbbbkkk
156 si2196-b-mdvc0 z gcl g uh dx as good an kkkk kgkkkkk
157 si2196-b-mdvc0 z dcl d ae tcl be sneezed at ttdt tdttttt
158 si2119-b-mrjm4 ng kcl t ix dcl instinct to discipline gktt ttttttt
159 si2119-b-mrjm4 ix dcl d ih s to discipline has bddd ddddddd
160 si2119-b-mrjm4 ax pcl p l ix to discipline has ppkp ppppppp
161 si2119-b-mrjm4 z bcl b ix n has been lost ddbb dbbdddt
162 sx102-b-mrjr0 s pcl p eh sh # special task bpbb bbpbppp
163 sx102-b-mrjr0 s kcl k f ao special task forces kgkk kpkkkkk
164 sx413-b-fcal1 s kcl k aa r needlepoint scarf matched tkkk kgkkkkk
165 sx119-b-fmah0 iy tcl t r ae was retracted with kkkk ttttttt
166 sx119-b-fmah0 ae kcl t axr dcl was retracted with tktk tdttdtt
167 sx385-b-mtaa0 axr bcl b r ow were broken # ppbb pbppbpb
168 si2247-b-mjar0 iy kcl k n ih # weakness in kktk kkkkkkk
169 si824-b-fcmh0 m pcl p r eh enzyme preparation through ppbp ppppppp
170 sx143-b-mteb0 z bcl b y ux jennifer's bugle scared dbbb bbgbbbb
171 sx143-b-mteb0 ux gcl g el s jennifer's bugle scared gddg ggdgggg
172 si1399-b-fnmr0 ih gcl g l aa the agglomeration of gkgg gggggkg
173 sx385-b-mreb0 l tcl t eh z shoulder felt as tdpd dddbbdd
174 si2313-b-mrjr0 er pau d ih dcl junior didn't he gdtd ddddddd
175 si2313-b-mrjr0 n dcl d ux dh even do that tttd ddddddd
176 si859-b-mrjm4 n kcl k en tcl non contributory plan gkkd kkkkkkk
177 sx49-b-fnmr0 th dcl d ey pau twelfth day we'll dttt tdttdtt
178 sx396-b-mdvc0 sh bcl b iy gcl �sh began to bppp pbppppp
179 sx396-b-mdvc0 iy pcl p f r to leap frantically ttdt tpbpppp
180 sx319-b-mrjm4 ow tcl t q ay big goat idly dddt ddddddd
181 sx319-b-mrjm4 el dcl d th r idly ambled through tddd ttdtdkt
182 sx279-b-mgwt0 ih tcl t iy tcl alice's ability to kttt dttttdt
183 sx279-b-mgwt0 ow tcl t w axr is noteworthy # pppk pdtdkdt
184 sx364-b-fjem0 ix bcl b r ey the breakdown of pppp ppbbbbb
185 sx364-b-fjem0 ey kcl d aw nx the breakdown of tddd ddddddd
186 sx364-b-fjem0 iy tcl t ix ng a heating system dgdd ddddddd
187 sx50-b-fmml0 eh kcl k ix n catastrophic economic cutbacks kpkk kkkkkkk
188 sx50-b-fmml0 ah tcl b ae kcl economic cutbacks neglect pppp bpbppbb
189 sx50-b-fmml0 ix gcl g l eh cutbacks neglect the kkgg ggkgggk
190 si1663-b-mjfc0 ao tcl t hh iy he thought he dddd tgtttdt
191 si1307-b-mroa0 n tcl t ax-h pcl conformational entropy # dtdt ttttttt
192 si1307-b-mroa0 ax-h pcl p iy h# conformational entropy # pkpp pptpppp
193 si1220-b-mbns0 s tcl t iy zh money prestige and dttt ttttttt
194 sx313-b-faks0 # h# d r aa # drop �ve tddb ddddddd
195 sx313-b-faks0 s bcl b ax f box before you bbpp pbppppp
196 sx313-b-faks0 ix gcl g ow aw you go out kkgg ggggggg
197 sx413-b-mrcs0 # h# d ae f # daphne's swedish tttt ddddddd
198 sx413-b-mrcs0 er tcl t h# # her skirt # ttdt ttttdtt
199 sx115-b-majc0 m bcl b l ah the emblem depicts gdgb gbdbgbg
200 sx115-b-majc0 ih pcl p ih kcl emblem depicts the pkpp ppppppp
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201 sx98-b-mdls0 # h# g eh s # guess the kkkk tgggggg
202 sx383-b-fdrw0 aa pcl p ix tcl the carpet cleaners tppp gbpbppp
203 sx383-b-fdrw0 ah gcl g h# # oriental rug # kkkd ggggggg
204 si1198-b-fsem0 s pcl p ay axr awe inspiring # bbbb pbppppp
205 sx298-b-mmjr0 ay dcl d r ae # i'd rather ddgd gdddddd
206 sx298-b-mmjr0 aa tcl b ay dh not buy these pppp ppppppp
207 sx298-b-mmjr0 n bcl b iy ow than be overcharged ggbd ppdbdbp
208 sx298-b-mmjr0 jh dcl d h# # be overcharged # ttdt ttttttt
209 si2064-b-mteb0 z gcl g ih f was gifted with ggkg kkkkkkk
210 si2064-b-mteb0 f tcl t ih dcl was gifted with ttdt tdddttt
211 sx371-b-mgjf0 aa tcl b iy dh not be the bbpb pbppppp
212 sx388-b-fsem0 ax bcl b eh er the barometric pressure bbpb bbbbbbb
213 sx36-b-mdvc0 m pcl p l ix most accomplished artists pbbp ppppppp
214 sx36-b-mdvc0 sh tcl t q aa most accomplished artists pptt ttttttt
215 sx224-b-mwjg0 aw gcl g uh dcl how good is kgkk kgggkgg
216 sx224-b-mwjg0 uh dcl d ix q how good is dbdd ddddddd
217 sx224-b-mwjg0 n dcl d uh r your endurance # ttdd ddddddd
218 sx289-b-fadg0 f gcl g ax l weatherproof galoshes are kgkk kkkgkkk
219 sx368-b-mjar0 s tcl t ax m lori's costume needed dttt ttttttt
220 sx368-b-mjar0 ae kcl g l ah black gloves to kkkk kgkkkkk
221 sx368-b-mjar0 iy kcl k ax m be completely elegant dkkk kkkkkkk
222 sx368-b-mjar0 m pcl p l iy be completely elegant pttp ppppppp
223 sx115-b-mreb0 ax gcl g l ow all aglow # gkkk gkggggg
224 sx319-b-fnmr0 el dcl d th r idly ambled through tddd tgdddbd
225 sx320-b-fmml0 ih gcl g aa gcl nearest synagogue may ggdg ggggggg
226 si1463-b-mbdg0 s pcl p eh kcl its expected value bbpp pbppppp
227 sx134-b-fjsj0 s tcl t ix s months to spend tddt ttttttt
228 sx368-b-mdls0 ae kcl g l ah black gloves to kkgk kkkgkkk
229 sx368-b-mdls0 ax-h bcl b iy kcl to be completely dbbb bbbbbbb
230 sx368-b-mdls0 iy kcl k em pcl be completely elegant tkkk kkkkkkk
231 sx368-b-mdls0 ix gcl g ix n completely elegant # gdgg ggggggg
232 sx113-b-fdrw0 z gcl g uh dcl is good for gkgg gkggkkg
233 sx113-b-fdrw0 uh dcl d f axr is good for kdkg tgddddd
234 sx99-b-mgwt0 s tcl t ao n was based on tptt ttttttt
235 si1181-b-fjmg0 # h# p r aa # properly used pbpp ppppppp
236 si1181-b-fjmg0 aa pcl p axr l # properly used bppp pbppppp
237 si1181-b-fjmg0 z dcl d ix pcl properly used the tttt ddtdttt
238 si1181-b-fjmg0 uh kcl k ih z present book is kttt ggggggg
239 si2255-b-mmdb1 z tcl t w ao eyes toward the ppkt ttttttt
240 si2255-b-mmdb1 eh dcl d r uw the bedroom some ggdd ddddddd
241 si2255-b-mmdb1 f tcl t iy n some �fteen feet kkkk ttttttt
242 sx101-b-mgjf0 l dcl d r ix kindergarten children decorate tdtd ttddddd
243 sx101-b-mgjf0 n dcl d eh kcl children decorate their tttd ddddddd
244 si494-b-mwjg0 # h# b ey kcl # bake slowly pbbb bbbbbbb
245 si494-b-mwjg0 s tcl t w ah at least one pptk ttttttt
246 si1653-b-fedw0 ow kcl k s uw he spoke soothingly dkkk ggggggg
247 si2169-b-mgwt0 ah pcl p s tcl # upstairs busy pkpp bppbppp
248 si2169-b-mgwt0 iy tcl t sh aw busy feet showering kttt bbttttt
249 si2169-b-mgwt0 ay kcl k r ey showering like raindrops kkgg kgggggk
250 si1645-b-mthc0 em pcl p l iy was completely unjusti�ed ptpp ppppppp
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251 si1645-b-mthc0 ay dcl d h# # completely unjusti�ed # ttdd dgddddd
252 si1010-b-mjsw0 s pcl p er m hard endosperm of ppbp pbppppp
253 si1010-b-mjsw0 eh gcl g s ay the egg sized kggg ggggggg
254 sx209-b-fmah0 ay kcl k el kcl # michael colored kgkk kgkgkkk
255 sx209-b-fmah0 ix bcl b eh dcl the bedroom wall dbdb bbbbbbb
256 si2203-b-faks0 m dcl d f uw dive seemed foolish dkdk gpgkkkt
257 si1828-b-fsem0 axr gcl g aa tcl he forgot # gdgg ggggggg
258 si1304-b-mbwm0 ix kcl k s pcl was exposed to kkgk gkkkkkk
259 si1304-b-mbwm0 s pcl p ow z was exposed to bbbp pbppppp
260 si1304-b-mbwm0 iy gcl g ae s velocity gas jet dggg ggggggg
261 si1946-b-majc0 v dcl d h# # means solved # tttt ttttttt
262 sx4-b-fedw0 r dcl d h# # working hard # dtdd ddtdddd
263 sx44-b-mwjg0 # h# b ae s # basketball can pbbb bbbbbbb
264 sx44-b-mwjg0 s kcl k ix tcl # basketball can ttkk kkkkkkk
265 sx44-b-mwjg0 axr tcl t ey n an entertaining sport tkkt ttttttt
266 si995-b-mmdb1 ae tcl d ih f at di�erent times ttdd dtddttt
267 si995-b-mmdb1 z gcl g l iy as glee club kkkk gkkkkkk
268 si995-b-mmdb1 r gcl g ix nx as organist # gkkg kgkgggk
269 sx214-b-fdac1 s pcl p ay dx the spider web bpbb ppppppp
270 sx214-b-fdac1 n dcl d ax-h pau web glistened in tttt ttttttt
271 sx389-b-mers0 n tcl t r ix remote countryside # tptt ttttktt
272 sx409-b-mrjm4 s pcl p ih nx eating spinach nightly pbpp pbppppp
273 sx409-b-mrjm4 ng kcl k th m increases strength miraculously pddk tptppdp
274 si1030-b-frew0 # h# b r ih # bring me pbbb bbbbbbb
275 si1283-b-fdrw0 l tcl t uh dh a shelter the dtdt tdttttt
276 si1283-b-fdrw0 aw tcl d ix kcl fallout decays rapidly ddtt ttttdtt
277 si1283-b-fdrw0 ae pcl p ix dcl decays rapidly at bppp ppppppp
278 si2172-b-mpdf0 iy gcl g ae n strength began to gkgg ggggggg
279 si2172-b-mpdf0 ih pcl p q ah to zip up dppp pbbbppp
280 si2172-b-mpdf0 ah pcl p ix n zip up and bbpp pppppbp
281 sx134-b-mwjg0 s pcl p eh n to spend in bktp pbppppp
282 sx199-b-fadg0 s pcl p ow zh avoid exposure to bbbb ppppppp
283 sx199-b-fadg0 ix kcl k ix n to contagious diseases tkkk gggkkkk
284 sx199-b-fadg0 s dcl d ix z contagious diseases # tttt tdttttt
285 sx403-b-faks0 r dcl d r ow her wardrobe consists ddgd ddddddd
286 si2005-b-mreb0 n tcl t el hh would gentle her ttdt ttttdtt
287 si769-b-fnmr0 ux dcl d r ay to dry with ttdd ddddddd
288 sx205-b-majc0 s pcl p eh kcl are expected to bbbp pbpppbp
289 sx205-b-majc0 eh kcl t ix dcl are expected to dttt tddkdgt
290 sx140-b-mrws1 ix dcl d h# # unevenly distributed # dtdd bdddddd
291 si776-b-mgjf0 # h# d ux n # do not ddtd dtttttt
292 si776-b-mgjf0 ao tcl d r ao not draw yarn tdtt tdttddt
293 sx283-b-mrtk0 n dcl p er ix planned parenthood organizations pktp pkpppkp
294 sx283-b-mrtk0 z pcl p axr m organizations promote birth pptp pppppdp
295 sx101-b-fjmg0 # h# k ih n # kindergarten children kpkt kkkkktk
296 sx101-b-fjmg0 l dcl d r ix kindergarten children decorate dgdd ddddddd
297 sx101-b-fjmg0 n dcl d eh kcl children decorate their tddd ddddddd
298 sx101-b-fjmg0 ax dcl d ey s all holidays # bbdd ddddddd
299 si1670-b-fmml0 # h# g aa q # got no kbpp gggggkg
300 sx380-b-frew0 ch gcl g aa r such garbage # gkgg kgggkgg
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301 sx205-b-mtaa0 s pcl p eh kcl are expected to bbbp ppppppp
302 sx205-b-mtaa0 eh kcl t ix dcl are expected to dttt ttttttt
303 sx205-b-mtaa0 ey gcl g ah v obey government orders kkgg kgggggk
304 sx388-b-mmjr0 ix kcl k pcl p the barometric pressure kktk kpkkkkk
305 sx228-b-fdms0 oy n t q ow the viewpoint overlooked dddd ggdgdgg
306 sx228-b-fdms0 uh kcl k dh iy viewpoint overlooked the kptp bgttgkg
307 sx199-b-mcsh0 s pcl p ow zh avoid exposure to bbbb pbppppp
308 si1915-b-mtaa0 eh gcl g f axr renunciation beg forgiveness ggkg bgggggg
309 sx372-b-mpdf0 ae tcl d ay eh that diagram makes bbdd dtddddd
310 sx372-b-mpdf0 s tcl t ah dx much study # dttt ttttttt
311 sx314-b-mwjg0 uh dcl b iy n would be no gbpp bbbbbbb
312 sx314-b-mwjg0 iy dcl d f axr no need for kkkt dgddddd
313 sx379-b-fadg0 s dcl d r ay gives driving lessons tttt ttttttt
314 sx379-b-fadg0 z dcl d ey z on thursdays # tttt tdttttt
315 sx205-b-mreb0 s pcl p eh kcl are expected to bppp ppppppp
316 sx43-b-faks0 iy pcl p el er elderly people are bppp pbbbppp
317 sx43-b-faks0 ix dcl d h# # often excluded # ktdd dddddtd
318 sx29-b-fmah0 eh gcl t ix pcl greg to pick ddtd gdddgdd
319 sx29-b-fmah0 ih kcl k ix pcl to pick a gdkk kgggggk
320 si1423-b-fdrw0 iy gcl g aa dx he got up kgdg ggggggg
321 si568-b-fsem0 sh tcl t q ah a crushed unlined dttt dtttttt
322 sx53-b-mteb0 n tcl t ey n vocabulary contains symbols dttd tttddtt
323 si659-b-fmah0 s tcl t r iy his history is kttt tdttttt
324 si659-b-fmah0 eh kcl k ix n must recognize his gdkk kggggkk
325 si998-b-mdls0 v dcl d ao nx they thrived on tttt tddttdt
326 sx224-b-fjsj0 ah gcl g uh dcl how good is gkgg ggggggg
327 sx34-b-fdac1 n q d ux tcl don't do charlie's tddd ddddddd
328 sx34-b-fdac1 z dcl d er dx charlie's dirty dishes tttt ddttttt
329 si1573-b-faks0 ae gcl g er dcl and haggard and ggdg ggggggg
330 sx203-b-fdrw0 ix bcl b r ah ended abruptly at ppbb bbbbbbb
331 sx203-b-fdrw0 ah pcl p l iy ended abruptly at ptpp pbppbpp
332 sx184-b-fedw0 ix kcl k ae tcl the cat's meow ktkk kkkkkkk
333 sx379-b-mcsh0 z dcl d r ay gives driving lessons gggp dttdtdd
334 si1502-b-fdms0 ae kcl k l ix not exactly panic kdkk ggkggkg
335 si1502-b-fdms0 ih kcl k dh ey exactly panic they dddd kkkkkkk
336 si1502-b-fdms0 ey gcl g ey v they gave way kggg ggggggg
337 sx110-b-frew0 eh kcl k s tcl solve extra problems gkkk gkkkkkg
338 sx110-b-frew0 aa bcl b l ax extra problems # gbbd bbbbbbb
339 si1723-b-mrtk0 ix dcl d r ih idea drifted in ddgd ddddddd
340 sx118-b-mmjr0 # h# k ax bcl # combine all tttp ttttttt
341 sx118-b-mmjr0 n tcl t s pau the ingredients in gddt ggtttdt
342 si2104-b-fdac1 sh dcl d ix v lush divorcee at dtdt tdttttt
343 sx208-b-fsem0 aa bcl b s eh # rob sat tddd bbbbbbb
344 sx208-b-fsem0 s kcl k eh tcl and sketched the kkdg kkkkdkk
345 sx208-b-fsem0 ey gcl g iy s stray geese # kkkg ggggggg
346 si818-b-fgjd0 ix tcl p ao r transmit poorly and tppt ppppppp
347 sx102-b-mpdf0 s pcl p eh sh # special task bbbp pbpppbp
348 sx102-b-mpdf0 ae pcl p axr z from kidnappers # gggp bbbbbbb
349 sx109-b-fadg0 ih pcl t eh n she slipped and tddd tdtdttt
350 sx109-b-fadg0 ng kcl k el q her ankle on kgkk ggggggg
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351 sx109-b-fadg0 s tcl t iy pcl the steep slope dttt tdttttt
352 si1133-b-mteb0 eh kcl t l ao can project long kkkk tttktkt
353 si1133-b-mteb0 jh gcl g ow l range goals for dkkg gpgkkgg
354 sx404-b-fjsj0 ey pcl p er en burned paper and ppgp ppppppp
355 sx404-b-fjsj0 ax bcl b ih gcl a big bon�re ddbb bbkbbbb
356 si1375-b-mreb0 n pau d aa m often dominant stress ttdt ddddddt
357 si1375-b-mreb0 m pcl p l iy stress simply indicates pkkp pppkpkp
358 si1853-b-mrcs0 eh n t s ix thus events occurred dttt tkdtdtt
359 si1853-b-mrcs0 v dcl d h# # ones arrived # tttt ttdttdt
360 sx227-b-mroa0 axr tcl t ax-h kcl healthier to cook dddd dgddddd
361 sx227-b-mroa0 uh gcl g axr h# without sugar # bbgg ggggggg
362 sx140-b-mbns0 eh gcl g axr kcl # agricultural products dggg ggggggg
363 si551-b-fjmg0 s tcl t ix kcl an autistic child gttt kgttttt
364 sx48-b-fdms0 aw tcl g r ux grandmother outgrew her kkkk kkgkgkg
365 sx48-b-fdms0 ah pcl b r iy her upbringing in pppp pppppbp
366 si1850-b-mbns0 uh dcl d m ao a good morrow dgdd ddpdddg
367 si1496-b-mrws1 ix gcl g z ah was exultantly easy kkkk ggkkkgg
368 si1496-b-mrws1 ix n t l ix was exultantly easy kdtd tpppddp
369 sx290-b-frew0 s bcl b r ow this brochure is pppp ppppptp
370 sx290-b-frew0 ih kcl k y axr is particularly informative dkkk dkdkgdk
371 sx290-b-frew0 ax tcl t ih v particularly informative for ttdd ttttttt
372 sx290-b-frew0 s pcl p eh kcl a prospective buyer pptp pbppppp
373 sx290-b-frew0 eh kcl t ix v a prospective buyer dttt tdtdgdd
374 sx115-b-mtaa0 m dcl d ix pcl emblem depicts the tttt tdtdttt
375 sx115-b-mtaa0 ah gcl g l ow all aglow # kggg gkggggg
376 sx138-b-fdms0 s pcl p ih l customer spilled some bbpp ppppppp
377 sx138-b-fdms0 s pcl p eh n some expensive perfume bbtp pbppppp
378 sx109-b-mcsh0 ih pcl t ih n she slipped and ddtt tddttpt
379 sx109-b-mcsh0 s pcl p r ey and sprained her bbbp pbppppp
380 sx109-b-mcsh0 s tcl t iy pcl the steep slope bdpt ttttttt
381 sx109-b-mcsh0 iy pcl p s l the steep slope pkpp ppbpppp
382 sx143-b-mdlf0 ux gcl g el s jennifer's bugle scared gbgb ggggggg
383 sx143-b-mdlf0 s kcl k eh r bugle scared the kkgg kkkkkkk
384 sx44-b-fjsj0 # h# b ae s # basketball can pbbb bbbbbbb
385 sx44-b-fjsj0 s kcl k ax bcl # basketball can tkkk kkkgkkk
386 sx44-b-fjsj0 l kcl k em bcl basketball can be tkkk kkkkkkk
387 sx44-b-fjsj0 iy ng g s pcl an entertaining sport kkkg gkkkkgk
388 si634-b-fjem0 ay tcl p axr s quite persuasively the tppp ppppppp
389 sx320-b-fkms0 aa gcl g q m nearest synagogue may ddgg ggggggg
390 sx320-b-fkms0 aa tcl b iy w not be within bbpb bbbbbbb
391 sx373-b-mrtk0 iy pcl p ix ng superb sleeping pill bbkp ppppppp
392 sx373-b-mrtk0 ng pcl p ih l sleeping pill # ppkp ppppppp
393 si2300-b-fmml0 z bcl b ix s was beside herself pppp ppppptp
394 si2114-b-fjsj0 s tcl t ey kcl # stake me dttt ttttttt
395 si2114-b-fjsj0 z dcl d ay s those dice # ttdd ddtdddd
396 si1279-b-fadg0 # h# b r ih # bricks are pbbb pbppppb
397 sx385-b-mthc0 axr bcl b r ow were broken # bpbb bbbbbdb
398 sx318-b-fdms0 z dcl d ih gcl please dig my dttt tdttttt
399 sx318-b-fdms0 ay pcl p ax tcl my potatoes up dbtp gdbbpdp
400 sx318-b-fdms0 ah pcl b iy f up before frost bbpb bpbbbbb
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401 si2293-b-mjfc0 eh tcl t q ao ones that all dddd ddddddd
402 si2293-b-mjfc0 f tcl t eh tcl grownups laughed at dttt ddtddtd
403 si2293-b-mjfc0 eh tcl t l aw laughed at loudest dbdd ddddddd
404 si1019-b-mers0 z pcl p ih l as pilgrims # ptkp ppppppp
405 sx404-b-mwjg0 r bcl b bcl b # barb burned dppp ppbbbpb
406 sx404-b-mwjg0 b bcl b er n barb burned paper pbbp bbbbbbb
407 sx404-b-mwjg0 ix bcl b ih gcl a big bon�re bbpp bbbgbbb
408 sx404-b-mwjg0 ih gcl b aa n big bon�re # bppp bpbbbgb
409 sx28-b-fsem0 # h# b ey gcl # beg that pbpp gdbbddb
410 sx28-b-fsem0 ae tcl g aa r that guard for ggdd ggggggg
411 sx28-b-fsem0 n gcl g ae l one gallon of gddg ggggggg
412 sx28-b-fsem0 v gcl g ae s of gas # kttt dgggggg
413 sx380-b-mjsw0 ch gcl g aa r such garbage # bggg ggggggg
414 sx410-b-mrws1 iy kcl d ey m each weekday morning tttt ddddkdd
415 sx102-b-mmdm2 s pcl p eh sh # special task bbpb pbppppp
416 sx102-b-mmdm2 s kcl k f ao special task forces kgkk kkkkkkk
417 sx102-b-mmdm2 ae pcl p axr s from kidnappers # gggg bbbppdt
418 si1285-b-mtaa0 l bcl b iy n will be necessary pbbb pppbpbp
419 sx47-b-mroa0 s tcl t r ao mom strongly dislikes kktk ttttttt
420 sx47-b-mroa0 ae pcl p tcl t dislikes appetizers # dtpp ppppppp
421 sx14-b-fcmh0 z dcl d ih z before thursday's exam tttt ttttttt
422 si854-b-fjsj0 n kcl k er ix # encourage them tkkk kkkkkkk
423 si854-b-fjsj0 r bcl b eh n their bene�ts # dbbb bbbbbbb
424 sx99-b-mmwh0 z bcl b ey s was based on pbbb bbbbpbp
425 sx314-b-fjsj0 f pcl p iy pcl if people were ptpp bbppptp
426 sx314-b-fjsj0 iy pcl p el q if people were gpdp ppppkpp
427 sx314-b-fjsj0 iy dcl d f ao no need for tkkd dgddddd
428 si677-b-mroa0 el tcl t r eh comparable trends can kkkk ttttttt
429 si677-b-mroa0 z kcl k en b trends can be kktk kkkkkkk
430 si590-b-mbns0 # h# b r ih # bridges tunnels pbpp pbbppbp
431 sx189-b-fgjd0 # h# d ih s # destroy every ttdt ttttttt
432 sx274-b-fedw0 ax gcl g zh ux the luxurious massage kkkk gggggkg
433 sx364-b-mtdt0 s tcl t ix m heating system part dttt ttttttt
434 sx200-b-frew0 ix n t r ow ralph controlled the tptt ttttttt
435 sx224-b-mbwm0 n tcl t s h# your endurance # dtdt gktkttt
436 si1264-b-fjem0 # h# d ae n # dances alternated tddd ddddddd
437 sx208-b-mmjr0 aa bcl b s ae # rob sat pbbb bgbbbbb
438 sx208-b-mmjr0 n dcl d pau en the pond and dttd ptttdtt
439 sx185-b-mmdb1 # h# d ix dcl # did you tdtd ddddddd
440 sx115-b-mthc0 iy pcl p ih kcl emblem depicts the ttpp pppppkp
441 si2093-b-mbdg0 s tcl t ix kcl was unenthusiastic # dttt ttttttt
442 si1910-b-frew0 ix n b r iy and breathed for bgbg bbbbbbb
443 si1910-b-frew0 ng kcl k ah m mining company # kkdk kkkkkkk
444 si1910-b-frew0 m pcl p ix n mining company # ptpp ppppbdp
445 sx139-b-mrjm4 ng gcl g ax l the bungalow was bbgg ggbdgbg
446 sx50-b-mrws1 tcl bcl b ae kcl economic cutbacks neglect pbpb bbbkbbb
447 sx50-b-mrws1 ix gcl g l eh cutbacks neglect the kgkk kgggggg
448 si943-b-faks0 s pcl p ix kcl below expectations # bbpp pbppppp
449 sx233-b-mrcs0 ng gcl g h# # same thing # dddd gkdggdg
450 si1909-b-fadg0 z bcl b ix n rolls beneath the ppbp pbppppp
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TIMIT Machine Perceptual
Phonetic Hypotheses Hypotheses

Utterance Tag labels Orthography A,B,C,Hetero 7 subjects

451 sx110-b-mjsw0 ax-h bcl b eh s the best way dddb bbbbbbb
452 sx110-b-mjsw0 s tcl t ax-h s is to solve ttdt ddttttt
453 sx317-b-mroa0 ih tcl t iy ih very pretty in dddd ddddddd
454 sx230-b-mbns0 pau bcl b ax tcl here but rationalize bbpb bbbbpbb
455 sx413-b-mteb0 iy dcl d ix sh daphne's swedish needlepoint ggdg ddddddd
456 sx369-b-mmwh0 # h# b aa bcl # bob papered ppbp bgbbkbb
457 si1124-b-mwjg0 ow tcl t hh ix me quote him dtdt ttttddd
458 sx365-b-mmdb1 ix gcl g ah n the gunman kept tkkk kkgkgkk
459 sx365-b-mmdb1 ih kcl t em kcl his victim cornered dttt tdtgkkt
460 sx365-b-mmdb1 em kcl k ao r victim cornered at kkgk kkkkkkk
461 sx365-b-mmdb1 ae tcl g ah n at gunpoint for tgdt gggggtk
462 si904-b-mglb0 ow dcl t r ae railroad tracks came kttt ttttttt
463 si904-b-mglb0 n tcl t ix v came into view dddd ddddddd
464 sx29-b-mers0 ih kcl k ix pcl to pick a kktk kkkkkkk
465 sx29-b-mers0 ax-h pcl p ax-h tcl of potatoes # pttt pptpttp
466 sx29-b-mers0 ax-h tcl t ey dx of potatoes # ttpp ttttttt
467 sx293-b-mbdg0 ey kcl k dh ih please take this kkgk ggtgggt
468 sx293-b-mbdg0 s dcl d er dx this dirty tablecloth dttt tdttttt
469 sx223-b-mjfc0 axr bcl b l aa butcher block table pbbb pbpbbpb
470 si2275-b-mthc0 ih dcl d l uh all did look bddb ddgdddd
471 si2275-b-mthc0 ih pcl p sh ey and shipshape # kggk bpppppp
472 si2275-b-mthc0 ey pcl p h# # and shipshape # tptp dpttpbp
473 si1484-b-fjsj0 iy kcl k axr z honest seekers after gkkk kgkkggg
474 sx191-b-mgjf0 th dcl d r ao # withdraw all tttt dtttttd
475 sx191-b-mgjf0 ae kcl k ux z phony accusations at ktkk tkkkkkk
476 si1970-b-mroa0 ax bcl b w q clearly identi�able enemy ggkb bgbbkgb
477 si1970-b-mroa0 iy kcl k en tcl enemy continued on tttk kkkkkkk
478 si1970-b-mroa0 ux dcl d aa n enemy continued on tdgt ddddddd
479 si2179-b-mcsh0 aa pcl p s epi never wops me tkpp pgppppp
480 si459-b-mmwh0 axr pcl p axr pcl further proposed grants bppp ppppppp
481 si459-b-mmwh0 z dcl g r ae proposed grants of kkgg kgkkkkk
482 si459-b-mmwh0 s pcl p eh s an unspeci�ed sum bbbp bbppppp
483 si459-b-mmwh0 s pcl p er m for experimental hospitals bbbp pbppppp
484 si459-b-mmwh0 n tcl t el hh for experimental hospitals tddp ttttdtt
485 si459-b-mmwh0 s pcl p ix dx experimental hospitals # bbpp ppppppp
486 sx282-b-mrjr0 axr gcl g aa tcl fairy forgot to ggdd ggggggg
487 si745-b-mreb0 # h# b r oy # broil or pppp bbbbbpb
488 sx188-b-mjar0 s pcl p eh n unlimited expense account bbpp pbpbppp
489 si1714-b-fedw0 s tcl t eh pcl normally step in dttt tdttttt
490 si1714-b-fedw0 eh pcl p ih ix normally step in pbbp bbpbpbp
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Appendix B

Antiphone Modeling and

Near-miss Modeling

Antiphone modeling and near-miss modeling both refer to probabilistic frameworks

for segment-based speech recognition. This discussion is drawn from [6, 7]. The

material is reproduced here to aid the reader in following the phonetic recognition

experiments in Chapter 5.

Speech recognition systems are designed to �nd the sequence of words, W �, that

maximizes the a posteriori probability of the acoustic observations, A. This is written

mathematically as

W � = argmax
W

P (W jA) = argmax
W

P (AjW )P (W ): (B.1)

where P (AjW ) is the acoustic model and P (W ) is the language model.

In frame-based systems, the acoustic observations A are a non-overlapping time-

series. Thus, every segmentation of the speech signal accounts for all observations.

In segment-based systems, A is a temporal network. For each possible path through

the network, some segments are on the path and others are o� the path. Thus,

P (AjW ) = P (AonAoff jW ) (B.2)
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where Aon refers to the on-path segments, and Aoff refers to the o�-path segments

for a particular path through the network. We now describe two di�erent ways to

compute P (AonAoff jW ).

B.1 Antiphone Modeling

This algorithm uses a single non-lexical acoustic model, referred to as the \not"

model, or the \antiphone" to account for all o�-path segments. Furthermore, this

is done in an e�cient manner by assuming independence between the on-path and

o�-path acoustic observations. Let bw represent the nonlexical unit, then

P (AonAoff jW ) = P (AonjW )P (Aoff j bw)P (Aonj bw)
P (Aonj bw) = K

P (AonjW )

P (Aonj bw) (B.3)

whereK is a constant for all paths through the network. Instead of scoring Aon against

the lexical models and Aoff against the antiphone model, Aon is scored against both

lexical and nonlexical models.

B.2 Near-miss Modeling

Although antiphone modeling is e�cient, it uses only a single non-lexical acoustic

model to account for all o�-path segments. The idea of antiphone modeling has been

generalized to near-miss modeling, which uses multiple nonlexical units to model o�-

path segments as \near-misses" of lexical units that are on the path. In order to

calculate P (AonAoff jW ), every o�-path segment is associated with one and only one

on-path segment. Let the on-path lexical units be W = fw1w2:::wNg. Let Abwn be

the acoustic observations associated with segments in the near-miss subset of wn, so

that

Abwn\Abwm = ; for n 6= m (B.4)

Aoff =
N[
n=1

Abwn (B.5)
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The scoring them proceeds as

P (AonAoff jW ) = P (AonjW )
NY
n=1

P (Abwnj bwn): (B.6)

In this scenario, o�-path segments are explicitly scored against the appropriate near-

miss models. For further discussion and comparison of near-miss and antiphone mod-

eling techniques, please consult the references.
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Appendix C

Aggregation of Probabilistic

Models

C.1 Introduction

Model aggregation is a means of improving the performance and robustness of mixture

Gaussian models.1 This technique produces models that are more accurate and more

robust to di�erent test sets than traditional cross-validation using a development set.

In this appendix, a theoretical justi�cation for this technique is presented with some

discussion of its e�ectiveness.

Mixture Gaussian models are typically trained using a procedure that combines

supervised and unsupervised training. Supervision is provided through the class labels

of the training data which are known during training. In contrast, the weights which

determine how much each data point contributes to the training of the mean and co-

variance of each individual mixture component are not known when training begins,

but rather are determined during the training process in an unsupervised manner.

The algorithms used to determine these weights, such as the K{means clustering

algorithm and the Expectation-Maximization (EM) algorithm, do not guarantee a

globally optimal solution. These algorithms often converge to a locally optimal solu-

1This appendix draws from joint work with T. J. Hazen, reported in [33].
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tion, where the exact local optimum that will be reached is highly dependent on the

initialization of the unknown weights at the beginning of the training process. As

a speci�c example of this phenomenon, word recognition accuracies on the Resource

Management task were obtained from 24 trials of training mixture Gaussian models

by randomly-initialized K{means clustering followed by EM iterations. The average

word error rate was 4:55%, with a maximum, minimum and standard deviation of

4:83%, 4:33%, and 0:127, respectively. The error rate reduction achieved in traversing

from the worst trial to the best trial is 10.4%. In light of this variation, one may ask:

What is a good strategy for using the results on development data to choose which

models to use on an independent test set?

In the past, many have simply chosen the model training trial that performs

the best on the development data, i.e. cross-validation. One problem with this

strategy is that noise on the development data contributes a random component

to the performance. As a result, better performance on the development set may

not indicate models which are better matched to the true underlying distribution

of the data. Instead, it may only indicate that the models are super�cially better

matched to the idiosyncrasies of the development set. As an example of this, TIMIT

phonetic recognition accuracies were calculated on development and test sets for 24

independently trained models, using di�erent random initializations in the K{means

clustering. The correlation between development set and test set accuracy was indeed

weak (correlation coe�cient 0.16), and in this case the simple \pick-the-best-on-

development-data" cross-validation strategy was particularly disappointing since the

trial performing best on the development set performed worst on the test set. A

second disadvantage of simple cross-validation is that computation is wasted, since

the results of only one training trial are kept, while the models from the other trials

are thrown away [1].

To counter the problems discussed above, an algorithm is needed which produces a

mixture density function which can be proven to yield better classi�cation accuracy,

on average, than any randomly initialized density function trained using standard

techniques. At the very least, it is desirable to show the new algorithm can reduce the
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value of some error function which is strongly correlated with classi�cation accuracy.

Aggregation is a technique which meets this criterion.

C.2 Theoretical Basis

Aggregation of probabilistic classi�ers is performed by averaging the outputs of a set

of independently trained classi�ers. The proof that follows will demonstrate that an

aggregate classi�er is guaranteed to exhibit an error metric which is equal to or better

than the average error metric of the individual classi�ers used during aggregation.

Though the empirical evidence presented in this paper uses only mixture Gaussian

classi�ers, this proof is valid for any type of probabilistic classi�er. This proof is also

completely independent of the test data being presented to the classi�er. Thus, the

method is robust because it improves performance regardless of the test set being

used.

To begin, assume a set of N di�erent classi�ers have been trained. In most of

the experiments in this paper, multiple classi�ers are generated from the same data

set by using di�erent random initializations in the K{means clustering prior to EM

training of the mixtures. However, the proof does not depend in any way on how the

classi�ers are generated. This set will be called � and can be represented as:

� = f~'1(~x); ~'2(~x); : : : ; ~'N(~x)g (C.1)

Within �, each classi�er ~'n(~x) takes an observation vector ~x as its input. The

underlying class that ~x belongs to will be de�ned as c(~x). To classify ~x, each ~'n(~x)

contains a probability density function for each of the D di�erent classes from which

~x might be drawn. Each classi�er ~'n(~x) outputs a D dimensional vector containing

the a posteriori probabilities of ~x belonging to each of the D classes. This output
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vector for ~'n(~x) can be represented as

~'n(~x) =

2666666664

'n;1(~x)

'n;2(~x)
...

'n;D(~x)

3777777775
=

2666666664

Pn(c(~x) = 1 j ~x)

Pn(c(~x) = 2 j ~x)
...

Pn(c(~x) = D j ~x)

3777777775
(C.2)

In order to evaluate the performance of a classi�er, an appropriate metric must

be de�ned. Let ~y(~x) be a D dimensional vector which indicates the reference class,

or \correct answer", through a binary representation. That is,

~y(~x) = [y1(~x); y2(~x); : : : ; yD(~x)]
T (C.3)

where

yd(~x) =

8><>: 1 if c(~x) = d

0 otherwise
(C.4)

Ideally, a classi�er's a posteriori probability for the correct class should be as close to

1 as possible while all of the incorrect classes should have a posteriori probabilities

as close to 0 as possible. The error metric used in this proof is the squared distance

between the classi�er's output and the \correct answer". Thus, the error when input

~x is presented to the nth classi�er is de�ned as

en(~x) = k~y(~x)� ~'n(~x)k
2 (C.5)

This error can be expressed as

en(~x) =
DX
d=1

(yd(~x)� 'n;d(~x))
2 (C.6)

Using the error metric de�ned above, the mean error over all N classi�ers in �

158



for an input vector ~x is

e(~x) =
1

N

NX
n=1

DX
d=1

(yd(~x)� 'n;d(~x))
2 (C.7)

For notational ease, the remainder of this development will drop the explicit depen-

dence on the input vector ~x. It should be understood that the analysis proceeds

identically given any input vector. Continuing, the average error of the N classi�ers

expands to

e =
DX
d=1

"
y2d �

 
2yd
N

NX
n=1

'n;d

!
+

 
1

N

NX
n=1

'2
n;d

!#
(C.8)

The aggregate classi�er, ~'A, simply averages the outputs of all N classi�ers in �.

This is expressed as

~'A =
1

N

NX
n=1

~'n (C.9)

The error for the aggregate classi�er model is

eA = k~y � ~'Ak
2 =

DX
d=1

(y2d � 2yd'A;d + '2
A;d) (C.10)

By substituting in the de�nition of ~'A(~x) from Equation (C.9) the error of the ag-

gregate classi�er can be rewritten as

eA =
DX
d=1

24y2d �
 
2yd
N

NX
n=1

'n;d

!
+

 
1

N

NX
n=1

'n;d

!2 35 (C.11)

By comparing the expressions in Equations (C.8) and (C.11), it can be seen that

eA will be less than or equal to e if

 
1

N

NX
n=1

'n;d

!2
�

1

N

NX
n=1

'2
n;d (C.12)

In fact, this condition is always true for any arbitrary vector because it is a special

case of the Cauchy{Schwarz inequality. Given any two vectors ~a = [a1; a2; : : : aN ]
T
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and ~b = [b1; b2; : : : bN ]
T , then by the Cauchy{Schwartz inequality

�����
NX
n=1

anbn

�����
2

�

 
NX
n=1

a2n

! 
NX
n=1

b2n

!
(C.13)

Now let bn = 1 for all n so that
PN

n=1 b
2
n = N to obtain

 
NX
n=1

an

!2

� N
NX
n=1

a2n (C.14)

which is the desired result. Note that equality holds in Equation (C.12) only if the

'n;d matrix is constant along each row n, i.e. every classi�er is giving exactly the same

a posteriori probabilities. Thus, in practical situations with classi�ers that produce

di�erent probabilities, the inequality becomes strict.

This derivation proves that, for any input token ~x, the error eA of the aggregate

classi�er created from the classi�er set � is always smaller than the average error e

of the N individual classi�ers in �, provided that the N classi�ers do not all produce

the same a posteriori probabilities.

C.3 Experimental E�ectiveness

The previous theoretical discussion leads us to expect aggregation to be helpful for

performance, but it does not predict the magnitude of the improvements that will

be observed. Thus, empirical studies are needed in order to obtain a sampling of

the improvements that can be obtained in typical speech recognition tasks. These

empirical studies are found in [33], and they report error rate reductions of up to

12% in the tasks of phonetic classi�cation, phonetic recognition, and word recognition.

These performance improvements come at the price of increased computation. If N

trials of model training are aggregated, then the �nal aggregated model is N times

larger than the original, thus requiring N times more computation. Pruning and fast-

match techniques may be used help reduce the burden of the increase in computational

requirements.
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Appendix D

Confusion Matrices

This appendix contains detailed performance results for the committee of nine clas-

si�ers discussed in Section 5.1.3. Confusion matrices calculated on the development

and core test sets are given in Tables D.1 and D.2. The reference phonetic class is

given along the rows, so that the percent error for each phonetic label (after mapping

to the 39 classes given in Table 2.2) can be calculated from the numbers along each

row. The hypotheses are given along the columns.
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