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Abstract

Currently, most approaches to speech recognition are frame-based in that they rep-

resent speech as a temporal sequence of feature vectors. Although these approaches
have been successful, they cannot easily incorporate complex modeling strategies that

may further improve speech recognition performance. In contrast, segment-based ap-
proaches represent speech as a temporal graph of feature vectors and facilitate the
incorporation of a wide range of modeling strategies. However, di�culties in segment-

based recognition have impeded the realization of potential advantages in modeling.
This thesis describes an approach called near-miss modeling that addresses the

major di�culties in segment-based recognition. Probabilistically, each path should

account for the entire graph including the segments that are o� the path as well as
the segments that are on the path. Near-miss modeling is based on the idea that

an o�-path segment can be modeled as a \near-miss" of an on-path segment. Each
segment is associated with a near-miss subset of segments that contains the on-path
segment as well as zero or more o�-path segments such that the near-miss subsets

that are associated with any path account for the entire graph. Computationally, the
graph should contain only a small number of segments without introducing a large

number of segmentation errors. Near-miss modeling runs a recognizer and produces

a graph that contains only the segments on paths that score within a threshold of the
best scoring path.

A near-miss recognizer using context-independent segment-based acoustic mod-
els, diphone context-dependent frame-based models, and a phone bigram language

model achieves a 25.5% error rate on the TIMIT core test set over 39 classes. This

is a 16% reduction in error rate from our best previously reported result and, to our
knowledge, is the lowest error rate that has been reported under comparable condi-

tions. Additional experiments using the ATIS corpus verify that these improvements

generalize to word recognition.
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Title: Principal Research Scientist
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Chapter 1

Introduction

Currently, most approaches to speech recognition represent the speech signal using

a temporal sequence of feature vectors called frames and therefore are described as

frame-based approaches. Typically, frames contain short-time spectral and energy

information and are used to distinguish speech segments called phones, which in

turn are used to distinguish words. In particular, most approaches use a �nite state

model called a hidden Markov model (HMM) to model how phones can be realized

as frames [2, 53].

Although HMM approaches have been relatively successful, humans remain su-

perior to state-of-the-art recognizers, and researchers continue to explore methods

to improve speech recognition performance [34]. One of the most commonly tar-

geted weaknesses of an HMM is its assumption of independence between frames. In

an HMM, the frames within a phone are modeled independently even though they

demonstrate a high degree of correlation. To overcome this weakness, researchers have

developed methods to jointly model the frames within a phone [1, 19, 44]. Although

these methods have been described as segment-based, they still use a sequence-based

representation and therefore are still described as frame-based in this thesis.

A more fundamental limitation of the HMM approach is its inability to extract

feature vectors across an entire phone. In an HMM, each frame typically does not

span a phone and therefore cannot capture characteristics across the entire phone. To

overcome this limitation, some researchers have pursued an alternative approach to

12



speech recognition that represents the speech signal using a temporal graph of feature

vectors, where each hypothesized phone is modeled using its own feature vector [5, 69].

In this thesis, the description of segment-based is reserved for such approaches that use

a graph-based representation. Although segment-based approaches can potentially

provide improvements in modeling, they have been relatively unsuccessful due to

di�culties in recognition.

This thesis describes a new segment-based approach called near-miss modeling af-

ter its ability to model one segment as a \near-miss" of another. Near-miss modeling

is a combination of two methods that overcome the major di�culties in developing

a segment-based approach. First, near-miss search provides a method for enforcing

constraints across a graph-based representation. Second, near-miss segmentation pro-

vides a method for producing a useful graph-based representation. Empirically, near-

miss modeling is shown to achieve state-of-the-art performance in phonetic recogni-

tion. Furthermore, near-miss modeling enables the exploration of modeling strategies

that may further improve speech recognition performance. This chapter introduces

the motivation and di�culties in developing a segment-based approach and provides

an overview and an outline of the thesis.

1.1 Motivation

The motivation for pursuing a segment-based approach to speech recognition is to

enable improvements in modeling. To illustrate this motivation, Figure 1-1 shows

an example speech utterance consisting of a waveform and spectrogram, frame- and

segment-based representations, frame- and segment-based paths, and phone and word

transcriptions, all aligned with time on the x-axis. The spectrogram shows the mag-

nitude (dB) of the short-time Fourier transform of the utterance, with frequency on

the y-axis and energy coded in gray level. In the frame- and segment-based repre-

sentations, each rectangular region corresponds to a feature vector. The frame-based

representation is a temporal sequence of feature vectors, where one feature vector

is extracted every 10 ms. The segment-based representation is a temporal graph

13



Figure 1-1: An example speech utterance consisting of a waveform and spectro-
gram, frame- and segment-based representations, frame- and segment-based paths,

and phone and word transcriptions, all aligned with time on the x-axis. The spec-
trogram shows the magnitude (dB) of the short-time Fourier transform of the utter-
ance, with frequency on the y-axis and energy coded in gray level. In the frame-

and segment-based representations, each rectangular region corresponds to a feature

vector. The frame-based representation is a sequence of feature vectors, where one

feature vector is extracted every 10 ms. The segment-based representation is a graph
of feature vectors, where each feature vector corresponds to a hypothesized phone.
The goal in recognition is to �nd the best path through the representation. The best

frame- and segment-based paths are shaded through their respective representations

and also shown underneath. The frame-based path uses the entire sequence-based
representation, while the segment-based path uses only a sequence of feature vectors

through the graph-based representation. The utterance is extracted from the TIMIT

corpus and labeled using the TIMIT phone labels [16, 20, 30].

14



of feature vectors, where each feature vector corresponds to a hypothesized phone.

The goal in recognition is to �nd the best path through the representation. The

best frame- and segment-based paths computed by phonetic recognition are shaded

through their respective representations and also shown underneath. The frame-

based path uses the entire sequence-based representation, while the segment-based

path uses only a sequence of feature vectors through the graph-based representation.

The utterance is extracted from the TIMIT corpus and labeled using the TIMIT

phone labels [16, 20, 30].

Figure 1-1 suggests that phones have time, frequency and energy characteristics

that are useful for recognition [13, 68, 67]. In particular, some of these characteristics

may be better modeled at the segment level rather than the frame level. The most

common example of such a characteristic is duration [9, 64]. Studies have shown that

duration can help make �ne distinctions between similar phones, such as between

tense and lax vowels and between voiced and unvoiced consonants. A segment, unlike

a frame, spans a phone and can capture its duration. In addition to duration, other

time, frequency and energy characteristics may also be better modeled at the segment

level. For example, studies have shown that the transitions between phones contain

important information, and a segment can focus on these transition characteristics at

its boundaries [37, 49]. It may also be useful to capture the timing of events within

a segment, such as when and at what frequency an energy band peaks. Overall, a

segment-based approach provides a richer framework for the exploration of improved

modeling strategies. In addition, a segment-based approach is more general and o�ers

the 
exibility to explore both frame- and segment-based approaches.

1.2 Di�culties

Despite their potential advantages, segment-based approaches have been relatively

unsuccessful largely due to two major di�culties in recognition. The �rst di�culty

concerns the search process of �nding the best path through a graph of segments.

The second di�culty concerns the segmentation process of constraining the graph of

15



segments for search. The following two sections elaborate on these di�culties.

1.2.1 Search

Most current approaches to speech recognition, whether they are frame- or segment-

based, use a similar probabilistic framework [2, 53]. To directly compare paths, the

probabilistic framework requires that all paths account for the entire set of feature

vectors that is used to represent the speech signal. In a frame-based approach, each

path accounts for the entire sequence-based representation, and therefore the search

strategy is straightforward. However, in a segment-based approach, each feature vec-

tor corresponds to a segment, and each path only accounts for a sequence of segments

through the graph-based representation. To maintain the probabilistic framework, a

segment-based approach requires a more complex search strategy that accounts for

the entire graph of segments, including both the segments that are on a path as well

as the segments that are o� a path.

Recently, we have recognized the necessity of accounting for the entire graph of

segments. To this end, we have developed a segment-based framework called anti-

phone modeling based on the idea that an o�-path segment is not a phone and

therefore can be modeled as an anti-phone [22]. Anti-phone modeling maintains the

probabilistic framework by normalizing all paths to implicitly account for all segments.

However, anti-phone modeling requires all o�-path segments to be modeled by a single

anti-phone model even though o�-path segments can vary greatly with context. For

example, o�-path segments through vocalic regions have di�erent characteristics than

o�-path segments through consonantal regions. The inability to enforce contextual

constraints across all segments limits the modeling strategies than can be explored and

limits the recognition performance, thereby impeding the development of segment-

based approaches.
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1.2.2 Segmentation

Most current approaches to speech recognition, whether they are frame- or segment-

based, also use a similar dynamic programming strategy [2, 53]. To e�ciently compare

paths, dynamic programming takes advantage of shared structure between paths. In

a frame-based approach, each path shares the entire sequence-based representation,

and therefore a frame-based approach can e�ciently search all possible connections

of frames into segments. However, in a segment-based approach, di�erent paths may

account for di�erent segments through the graph-based representation. To reduce

computation, a segment-based approach requires a more complex segmentation strat-

egy that constrains the graph of segments that is searched.

Currently, the SUMMIT framework developed in our group uses an acoustic seg-

mentation algorithm [69]. The acoustic segmentation algorithm hypothesizes bound-

aries at times of large spectral change and connects the boundaries into segments.

However, although this algorithm is e�cient, segmentation often depends on contex-

tual e�ects that cannot be captured by spectral change alone. For example, transitions

between similar phones, such as between vowels, tend to be gradual and may not be

delimited by large spectral change. The introduction of errors in segmentation causes

errors in recognition and undermines potential gains in modeling, thereby further

impeding the development of segment-based approaches.

1.3 Overview

The objective of this thesis is to develop an approach to speech recognition that can

overcome the di�culties that currently impede progress in segment-based recogni-

tion. The approach is called near-miss modeling based on the idea that an o�-path

segment can be modeled as a \near-miss" of an on-path segment. The near-miss

search associates each segment with a near-miss subset of segments that contains the

on-path segment as well as zero or more o�-path segments such that the near-miss

subsets that are associated with any path account for the entire graph. As a result,

the near-miss search can maintain the probabilistic framework without sacri�cing the
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ability to enforce contextual constraints across all segments. In addition, near-miss

segmentation runs a recognizer and hypothesizes only the segments on paths that

score within a threshold of the best scoring path. As a result, near-miss segmenta-

tion can generate a small number of segments without introducing large numbers of

segmentation errors.

Near-miss modeling is primarily evaluated on the task of phonetic recognition. A

near-miss recognizer using diphone context-dependent acoustic models and a phone

bigram language model achieves a 25.5% error rate on the TIMIT core test set over

39 classes [16, 20, 30]. This is a 16% reduction in error rate from our best previously

reported result and, to our knowledge, is the lowest error rate that has been reported

under comparable conditions. Additional experiments using the ATIS corpus ver-

ify that these improvements generalize to word recognition [47, 48]. Furthermore,

near-miss modeling enables the exploration of modeling strategies that promise even

greater improvements in the future.

1.4 Outline

The remainder of the thesis is organized in six chapters:

� Chapter 2 sets the background for the thesis. It describes the framework, mod-

eling strategies, and search algorithms that are used in most speech recognition

systems. It also specializes this background to the frame- and segment-based

approaches.

� Chapter 3 details the framework for the experiments in phonetic recognition

that serve as the primary evaluation of the thesis. This chapter describes the

corpus and recognizers that are used in phonetic recognition.

� Chapter 4 describes the search framework that is used in near-miss modeling.

It begins with an example of the near-miss modeling problem. It then describes

the near-miss assignment algorithm and the resulting near-miss framework for

speech recognition. It then describes issues in assigning near-miss subsets and
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modeling the near-miss units. Finally, it evaluates near-miss modeling in pho-

netic recognition.

� Chapter 5 describes the segmentation algorithm that is used in near-miss mod-

eling. It describes a general framework for segmentation. It evaluates segmen-

tation on phonetic recognition and compares near-miss modeling against other

approaches to speech recognition.

� Chapter 6 describes the experiments in word recognition. The chapter parallels

Chapters 3, 4, and 5 by describing the experimental framework, evaluating near-

miss modeling in search and segmentation, and a comparing near-miss modeling

to other approaches, all on the task of word recognition.

� Chapter 7 concludes the thesis. It summarizes the contributions of this thesis

and suggests directions for future research.
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Chapter 2

Background

This chapter sets the background for the thesis. The �rst three sections describe

the framework, modeling strategies, and search algorithms that are used in most ap-

proaches to speech recognition. The remaining two sections focus on the background

to the frame- and segment-based approaches.

2.1 Probabilistic Framework

Currently, most approaches to speech recognition are based on a similar probabilistic

framework that provides a method for combining the diverse sources of constraints

that are used in speech recognition [2, 53]. The framework can be described using

two terms: W is a sequence of words, and A is a set of acoustic feature vectors.

Using these terms, the goal of speech recognition is to �nd W �, the word sequence

that maximizes P (W jA), the posterior probability of a word sequence given a set of

feature vectors:

W � = argmax
W

P (W jA)

This framework is simpli�ed by decomposing a word sequence into two simpler
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sequences: a sequence of linguistic units and a sequence of temporal segments. The

following two sections describe these units and segments, and the next section de-

scribes how they are used in speech recognition.

2.1.1 Units

Except for tasks that are constrained to a small vocabulary, there are too many words

to allow the creation of robust whole word models [54]. Linguistically, each word,

and therefore each word sequence, can be decomposed into a sequence of subword

units called a pronunciation. As a result, all words can share a relatively small set

of subword units which can be directly modeled. Currently, the most commonly

used subword units are based on the fundamental linguistic units that distinguish

words, called phonemes, or their acoustic realizations, called phones [13]. English has

approximately 40 phonemes.

2.1.2 Segments

Temporally, each unit, such as a phone, is assumed to occupy a �nite amount of time

called a segment. Furthermore, the sequence of segments that is associated with a unit

sequence must span the duration of the utterance in a contiguous and non-overlapping

manner. Note that a segment sequence has also been called a segmentation. However,

in this thesis, the term segmentation is reserved for the process of producing a graph

of segments, which typically contains multiple segment sequences.

2.1.3 Summation

The probabilistic framework can be extended to include two more terms: U is a unit

sequence, and S is a segment sequence. Each word sequence can be decomposed

into one or more unit sequences, which in turn can be associated with one or more

segment sequences. The probability of a word sequence is computed by summing the

probabilities of all possible unit and segment sequences that are associated with that

word sequence:
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P (W jA) =
X

US

P (WUSjA)

To reduce computation, the summation over unit and segment sequences is ap-

proximated with a maximization [2, 53]. For simplicity, a combination of word, unit,

and segment sequences is called a path. As a result, the goal of speech recognition is

to �nd the best path that maximizes the posterior probability of a path given a set

of feature vectors:

W �U�S� = argmax
WUS

P (WUSjA)

2.2 Models

The framework can be further simpli�ed by separating the sources of constraint used

in speech recognition [2, 54]. To do this, P (WUSjA) is expanded by successive

applications of Bayes' Rule:

P (WUSjA) =
P (AjWUS)P (SjUW )P (U jW )P (W )

P (A)

Since P (A) is always constant relative to the maximization, it can be dropped

from the formulation.

W �U�S� = argmax
WUS

P (AjWUS)P (SjUW )P (U jW )P (W )
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As a result, there are four constraints: P (AjWUS) is called an acoustic con-

straint, P (SjUW ) is called a duration constraint, P (U jW ) is called a pronunciation

constraint, and P (W ) is called a language constraint. The following four sections

discuss how each of these constraints is modeled.

2.2.1 Acoustic Model

The acoustic constraint, P (AjWUS), is estimated by an acoustic model [2, 54]. The

goal in acoustic modeling is to score how well a set of feature vectors represents

a hypothesized path. The following four sections describe the procedures that are

involved in acoustic modeling.

Representation

The speech signal is typically transformed into a cepstral representation by using

short-time Fourier analysis or linear predictive analysis [42, 55]. During this pro-

cedure, other signal processing techniques may be applied. For example, auditory

processing can be used to capture auditory constraints or normalization techniques

can be used to account for environmental e�ects [6, 12, 35, 38].

Feature Extraction

The initial signal representation is used to extract a set of feature vectors. Typical

feature vectors are cepstral vectors or averages and derivatives of cepstral vectors.

The feature vectors can also include more knowledge-based feature vectors such as

formant frequencies [60]. In addition, feature vectors can be determined empirically

by running automated search procedures on training data [40, 51].

23



Classi�cation

The feature vectors are modeled by a pattern classi�er [15]. Currently, the most

commonly used classi�er is based on a mixture of Gaussian distributions [4, 54, 66,

70]. To improve e�ciency and robustness, many systems assume that the Gaussian

covariance matrices are diagonal. In addition, it is useful to diagonalize the feature

vectors and reduce their dimensionality by principal components analysis [15, 21]. The

mixtures can be trained in an unsupervised manner, such as k-means or Expectation-

Maximization (EM) [15, 21].

Unit Selection

Although word-dependent units are sometimes used, typically the units are based on

phones, and the acoustic model estimates P (AjUS). The phones that are modeled

may or may not depend on context. For example, when the phones are context-

independent, each phone is assumed to be independent of its phonetic context. How-

ever, there can be a large degree of variation within the same phone depending

on its context. As a result, most state-of-the-art speech recognition systems use

context-dependent phones, where a phone is modeled depending on its neighboring

phones [31, 36, 61]. In addition to phonetic context, systems can also enforce other

types of context. For example, gender-dependent units allow the acoustic models to

focus on male or female speech [26]. In general, context-dependent modeling increases

computation and training requirements, and the number of context-dependent units

that can be modeled is limited. As the number of units increases, computation typi-

cally increases. In addition, the amount of training data per unit decreases, and the

resulting models become less robust.

2.2.2 Duration Model

The duration constraint, P (SjWU), is estimated by a duration model [2, 54]. The

goal in duration modeling is to score how well a sequence of segment and word times

temporally matches a hypothesized unit or word sequence. Most systems use a simple
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duration model based on a segment or word transition weight whereby a weight is

multiplied in for each segment or word transition in the hypothesized path [44, 69].

This weight trades o� deletions and insertions, with a larger weight favoring sequences

with more transitions, and a smaller weight favoring sequences with fewer transitions.

Duration models can also be based on Gaussian and other distributions.

2.2.3 Pronunciation Model

The pronunciation constraint, P (U jW ), is estimated by a pronunciation model [2, 54].

The goal in pronunciation modeling is to score how well a unit sequence represents a

pronunciation of a word sequence. The simplest pronunciation model admits only a

single pronunciation per word. However, some words, such as \data", have multiple

pronunciations. In addition, words can be pronounced in di�erent ways depending on

context. There are various approaches for modeling alternate pronunciations. One

technique is to categorically allow the deletion or insertion of a phone with some

penalty. However, much of the phonological variation is systematic and therefore can

be modeled more directly [43, 50, 56]. Many of the variations can be captured in

general phonological rules. For example, the last phone in the word \from" and the

�rst phone in the word \Miami" are both /m/. When the two words are pronounced

in sequence, as in \from Miami", they can share the same /m/. The e�ect, called

gemination, occurs systematically across word boundaries, so a rule can be used to

allow the reduction of identical phones across word boundaries. Phonological rules

can also be derived automatically [56].

2.2.4 Language Model

The language constraint, P (W ), is estimated by a language model [2, 54]. The goal

of language modeling is to score how well a word sequence represents a valid sentence

in a language. The simplest language model is a uniform distribution, where every

word is equally likely to follow any given word. However, there are many constraints

in language, such as syntax, semantics, discourse, and dialogue, which can be used
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to provide more predictive power for the language model. The following sections

introduce a common statistical language model, called an n-gram, which uses local

word order to provide constraint, and a common evaluation metric, called perplexity.

n-gram

For a word sequence with N words, P (W ) may be expanded causally by the chain

rule [2, 54]:

P (W ) =
NY

i=1

P (wijwi�1:::w1)

The n-gram language model assumes that the probability of a word depends only

on the previous n� 1 words:

P (W ) =
NY

i=1

P (wijwi�1:::wi�(n�1))

To reduce computation, many systems use a bigram language model in which

n = 2, and the probability of a word depends only on the immediately preceding

word:

P (W ) =
NY

i=1

P (wijwi�1)

The n-gram probabilities are estimated by gathering statistics from a training set.

The performance of the n-gram is dependent upon many factors. To improve coverage,

words can be added to the vocabulary. This includes the addition of compound words
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that can be used to model common sequences of words, such as \San Francisco," as a

single word. To derive more robust estimates, higher order n-grams can be smoothed

with lower order n-grams [70]. In addition, a class n-gram language model can be

used to model classes of words that share relatively similar probability distributions,

thus making more e�ective use of limited training data [4, 54, 66, 70]. For example,

both the words, \Boston" and \San Francisco" can be classed in the \city" class.

Perplexity

The complexity of a task and the power of a language model is often evaluated by

perplexity [2, 54]. The perplexity of a word sequence with N words under a language

model is:

Perplexity = 2�
log P (W )

N

Perplexity is always measured on a test set which was not used to train the

language model parameters. Perplexity measures the predictive power of a language

model and can be loosely interpreted as the average number of words which can follow

any word under the language model. The higher the perplexity, the more confusable

the task and the less e�ective the language model.

2.3 Search

The goal of search is to combine the diverse sources of constraints according to the

probabilistic framework and to �nd the best scoring path based on all model scores.

The following sections describe some of the search space and the search algorithms

that are used in speech recognition.
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2.3.1 Search Space

This thesis focuses on the subword level, where the search space can be visualized as

a segment graph. During recognition, this graph is intersected with a graph repre-

senting the pronunciation and language models. A graph that fully interconnects n

times has n(n�1)

2
segments. Figure 2-1 shows an example segment graph that is fully

interconnected over four times, ti, with six segments, si. Note that throughout this

thesis, the subscripts in the text are not subscripted in the �gures.

t1 t2s1 t3
s2

t4

s3

s4

s5

s6

Figure 2-1: Example segment graph that fully interconnects four times, ti, using six
segments, si.

The segment graph is a compact representation for the space of all possible seg-

ment sequences. In a graph that is fully interconnected over n times, there are 2n�2

segment sequences. Table 2.1 shows the four segment sequences in Figure 2-1, where

the sequence, Sijk, contains the segments, si, sj, and sk.

Sequence Segments

S146 s1s4s6
S15 s1s5
S26 s2s6
S3 s3

Table 2.1: The four segment sequences in Figure 2-1, where the sequence, Sijk contains
the segments, si, sj, and sk.
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2.3.2 Search Algorithms

To search all possible paths, many speech recognition systems use dynamic program-

ming strategies [11]. Dynamic programming applies to problems that can be con�g-

ured to have optimal substructure and overlapping subproblems. A problem exhibits

optimal substructure if the optimal solution to the problem contains optimal solutions

to subproblems of the problem. A subproblem is overlapping if it has to be solved

over and over again. For problems that can be con�gured to have such structure, dy-

namic programming can be used to e�ciently �nd a solution by storing the solutions

to the subproblems and re-using them. The following sections describe two search

algorithms that are commonly used in speech recognition.

Viterbi Algorithm

In speech recognition, the dynamic programming algorithm called the Viterbi algo-

rithm is often used to �nd the best path through a search space [2, 17, 54, 63]. The

Viterbi algorithm is a time-synchronous search that explores the entire search space

by completely processing all paths ending at one time point before extending them

to the next time point. The Viterbi search can be extended to o�er an e�cient and

e�ective method of pruning, called beam pruning, by retaining only the best scoring

paths at each time point. With pruning, although the result is not guaranteed to be

optimal, in practice there can be little degradation in performance with signi�cantly

less computation. The Viterbi search is an e�cient way of applying local constraints

and �nding the best path through a graph. However, it cannot easily apply longer

distance constraints or �nd alternate paths.

A� Algorithm

To apply more complex constraints or to �nd the n-best paths, many speech recog-

nition systems use an A� search [7, 11, 27, 41, 45]. In the A� search strategy, partial

paths are maintained in sorted order in a queue. During search, the best partial

path is extracted from the queue, and all of its possible extensions are subsequently
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inserted. The score of the extensions is based on the score of the partial path plus

an upper bound estimate of the remaining score. If this estimate is guaranteed to be

greater than or equal to the actual remaining score, then the A� search is guaranteed

to �nd the best path. Since each node has a unique history, the A� search facilitates

the application of long distance constraints and can compute the n best paths.

One common recognition strategy is to compute n-best lists using the A� search

and to subsequently resort the n-best lists rather than searching the entire search

space [7, 45]. This n-best paradigm is often used to incorporate expensive modeling

strategies. However, n-best paths typically have signi�cant overlap between them

and may be an ine�cient representation, especially for a large search space with

many overlapping paths. To address this problem, researchers have modi�ed the A�

search into a word graph search that collapses the n-best paths into a word graph [27,

41]. The modi�cation involves merging paths that arrive at the same point in the

A� search. A word graph search provides both computational and representational

e�ciency. The path merging during the search results in computational savings, while

the graph output is representationally more compact than a list of paths.

2.4 Frame-Based Approach

The probabilistic framework described so far can be specialized to particular ap-

proaches to speech recognition. The following two sections describe the basic frame-

based representation and search strategy. The next two sections describe the domi-

nant frame-based approach based on the hidden Markov model (HMM) and some of

its extensions.

2.4.1 Frame-Based Representation

A frame-based approach represents speech as a temporal sequence of feature vectors.

For example, Figure 2-2 shows an example frame-based representation that spans four

times, ti, with three frame-based feature vectors, ai.

In a typical frame-based approach, the feature vectors are computed at a �xed
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t1 t2a1 t3a2 t4a3

Figure 2-2: Example frame-based representation that spans four times, ti, with three

frame-based feature vectors, ai.

rate, such as every 10 ms [2, 54]. However, in general, frame-based feature vectors

can be computed at a variable rate [37, 44, 52]. To di�erentiate these variable frame

rate approaches, they are also described as landmark-based.

2.4.2 Frame-Based Search

Figure 2-3 shows how the frame-based feature vectors in Figure 2-2 map to the seg-

ment graph in Figure 2-1.

t1 t2a1 t3
a1 a2

t4

a1 a2 a3

a2

a2 a3

a3

Figure 2-3: The frame-based feature vectors in Figure 2-2 mapped to the segment

graph in Figure 2-1. In a frame-based search, each segment is represented by the
sequence of the feature vectors which it spans, and each segment sequence accounts

for all feature vectors.

In a frame-based approach, a segment is typically represented by a variable number

of feature vectors. For example, when the feature vectors are computed at a �xed

rate, the number of feature vectors that represent a segment is directly proportional

to the duration of the segment. Each segment is represented by the sequence of the

feature vectors which it spans. As shown, each segment sequence naturally accounts

for all feature vectors.
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Mathematically, each segment, si, spans a sequence of frame-based feature vectors,

Ai, such that each segment sequence, S, accounts for all feature vectors:

A =
[

si2S

Ai

In practice, most speech recognition systems assume independence at the segment

level. As a result, a frame-based search can compute a total path score as the product

of the scores of the feature vectors that are associated with the segments on the path:

P (AjUS) =
Y

si2S

P (AijUS)

For example, the four segment sequences in Figure 2-1 require the following com-

putations:

P (AjUS146) = P (a1jUS146)P (a2jUS146)P (a3a4jUS146)

P (AjUS15) = P (a1jUS15)P (a2a3a4jUS15)

P (AjUS26) = P (a1a2jUS26)P (a3a4jUS26)

P (AjUS3) = P (a1a2a3a4jUS3)

As shown, in a frame-based approach, the feature vectors are easily associated

with each segment, so that any segment sequence accounts for all feature vectors. The

following section describes a particularly e�cient and e�ective method for estimating

the probability of the feature vectors that are associated with a segment, P (AijUS).
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2.4.3 HMM

The HMM can be described as a generative model [2, 31, 54]. An HMM models speech

as a collection of states that are connected by transitions. Each state associates an

output observation with a corresponding output probability, and each transition is

associated with a transition probability that re
ects the likelihood of transition. The

model is Markov in the sense that the probability of a state at a given time point

depends only on the state at the previous time point. The states are hidden in the

sense that they are observable only through the sequence of output observation.

In the HMM approach to speech recognition, each speech unit is modeled using

an HMM [2, 31, 54]. The feature vectors are the output observations, and the output

probabilities model the acoustic constraint. The transition probability between HMM

states models the duration constraint. In speech recognition, HMMs have a small

number of states due to limitations in training data [54]. In addition, HMM states

have self-loops to allow each segment to be realized as a variable number of frames.

Figure 2-4 shows an example of a simple transition diagram that consists of three

states, qi, and �ve transitions, bij, from state qi to state qj.

q1

b11

q2b12

b22

q3b23

b33

Figure 2-4: Example state transition diagram with three states, qi, and �ve transi-

tions, bij, from state qi to state qj.

During recognition, the goal is to �nd the sequence of states which best predicts the

observed feature vectors. To do this, the typical HMM that is used in speech recogni-

tion assumes that the output probability depends only on the current state [2, 31, 54].

Although the frame-based feature vectors across a segment are certainly dependent

upon each other, this assumption enables HMMs to take advantage of e�cient frame-
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based search algorithms. HMM approaches typically use a Viterbi search to consider

all paths in the segment graph. The application of the Viterbi search to an HMM

has particularly e�ective pruning characteristics, since each path shares the same fea-

ture vectors, and furthermore, all feature vectors are independent. In training, some

HMM approaches use the forward-backward, or Baum-Welch, algorithm to e�ectively

estimate model parameters [2, 54]. The forward-backward algorithm is an instance

of the Expectation-Maximization (EM) algorithm and is thus guaranteed to improve

training set probability with each iteration.

Mathematically, HMMs model the feature vectors, Ai, that correspond to a seg-

ment, si, by assuming conditional independence between the feature vectors, aj, that

are associated with the segment:

P (AijUS) =
Y

aj2Ai

P (ajjUS)

As a result, HMMs can independently score the feature vectors across a path:

P (AjUS) =
Y

Ai2A

Y

aj2Ai

P (ajjUS)

Overall, the HMM approach o�ers an e�cient method of modeling and searching

all possible paths. For example, the four segment sequences in Figure 2-1 can be

computed, one feature vector at a time:

P (AjUS146) = P (a1jUS146)P (a2jUS146)P (a3jUs146)P (a4jUS146)

P (AjUS15) = P (a1jUS15)P (a2jUS15)P (a3jUS15)P (a4jUS15)

P (AjUS26) = P (a1jUS26)P (a2jUS26)P (a3jUS26)P (a4jUS26)
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P (AjUS3) = P (a1jUS3)P (a2jUS3)P (a3jUS3)P (a4jUS3)

2.4.4 HMM Extensions

Due to its advantages in search, HMMs have become the dominant approach in speech

recognition [4, 54, 66]. However, studies have shown that the basic assumption of

conditionally independent observations given the underlying state sequence is inac-

curate [14, 24]. To better model correlation across a segment, HMMs have been

extended in various ways to relax this assumption. The simplest method is to use

feature vectors that are less sensitive to or remove some of the dependence [18, 31].

These include dynamic feature vectors such as derivatives and feature vectors that

span longer durations in an attempt to implicitly capture more segmental charac-

teristics. Other e�orts have focused on developing better segment models through

strategies such as trajectory modeling or using neural networks [1, 14].

More complex extensions focus on the HMM itself. To more explicitly capture

correlation, segmental HMMs assume that each observation is dependent not only on

the state but also on its mean over the segment of speech which it represents [19, 59].

For each state, the output probability is described by two distributions: one describing

the segment mean and the other describing the observation given the mean. Stochastic

segment modeling [44] is described as a generalization of hidden Markov modeling

which relaxes the independence assumption between frames and allows the explicit

modeling of correlation across frames within a segment. Segment models can be

thought of as a higher dimensional version of an HMM, where a single Markov state

may generate a sequence of vector observations rather than a single vector.

Overall, these methods have been shown to improve performance and provide fur-

ther evidence for the potential advantages of segment-based modeling. However, an

HMM cannot be extended to model segment-based feature vectors. Since a single

frame-based feature vector typically does not span an entire unit of speech, a frame-

based model cannot capture constraints associated with the entire unit. The most
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common example of such a constraint is duration. An HMM implicitly models dura-

tion through the transition probabilities, resulting in a geometric distribution. How-

ever, actual segment durations are poorly modeled by a geometric distribution [44].

The pursuit of such strategies requires a more general recognition framework, as pro-

vided by a segment-based approach.

2.5 Segment-Based Approach

A segment-based approach o�ers an alternative framework for recognition that can

incorporate the same information as an HMM but also allow explorations of segment-

based modeling strategies [5, 69]. The following section describes the segment-based

representation. The next two sections describe two major di�culties in segment-based

recognition concerning search and segmentation. The �nal section discusses some of

the potential advantages of a segment-based approach.

2.5.1 Segment-Based Representation

In contrast to the frame-based approach, a segment-based approach represents speech

as a temporal graph of segments, where each feature vector is associated with a

segment of speech such as a phone [5, 69]. Figure 2-5 shows an example segment-

based representation that fully interconnects four times, ti, with six segment-based

feature vectors, ai.

The segment-based approach is a generalization of the frame-based approach and

allows the extraction of both frame- and segment-based feature vectors. For exam-

ple, the frame-based con�guration shown in Figure 2-3 is just one form of the general

segment-based con�guration shown in Figure 2-5. In this case, if an HMM is used to

model each unit, the segment-based system would be functionally equivalent to an

HMM system. However, the systems would di�er computationally. The HMM ap-

proach has been optimized to use a simpler representation, and therefore can be more

computationally e�cient given such a representation. In contrast, segment-based ap-

proaches allow more general representations and therefore cannot take advantage of
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t1 t2a1 t3
a2

t4

a3

a4

a5

a6

Figure 2-5: This example segment-based representation fully interconnects four times,

ti, with six segment-based feature vectors, ai.

the same e�ciencies.

2.5.2 Segment-Based Search

In a segment-based approach, each segment, si, is associated with its own feature

vector, ai. Probabilistically, a path must account for the entire set of feature vectors,

A. However, each segment sequence, S, that is associated with the path does not in

general account for all of the segments or feature vectors in the graph:

A 6=
[

si2S

ai

Heuristic Approaches

In the past, many segment-based approaches have used a heuristic framework to in-

corporate segment-based feature vectors [31, 67]. In scoring a path, these approaches

only accounted for the segments in the path. They then used heuristic methods to

normalize the di�erent paths and allow for direct comparison [67]. As a result, many

of these segment-based approaches performed poorly and were not pursued [31].
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Anti-Phone Modeling

Recently, we have realized the need to model the entire set of feature vectors during

segment-based search and have developed a strategy called anti-phone modeling to

do so [21]. Anti-phone modeling is based on the idea that o�-path segments are not

phones and therefore should be modeled using an anti-phone unit. Each segment

sequence, S, divides the entire set of feature vectors, A, into two subsets: AS is the

subset of feature vectors that are associated with the segment sequence being explored

by the search, while �AS is the subset of feature vectors that is not associated with

the segment sequence:

A = AS

[
�AS

As a result, a segment-based search should account for both subsets of feature

vectors:

P (AjUS) = P (AS
�ASjUS)

Anti-phone modeling uses a single non-lexical model, called the anti-phone or ��,

to model the feature vectors that are not associated with the segment sequence:

P ( �ASjUS) = P ( �ASj��)

Anti-phone modeling then eliminates the dependence on the o�-path segments by

estimating a likelihood ratio. As described, most speech recognition systems assume
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independence at the segment level:

L(AjUS) =
P (AjUS)

P (Aj��)

=
P (AS

�ASjUS)

P (AS
�ASj��)

=
P (ASjUS)P ( �ASj��)

P (ASj��)P ( �ASj��)

=
P (ASjUS)

P (ASj��)

=
Y

si2S

P (aijUS)

P (aij��)

As a result, anti-phone modeling can be interpreted as a normalization technique

that allows the direct comparison of di�erent segment sequences by normalizing the

probability of each segment-based feature vector by its probability of not being a

phone. The anti-phone model captures the general characteristics of segments that

are not valid examples of phones and provides a means of normalizing scores for direct

comparison.

For example, in Figure 2-5, the paths can be directly compared by scoring only

the on-path segments:

L(A146jUS146) =
P (a1jUS146)

P (a1j��)

P (a4jUS146)

P (a4j��)

P (a6jUS146)

P (a6j��)

L(A15jUS15) =
P (a1jUS15)

P (a1j��)

P (a5jUS15)

P (a5j��)

L(A26jUS26) =
P (a2jUS26)

P (a2j��)

P (a6jUS26)

P (a6j��)

L(A3jUS3) =
P (a3jUS3)

P (a3j��)

Overall, anti-phone modeling uses a probabilistic framework that provides sig-
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ni�cant improvements in performance over our previous heuristic framework [21].

However, anti-phone modeling requires that all o�-path segments be modeled by a

single anti-phone class and does not allow these segments to be modeled in a context-

dependent manner. This sacri�ces the ability of a segment-based search to enforce

constraints across the entire graph of segments.

2.5.3 Segmentation

Segmentation refers to the process of generating a graph of segments for search.

Theoretically, a segment-based approach can search through a fully interconnected

graph of segments. However, since the number of segments grows as the square of

the number of times, it is computationally expensive to perform such an exhaustive

search. As a result, many segment-based approaches constrain the search space by

pruning the segment graph prior to search.

For example, while Figure 2-1 shows a fully interconnected segment graph, Fig-

ure 2-6 shows a segment graph that is only partially connected over 4 times, ti, using

5 segments, si. The pruned segment graph does not contain the third segment, s3,

that starts at t1 and ends at t4, and therefore does not contain the segment sequence,

S3, that includes only the segment s3.

t1 t2s1 t3
s2

s4 t4

s5

s6

Figure 2-6: This segment graph is only partially connected over 4 times, ti, using 5

segments, si. The pruned segment graph does not contain the third segment, s3, that
starts at t1 and ends at t4, and therefore does not contain the segment sequence, S3,

that includes only the segment s3.

Segmentation is a di�cult problem that often results in poor alignments, deletions
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and insertions of important phonetic events. These errors cannot be easily corrected

by subsequent stages of recognition and typically create errors. In Figure 2-6, for

example, if the correct path consisted of only one phone, the segment graph would

not include a segment sequence that could align to one phone.

In general, segmentation results in a tradeo� between performance and compu-

tation. On the one hand, a segmentation algorithm can include a large number of

segments in the segment graphs to avoid errors but sacri�ces the e�ciency of the sub-

sequent search. On the other hand, a segmentation algorithm can generate a small

segment graph but sacri�ce the performance of the subsequent search.

Acoustic Segmentation

Historically, the SUMMIT system has used a variety of di�erent acoustic segmen-

tation algorithms [21]. Currently, we use an acoustic segmentation algorithm which

detects landmarks and produces fully interconnected blocks [21]. First, major segment

boundaries are hypothesized when a measure of spectral change exceeds a pre-speci�ed

global threshold. Then, minor segment boundaries are hypothesized between the ma-

jor segment boundaries when the spectral change exceeds a local threshold that is

computed between the major segment boundaries. Finally, all segment boundaries

between major segment boundaries are fully interconnected to form a graph of seg-

ments. Over- and under-generation are compromised by varying the threshold.

Unfortunately, segmentation depends on many constraints that cannot be cap-

tured by a simple local measure of spectral change. For example, transitions between

vowels and consonants may correspond to large acoustic discontinuities, and thus be

reliably detected. However, transitions between vowels and semivowels may instead

be gradual. As a result, some segments may not be detected by such a simple acoustic

algorithm.

Furthermore, an acoustic segmentation algorithm limits the type of subword units

that can be segmented and therefore the modeling strategies that may be explored.

Because the acoustic segmentation algorithm hypothesizes segment boundaries at

points of spectral change, the units must also correspond to spectral discontinuities.
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For example, the transition between stop closures and releases are often de�ned by

sharp discontinuities and therefore a segment boundary is typically placed between

them. However, studies have shown that there is a high correlation between the

closure and burst regions of stops. Therefore, stops could be better modeled as a

single unit [25].

n-Best Resorting

Another approach that is used to explore alternative segment sequences is n-best

resorting [1, 45]. In this paradigm, a less complex system can be used to generate

an n-best list for rescoring by a more complex system. Just as a segmentation al-

gorithm produces a pruned segment graph, an n-best search can generate a pruned

segment graph for the subsequent search. However, an n-best list is an ine�cient rep-

resentation, since there is typically a signi�cant degree of overlap between di�erent

paths.

Furthermore, although the n-best paradigm may be an e�ective formalism for in-

tegrating diverse recognition strategies, the n-best paradigm does not by itself provide

a framework for segment-based recognition [45]. In order to rescore an n-best path

using segment-based feature vectors, it is still necessary to account for all segments

in all of the n-best paths.

2.5.4 Segment-Based Modeling

Although di�cult, the development of a segment-based approach has signi�cant re-

wards. First, a segment-based approach o�ers the 
exibility to explore the relative

advantages of both frame- and segment-based approaches. In fact, it is likely that

the best approach will be a combination of the relative advantages of these two ap-

proaches [31, 67]. The frame-based approach can provide greater e�ciency, while the

segment-based approach provides more powerful modeling.

In addition, in a segment-based approach, a unit can be represented by a sin-

gle feature vector, so that a segment-based model can capture constraints that are
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extracted with respect to the entire segment [5, 69]. These constraints may be as

simple as duration, but can also include more complex modeling strategies where fea-

ture vectors are extracted based on their relationship with the entire segment [25]. In

fact, it is likely that speech recognition can be improved by combining our knowledge

of speech and the use of automatic training techniques [25, 67].

2.6 Summary

Both frame- and segment-based approaches to speech recognition use the same prob-

abilistic framework, modeling strategies and search algorithms. However, the choice

of an approach trades o� advantages and disadvantages in modeling and search. The

dominant HMM frame-based approach has capitalized on the advantages of an ef-

�cient search but may be limited by its inability to model segment-based feature

vectors. In contrast, a segment-based approach has the potential to improve model-

ing but faces di�culties in search and segmentation.
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Chapter 3

Experimental Framework

The evaluation in this thesis focuses on the acoustic-phonetic level where near-miss

modeling has the greatest impact. This chapter describes the framework for the

experiments in phonetic recognition that are reported in the Chapters 4 and 5. Ad-

ditional experiments in word recognition are described in Chapter 6. The following

two sections describe the corpus and the recognizers used in phonetic recognition.

3.1 TIMIT Corpus

To facilitate comparison with other approaches, experiments in phonetic recognition

are performed on the commonly used TIMIT corpus [16, 20, 30]. TIMIT is a corpus of

read, continuous speech that has been phonetically and orthographically time-aligned

and transcribed. The following three sections describe the sets used in training and

testing, the phones used in transcription, and the classes used in reporting results.

3.1.1 TIMIT Sets

TIMIT contains 6300 utterances read by 630 speakers [20]. The speakers are 70% male

and 30% female and are grouped into 8 major dialect regions of American English.

Each speaker read 10 utterances, including 2 \sa" dialect utterances designed to

demonstrate dialectical di�erences, 5 \sx" phonemically compact utterances designed
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to cover all phoneme pairs, and 3 \si" phonetically diverse utterances designed to add

phonetic contexts. There are a total of 2342 sentences, including 2 \sa" sentences

each read by all 630 speakers, 450 \sx" sentences each read by 7 speakers, and 1890

\si" sentences each read by only 1 speaker.

NIST has divided the \sx" and \si" data into independent training and test sets

that do not overlap either by speaker or by sentence [16, 20, 30]. The core test set

contains 192 \sx" and \si" utterances read by 24 speakers, including 2 male and 1

female from each dialect region. The complete test set contains a total of 1344 \sx"

and \si" utterances read by the 168 speakers who read any sentence in the core test

set. The training set contains the remaining 3696 \sx" and \si" utterances read by

the remaining 462 speakers.

All of TIMIT results in this thesis are reported on the NIST core test set, and

all of the TIMIT models are trained on the NIST training set. To avoid biasing the

results to the core test set, all intermediate experiments are run on a development

set containing 400 utterances read by 50 speakers drawn from the complete test set

minus the core test set. Table 3.1 shows the number of speakers, utterances, and

phones in the core test, training, and development sets:

Set # Speaker # Utterance # Phone

Core Test 24 192 7,333

Train 462 3,696 142,910

Development 50 400 15,334

Table 3.1: The number of speakers, utterances, and phones in the test, training, and

development sets in TIMIT.

3.1.2 TIMIT Phones

TIMIT was phonetically transcribed using a set of 61 phones [30]. Table 3.2 shows

these phones along with their corresponding IPA symbols and example sounds as

indicated by the italicized letters in the example words.
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TIMIT IPA Example TIMIT IPA Example

aa a bottle ix | debit

ae @ bat iy i beet

ah ^ but jh J joke

ao O bought k k key

aw a⁄  about kcl k› k closure

ax { about l l lay

ax-h {‡  suspect m m mom

axr } butter n n noon

ay a¤  bite ng 4 sing

b b bee nx FÊ winner

bcl b› b closure ow o boat

ch C choke oy O¤  boy

d d day p p pea

dcl d› d closure pau √ pause

dh D then pcl p› p closure

dx F butter q ? cotton

eh E bet r r ray

el lÍ bottle s s sea

em mÍ bottom sh S she

en nÍ button t t tea

eng 4Í Washington tcl t› t closure

epi ∑ epenthetic silence th T thin

er 5 bird uh U book

ey e bait uw u boot

f f fin ux uÚ toot

g g gay v v van

gcl g› g closure w w way

hh h hay y y yacht

hv H ahead z z zone

ih I bit zh Z azure

h# - utterance initial and �nal silence

Table 3.2: The set of 61 phones used in transcribing TIMIT along with their corre-

sponding IPA symbols and example sounds as indicated by the italicized letters in

the example words.
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3.1.3 TIMIT Classes

To facilitate comparison with other approaches, this thesis reports all results in pho-

netic recognition on TIMIT over the set of 39 classes that are commonly used for

such evaluation [32]. Table 3.3 shows these classes:

Class Class

aa ao k

ae l el

ah ax ax-h m em

aw n en nx

ay ng eng

b ow

ch oy

d p

dh r

dx s

eh sh zh

er axr t

ey th

f uh

g uw ux

hh hv v

ih ix w

iy y

jh z

bcl dcl gcl kcl pcl tcl epi q pau h#

Table 3.3: The set of 39 classes that are used for reporting results in phonetic recog-
nition on TIMIT.

All phonetic recognition error rates are computed using the NIST alignment pro-

gram [16]. This program �nds the minimum cost alignment, where the cost of a

substitution is 1.0, and the cost of a deletion or an insertion is 0.75. The total

recognition error rate is the sum of the substitution, deletion, and insertion rates.
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3.2 Phonetic Recognizers

To perform experiments in TIMIT, phonetic recognizers are built using the SAP-

PHIRE speech analysis and recognition toolkit [28]. The goal of this thesis is to

improve the use of the models within a recognition framework rather than the models

themselves. As a result, the recognizers use commonly used models that are compa-

rable to those used in other systems. This section describes the phonetic recognizer

components.

3.2.1 Acoustic Model

The following four sections describe the acoustic model in detail.

Representation

All of the phonetic recognizers initially transform the speech signal to the same cep-

stral representation. The speech signal is sampled at 16 kHz, analyzed at a 10 ms

analysis rate with a 20 ms Hamming window, and transformed into the frequency do-

main using a 256 point Fourier transform. The frequency samples are then compressed

into 40 Mel-Frequency Spectral Coe�cients (MFSCs) using a bank of triangular �l-

ters spaced on a Mel-frequency scale that approximates an auditory scale [12, 38].

The �rst 12 Mel-Frequency Cepstral Coe�cients (MFCCs) are computed from the

MFSCs using a cosine transform. For each utterance, the MFCCs are normalized by

subtracting the mean of the MFCC vectors across the utterance.

Feature Extraction

From the cepstral representation, the phonetic recognizers extract di�erent features

depending on whether they are segment- or frame-based:

� The segment-based features consist of three averages over non-overlapping time

spans across the segment, two averages over time spans before and after the

segment, and the logarithm of the duration of the segment, for a total of 61
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dimensions [8, 25, 40]. The time spans of the intra-segmental averages are a

function of the segment duration, and are computed with a 3-4-3 ratio across

the segment, while the time span of the extra-segmental averages is 30 ms

independent of the segment duration.

� The frame-based features consist of six average cepstral vectors computed over

non-overlapping time spans before and after the frame for a total of 72 dimen-

sions [37, 33]. The time spans are symmetric about the frame, widening from

10 ms to 20 ms to 40ms.

Classi�cation

All of the features, whether they are segment- or frame-based, are modeled using mix-

ture of diagonal covariance Gaussian distributions. Each feature is �rst diagonalized

by a principal components rotation computed over the training set [15, 21]. For each

model, a maximum of 100 mixtures with a minimum of 10 tokens is computed using

k-means clustering followed by EM training [15, 2, 54].

Unit Selection

The units that are modeled vary between the segment- and frame-based models:

� The segment-based units are context-independent. They include all 61 TIMIT

phones plus some additional units that will be described in the following chapter.

� The frame-based units are diphone context-dependent. They include all 1505

TIMIT diphones that have at least 10 tokens in the NIST training data plus

one unit to cover all remaining diphones for a total of 1506 units.

3.2.2 Other Models

Phonetic recognition does not involve a pronunciation model. All of the phonetic

recognizers use the same duration and language models:
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� The duration model is a phonetic transition weight that is multiplied in at each

phonetic transition [67]. The weight is set by minimizing recognition error on

the development set.

� The language model is a bigram [2, 54]. The vocabulary contains all 61 TIMIT

phones. The bigram is trained on the NIST training set, which covers all

61 phones so there are no out-of-vocabulary (OOV) phones. The bigram is

smoothed with a unigram, and the smoothing parameters are set by minimizing

perplexity on the development set. The resulting bigram model has a perplex-

ity of 15.8 on the core test set, including utterance initial and �nal silences. In

testing, the bigram model is exponentially weighted, with the weight being set

by minimizing recognition error on the development set.

3.3 Summary

The evaluation in this thesis focuses on experiments in phonetic recognition using

the TIMIT corpus. This chapter has described the framework for the experiments in

phonetic recognition that will be reported in the following two chapters. All results

in phonetic recognition on TIMIT are reported on the core test set over 39 classes.

All of the phonetic recognizers use mixture of diagonal Gaussian acoustic models, a

phonetic transition weight, and a phone bigram language model.
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Chapter 4

Near-Miss Search

This chapter describes a new segment-based approach that generalizes anti-phone

modeling to allow for more complex modeling of o�-path segments. The approach is

called near-miss modeling, since it is based on the idea that a segment that overlaps

with another segment can be thought of as a \near-miss" of that segment. For any

segment graph, near-miss modeling associates each segment with a near-miss subset

of feature vectors such that the near-miss subsets that are associated with any path

account for all feature vectors. As a result, near-miss modeling can score the entire

near-miss subset of feature vectors that are associated to the on-path segments, and

provides a more general framework for segment-based recognition that allows the

o�-path segments to be modeled with a wide range of contextual units. In the case

when no context is used, near-miss modeling is reduced to anti-phone modeling.

However, near-miss modeling can also be extended to model the context of the o�-path

segments. The next section provides a detailed example of near-miss modeling. The

following two sections describe the near-miss assignment algorithm for assigning the

near-miss subsets and the near-miss framework for speech recognition. The next two

sections explore some methods for determining near-miss subsets and modeling near-

miss units. Finally, the chapter concludes with an evaluation of near-miss modeling

for the task of phonetic recognition.
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4.1 Near-Miss Example

This section describes how near-miss modeling applies to the example in Figure 4-1,

which is the same as Figure 2-6.

t1 t2s1 t3
s2

s4 t4

s5

s6

Figure 4-1: Example graph.

Each segment, si, is associated with a feature vector, ai. In near-miss modeling,

the goal is to extend this association so that each segment is associated with a near-

miss subset of feature vectors, Ai, which includes not only ai, but also zero or more

other feature vectors. Overall, this association must satisfy the constraint that for

every possible segment sequence through the graph, the union of the near-miss subsets

of each segment in the segment sequence is exactly equal to the entire set of feature

vectors.

4.1.1 Features to Subsets

To achieve this goal, each feature vector, ai, is assigned to its own near-miss subset,

Ai, and zero or more other near-miss subsets. For each segment sequence, S, the

feature vector, ai, must be assigned to one segment in the sequence. For segment

sequences that contain the segment, the feature vector is already assigned to a near-

miss subset in the sequence and cannot be assigned to any other near-miss subset in

the sequence. For segment sequences that do not contain the segment, the feature

vector must be assigned to one and only one near-miss subset in the sequence. These

constraints can be used to reason about the assignments in Figure 4-1:
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� Since s1 is in S146 and S15, a1 must not be assigned to A4, A5, or A6. Since s1

is not in S26, a1 must be assigned to either A2 or A6. As a result, a1 must be

assigned to A1 and A2.

� Since s2 is in S26, a2 must not be assigned to A6. Since s2 is not in S146 or S15,

a2 must be assigned to either A1 or A4 and either A1 or A5. As a result, a2

must be assigned to A2 and either A1 or both A4 and A5.

� Since s4 is in S146, a4 must not be assigned to A1 or A6. Since s4 is not in S15

or S26, a4 must be assigned to A5 and A2. As a result, a4 must be assigned to

A4, A2 and A5.

� Since s5 is in S15, a5 must not be assigned to A1. Since s5 is not in S146 or S26,

a5 must be assigned to either A4 or A6 and either A2 or A6. As a result, a5 is

assigned to A5 and either A6 or A2 and A4.

� Since s6 is in S146 and S26, a6 must not be assigned to A1, A2, or A4. Since s6

is not in S15, a6 must be assigned to A5. As a result, a6 must be assigned to A6

and A5.

Table 4.1 summarizes the solutions to the constraints. In assigning feature vectors

to near-miss subsets, each feature vector, ai, is assigned to its own near-miss subset,

Ai, and zero or more additional near-miss subsets. In this case, a1, a4, and a6 each

have only one option for assignment, while a2 and a5 each have two options for

assignment.

Option a1 a2 a4 a5 a6

1 A1 A2 A2 A1 A4 A2 A5 A5 A6 A6 A5

2 - A2 A4 A5 - A5 A2 A4 -

Table 4.1: Assignment of feature vectors, ai, to near-miss subsets, Ai, for Figure 4-1.
a1, a4, and a6 each have only one option for assignment, while a2 and a5 each have

two options for assignment.
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4.1.2 Subsets to Features

The assignment of feature vectors to near-miss subsets can be inverted to determine

the possible near-miss subsets and their feature vectors. Since two of the feature

vectors have two options, there are four di�erent ways of drawing near-miss subsets

as shown in Table 4.2. Each near-miss subset, Ai, contains its associated feature

vector, ai, and zero or more additional feature vectors.

Option A1 A2 A4 A5 A6

1 a1 a2 a2 a1 a4 a4 a5 a4 a6 a6 a5
2 a1 a2 a2 a1 a4 a5 a4 a5 a5 a4 a6 a6
3 a1 a2 a1 a4 a4 a2 a5 a2 a4 a6 a6 a5
4 a1 a2 a1 a4 a5 a4 a2 a5 a5 a2 a4 a6 a6

Table 4.2: Possible near-miss subsets, Ai, and their feature vectors, ai, from Table 4.1.

The following three sections introduce useful ways of visualizing near-miss mod-

eling.

By Graph

One way of visualizing the solutions in Table 4.2 is by labeling each arc in the graph

with its near-miss subset. Table 4.3 shows the four options by graph. These graphs

are useful in that they clearly show that each sequence of segments through the graph

accounts for all segments in the graph once and only once.

By Subset

Another way of visualizing the solutions in Table 4.2 is by drawing each near-miss

subset. Table 4.4 shows the four possible solutions by near-miss subset. To allow

future di�erentiation of near-miss subsets, the segments within each near-miss subset

are drawn using a consistent line style. In particular, the �rst and second near-

miss subsets are drawn with solid lines, the fourth and �fth near-miss subsets are

drawn with dashed lines, and the sixth near-miss subset is drawn with dotted lines.

For each near-miss subset, Ai, the arc labeled ai corresponds to the on-path feature
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Option Graph

1

t1 t2a1 a2 t3
a2 a1 a4

a4 t4

a5 a4 a6

a6 a5

2

t1 t2a1 a2 t3
a2 a1 a4 a5

a4 a5 t4

a5 a4 a6

a6

3

t1 t2a1 t3
a2 a1 a4

a4 a2 t4

a5 a2 a4 a6

a6 a5

4

t1 t2a1 t3
a2 a1 a4 a6

a4 a2 a5 t4

a5 a2 a4 a6

a6

Table 4.3: Options for near-miss subsets in Table 4.2 shown by graph.
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vector, and the remaining feature vectors are not on the path. These graphs are

useful for showing how each segment is associated with a near-miss subgraph of the

entire segment graph.

Option A1 A2 A4 A5 A6

1
t1 t2a1 t3

a2
t1 t2a1 t3

a2
a4

t2 t3a4
t3 t4a6t2 a4

a5
t3 t4a6t2

a5

2
t1 t2a1 t3

a2
t1 t2a1 t3

a2
a4 t4

a5

t3 t4t2 a4
a5

t3 t4a6t2 a4
a5

t3 t4a6

3 t1 t2a1
t1 t2a1 t3

a2
a4 t1 t2 t3

a2
a4 t1 t2 t3

a2
a4 t4

a5

a6 t3 t4a6t2
a5

4 t1 t2a1
t1 t2a1 t3

a2
a4 t4

a5

t1 t2 t3
a2

a4 t4

a5

t1 t2 t3
a2

a4 t4

a5

a6

t3 t4a6

Table 4.4: Near-miss subsets in Table 4.2. Each near-miss subset is drawn using a

consistent line style to allow future di�erentiation of near-miss subsets.

By Sequence

A third way of visualizing Table 4.2 is to concatenate the near-miss subsets in Ta-

ble 4.4 by segment sequence. Table 4.5 shows the four possible solutions by sequence.

For each sequence, Sijk, the near-miss subsets Ai, Aj, and Ak are concatenated, and

the feature vectors, ai, aj, and ak correspond to the on-path feature vectors. As

shown, the di�erent line styles allow the visual di�erentiation of near-miss subsets.

These graphs are useful for showing how each segment sequence accounts for all seg-

ments in the graph.

4.2 Near-Miss Assignment

To be useful for speech recognition, near-miss modeling should be applicable to any

possible segment graph. For any segment graph, it must be possible to compute an

assignment of segments to near-miss subsets such that every segment sequence ac-

counts for all of the feature vectors in the graph. This section provides an existence

proof using an algorithm that can compute near-miss subsets for any graph. A seg-

ment, si, is de�ned to span the interval, [bi; ei), from and including its begin time,
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Option S146 S15 S26

1
t1 t2a1 t3

a2

a4 t4

a5

a6 t1 t2a1 t3
a2

a4 t4

a5

a6 t1 t2a1 t3
a2

a4 t4

a5

a6

2
t1 t2a1 t3

a2

a4 t4

a5

a6 t1 t2a1 t3
a2

a4 t4

a5

a6 t1 t2a1 t3
a2

a4 t4

a5

a6

3
t1 t2a1 t3

a2

a4 t4

a5

a6 t1 t2a1 t3
a2

a4 t4

a5

a6 t1 t2a1 t3
a2

a4 t4

a5

a6

4
t1 t2a1 t3

a2

a4 t4

a5

a6 t1 t2a1 t3
a2

a4 t4

a5

a6 t1 t2a1 t3
a2

a4 t4

a5

a6

Table 4.5: Near-miss subsets in Table 4.4 concatenated by segment sequence.

bi, to and excluding its end time, ei. For each segment, si, select any time, ti, in

the span of segment, [bi; ei). Then, for each segment, sj, if the span [bj; ej), includes

the selected time, ti, add the feature vector, ai, to the near-miss subset, Aj. Note

that a feature vector, ai, that is associated with a segment, si, is always assigned to

its own near-miss subset, Ai. Figure 4-2 is pseudo-code for the near-miss assignment

algorithm.

for si in fsig:
Ai = fg

for si in fsig:
choose ti in [bi; ei)

for sj in fsjg:
if ti in [bj; ej) then

Aj = ai
S
Aj

Figure 4-2: A segment, si, is de�ned to span the interval, [bi; ei), from and including its
start time, bi, to and excluding its end time, ei. The near-miss assignment algorithm

assigns each feature vector, ai, to near-miss subsets by selecting a time, ti, that is

spanned by ai, and assigning ai to each near-miss subset, Aj, that also spans the
selected time, ti.

The proof that a near-miss assignment exists for all segment graphs is based on the

fact that any segment sequence accounts for all times. Since any segment sequence

spans any time exactly once, the near-miss assignment algorithm will necessarily

assign each segment that is not in the segment sequence to one and exactly one of
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the segments that is in the segment sequence. Therefore, the near-miss assignment

algorithm can compute a suitable assignment for any segment graph and can be used

to develop a general search strategy. Note that the proof does not require the time

that is chosen for each segment to fall within the segment. However, if the time

that is chosen for each segment does not fall within its span, the segment will not be

assigned to its own near-miss subset. For the application to speech recognition in this

thesis, it seems more reasonable to account for each segment as it is traversed during

the search. In other applications of near-miss modeling, it may be more appropriate

to take advantage of this generalization.

Note also that the near-miss assignment algorithm can easily accommodate frame-

based feature vectors. Each frame-based feature vector can be associated with a

single time and assigned to near-miss subsets based on that time. This results in

each segment being associated with the frame-based feature vectors that it spans.

4.3 Near-Miss Framework

This section describes how the near-miss assignment algorithm can extend the gen-

eral probabilistic framework for speech recognition to a segment-based approach. In

graph-based representation, each segment is associated with a feature vector, ai. The

near-miss assignment algorithm extends the association of each segment to a near-

miss subset, Ai, that, in addition to ai, can also contain zero or more other feature

vectors such that the union of the near-miss subsets that are associated with any

segment sequence is the entire set of feature vectors:

A =
[

si2S

Ai

As a result, near-miss modeling can compute the score for a path by accounting

for all of the near-miss subsets on the path. Assuming segmental independence, each
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segment-based feature vector, aj, in the near-miss subset, Ai, is independent of the

other feature vectors in the near-miss subset:

P (AjUS) =
Y

si2S

P (AijUS)

=
Y

si2S

Y

aj2Ai

P (ajjUS)

Note that segments in speech are certainly not independent of each other. For

example, di�erent segments of speech spoken by the same speaker are correlated.

However, the assumption of segmental independence is widely used in speech recog-

nition to allow a more e�cient search. In near-miss modeling, it is not necessary

to assume independence between all of the segments within a near-miss subset. For

example, it is possible to identify feature vectors that always appear together in the

near-miss subsets and model them jointly. However, such strategies are not explored

in this thesis.

The near-miss modeling framework can be implemented in a time-synchronous

Viterbi search. When updating each segment, si, the near-miss search scores all of

the feature vectors in its near-miss subset, Ai. Since the scoring directly accounts for

all segments, all segments can be modeled using any number of units. For Option 1

in Table 4.5, the three segment sequences can be scored, one near-miss subset at a

time:

P (AjUS146) = [P (a1jUS146)P (a2jUS146)] � [P (a4jUS146)]

�[P (a5jUS146)P (a6jUS146)]

P (AjUS15) = [P (a1jUS15)P (a2jUS15)] � [P (a4jUS15)P (a5jUS15)P (a6jUS15)]

P (AjUS26) = [P (a1jUS26)P (a2jUS26)P (a4jUS26)] � [P (a5jUS26)P (a5jUS26)]
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In this example, the �rst and second feature vectors, a1 and a2, and the �fth and

sixth feature vectors, a5 and a6, always appear together and could be modeled jointly.

The following two sections focus on particular strategies for assigning of the near-miss

subsets and the modeling of the units.

4.4 Near-Miss Subsets

The general near-miss assignment algorithm allows each segment to be assigned to

near-miss subsets based on any time within the segment. Di�erent choices of times

may result in di�erent near-miss subsets. Each segment must be assigned to the

near-miss subset of any segments by which it is completely overlapped. For example,

each segment is always assigned to its own near-miss subset. However, each segment

has some degree of freedom over whether to be assigned to the near-miss subsets

of a segment by which it is only partially overlapped. This degree of freedom is

expressed as the selection of a single time within the segment. For example, the

options in Table 4.2 can be quickly derived by looking at the overlapping segments

in Figure 4-1: a1, a4, and a6 must be assigned to the near-miss subsets by which they

are completely overlapped. However, a2 and a5 are each partially overlapped by two

segments and have two options.

For ease of implementation, this thesis explores the space of strategies in which all

segments are assigned based on the same relative time within the segment, ranging

from its begin time to its end time. Varying the relative segment time produces a

wide range of near-miss assignments. In Figure 4.3, three of the four options are

contained within the space of assigning all segments based on the same relative time:

� Option 1 can be achieved by assigning based on the midpoint of each segment.

� Option 2 can be achieved by assigning based on the begin time of each segment.

� Option 3 can be achieved by assigning based on the end time of each segment.

� Option 4 cannot be achieved by using the same relative time across segments.

60



4.5 Near-Miss Units

The motivation for developing near-miss modeling is to enable the modeling of context

across all segments in the graph. In general, near-miss modeling can use any number

of additional near-miss units that depend on any contextual information extracted

based on segment times or unit labels. In choosing a modeling strategy, this thesis

limits its exploration to strategies that model the on-path segment as a lexical unit

and model an o�-path segment as a near-miss unit. Such strategies are based on the

idea that on-path segments are positive examples of units while o�-path segments are

negative examples of units. By modeling both positive and negative examples, near-

miss modeling may be better able to distinguish between alternatives in a segment

graph.

Note that it is not necessary to assume a di�erence between on- and o�-path

segments. In fact, near-miss modeling suggests a more sophisticated representation

of the speech signal as a graph rather than a 
at sequence of units. However, for

practical reasons, this thesis restricts itself to a limited space of strategies and reserves

these remaining ideas for future work.

The following sections describe three particular types of near-miss units: a single

0-state unit that does not depend on context, a set of 1-state units that depend on

the phonetic context of the on-path segment, and various sets of multi-state units

that depend on the temporal alignment of the on-path segment in addition to its

phonetic context. The selection of these additional near-miss units shares issues with

the selection of context-dependent phones. Both modeling strategies tend to increase

computation and divide the training data. To improve robustness, more speci�c

near-miss models can be smoothed with more general near-miss models.

4.5.1 0-State Unit

The simplest near-miss unit is a 0-state unit, denoted as �u. In the 0-state strategy,

all o�-path segments are modeled by the 0-state unit. Table 4.6 shows the use of the

0-state unit by near-miss subset for Option 1 in Table 4.4. For each segment, si, the
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feature vector that is associated with the segment is modeled using the lexical unit,

ui, while the remaining o�-path feature vectors in its near-miss subset are modeled

using the same 0-state unit, �u.

A1 A2 A4 A5 A6

t1 t2u1 t3
_
u

t1 t2

_
u t3

u2

_
u

t2 t3u4

t3 t4

_
ut2

_
u

u5

t3 t4u6t2
_
u

Table 4.6: For Option 1 in Table 4.4, the 0-state strategy models the segment using

the lexical unit, ui, and models the remaining o�-paths segments in the near-miss

subset using a single 0-state unit, �u.

Table 4.7 shows the use of the 0-state unit by segment sequence for Option 1 in

Table 4.5. The feature vectors on the path are scored against the lexical units, while

the remaining o�-path feature vectors are scored against the 0-state unit.

S146 S15 S26

t1 t2u1 t3
_
u

u4 t4

_
u

u6 t1 t2u1 t3
_
u

_
u t4

u5

_
u

t1 t2

_
u t3

u2

_
u t4

_
u

u6

Table 4.7: For Option 1 in Table 4.5, S, the 0-state strategy models each segment
on the segment sequence using a lexical unit, ui, and models all remaining o�-path
segments using a single 0-state unit, �u.

Function

The use of the 0-state unit in near-miss modeling is functionally equivalent to the

use of the anti-phone unit in anti-phone modeling [22]. Since near-miss modeling

and anti-phone modeling maintain the same probabilistic framework and use the

same modeling strategy, they will �nd the same best path, as long as they search

the same space. Further, the two strategies �nd the same best path, even with

pruning, as long as they use the same pruning threshold. This is due to the fact

that near-miss modeling, anti-phone modeling, and pruning are all implemented in

62



a time-synchronous manner. At a corresponding time point in the near-miss and

anti-phone searches, the same paths have the same scores, o�set by a value that is

equal to the product of the 0-state scores of the segments that have been accounted

for in the near-miss search up to that time point.

Computation

Since they search the same paths, 0-state near-miss modeling and anti-phone modeling

score the same on-path segments against the same lexical units. However, the two

strategies can di�er in which o�-path segments they score against the 0-state or anti-

phone units. For each segment sequence, near-miss modeling scores all of the o�-path

segments against the near-miss unit, while anti-phone modeling scores only the on-

path segments against the anti-phone. As a result, near-miss modeling scores every

segment that is a near-miss segment of at least one segment other than itself, while

anti-phone modeling scores every segment that is explored. The following three cases

compare the two approaches:

� Near-miss modeling scores fewer segments then anti-phone modeling. This oc-

curs when a segment is on every segment sequence and therefore is not in the

near-miss subset of any segment except itself. In general, near-miss modeling

scores one less segment against the 0-state unit for each segment that is on every

segment sequence. In the limit, when the segment graph is a single sequence of

segments, near-miss modeling does not score any segment against the 0-state

unit, while anti-phone modeling scores all segments against the anti-phone unit.

� Near-miss modeling scores more segments than anti-phone modeling. This oc-

curs when a segment is not explored. Typically, all segments are explored, even

with pruning, since pruning allows at least one path to survive at any time

point. However, segments may not be explored in the rare cases when prior

to the end of the utterance, the only surviving paths end in �nal nodes that

cannot be extended. For example, in Figure 4-1, if both paths S146 and S26

cannot be continued after the third time, t3, then the sixth segment, s6, is not
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explored. In this case, near-miss modeling scores s6 in order to score S15, but

anti-phone modeling does not. In general, near-miss modeling scores one more

segment against the 0-state unit for each segment that is not explored.

� If neither of the above cases occur, near-miss modeling and anti-phone modeling

score the same number of segments. For example, to score all paths in Figure 4-

1, near-miss modeling computes:

P (AjUS146) = [P (a1ju1)P (a2j�u)] � [P (a4ju4)] � [P (a5j�u)P (a6ju6)]

P (AjUS15) = [P (a1ju1)P (a2j�u)] � [P (a4j�u)P (a5ju5)P (a6j�u)]

P (AjUS26) = [P (a1j�u)P (a2ju2)P (a4j�u)] � [P (a5j�u)P (a6ju6)]

In contrast, anti-phone modeling computes:

P (AjUS146) =
P (a1ju1)

P (a1j�u)

P (a4ju4)

P (a4j�u)

P (a6ju6)

P (a6j�u)

P (AjUS15) =
P (a1ju1)

P (a1j�u)

P (a5ju5)

P (a5j�u)

P (AjUS26) =
P (a2ju2)

P (a2j�u)

P (a6ju6)

P (a6j�u)

Although the ordering may be di�erent, both approaches eventually score all

segments against the 0-state or anti-phone model.

Although these di�erences are algorithmically interesting, they are practically

negligible, since the scoring of the single near-miss or anti-phone unit is far out-

weighed by the scoring of the multiple lexical units. Therefore, near-miss modeling

and anti-phone modeling are e�ectively equivalent both at functional and computa-

tional levels. The important point is that near-miss modeling allows more complex
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modeling strategies without sacri�cing computational e�ciency when using simpler

models.

4.5.2 1-State Unit

This section introduces a 1-state unit that depends on the context of the on-path

segment. Each lexical unit, ui, has a corresponding 1-state near-miss unit, �ui. When

a segment, si, is modeled as ui, the remaining o�-path segments in its near-miss

subset are modeled as �ui. Table 4.8 shows the use of 1-state units by near-miss subset

for Option 1 in Table 4.4. For each segment, si, the feature vector that is associated

with the segment is modeled using the lexical unit, ui, while the remaining o�-path

feature vectors in the near-miss subset are modeled using the corresponding 1-state

unit, �ui.

A1 A2 A4 A5 A6

t1 t2u1 t3
__
u1

t1 t2

__
u2 t3

a2

__
u2

t2 t3u4

t3 t4

__
u5t2

__
u5

u5

t3 t4u6t2
__
u6

Table 4.8: For Option 1 in Table 4.4, the 1-state strategy models the on-path segment
using the lexical unit, ui, and models the remaining o�-path segments in the near-miss

subset using the corresponding 1-state unit, �ui.

Table 4.9 shows the use of the 1-state units by segment sequence for Option 1

in Table 4.5. Each feature vector on the path is scored against a lexical unit, while

the remaining o�-path feature vectors in its near-miss subset are scored against the

corresponding 1-state unit.

In comparison to the 0-state unit, the 1-state unit can capture contextual depen-

dencies between a near-miss segment and the segment for which it is a near-miss.

Furthermore, since a near-miss segment always overlaps with the segment for which

it is a near-miss, these segments should share similar 1-state characteristics in fre-

quency and energy. Computationally, 1-state units directly increase computation over

the 0-state unit. Rather than classifying each segment against a single 0-state unit,

the 1-state strategy classi�es each segment against multiple 1-state units.
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S146 S15 S26

t1 t2u1 t3
__
u1

u4 t4

__
u6

u6 t1 t2u1 t3
__
u1

__
u5 t4

u5

__
u5

t1 t2

__
u2 t3

u2

__
u2 t4

__
u6

u6

Table 4.9: For Option 1 in Table 4.5, the 1-state strategy models each segment on the

segment sequence using a lexical unit, ui, and models the remaining o�-path segments

in its near-miss subset using the corresponding 1-state unit, �ui.

4.5.3 Multi-State Unit

This section introduces a third type of multi-state unit that depends on the temporal

alignment of the on-path segment in addition to its context.

2-State Unit

In the 2-state strategy, each lexical unit, ui, has two corresponding near-miss units,

�ui1 and �ui2. When a segment, si, is modeled as ui, each remaining o�-path segment

in its near-miss subset is modeled as either �ui1 or �ui2 depending on whether the

midpoint of the o�-path segment falls in the �rst or second half of si. Table 4.10

shows the use of the 2-state units by near-miss subset for Option 1 in Table 4.4. For

each segment, si, the feature vector that is associated with the segment is modeled

using the lexical unit, ui, while each remaining o�-path feature vector in its near-miss

subset is modeled using �ui1 if the midpoint of the o�-path segment falls in the �rst

half of si or �ui2 otherwise.

A1 A2 A4 A5 A6
t1 t2u1 t3

___
u12

t1 t2

___
u21 t3

a2

___
u22

t2 t3u4

t3 t4

___
u52t2

___
u51

u5

t3 t4u6t2
___
u61

Table 4.10: For Option 1 in Table 4.4, the 2-state strategy models the segment using

the lexical unit, ui, and models each remaining o�-path segment in the near-miss

subset using �ui1 if the midpoint of the o�-path segment falls in the �rst half of si and

�ui2 if the midpoint of the o�-path segment falls in the second half of si.

Table 4.11 shows the use of the 2-state units by segment sequence for Option 1
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in Table 4.5. Each feature vector on a path is scored against the lexical units, while

each remaining o�-path feature vector in its near-miss subset is scored against �ui1 or

�ui2 depending on whether the midpoint of the o�-path feature vector falls in the �rst

or second half of the segment.

S146 S15 S26

t1 t2u1 t3
___
u12

u4 t4

___
u61

u6
t1 t2u1 t3

___
u12

___
u51 t4

u5

___
u52

t1 t2

___
u21 t3

u2

___
u22 t4

___
u61

u6

Table 4.11: For Option 1 in Table 4.5, the 2-state strategy models each segment on

the segment sequence using a lexical unit, ui, and models each remaining o�-path
segments in its near-miss subset using �ui1 or �ui2, depending on whether the midpoint

of the o�-path segment falls in the �rst or second half of the segment.

In comparison to the 1-state units, the 2-state units can model the phonetic and

temporal characteristics of a segment and its near-misses. For example, the near-miss

subset of segment s2 in Table 4.11 suggests that the 2-state units �u21 and �u22 can be

used to capture \states" in u2. If u2 were the diphthong /a¤ /, �u21 would capture its

�rst half and may be more /a/-like, while �u22 would capture its second half and may

be more /i/-like.

Computationally, multi-state units may not directly increase computation over

the 1-state units. Since the midpoint of a segment may fall only in the �rst halves of

other segments, it may not have to be scored against all temporal units. For example,

in Table 4.11, the segment s2, from t1 to t3, is scored against �u12 but is not scored

against �u11. Similarly, s1 from t1 to t2, s5 from t2 to t3, and s6 from t3 to t4 do

not have to be scored against both temporal units. Only the segment s4, from t2 to

t3 must be scored against both temporal units, depending on whether the segment

sequence is S15 or S26. Therefore, expanding context temporally may be an e�ective

strategy for enforcing context without increasing computation.
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3-State Unit

In this section, temporal division is extended to 3-state units. Each lexical unit, ui,

has three corresponding near-miss units, �ui1, �ui2, and �ui3. When a segment, si, is

modeled as ui, each remaining o�-path segment in its near-miss subset is modeled as

either �ui1, �ui2 or �ui3 depending on whether the midpoint of the o�-path segment falls

in the �rst, second, or last third of si. Table 4.12 shows the use of the 3-state units

by near-miss subset for Option 1 in Table 4.4.

A1 A2 A4 A5 A6

t1 t2u1 t3
___
u13

t1 t2

___
u21 t3

a2

___
u23

t2 t3u4

t3 t4

___
u53t2

___
u51

u5

t3 t4u6t2
___
u61

Table 4.12: For Option 1 in Table 4.4, the 3-state strategy models the segment using
the lexical unit, ui, and models each remaining o�-path segments in the near-miss

subset using �ui1 if the midpoint of the o�-path segment falls in the �rst third of si,
�ui2 if the midpoint of the o�-path segment falls in the second third of si, and �ui3 if
the midpoint of the o�-path segment falls in the last third of si..

Table 4.13 shows the use of the 3-state units by segment sequence for Option 1

in Table 4.5. Each feature vector on a path is scored against the lexical units, while

each remaining o�-path feature vector in its near-miss subset is scored against �ui1,

�ui2, or �ui3 depending on whether the midpoint of the o�-path feature vector falls in

the �rst, second, or last third of the segment.

S146 S15 S26

t1 t2u1 t3
___
u13

u4 t4

___
u61

u6
t1 t2u1 t3

___
u13

___
u51 t4

u5

___
u53

t1 t2

___
u21 t3

u2

___
u23 t4

___
u61

u6

Table 4.13: For Option 1 in Table 4.5, S, the 3-state strategy models each segment
on the segment sequence using a lexical unit, ui, and models each remaining o�-

path segments in its near-miss subset using �ui1, �ui2, or �ui3, depending on whether the
midpoint of the o�-path segment falls in the �rst, second, or last third of the segment.

In this case, the use of 3-state units does not increase computation over the 2-

state units, since it does not introduce any new temporal ambiguity. For example, in
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Table 4.13, s1 from t1 to t2, s2 from t1 to t3, s5 from t2 to t3, and s6 from t3 to t4 are

still only scored against one of the temporal divisions, and segment s4, from t2 to t3

is still scored against only two of the temporal divisions. Depending on the topology

of the graph, it is possible for higher order units to remove temporal ambiguity and

result in less computation.

4.5.4 Frame-Based Unit

In addition to segment-based feature vectors, the near-miss subsets can also contain

frame-based feature vectors. These frame-based feature vectors are modeled using

frame-based units. In general, the frame-based units can also depend on any con-

textual information extracted based on segment times or unit labels. Using only

frame-based units, near-miss modeling is functionally equivalent to a frame-based

approach. The next chapter will explore the use of frame-based units alone. This

chapter uses frame-based units in conjunction with the segment-based units already

described. In particular, the frame-based units are diphone context-dependent inter-

nal or transition models [21, 49]. Each frame-based feature vector is considered to be

either internal to a phone or a transition between two phones.

4.6 Near-Miss Evaluation

This section evaluates near-miss modeling on the task of phonetic recognition using

the TIMIT corpus. The experimental framework has been described in detail in

Chapter 3. In addition, all of the experiments use the same set of segment graphs,

which will be described in the following chapter. The experiments are divided into

four sections. The �rst two sections explore strategies for determining near-miss

subsets and near-miss units. The following two sections explore additional issues in

computation and the use of frame-based units.
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4.6.1 Near-Miss Subsets

This section explores near-miss assignment strategies. The goal in near-miss assign-

ment depends on its application. In this thesis, the goal is to maximize the amount of

temporal overlap between each o�-path segment and the on-path segment to which

it is associated. This allows near-miss modeling to focus on the di�erences between

a segment and its closest near-miss competitors. The temporal overlap of a segment

is measured with respect to a reference on-path segment and is de�ned as the per-

centage of the segment that is overlapped by the reference segment. In order to avoid

bias towards a particular segment-based modeling strategy, the reference segment se-

quence for all of the experiments on near-miss subsets is the best path through the

graph found by a frame-based recognizer. The following three sections show exam-

ples, temporal overlap statistics, and recognition error rates for di�erent near-miss

assignment strategies.

Examples

Before showing statistics, this section gives examples of di�erent near-miss strategies

on the same segment graph. Figure 4-3 shows a waveform, spectrogram, segment

graphs with near-miss subsets computed using the begin time and midpoint of each

segment, the frame-based phone path used to compute near-miss subsets, and the

phone and word transcriptions. The segments belonging to the same near-miss subset

are drawn using a consistent intensity or gray-level. Three intensities are alternated

to allow the visual di�erentiation of near-miss subsets. The �gure shows examples of

how near-miss subsets can vary depending on the assignment strategy. Of the two

strategies compared, the midpoint strategy in the lower graph seems to provide a

larger degree of temporal overlap across segments. The next section quanti�es these

observations.
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Figure 4-3: This example shows a waveform, spectrogram, segment graphs with near-

miss subsets computed using the begin time and midpoint of each segment, the frame-

based phone path used to compute near-miss subsets, and the phone and word tran-

scriptions. The segments belonging to the same near-miss subset are drawn using a

consistent intensity or gray-level. Three intensities are alternated to allow the visual
di�erentiation of near-miss subsets.
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Overlap

This experiment varies the relative segment time that is used in near-miss assignment,

from the begin time of each segment to the end time of each segment, and measures

the average temporal overlap per segment across the core test set. The temporal

overlap of a segment is measured with respect to a reference on-path segment and is

de�ned as the percentage of the segment that is overlapped by the reference segment.

Figure 4-4 shows the results of this experiment. The x-axis shows the relative

segment time that is chosen for each segment. For example, 0 is the begin time, 0.5 is

the midpoint, and 1 is the end time. The y-axis shows the average temporal overlap

over all segments in the core test set. The upper dotted line gives an upper bound

on the temporal overlap computed by choosing the best assignment for each segment,

and the lower dotted line gives a lower bound on the temporal overlap computed by

choosing the worst assignment for each segment.

This experiment explores the space of near-miss assignment strategies in which

all segments are assigned based on the same relative time within the segment. In

this space, the best strategy is to assign each segment based on its midpoint. In fact,

the midpoint strategy is shown to provide close to the best performance that can be

achieved, even if each segment is allowed to freely choose the time that maximizes

overlap with respect to a reference segment sequence.

Recognition

The goal of maximizing temporal overlap is based on the hypothesis that a larger

degree of temporal overlap leads to improved modeling and recognition. To verify

this hypothesis, the midpoint and begin time strategies are compared in recognition

using 3-state units on the core test set over 39 classes:

� Midpoint assignment results in a 30.5% phonetic recognition error rate.

� Begin time assignment results in a 33.2% phonetic recognition error rate.

As suggested by temporal overlap, assigning near-miss subsets based on the mid-

point of each segment results in a lower recognition error rate. All of the experiments
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Figure 4-4: This �gure shows the average temporal overlap per segment as a function

of the relative segment time that is used in near-miss assignment. The x-axis shows

the relative time that is chosen for each segment. For example, 0 is the begin time,
0.5 is the midpoint, and 1 is the end time. The y-axis shows the average temporal

overlap over all segments in the core test set. The upper dotted line gives an upper
bound on the temporal overlap computed by choosing the best possible assignment

for each segment, and the lower dotted line gives a lower bound on the temporal

overlap computed by choosing the worst possible assignment for each segment.
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in the remainder of this chapter use the midpoint strategy.

4.6.2 Near-Miss Units

This section explores near-miss modeling strategies. All of the experiments assign

near-miss subsets based on the midpoint of each segment. In addition, these experi-

ments use a recognizer with context-independent segment-based models, a phonetic

transition weight, and a bigram language model. The following two sections describe

examples and recognition experiments using di�erent near-miss units.

Example

The following two �gures contrast the use of multiple contextual near-miss units with

the use of a single non-contextual near-miss unit on the same utterance. Figure 4-5

shows a waveform, spectrogram, segment graph, best paths computed using 0-state

and 3-state units, and phone and word transcriptions. The unshaded best path is

computed using a single non-contextual near-miss unit. The shaded best path is

computed by a recognizer using multiple contextual near-miss units, in this case 3-

state units. The near-miss subsets are computed and shaded with respect to this best

path. The best scoring phones for the segment labeled \ey" in the 0-state path and

label \ay" in the 3-state path are listed on the left. In the log domain, the total score

for a phone is the sum of the score of the best path segment against the phone and

the scores of the �ve remaining o�-path segments in the near-miss subset against the

corresponding near-miss units. As shown, the single near-miss unit adds the same

score of -78.3 to all phones and cannot result in re-ranking of the phones. In contrast,

the use of contextual near-miss units can re-rank scores, such that the correct unit,

\ay", can have the best total score (-88.4) although it does not have the best segment

score (-23.4). Overall, this example suggests that the ability to model the context of

all segments may lead to improved recognition.
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Figure 4-5: This example shows a waveform, spectrogram, segment graph, best path
computed using 0-state units, best path computed using 3-state units, and phone and
word transcriptions. The near-miss subsets are computed with respect to the best

path computed by 3-state units and are drawn with consistent intensities. The best

units for the segment labeled \ay" in this best path are listed on the left for both the

0-state and 3-state units. In the log domain, the total score for a unit is the sum of the

score of the best path segment against the unit and the scores of the �ve remaining

o�-path segments in the near-miss subset against the corresponding 3-state unit.
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Recognition

Table 4.14 shows recognition error rates on the core test set over 39 classes for 0-state,

1-state, and multi-state units. There are 61 lexical units and therefore 1 0-state unit,

61 1-state units, 122 2-state units, and 183 3-state units. However, because the 0-state

unit is also scored for the contextual units to provide backo�, there are e�ectively 1

0-state unit, 62 1-state units, 123 2-state units, and 184 3-state units. The smoothing

parameter for backo� is set by minimizing recognition error rate over a development

set. For all experiments, the smoothing weights the higher order models by 0.4 and

the 0-state model by 0.6.

State Error (%) � (%)

0 33.9 -

1 31.7 6.5

2 30.9 8.9

3 30.5 10.0

Table 4.14: This table shows recognition error rates over the core test set for 0-
state, 1-state, and multi-state units. As the number of units increases, the error rate

consistently decreases. There is a substantial improvement over the 0-state model,
which is functionally equivalent to the anti-phone model.

In comparison to using the 0-state unit, the use of 1-state units reduces recognition

error rate by 6.5%, and the use of additional temporal constraints further reduces error

to a total of 10.0%.

4.6.3 Computation

The following sections compare the computational costs of di�erent near-miss units

and the anti-phone unit. Computation is measured by the number of mixtures that

are scored per millisecond of speech. The maximum number of mixtures in any model

is 100. All experiments use the same pruning threshold, which is set relatively high

in order not to sacri�ce performance.
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0-State vs. Anti-Phone

This section compares the computational requirements of near-miss modeling using

the 0-state unit and anti-phone modeling. These two strategies are identical, func-

tionally, but represent di�erent implementations. The average number of mixtures

that are scored per millisecond of speech during recognition over the core test set for

0-state near-miss modeling and anti-phone modeling:

� 0-state near-miss modeling scores 188.0 mixtures per millisecond of speech.

� Anti-phone modeling scores 188.3 mixtures per millisecond of speech.

Overall, 0-state near-miss modeling and anti-phone modeling require about the

same amount of computation. The slight di�erence can be examined in more detail

at the utterance level. Figure 4-6 shows a scatter plot of the relative number of

mixtures scored by 0-state near-miss modeling and anti-phone modeling as a function

of segment density for each utterance in the core test set. The x-axis shows the

number of segments per second in the segment graph for each utterance. The y-axis

shows the ratio of the number of mixtures scored by 0-state near-miss modeling and

anti-phone modeling.

As shown, near-miss modeling tends to o�er more computational savings when the

segment graphs have fewer segments per second. This is because in smaller graphs,

it is more likely that a segment may be on all segment sequences and therefore does

not have to be scored against the 0-state unit. In addition, because the pruning is

not aggressive, all segments are scored against the anti-phone unit, and near-miss

modeling can only save computation.

Near-Miss Units

Table 4.15 shows the average number of mixtures that are scored per millisecond of

speech during recognition over the core test set for the 0-state, 1-state, and multi-

state units. In comparison to using the 0-state unit, the use of 1-state units more

than doubles the required computation. However, the addition of temporal units
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Figure 4-6: Ratio of the amount of computation performed, per utterance, between

the 0-state near-miss model and the anti-phone model, for TIMIT. Each dot represents
a single utterance from the TIMIT core test set, and the x-axis is the average number

of segments per second for the utterance. The near-miss model is always equal in

computation or slightly less. Utterances with fewer segments per second are more
likely to contain segments which must be on all segment sequences, which the near-

miss model will not score while the anti-phone model will.
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results in a relatively small increase in computation. In fact, the 3-state units require

less computation than the 2-state units. This suggests that the midpoints of many

o�-path segments may fall in the middle third of the on-path segments and result in

less temporal ambiguity in assignment.

State Mix/ms � (%)

0 188.0 -

1 416.9 121.8

2 478.8 154.7

3 477.2 153.8

Table 4.15: This table shows the average number of mixtures that are scored per
millisecond of speech during recognition over the core test set for the 0-state, 1-state,

and multi-state units. The 0-state unit is also scored for the contextual units to
provide backo�.

4.6.4 Context-Dependent Modeling

This section explores the use of diphone context-dependent frame-based units. The

recognition error rates are computed on the core test set over 39 classes for a recognizer

using context-independent segment-based units with and without diphone context-

dependent frame-based units. The segment-based units consist of lexical units and

3-state near-miss units.

� Context-independent segment-based models alone achieve a recognition error

rate of 30.5%.

� Context-dependent frame-based and context-independent segment-based mod-

els achieve a recognition error rate of 25.5%.

In comparison to using only context-independent segment-based units, the addi-

tion of diphone context-dependent frame-based units reduces recognition error rate by

16.0%. Note that the system using only segment-based models cannot be described as

context-independent due to the manner in which the segment graphs are generated.
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The purpose in describing it here is to show the generality of the near-miss modeling

framework. The use of these diphone context-dependent units will be explained in

more detail in the following chapter, as will a comparison with other results reported

in the literature. This chapter has focused on near-miss modeling and concludes

with a brief summary. The following chapter will report on the remaining aspects of

near-miss modeling and then compare near-miss modeling with other approaches.

4.7 Summary

This chapter has described a novel probabilistic framework for segment-based speech

recognition called near-miss modeling. Near-miss modeling is based on the ability to

compute, for any graph, an association of near-miss subsets to segments such that any

segment sequence accounts for all segments. The computation of this association is

based on choosing any time within a segment and assigning it to all near-miss subsets

that span the chosen time. Empirically, it is shown that an e�ective way of assigning

segments is based on their midpoints.

In addition to maintaining the probabilistic framework, the near-miss search can

be e�ciently implemented using the Viterbi algorithm. During search, the score of

each segment is e�ectively the product of the scores of all of the segments in its

near-miss subset.

Near-miss modeling provides a general framework which can incorporate existing

frame-based and anti-phone modeling strategies. In addition, the near-miss search

can allow more sophisticated modeling strategies that enforce contextual constraints

across all segments in a graph. Empirically, it is shown that near-miss units can

capture phonetic and temporal constraints in the o�-path segments, resulting in sig-

ni�cantly improved performance on the task of phonetic recognition.
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Chapter 5

Near-Miss Segmentation

This chapter describes a new segmentation algorithm that is well matched to the

near-miss modeling framework. The near-miss segmentation algorithm applies mul-

tiple sources of constraints by running a recognizer and extracting the most probable

segments. By taking more constraints into account, the algorithm produces segment

graphs which have fewer segmentation errors and leads to improved recognition accu-

racy. The following sections describe the near-miss segmentation algorithm in more

detail and continues the evaluation of near-miss modeling.

5.1 Segmentation Framework

The near-miss segmentation algorithm produces a segment graph by running a �rst

pass recognizer with a backwards A� search. This search is the same backwards A�

search that is used to generate a word graph, except that it is altered to work with

segments instead of words [27]. The �rst pass recognizer runs a Viterbi search to

�nd the best path and provides a lattice of scores. The backwards A� search uses

the Viterbi lattice as its future estimate and produces the segments that are in the

paths that score within a threshold of the best path. When two paths arrive at the

same point, they are merged such that only the higher scoring path continues. The

A� search guarantees that only those segments that are used in a recognition path

whose score is within a global pruning threshold of the score of the best path will
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be selected and retained for the output segment graph. By varying the threshold,

the recognizer will produce larger or smaller segment graphs. If the threshold is zero,

the output includes exactly one sequence of segments, the best path from the Viterbi

search. With a higher threshold, more segments will be included. As a potentially

useful byproduct of the search, each retained segment also has an associated set of

hypothesized labels and scores. This information can either be discarded or may be

retained and used by the subsequent segment-based recognizer.

5.1.1 Characteristics

The near-miss segmentation algorithm has many attractive properties for segment-

based speech recognition:

� In comparison to an acoustic segmentation algorithm, the near-miss segmenta-

tion algorithm uses all of the sources of constraint that are typically used in

recognition to decide which segments should be included in the output segment

graph. These constraints may include any acoustic, segmentation, pronuncia-

tion, and language models. As a result, the near-miss segmentation algorithm

has the potential to be more accurate and result in better alignments and fewer

insertions and deletions. This ability to produce a more accurate segment graph

is an important step towards the development of segment-based approaches.

� As the near-miss segmentation algorithm hypothesizes only the most probable

segments, it is adaptive to all sources of variation, whether from the segment,

word, utterance, speaker, or environment. In regions where the recognizer is

con�dent of its choices, the resulting segment graph is singular, containing a

single sequence of segments. In regions of uncertainty, it will instead hypothesize

many possible alternative segments. This can result in substantially di�erent

segment graphs for varying utterances. Some portions of utterances will have a

high segment density, measured as segments per second, while others will have a

low segment density. This adaptive property allows subsequent segment-based

acoustic modeling to focus on those areas of utterances where it is most needed.
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The previous chapter has already shown how near-miss modeling allows the

acoustic model to focus on discriminating between confusable segments. The

near-miss segmentation algorithm is well matched to focus the subsequent near-

miss search on only the most confusable segments.

� The near-miss segmentation algorithm can use any recognition strategy to hy-

pothesize segments. Computationally, the strategy can be as inexpensive as an

acoustic segmentation algorithm or as expensive as running a complete HMM

word recognizer. In general, the more constraint is incorporated into the �rst

pass recognizer, the more accurate the segment graph will be.

� The near-miss segmentation algorithm can hypothesize any type of unit, not

just acoustic-phonetic ones, by con�guring the recognizer to use the new units.

For example, the transition between stop closures and releases are often de�ned

by sharp discontinuities and therefore a segment boundary is typically placed

between them. However, studies have shown that there is a high correlation

between the closure and burst regions of stops. Therefore, stops could be better

modeled as a single unit [25].

� The combination of near-miss segmentation and near-miss search is a powerful

framework for combining the relative advantages of frame- and segment-based

approaches. First, an e�cient frame-based recognizer can be used to prune

the segment graph that is searched by the second stage segment-based recog-

nizer. Then, the second stage segment-based recognizer can use segment-based

modeling strategies to further constrain the output. As a result, the frame-

and segment-based approaches can be combined in a mutually bene�cial way.

Furthermore, it is e�cient in the sense that some of the computation towards

frame-based classi�cation, performed by the frame-based recognizer can subse-

quently be re-used by the segment-based search.

� As a byproduct of �rst pass recognition, each output segment is augmented with

information from classi�cation and search. The information about segments,
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phones, and scores can be used to improve and focus the second pass segment-

based recognizer. For example, this model could support a framework for a

hierarchical approach to speech recognition [8, 25].

5.1.2 Frame-Based Recognizer

The near-miss segmentation algorithm can employ any recognition strategy to hy-

pothesize segments. The goal of this thesis is to use a powerful recognizer to generate

segment graphs. The experiments in this chapter use a frame-based recognizer that

applies all of the constraints of the recognizer used in the previous chapter except

segment-based modeling itself. This includes the phonetic transition weight and the

bigram language model. Acoustically, the frame-based recognizer hypothesizes frames

every 10 ms and uses diphone-context dependent units as described in Chapter 3. For

reference, this recognizer is able to achieve a phonetic recognition error rate of 26.5%

on the TIMIT core test set.

Note that in this chapter, the near-miss segmentation algorithm uses diphone

context-dependent acoustic models and a phone bigram language model that requires

a substantial amount of computation and training. In contrast, the acoustic segmenta-

tion algorithm uses much less computation and requires little training. However, if the

constraints of computational e�ciency and domain independence are important, the

near-miss segmentation algorithm can use an appropriate recognizer. In this thesis,

the goal is to show that the near-miss segmentation algorithm can produce accurate

segment graphs than can be used to achieve competitive performance in recognition.

As a result, the issues of computational e�ciency and domain independence are not

directly addressed.

5.2 Evaluation

This section continues the evaluation of near-miss modeling on phonetic recognition

using the experimental framework detailed in Chapter 3. The remaining evaluation

has three parts. The �rst part evaluates the near-miss segmentation algorithm, the
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second part evaluates the combined near-miss recognizer, and the last part compares

the combined near-miss modeling approach with other approaches to speech recogni-

tion.

5.2.1 Segmentation

This section characterizes the near-miss segmentation algorithm and compares it to

our current acoustic segmentation algorithm [69]. To measure the accuracy of a

segment graph, a temporal alignment tool has been developed and integrated into

SAPPHIRE. The temporal alignment tool evaluates the accuracy of a segment graph

by aligning a reference segment sequence to the segment graph. Given the reference

segment sequence, the tool performs a search to �nd the best temporally matched

sequence of segments through a graph by minimizing the total match, insertion, and

deletion errors. The cost of a match is the relative percent of each reference segment

that is not temporally overlapped by its matching segment in the graph. The cost of

a deletion is 1.0, which is equivalent to the cost of a match with no temporal overlap.

Similarly, the cost of an insertion is 1.0. The search is implemented using the Viterbi

algorithm.

Example

This section compares example segment graphs produced for the same utterance by

the acoustic and near-miss segmentation algorithms. Figure 5-1 shows a waveform and

spectrogram, segment graphs generated by acoustic and near-miss segmentation, best

alignments of the acoustic and near-miss segment graphs to the phone transcription,

and phone and word transcriptions. In comparison to the acoustic segment graph, the

near-miss segment graph is smaller and more adaptive. In this example, the acoustic

segmentation algorithm generates the highest density of segments in the region in

which the near-miss segmentation algorithm is most con�dent and produces three

singular segments, which align closely to the phone transcription.
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Figure 5-1: This �gure shows a waveform and spectrogram, segment graphs gener-

ated by the acoustic and near-miss segmentation algorithms, best alignments of the
acoustic and near-miss segment graphs to the phone transcription, and phone and

word transcriptions.
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Adaptability

Adaptability refers to the ability of a segmentation algorithm to hypothesize a vari-

able, rather than a uniform, number of segments across an utterance. Adaptability

can be measured by counting the number of segments per near-miss subset across

the core test set. The near-miss subsets are computed with respect to the best path

through the segment graph as computed by a frame-based recognizer.

Figure 5-2 shows a histogram of the number of near-miss segments in each near-

miss subset generated by the acoustic segmentation algorithm. In this case, the mean

near-miss subset size is 5.7 segments. Figure 5-3 shows the same histogram for the

near-miss segmentation algorithm, in which case the mean near-miss subset size is

5.0 segments. In comparison to the acoustic segmentation algorithm, the near-miss

segmentation algorithm generates fewer segments. In addition, the distribution of

these segments across near-miss subsets is less uniform. In fact, most of the near-

miss subsets contain only the single feature vector that is directly associated with

each segment.

Phonetic Analysis

Another way to characterize the near-miss segmentation algorithm is to examine

the size of the near-miss subsets as a function of the hypothesized phone. As in

previous experiments, the near-miss subsets are computed with respect to the best

path through the segment graph that is computed by the frame-based recognizer.

Table 5.1 shows the mean number of segments in the near-miss subsets of each phone

over the core test set.

The mean size of near-miss subsets varies substantially by phone and may re
ect

both duration and di�culty of classi�cation. For example, the phones with smaller

subsets tend to be stop closures or releases, which are relatively short in duration

and acoustically well-de�ned. In contrast, the phones with larger subsets tend to

be diphthongs and semivowels which are relatively long in duration and consist of

gradual transitions.
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Figure 5-2: Histogram of the number of segments in each near-miss subset generated

by the acoustic segmentation algorithm.
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Figure 5-3: Histogram of the number of segments in each near-miss subset generated

by the near-miss segmentation algorithm.
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# Class # Class

1.9 b 5.2 aa ix

2.0 t 5.4 ey ng w

2.1 epi k 5.5 ah ih n th

2.3 g 5.6 ae

2.6 d kcl p 5.7 f m

2.7 h# 6.0 aw

2.8 bcl hh 6.1 q

2.9 pcl 6.6 ao

3.1 tcl 7.0 axr

3.2 dh sh 7.2 l

3.3 ax-h s 7.3 pau

3.4 z 7.8 er

3.7 jh 8.1 hv ux

3.8 gcl nx 8.9 v

3.9 dcl 9.2 ow

4.4 ax iy y 9.8 el

4.6 ch 10.0 ay

4.7 eh r 10.8 uw

4.8 dx 16.6 oy

5.0 uh

Table 5.1: The mean number of segments in the near-miss subsets generated by

near-miss segmentation by phone across the core test set.
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Alignment

This section presents a set of experiments that measure the alignment error against

the phone transcription over the core test set using di�erent pruning thresholds for

near-miss segmentation to generate segment graphs of di�erent sizes. The alignment

error re
ects the relative percent of each reference segment that is not temporally

overlapped by its matching segment in the graph.

Figure 5-4 shows the alignment error of the segment graphs produced by the near-

miss segmentation algorithm as a function of the size of the segment graphs. The

x-axis shows the average number of segments per second, while the y-axis shows the

average alignment error per reference segment in percent. For reference, the dashed

vertical line shows 12.7 as the average number of segments per second in the phone

transcriptions. The x above the curve shows the alignment error for the acoustic

segment graph. At this point, there are 87.8 segments per second and 15.0% error

per segment. The curve shows the alignment error for the near-miss segment graphs

and is generated from six points. The o on the curve denotes the segment graphs that

are used in all of the experiments that use a consistent segment graph size. At this

point, there are 32.7 segments per second and 12.9% alignment error per segment.

The curve is generated by varying the pruning threshold for the A� search. When

the threshold is zero, the segment graphs contain only single segment sequences and

have approximately as many segments as the phone transcriptions with an alignment

error of 20.7%. As the threshold is increased, the number of segments increases, while

the alignment error decreases. In comparison to the acoustic segmentation algorithm,

marked by x, the near-miss segmentation algorithm o�ers better tradeo�s. Not only

are the near-miss graphs smaller in size, but they also have lower alignment error.

Recognition

This section presents a set of experiments that measure the recognition error on the

core test set over 39 classes using di�erent pruning thresholds. For each threshold, a

segment-based recognizer using 3-state near-miss units is retrained and tested.

90



0 50 100 150 200 250
6

8

10

12

14

16

18

20

22

o

x

Average Number of Segments per Second

A
ve

ra
ge

 A
lig

nm
en

t E
rr

or
 p

er
 S

eg
m

en
t (

%
)

Figure 5-4: Alignment error as a function of the size of the segment graphs. The x-axis

shows the average number of segments per second, while the y-axis shows the average
alignment error per reference segment in percent. The curve shows the tradeo�s using

near-miss segment graphs. The o on the curve denotes the segment graphs that are

used in all of the experiments that use a consistent segment graph size. The x above
the curve denotes the acoustic segment graph. For reference, the dashed vertical line
shows the number of segments per second in the phone transcriptions.
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Figure 5-5: This �gure shows segment-based recognition error rate as a function

segment graph size. The x-axis shows the average number of segments per second.
The y-axis shows the percent recognition error over the core test set. The o on the

curve denotes the segment graph that is used in all of the experiments that use a
consistent segment graph size. The x near the top of the graph shows the recognition

error rate for the acoustic segment graph.
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Figure 5-5 shows segment-based recognition error rate as a function the size of the

segment graphs. The x-axis shows the average number of segments per second. The

y-axis shows the percent recognition error over the core test set. The curve is drawn

from four points. The o on the curve denotes the segment graph that is used in all

of the experiments that use a consistent segment graph size. The x near the top of

the graph shows the recognition error rate for the acoustic segment graph.

Figure 5-5 shows a tradeo� between performance and computation. The recogni-

tion error decreases as the segment graphs increase in size. In addition, the near-miss

segment graphs are shown to provide better performance and computation than the

acoustic segment graphs. However, this latter result may be biased by the fact that

the two recognizers do not use the same degree of context. The acoustic segmentation

algorithm is context-independent, while the near-miss segmentation algorithm makes

use of diphone context-dependent constraints. The following section provides a less

biased comparison of the two segmentation algorithms in recognition.

5.2.2 Combined Recognition

This section presents results using the combined recognizer running near-miss seg-

mentation and near-miss search.

Segmentation

To compare the near-miss and acoustic segmentation algorithms using the same de-

gree of context, both systems are run with diphone context-dependent frame-based

models. Table 5.2 shows recognition error rates on the core test set over 39 classes us-

ing context-independent segment-based units and diphone context-dependent frame-

based units for the near-miss and acoustic segment graphs. The segment-based units

consist of lexical units and 3-state near-miss units.

The di�erence between these two systems is that the near-miss segmentation al-

gorithm applies the diphone context-dependent constraints prior to segmentation,

whereas the acoustic segmentation algorithm does not apply contextual constraints
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Segmentation Error (%) � (%)

Acoustic 30.0 -

Near-Miss 25.5 15.0

Table 5.2: Recognition error rates over the core test set using context-independent

segment-based units and diphone context-dependent frame-based units for the near-

miss and acoustic segmentation algorithms.

until after segmentation. The earlier application of contextual constraints to the

segmentation problem results in a 15% reduction in error.

Recognition

Table 5.3 compares the �rst and second pass recognition error rates on the core test set

over 39 classes. The addition of context-independent segment-based models reduces

error rate by 4%.

Models TIMIT (%) � (%)

CD Frame 26.5 -

CD Frame + CI Segment 25.5 4.0

Table 5.3: This table compares recognition error rates using diphone context-
dependent frame-based models with and without context-independent segment-based
models. The segment-based units consist of lexical units and 3-state near-miss units.

The addition of segment-based modeling improves the error rate by 4%.

It is important to note that while the context-dependent frame-based recognizer

is able to achieve low recognition error rate, the addition of context-independent

segment-based models can still improve performance. Future explorations of more

powerful segment-based modeling strategies is expected to further improve these re-

sults.

Error Analysis

This section presents an error analysis of the combined recognizer using context-

independent segment-based models and context-dependent frame-based models on
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the core test set over 39 classes. Table 5.4 shows the breakdown of the recognizer

error rate into substitution, deletion, and insertion rates.

Error (%) Sub (%) Del (%) Ins (%)

25.5 15.5 7.0 3.0

Table 5.4: This table shows the breakdown of the recognition error rate of the com-

bined recognizer into substitution, deletion, and insertion rates.

Table 5.5 shows the ten most frequent substitutions, deletions, and insertions,

along with their frequency of occurrence.

Sub # Del # Ins #

ih ! ah 39 pau 109 pau 54

ah ! ih 35 ih 53 ih 16

m ! n 32 l 46 d 15

er ! r 31 n 39 ah 14

z ! s 30 ah 32 aa 12

r ! er 27 r 30 n 12

eh ! ih 24 dh 17 l 11

eh ! ah 23 v 16 k 8

ih ! iy 22 dx 15 dh 7

ih ! eh 20 hh 14 hh 7

Table 5.5: This table shows the ten most frequent substitutions, deletions, and inser-
tions for the context-dependent recognizer, along with their frequency of occurrence.

Most of the substitutions are between confusable phones within the same manner

class. For example, the two most frequent substitutions are due to confusions between

schwas. Most of the deletions and insertions are of temporally short or spectrally weak

phones. For example, the most frequent deletion and insertion is of stop closures.

5.2.3 Comparison

TIMIT is a commonly used corpus for evaluation on the task of phonetic recogni-

tion. This thesis chooses representative state-of-the-art systems that have reported

95



results on the NIST core test set over 39 phonetic classes. This section compares the

near-miss modeling system with an anti-phone modeling system, HMM system, and

recursive neural network (RNN) system. All of the systems use context-dependent

acoustic models and a phone bigram language model. Only the HMM system uses

gender-dependent acoustic models.

� The near-miss modeling system has two passes. The �rst pass uses diphone

context-dependent frame-based acoustic models and a phone bigram language

model within a frame-based framework to generate accurate segment graphs.

The second pass re-uses both models from the �rst pass and also adds context-

independent segment-based acoustic models within a near-miss modeling frame-

work. Both frame- and segment-based acoustic models use mixture of diagonal

Gaussian distributions.

� The anti-phone modeling system uses an acoustic segmentation algorithm to

generate segment graphs [22]. It then uses context-independent segment-based

models and diphone context-dependent landmark-based models and a phone bi-

gram language model within an anti-phone modeling framework. Both frame-

and segment-based acoustic models use mixture of diagonal Gaussian distribu-

tions. This system represents the state-of-the-art segment-based approach.

� The HMM system runs two gender-dependent recognizers [29]. Each recognizer

uses triphone context-dependent acoustic models and a phone bigram language

model within an HMM framework. The HMMs have three states and use mix-

ture of diagonal Gaussian distributions. The higher scoring recognizer output

is chosen for each utterance. This system represents the state-of-the-art HMM

approach.

� The RNN system use context-dependent frame-based acoustic models and a

phone bigram language model within an HMM framework [57]. The HMMs

have one state. The acoustic models use recursive neural networks. This system

represents the state-of-the-art neural network approach.
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Table 5.6 summarizes reported results on the TIMIT core test set over 39 classes.

These results show that near-miss modeling can achieve state-of-the-art performance

in phonetic recognition. It represents a 16% reduction in error from our previously

best reported result as described in the anti-phone modeling system. It also represents

a 2% reduction in error from the best reported result as described in the RNN system.

Description Error (%)

Near-Miss 25.5

Anti-phone [22] 30.5

HMM [29] 30.9

RNN [57] 26.1

Table 5.6: This table shows recognition error rates that have been reported on the

TIMIT core test set over 39 classes.

Although this thesis does not focus on frame-based recognition, note that the

�rst pass recognizer in the near-miss system by itself can achieve a recognition error

rate of 26.5%. This result is signi�cantly better than the result for the second anti-

phone system, largely due to the fact that the anti-phone system constrains itself to

a small set of landmarks and segments. This result is also signi�cantly better than

the result achieved using the HMM system that is more complex in its use of gender-

dependent instead of gender-independent models and triphone instead of diphone

context-dependent models. This is largely due to the fact that the near-miss system

uses frame-based feature vectors that span a duration of 140 ms and allow the implicit

capture of context-dependent and segment-based constraints. Furthermore, this sug-

gests that HMM frame-based recognizers may signi�cantly improve their performance

by using feature vectors that span longer durations [25, 65].

5.3 Summary

This chapter has described a near-miss framework for segmentation that can utilize

all sources of the constraint that are typically used in recognition towards the seg-

mentation problem. This is done by running a recognizer and generating a segment
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graph that contains only those segments that correspond to paths that score within

an input threshold of the best scoring path. Empirically, the near-miss segmentation

algorithm is shown to signi�cantly reduce both alignment error and phonetic recog-

nition error rates. The near-miss modeling framework, which combines near-miss

search with near-miss segmentation, has been shown to be an extremely competitive

approach to phonetic recognition.

98



Chapter 6

Word Recognition

The previous chapters have shown that near-miss modeling can achieve signi�cant im-

provements in phonetic recognition. Typically, improvements in phonetic recognition

generalize to improvements in word recognition [29]. However, this chapter veri�es

that near-miss modeling can also achieve improvements in word recognition by per-

forming experiments at the word level. The �rst section describes the framework for

experiments at the word level. The next two sections describe the experiments in

segmentation and search and compares near-miss modeling to other approaches in

word recognition.

6.1 Experimental Framework

The following three sections describe the corpus, the lexicon, and the recognizers used

in word recognition.

6.1.1 ATIS Corpus

Experiments in word recognition are performed on the Air Travel Information Service

(ATIS) corpus that was used as a common ARPA spoken language testbed from 1990

to 1994 [47, 48]. The ATIS corpus is composed of spontaneous, continuous speech that

has been orthographically transcribed. In the ATIS task, subjects obtain air travel
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information from a database using spoken natural language in order to solve air travel

planning scenarios. Example queries include \How many meals does America West

airlines serve between Washington D. C. and Columbus, Ohio?" and \What's the

cheapest 
ight from San Francisco to Detroit today?"

In this thesis, ATIS is divided into independent test, development, and training

sets. Except where otherwise noted, the ATIS results are reported on the test set

from the last evaluation in December 1994 containing 981 utterances spoken by 24

speakers [47]. All of the intermediate experiments are run on the test set from the

previous evaluation in December 1993 containing 965 utterances spoken by 27 speak-

ers [48]. The training set contains the remaining 22,606 utterances spoken by 594

speakers. Table 6.1 shows the number of speakers, utterances, and words in the test,

training, and development sets.

Set # Speaker # Utterance # Word

Train 594 22,606 217,140

Development 27 965 8,643

Test 24 981 10,081

Table 6.1: The number of speakers, utterances, and words in the test, training, and
development sets in ATIS.

6.1.2 PRONLEX Lexicon

Unlike TIMIT, ATIS is not phonetically transcribed. Word pronunciations are ob-

tained from Release 0.2 of the PRONLEX American English pronunciation lexicon

from the Linguistic Data Consortium (LDC). PRONLEX contains 90,694 words,

which cover all but �ve of the words in the ATIS vocabulary. Pronunciations are cre-

ated for these words based on existing variants. PRONLEX provides pronunciations

in simple citation form without accounting for systematic phonological variations.

Alternate pronunciations are given for words whose pronunciation varies in speci�c

ways, such as by part of speech. For these words, the correct pronunciation was used.

Otherwise, the �rst pronunciation was chosen. PRONLEX also marks all vowels with

100



stress, non-main stress and lack of stress, and tags special classes of words, such as

proper names, function and foreign words. These marks and tags are not used in

this thesis. PRONLEX uses a set of 43 phones. Table 6.2 shows the long and short

form for the phones along with example sounds as indicated by italicized letters in

the example words.

Long Short Example Long Short Example

aa a hod k k kid

ae @ had l l lawn

ah A cud m m me

ao c law n n no

aw W how'd ng G hang

ax x data ow o hoed

ay A hide oy O Boyd

b b bed p p pot

ch C check r r Ralph

d d done s s six

dh D this sh S shin

eh E head t t tone

em M - th T thin

en N button uh U could

er R herd uw u who'd

ey e aid v v vex

f f fix wh H which

g g ga� w w witch

hh h help y y yes

ih I hid z z zoo

iy i heed zh Z pleasure

jh J judge

Table 6.2: The set of 43 PRONLEX phones in long and short form along with example
sounds as indicated by the italicized letters in the example words.

As in phonetic recognition, all word recognition error rates are computed using

the NIST alignment program [16].
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6.1.3 Word Recognizers

In comparison to phonetic recognition, the task of word recognition can have a much

larger and more complex search space. As a result, the phonetic recognizer described

in Chapter 3 cannot be directly extended to word recognition using current SAP-

PHIRE tools. In particular, there are two major limitations [28]:

� The current tools are not able to enforce context-dependent constraints across

all phones in conjunction with either alternate pronunciation models or class

n-gram language models. To maintain the focus on acoustic modeling, the

word recognizers in this thesis use context-dependent modeling but do not use

the more complex pronunciation and language models that are used in most

evaluated systems.

� The current tools also cannot take advantage of the e�ciencies in a frame-

based search. As a result, it is computationally expensive to run the frame-

based recognizer that is used for segmentation. To facilitate experimentation,

the word recognizers in this thesis intentionally sacri�ce performance to reduce

computation.

Given these limitations, a consistent set of experiments in word recognition have

been designed. The following two sections describe the acoustic and other models

that are used in the word recognizers.

Acoustic Model

The word recognizers use acoustic models that are similar to the ones used in phonetic

recognition except that, to reduce computation, the word recognizers use a maximum

of 50, rather than 100, mixtures. The units that are modeled vary between the

segment- and frame-based models:

� The segment-based units are context-independent. The word recognizers model

all of the 41 phones in PRONLEX that have su�cient data in the ATIS training

set. Due to lack of data, \en" is mapped to the sequence \ih n", and \zh" is
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mapped to \sh". In addition, \em" has no tokens and is not modeled. Since

there are no pronunciation rules, the word recognizers in ATIS model fewer

units than the phonetic recognizers in TIMIT. Table 6.3 shows the set of 41

phones that are used in word recognition.

Label Label Label Label

aa dh k sh

ae eh l t

ah er m th

ao ey n uh

aw f ng uw

ax g ow v

ay hh oy wh

b ih p w

ch iy r y

d jh s z

- (pause)

Table 6.3: The set of 41 phones that are modeled in word recognition on ATIS.

� The frame-based units are diphone context-dependent. They include all 931

ATIS diphones that have at least 10 tokens in the training data plus one unit

to cover all remaining diphones for a total of 932 units.

Other Models

All of the word recognizers use the same duration, pronunciation, and language mod-

els:

� The duration model is a word transition weight that is multiplied in at each

word transition [67]. The weight is set by minimizing recognition error on the

development set.

� The pronunciation model uses only a single pronunciation per word, to allow

context-dependent constraints across all phones [70]. Each word sequence must

begin with a pause, and pauses can be optionally inserted after each word to
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make di�erent sequences. Furthermore, in a word sequence, when two of the

same phonetic units appear in sequence, they are collapsed into one unit.

� The language model is a bigram. To reduce computation, the vocabulary is

limited to the 1078 words which occur at least twice in the training data. As

a result, the out-of-vocabulary (OOV) rate on the test set is 0.2%. A bigram

language model is trained on the training set and smoothed with a unigram

language model and a uniform distribution [2, 54]. The resulting word bigram

has a perplexity of 19.7 on the December 1994 set. In testing, the bigram is

exponentially weighted, with the weight being set by minimizing recognition

error on the development set.

6.2 Near-Miss Segmentation

In comparison to phonetic recognition, it is di�cult to explore segmentation in word

recognition for three reasons. First, word recognition experiments demand substan-

tially more computation and have relatively slow turnaround. Second, ATIS does

not provide reference phone transcriptions for evaluation. Instead, the transcriptions

are computed by the recognizer itself and do not provide an independent reference.

Third, the selected ATIS phones are not suitable for the acoustic segmentation algo-

rithm. For example, the near-miss word recognizer models a stop closure and burst

as a single unit. However, the transition between a stop closure and burst is typically

marked by a sharp spectral discontinuity and therefore is di�cult to hypothesize as

a single unit using an acoustic segmentation algorithm. Due to these di�culties,

near-miss segmentation is not compared directly to acoustic segmentation in word

recognition. Instead of comparison, this section focuses on characterizing the use of

near-miss segmentation in word recognition.
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6.2.1 Landmark-Based Recognizer

In experiments in phonetic recognition, a frame-based phonetic recognizer was used

to generate segment graphs that were shown to signi�cantly improve performance.

However, in preliminary ATIS experiments, these performance improvements did not

generalize to word recognition when a similar frame-based phonetic recognizer was

used to generate segment graphs. This is hypothesized to be due to the inability

of the phonetic recognizer to apply word constraints when creating segments for

word recognition. A comparison of forced and best phone paths computed with

and without word constraints revealed large inconsistencies that veri�ed the need for

applying word constraints during segmentation. As a result, for word recognition, a

frame-based word recognizer is used to generate segment graphs.

Unfortunately, a medium vocabulary word recognizer is computationally much

more expensive than a phonetic recognizer. To reduce computation during segmenta-

tion, this thesis uses a landmark-based word recognizer that considers only a subset

of all possible frames. The landmark-based word recognizer developed in this chapter

uses a simple spectral change algorithm to detect landmarks. A landmark is detected

whenever the Euclidean distance between two spectral frames exceeds a threshold.

Across the December 1994 test set, the landmark-based word recognizer detects 30.9

landmarks per second, while the forced alignments computed by the landmark-based

word recognizer have 8.1 boundaries per second. In contrast, the frame-based pho-

netic recognizer used in TIMIT processes all 100 frames per second. As a result,

the word recognizer gains a considerable savings in computation. During recognition,

the landmark-based word recognizer uses diphone context-dependent acoustic models

and a word bigram language model to achieve a 6.2% recognition error rate.

6.2.2 Segmentation

The landmark-based word recognizer is used to generate segment graphs for the re-

maining word recognition experiments. To reduce computation, the A� threshold is

set conservatively so that only a small number of paths are explored during search, and
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therefore only small number of segments are included in the segment graphs. Across

the December 1994 test set, the segment graphs computed by the landmark-based

word recognizers have 18 segments per second, while the forced alignments computed

by the landmark-based word recognizer have 7.9 segments per second. In contrast,

the frame-based phonetic recognizer produces 32.7 segments per second in TIMIT.

As a result, the word segment graphs are expected to sacri�ce the performance of the

word recognizer.

Figure 6-1 shows a histogram of the number of segments in each near-miss subset

across the December 1994 test set. The near-miss subsets are computed with re-

spect to the best path computed by the landmark-based word recognizer. The mean

near-miss subset size is 2.3 segments. In contrast, the TIMIT phonetic recognition

experiments used 5.0 segments per subset. The histogram shows that most of the

near-miss subsets used in word recognition are singular.
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Figure 6-1: This �gure shows a histogram of the number of segments in each near-
miss subset across the December 1994 test set. The near-miss subsets are computed
with respect to the best path computed by the landmark-based word recognizer.

Table 6.4 shows the mean number of segments in the near-miss subsets by phone

106



across the December 1994 test set. Overall, for computational reasons, the experi-

ments in word recognition on ATIS use much smaller segment graphs than the exper-

iments in phonetic recognition on TIMIT.

# Near-Miss Phones # Near-Miss Phones

1.2 wh 2.3 n

1.3 p 2.4 ng

1.4 sh 2.5 a dh h y

1.5 m r 2.6 u v w

1.6 c er l r x 2.8 e g uh

1.7 ah b ih s 2.9 ax iy y

1.8 ch 3.2 jh

2.0 t 3.6 -

2.1 ay eh k o z 3.8 th

2.2 ae aw d f i 4.4 oy

Table 6.4: This table shows the mean number of segments in the near-miss subsets

by phone across the December 1994 test set.

6.3 Near-Miss Search

This section explores the use of near-miss modeling in word recognition. The ex-

periments are organized in two sets. The �rst set explores strategies for assigning

near-miss subsets, while the second set explores strategies for modeling near-miss

units.

6.3.1 Near-Miss Subsets

The following two sections examine di�erent near-miss assignment strategies.

Overlap

This experiment explores the space of near-miss assignment strategies in which all

segments are assigned based on the same relative time, ranging from their begin times

to their end times. A near-miss assignment strategy is measured by the temporal
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overlap of its assignments. The temporal overlap of a segment is measured with

respect to a reference on-path segment and is de�ned as the percentage of the segment

that is overlapped by the reference segment. The reference segment sequence for each

graph is the best path through the graph found by a landmark-based word recognizer.

Figure 6-2 shows the average temporal overlap per segment over all segments in

the December 1994 test set as a function of the relative time that is used in near-miss

assignment. The upper dotted line gives an upper bound on the temporal overlap

computed by choosing the best assignment for each segment, while the lower dotted

line gives a lower bound on the temporal overlap computed by choosing the worst

assignment for each segment.

In comparison to analogous TIMIT experiment in Figure 4-4, the sparse segment

graphs in ATIS do not allow as much variation in near-miss assignment. Due to the

sparser segment graphs in ATIS, the temporal overlaps are larger than they are in

TIMIT. However, the trends are the same and verify that in the space of near-miss

assignment strategies based on a relative time, the best strategy is to assign each

segment based on its midpoint. In fact, the midpoint strategy can achieve close to

the optimal temporal overlap that can be achieved when each segment is allowed to

freely choose its time to maximize its overlap with respect to its reference on-path

segment.

Recognition

The goal of maximizing temporal overlap is based on the hypothesis that a larger

degree of temporal overlap may lead to improved recognition performance. To ver-

ify this hypothesis, the midpoint and begin time strategies are compared in word

recognition using 1-state near-miss units:

� Midpoint assignment results in 8.1% word recognition error rate.

� Begin time assignment results in 9.9% word recognition error rate.

As in TIMIT, the midpoint strategy results in a lower recognition error rate than

the begin time strategy. All of the experiments in the remainder of this chapter use
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Figure 6-2: This �gure shows the average temporal overlap per segment over all

segments in the December 1994 test set as a function of the relative time that is used
in near-miss assignment. The upper dotted line gives an upper bound on the temporal

overlap computed by choosing the best assignment for each segment, while the lower

dotted line gives a lower bound on the temporal overlap computed by choosing the

worst assignment for each segment.
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the midpoint strategy.

6.3.2 Near-Miss Units

This section explores strategies for modeling near-miss units. Table 6.5 shows word

recognition error rates over the December 1994 test set for 0-state, 1-state, and 2-

state near-miss units. The 3-state near-miss units are not used because the smaller

segment graphs do not provide as many tokens for training. To improve robustness,

all contextual units are smoothed against a 0-state near-miss unit. As in phonetic

recognition, the smoothing weights the higher order models by 0.4 and the 0-state

model by 0.6. In word recognition, there are 41 lexical units plus one backo� unit,

yielding a total of 1 0-state unit, 42 1-state units, and 83 2-state units. The results

show that near-miss modeling can reduce word recognition error rate by modeling

phonetic and temporal constraints in o�-path segments.

State Error (%) � (%)

0 10.5 -

1 8.4 20.0

2 8.1 22.9

Table 6.5: This table shows word recognition error rates over the December 1994 test
set for 0-state, 1-state, and 2-state near-miss units.

6.3.3 Combined Recognition

This section evaluates the combined near-miss recognizer using both frame- and

segment-based models.

Recognition

Table 6.6 shows word recognition error rates over the December 1994 test set for a

recognizer using diphone context-dependent landmark-based models with and with-

out the addition of context-independent segment-based models. The segment-based
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units consist of lexical units and 2-state near-miss units. The addition of context-

independent segment-based units to context-dependent landmark-based units reduces

word error from by 11.3% from 6.2% to 5.5%.

Unit Error (%) � (%)

CD Landmark 6.2 -

CD Landmark + CI Segment 5.5 11.3

Table 6.6: This table shows word recognition error rates over the December 1994 test

set for a recognizer using diphone context-dependent landmark-based units with and

without the addition of context-independent segment-based units. The segment-based

units consist of lexical units and 2-state near-miss units.

Error Analysis

This section presents an error analysis of the combined recognizer using context-

independent segment-based models and diphone context-independent frame-based

models. Table 6.7 shows the breakdown of the recognizer word and sentence error

rates into substitution, deletion, and insertion rates.

Level Error (%) Sub (%) Del (%) Ins (%)

Word 5.5 3.2 1.5 0.8

Sentence 31.4 23.2 12.0 6.6

Table 6.7: This table shows the breakdown of the recognition error rate of the com-

bined recognizer into substitution, deletion, and insertion rates.

Table 6.8 shows the ten most frequent substitutions, deletions, and insertions,

along with their frequency of occurrence. As shown, many of the errors involve

function words and may not a�ect understanding.

6.3.4 Comparison

The above evaluation provides a consistent set of experiments which verify that near-

miss modeling can improve performance in word recognition. This section compares
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Sub # Del # Ins #

a ! the 11 a 36 a 6

and ! in 8 in 12 the 6


y ! 
ight 8 and 10 York 5

meal ! meals 5 the 10 two 4

Newark ! New 5 would 8 to 3

it ! the 5 I 7 on 3

the ! these 5 are 6 and 3

I ! I'd 5 an 4 do 2

a ! eight 4 how 4 I'm 2

miles ! tomorrow's 4 now 4 I 2

Table 6.8: This table shows the ten most frequent substitutions, deletions, and inser-
tions for the context-dependent recognizer, along with their frequency of occurrence.

the near-miss modeling system with the seven systems that participated in the last

ATIS evaluation [47]. However, this comparison is di�cult due to the fact that near-

miss modeling uses less complex models than most of these evaluation systems, which

typically represent the work of teams of researchers over several years:

� The near-miss modeling system uses gender-independent, context-dependent

acoustic models trained on ATIS data only and a bigram language model with

a vocabulary of 1078 words.

� The MITRE Glacier system is an HMM system that uses gender- and context-

independent acoustic models trained on both ATIS and Resource Management

data and a class bigram language model with a vocabulary of 1851 words [3].

� The MIT SUMMIT system is a segment-based system that uses gender- and

context-dependent acoustic models trained on ATIS data only and a class quad-

gram language model with a vocabulary of 2460 [23].

� The AT&T system is an HMM system that uses gender- and context-dependent

acoustic models trained on both ATIS and Wall Street Journal (WSJ) data and

a class trigram language model with a vocabulary of 1530 words [4].
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� The CMU system is an HMM system that uses gender- and context-dependent

acoustic models trained on both ATIS and WSJ data and a class trigram lan-

guage model with a vocabulary of 3217 words [66].

� The SRI DECIPHER system is an HMM system that uses gender- and context-

dependent acoustic models trained on both ATIS and WSJ data and a class

trigram language model [10].

� The BBN system, which was also used by Unisys, was not described.

The near-miss modeling system varies in complexity from the others and is di�cult

to compare. In particular, the near-miss modeling system uses the simplest language

model of all systems, a bigram model with neither word classes nor compound words.

Table 6.9 summarizes the results reported on the ATIS December 1994 test set. The

error rate using the near-miss modeling system is higher than the error rates reported

for all other systems except the MITRE system which uses the simplest acoustic

models.

System Error (%)

Near-miss 5.5

MITRE [3] 14.8

MIT [23] 5.2

AT&T [4] 3.5

CMU [66] 3.4

SRI [10] 2.5

BBN [47] 3.5

Unisys [47] 4.1

Table 6.9: This table shows the recognition error rates reported in the last ATIS
evaluation in December, 1994.

Near-miss vs. MIT

In comparison to the MIT system, the near-miss modeling system has a slightly

higher error rate but uses simpler models, including gender-independent rather than
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gender-dependent acoustic models and most importantly, a bigram instead of a class

quadgram language model. In separate experiments, MIT has reported a 6.5% error

reduction with the addition of gender-dependent acoustic models, a 11.8% reduction

with the use of a class bigram instead of a bigram language model, and a 17.4%

reduction with the addition of a class quadgram language model, for a total 31.9%

error reduction [70]. As a result, it is reasonable to conclude that the near-miss

modeling system represents an improvement to our previous system.

Near-miss vs. HMM

In comparison to the remaining three HMM systems that are described, the near-miss

modeling system has a signi�cantly higher error rate but uses gender-independent

rather than gender-dependent acoustic models, trains on only ATIS rather than both

ATIS and WSJ data and uses a bigram instead of class trigram language model. In

separate experiments, AT&T has reported a 5.7% error reduction with the addition

of gender-dependent acoustic models, an 8.8% reduction with the use of a trigram

instead of a bigram, a 6.2% reduction with the use of word classes, a 4.5% reduction

with the addition of compound words, and a 3.8% reduction with the addition of

WSJ data, for a total 21.9% error reduction.

Near-miss vs. AT&T

A better comparison may be to contrast the near-miss modeling system with the

AT&T system on the December 1993 test set, which both systems use as a devel-

opment set and for which both systems report error rates using gender-independent,

context-dependent acoustic models trained on ATIS data only and a language model

with neither word classes nor compound words. The largest remaining di�erence is

the near-miss modeling system uses a bigram, while the AT&T systems uses a tri-

gram. Nevertheless, the near-miss modeling system reports a 7.1% recognition error

rate, while the AT&T system apparently obtains an 8.1% error rate under these con-

ditions. The AT&T error rate is computed from the reported baseline error rate of

10.3%, accounting for an 8.8% reduction with a trigram, a 7.7% reduction with a 16
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kHz sampling rate as used in the near-miss modeling system, and a 6.8% reduction

with cepstral mean normalization as used in the near-miss modeling system. Overall,

this comparison suggests that near-miss modeling is potentially competitive with the

state-of-the-art HMM systems.

6.4 Summary

This chapter has characterized and evaluated near-miss segmentation and search on

the task of word recognition using the ATIS corpus. Due to computational limitations,

the word recognition system uses a simple con�guration, in particular small segment

graphs and a simple bigram language model with neither word classes nor compound

words. A consistent set of experiments show that the relative improvements in pho-

netic recognition generalize to word recognition. Although it is di�cult to directly

compare the near-miss modeling system with other systems that participated in the

ATIS evaluation, this chapter presents evidence that the near-miss modeling system

is a signi�cant improvement from our previous ATIS system which uses signi�cantly

more complex models to achieve only a slightly lower error rate. In addition, this

thesis presents evidence that the near-miss modeling system achieves a lower error

rate than a developmental version of a state-of-the-art HMM system that is more

comparable in complexity.
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Chapter 7

Conclusion

This chapter summarizes the contributions of this thesis and suggests directions for

future research.

7.1 Contributions

The major contributions of this thesis are the near-miss search and segmentation

algorithms that together provide the framework for near-miss modeling. The following

sections describe the contributions in each of these areas.

7.1.1 Near-Miss Search

The near-miss search is based on a general algorithm for assigning each segment to its

own and zero or more additional near-miss subsets. In particular, for each segment,

the near-miss search chooses any time in the segment span and assigns the segment

to the near-miss subset of any segment that spans the chosen time. Overall, the

near-miss search has three salient characteristics.

First, the near-miss search provides a probabilistic framework for segment-based

recognition. Probabilistically, a path should account for all of the feature vectors in

a graph-based representation. The near-miss search guarantees that the probabilistic

framework can be maintained by accounting for the near-miss subsets in any path.
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Since each sequence accounts for all times once and only once, each segment must be

assigned to each sequence once and only once.

Second, the near-miss search search also provides an e�cient implementation of

a segment-based search. When extending a segment, the near-miss search can score

not only the segment itself but also all of the other segments in its near-miss subset.

Such a search can be e�ciently implemented using the Viterbi algorithm.

Third, the near-miss search is the �rst known segment-based framework that has

the ability to enforce contextual constraints across all segments in the graph. As a

result, the near-miss search can provide a more general framework for the exploration

of di�erent modeling strategies.

Empirically, the experiments in this thesis have explored the space of assignments

in which all segments are assigned based on the same relative segment time. Within

this space, a simple midpoint strategy that assigns all segments based on their mid-

points is shown to achieve the lowest recognition error rates. In addition, the experi-

ments have explored three types of contextual constraints that can be modeled in the

o�-path segments. The �rst no-state strategy provides a baseline by using a single

additional near-miss unit for all o�-path segments regardless of context. The second

one-state strategy models phonetic constraints by using one additional near-miss unit

per lexical unit to enforce that the phonetic context of each o�-path segment corre-

sponds to the phonetic context of the on-path segment. In comparison to the baseline

case of not modeling o�-path context, this strategy for modeling phonetic constraints

of o�-path segments is shown to reduce the error rate by 6.5% for phonetic recognition

and 20% for word recognition. The third multi-state strategies model both phonetic

and temporal constraints. These multi-state strategies use multiple additional near-

miss units per lexical unit to enforce that the phonetic and temporal context of each

o�-path segment corresponds to the on-path segment. In comparison to modeling

phonetic constraints alone, this strategy for additionally modeling the temporal con-

straints of o�-path segments is shown to further reduce error rate by 4% for both

phonetic and word recognition.
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7.1.2 Near-Miss Segmentation

The near-miss segmentation algorithm is also based on a general idea for applying all

of the constraints in recognition towards segmentation. In particular, the near-miss

segmentation runs a recognizer and includes only those segments that are on paths

that score within a threshold of the best scoring path. The near-miss segmentation

algorithm has several promising characteristics. First, it can potentially apply all of

the constraints that are traditionally used in recognition towards segmentation and

therefore can generate more accurate graphs. In comparison to our current acoustic

segmentation, the near-miss segmentation is shown to generate segment graphs that

are both more accurate in terms of alignment and more e�cient in terms of size.

Second, it only includes the most probable segments and therefore is both adaptive

to variation and well-matched to near-miss modeling. In comparison to acoustic seg-

mentation, the near-miss segmentation is shown to generate segment graphs that are

less uniform and contain many singular segments. Third, it can use any recognition

strategy depending on computational requirements. For example, the near-miss word

recognizer uses a landmark-based strategy, rather than a frame-based strategy, to

save computation. Fourth, it can be used to generate any type of units. For example,

the near-miss word recognizer models a stop closure and release as a single unit rather

than two acoustically distinct units. Fifth, near-miss segmentation provides a frame-

work for the combination of frame- and segment-based approaches. In this thesis, a

frame-based recognizer is used in the �rst pass and combined with a segment-based

recognizer in the second pass. Finally, it provides useful information to the second

pass search. In this thesis, the acoustic and language model scores that are used in

frame-based recognition are e�ectively re-used in segment-based recognition.

7.1.3 Near-Miss Modeling

Although the near-miss search and segmentation algorithms can be applied separately,

they are well-matched to provide a cohesive framework for a new segment-based

approach to speech recognition referred to in general as near-miss modeling. By
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overcoming the major impediments to segment-based recognition, near-miss modeling

provides a segment-based framework with much unexplored potential. First, near-

miss modeling provides a framework in which the relative advantages of frame- and

segment-based approaches can be explored. The experiments in this thesis have

shown an e�ective use of a frame-based recognizer for segmentation followed by a

segment-based recognizer for acoustic modeling. Second, near-miss modeling provides

a framework for the exploration of modeling strategies that model speech using a

graph-based representation rather than a sequential representation. Such graph-based

modeling strategies are commonly believed to o�er potential improvements in speech

recognition but are di�cult to incorporate within existing frameworks and therefore

are not often used. Empirically, only simple modeling strategies have been examined.

Nevertheless, near-miss modeling achieves signi�cant reductions in recognition error

rate. Most notably, this thesis reports a 25.5% phonetic recognition error rate on the

TIMIT core test set over 39 classes that is believed to be the lowest error rate reported

on this task. With future research, near-miss modeling is expected to provide even

greater improvements.

7.2 Future Work

There are many directions in which this work can be pursued. The following sec-

tions describe three general directions of pursuit related to search, segmentation and

modeling.

7.2.1 Search

As a new framework, there are many aspects of near-miss modeling that can be stud-

ied in greater detail. As described in Chapter 6, many performance sacri�ces have

been made in the design of the word recognizer in order to enforce context-dependent

constraints across all phones and to allow more rapid experimentation. Currently,

our group is building better �nite state automata (FSA) tools that will signi�cantly

speed up computation and eliminate the need for these performance sacri�ces [39].
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Among other improvements, these FSA tools will allow the incorporation of context-

dependent acoustic models in a more e�cient manner, the use of more complex pro-

nunciation and language models, and the implementation of a frame-based search to

take advantage of e�ciencies in frame-based processing. These improvements will

enable a more complete evaluation of near-miss modeling in word recognition.

As mentioned in Chapter 4, one extension of near-miss modeling addresses the

segmental independence assumption. By de�nition, the near-miss segments overlap

in time and are certainly not independent of one another as assumed in this the-

sis. It is possible to identify subsets of the near-miss subsets, called joint near-miss

subsets, which always appear together across all near-miss subsets and therefore are

always scored together. These joint near-miss subsets o�er an opportunity to jointly

model the correlation across near-miss subsets. The above strategy suggests other

criteria than temporal overlap for assigning near-miss subsets. For example, it may

be desirable to maximize the number of segments that can be jointly modeled in joint

near-miss subsets. Depending on the modeling strategy, it may be desirable to use

other near-miss assignment strategies.

7.2.2 Segmentation

Segmentation remains a di�cult problem that trades o� performance for computa-

tion. This section describes three ways in which the tradeo�s may be improved. The

near-miss segmentation algorithm is a general framework for segmentation that can

use any recognizer to generate a segment graph. The goal of this thesis is to demon-

strate an e�ective framework for segment-based recognition rather than exploring the

performance-computation tradeo�s in con�guring a �rst pass recognizer for segmen-

tation. If computation is a concern, it may be useful to explore the tradeo�s in using

a landmark-based recognizer rather than a frame-based recognizer. It may also be

useful to explore the tradeo�s in using context-independent or broad-class modeling

strategies. For word recognition, it may be that the use of an intermediate represen-

tation such as syllables, that lies above the phonetic level but below the word level,

can provide su�cient constraint without requiring as much computation.

120



Other than applying more constraint, another method for improving segmentation

is to select units that are easier to segment. Alternative units can be linguistic units

such as syllables that may account for more phonetic variation. Another alternative

unit is a \multi-phone" unit that spans a sequence of acoustically variable phones.

Multi-phone units o�er a means of accounting for segmentation errors. In addition

to improving segmentation, multi-phone units can also improve acoustic modeling by

allowing the acoustic model to capture correlation and structure across sequences of

acoustically variable phones. In this sense, they can be described as segment-based

context-dependent units that span temporal context, in addition to phonetic context.

Another means of accounting for segmentation errors is through pronunciation

modeling. Only a single pronunciation was used for all sentences in this thesis. How-

ever, research has shown that more complex pronunciation models can improve recog-

nition performance [50, 56]. Many phonological variations are systematic and may be

best accounted for through explicit phonological rules [43]. In addition, pronunciation

rules can be learned automatically [56].

7.2.3 Modeling

Overall, the motivation for this thesis is to realize the potential of segment-based

modeling strategies to improve recognition performance. A segment-based framework

o�ers 
exibility in choosing what feature vectors to extract and where to extract them

from the speech signal. The recognizers in this thesis use simple cepstral averages and

log duration. More complex feature extraction strategies can focus near-miss model-

ing on characteristics that are important for phonetic contrasts. Near-miss modeling

may provide a framework for the incorporation of knowledge-based feature vectors,

such as formants [60]. Near-miss modeling may also bene�t from automatically gen-

erated feature vectors for example by using a generalized feature selection algorithm

that combines speech knowledge and automatic learning to maximize discrimination

between pairs of confusable phonetic classes [40, 51]. In addition, near-miss modeling

provides a framework for hierarchical speech recognition [8, 25]. Rather than extract-

ing the same feature vectors across all phones, a hierarchical strategy can extract
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di�erent feature vectors for di�erent phones. In near-miss modeling, the �rst pass

recognizer provides the second pass recognizer with a phone hypothesis than can be

the basis of hierarchical feature extraction.

Although this thesis demonstrates the e�ectiveness of near-miss modeling using a

simple segment model, other more complex segment models, including models that

may not have been e�ective in other recognition frameworks, may further improve

performance within the near-miss modeling framework. For example, statistical tra-

jectory models may better model the trajectory across a segment [14, 24, 46, 58].

Alternatively, discriminative classi�ers such as neural networks have been shown to

improve performance in HMM systems but may be better incorporated within the

near-miss modeling framework [1, 33, 57, 62].

Finally, near-miss modeling suggests that a better framework for modeling and

recognizing speech is to use a multi-level graph-based representation rather than a 
at

sequence-based representation. The near-miss segmentation can be used to generate

a multi-level representation, and the near-miss search can be used to process this

representation into near-miss subsets which can be directly modeled. This thesis

has only explored a small sampling of the many contextual constraints that can be

modeled across a segment graph. For example, it is not necessary to require that the

on-path segment be modeled as a lexical unit, while the o�-path segments be modeled

as separate near-miss units. In general, each near-miss subset is a small subgraph

that can be modeled in any way. For example, it may be e�ective to explore the use

of a �nite state model within this framework. This and other such attractive ideas

are critical to the future progress of speech recognition.
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