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Subword Lexical Modelling for Speech Recognition

by

Raymond Lau

Submitted to the Department of Electrical Engineering and Computer Science

on March 31, 1998, in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

Abstract

In this work, we introduce and develop a novel framework, angie, for modelling subword

lexical phenomena in speech recognition. Our framework provides a exible and powerful

mechanism for capturing morphology, syllabi�cation, phonology, and other subword e�ects

in a hierarchical manner which maximizes sharing of subword structures. Angie models the

subword structure within a context-free grammar and an accompanying probability model.

We believe that our framework has several advantages: The sharing mechanism allows

training data to be pooled amongst instances of the same word substructure even when they

occur across di�erent words in the lexicon. Further, knowledge of this substructure can be

extended to �ller models in a word-spotter, new words added incrementally to a recognizer's

vocabulary, and potentially in support of new word detection. The context-free foundation

allows for ease of research and experimentation with varying subword representations, and

also facilitates integration with a natural language understanding system. Finally, the

availability of subword structural information in a recognition system enables exploration

of prosodic models which use this information.

In this thesis, we demonstrate angie's feasibility and e�cacy in a variety of applica-

tions. Using atis corpus data, we show that angie results in performance improvements

on phonetic recognition, reducing error rate from 39.8% to 36.1% as compared to a phone

bigram baseline. We show its competitiveness in the task of word-spotting, where we also

report on a comparative study of di�erent subword lexical models for the �ller space. The

FOM results ranged from 85.3 for a phone bigram to 89.3 for a system using the full angie

parse tree and a lexicon of 1200 words. We also discuss an implementation of a competitive

continuous speech recognition system based on angie, which achieves a recognition error

rate of 18.8% on our test set as compared to a baseline error rate of 18.9%, both using

a word bigram. Finally, we explore the integration of angie with a natural language un-

derstanding system, resulting in a fully coupled system, based on context-free frameworks

for both phonological and linguistic modelling. The integrated system achieves a recogni-

tion error rate of 14.8% on the same test, an improvement of 21.6%. We will also discuss

two pilot studies, one on handling dynamic vocabulary updates within a continuous speech

recognizer and the second on hierarchical duration modelling within a word-spotter. Both

studies showed promising results.

Thesis Supervisor: Stephanie Sene�

Title: Principal Research Scientist
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Chapter 1

Introduction

Spoken language has become accepted as a natural method for human-machine interaction.

One of the fundamental challenges of developing a spoken language system is the develop-

ment of a speech recognition component. Research in speech recognition has been ongoing

for approximately three decades. Much progress has been made during that time span. We

started with very small vocabulary, speaker dependent, isolated word recognition systems.

These systems recognized only a small number of words, such as the ten digits, which were

trained for a particular speaker or set of speakers only, and which required pauses between

words ([59], chap. 1). Today, we have large vocabulary systems, capable of recognizing

from 20,000 to upwards of 100,000 words. The systems are now speaker independent, work-

ing out of the box for any speaker, and in some cases even speaker adaptive, learning the

peculiarities of a person's speech over time. Isolated speech has long yielded to continuous

speech in the research environment, and more recently, in the commercial marketplace as

well, with the introduction of systems by IBM and Dragon ([23]). Error rates have been

reduced dramatically.

Nevertheless, despite all the progress that has occurred, many challenges remain. The

primary focus of our work will be to introduce and implement a novel model for subword

lexical modelling. Subword lexical modelling refers to a model for capturing the variability

in the pronunciations of words. Such variability may exist because words may have multiple

underlying pronunciations, di�erent speakers have varying styles, and because of contextual

e�ects. A speech recognition system must be able to handle the variability for it to be a

robust recognizer. In this introduction, we will review, in greater detail, the role of subword

15



modelling and the most prevalent forms of it in existing speech recognition systems. Then,

we will motivate our model, angie, by introducing phonological and linguistic developments

which suggest modi�cations to the existing models, particularly in terms of creating a

hierarchical framework for subword lexical modelling.

While the direct focus of our research is on subword lexical modelling, we would like

to mention several major open issues upon which our work touches. They are the problem

of new words, the use of prosodic information in the speech recognition process, and the

integration of subword phonological processing with higher level linguistic processing. We

briey introduce these issues, along with the potential applications of our work in their

contexts. Finally, we will provide some background on recognition and on our experimental

framework. We will conclude this introductory chapter with an overview of the remainder

of this thesis.

1.1 Sublexical Modelling

In this section, we will present some background material on current approaches to sublexical

modelling. Most moderate-to-large vocabulary continuous speech recognition systems in

existence today model speech as a concatenation of subword units. The use of subword

units helps to overcome two major disadvantages of whole-word models, the prior norm.

One, we need a very large amount of training data to capture the appearance of each word

in various phonetic contexts which may a�ect the realization of the word, especially the

beginning and end, in speech. Two, because many words share common substructures which

behave similarly in similar phonetic contexts, to have a separate model for each context of

each word would be an extremely ine�cient representation. There are several possible

choices for the subword units to model ([59], chap. 8): phone-like units, demisyllable-like

units, syllable-like units, and other acoustic units. If phone-like units were chosen, then

there are typically 50 to 70 di�erent context-indepedent units which may be used for the

English language. For demisyllable-like units, the number of units increases to the order of

several thousand, and for syllable-like units, the number increases to the order of 10,000,

rapidly becoming intractable in terms of computational complexity and amount of training

data needed. (The term acoustic units used here refers to an inventory of units selected

through some computational method such as a clustering technique.)
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For any particlar inventory of subword units, we need a way to associate a sequence of

these units with a particular word. The mechanism by which we accomplish this must handle

phenomena such as alternate pronunciations for a word (e.g., \either" may be pronounced

as /iy dh ax r/ or as /ay dh ax r/1 and phonology (e.g., how a word is realized acoustically

as phones), particularly phonological variation2 (e.g., \you" is usually realized as [y uw]

but in certain contexts, such as in \did you," it may be realized as [jh uw]). The phonemic

variants can typically be handled by multiple entries in the lexicon because the number of

alternate pronunciations is typically small. The phonological phenomena are more di�cult

because they are typically context dependent3 and would also require a large number of

entries in the lexicon to handle all possibilities. It is the process of handling the possibilities

of di�ering phonetic realizations for a given word within a speech recognition system that

forms the crux of the proposed framework. For ease of exposition, we will concentrate on

phone-like units. We will refer to modelling the sequence of phones permitted for di�erent

sequences of words as subword lexical linguistic modelling or simply sublexical or subword

modelling4. There are two dominant approaches to sublexical modelling. They are to either

use an explicit pronunciation graph or to employ some form of implicit modelling.

1.1.1 Pronunciation Graph

A few systems, including the very early Harpy system ([44]), MIT's summit system ([78],

[79]), LIMSI's speech dictation system ([20]), and Cohen's work with SRI's decipher sys-

tem ([11]), attempt to model phonological variations and other sublexical phenomena by

means of an explicit pronunciation graph5. In the case of the summit system, one or more

phonemic baseforms are input for each word in the vocabulary. A pronunciation graph is

then generated for each word. A pronunciation graph consists of a set of nodes and arcs.

Associated with each arc is a permitted phone, along with a weight for traversing the arc.

1We have adopted the convention of indicating phones with a single pair of enclosing []'s and phonemes

with enclosing //'s unless the context is unambiguous. The symbol set we are using is a modi�ed ARPAbet

set as described in [19], sec. 4.3.
2Hereinafter, we will simply speak of \phonological variation" to refer to all phonological e�ects, including

constraints such as the observation that the phoneme /t/ may or may not be aspirated, but it is nearly always

aspirated in a syllable initial position
3In this case, we mean to include both higher level sublexical context such as being in a syllable initial

position, etc., as well as the adjoining phonetic context.
4The term lexical access is also used in the literature (e.g., [11]).
5The terms pronunciation network and allophone network are also used in the literature to refer to the

same concept.
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The pronunciation graphs generated from the baseform are expanded through the appli-

cation of phonological rules to admit di�erent phonological variations. The weights are

trained through an iterative training process.

Instead of using phonological rules to generate a pronunciation graph and then iteratively

training the weights of the arcs, it is also possible to generate the pronunciation graph

statistically from the phonemic baseforms. Phoneme to phone n-grams or a decision tree

can be used (e.g., [61]).

We see two major, related drawbacks to typical pronunciation graph implementations.

One is the lack of sharing of common word substructure amongst di�erent words. For exam-

ple, the words \y," \ying," \ight," and \ights" all share an initial phoneme sequence,

/f l ay/, which is likely to be realized phonetically in similar manners. The lack of sharing

means that training data for a given word can only be used to train the pronunciation graph

weights for that word. If the common substructure can be shared, then training data from

di�erent words which have the same common substructure can also be shared, increasing

the robustness of the training process. For example, the /l/ in this environment is likely to

be devoiced, and the probability of devoicing can be jointly learned for all of these words.

We have seen one attempt to address this problem. Cohen ([11]) ties arcs for certain sub-

word units together across di�erent words and pools their training data. Speci�cally, he

looks for subword units which share a common phone sequence and also where the arcs for

that phone sequence result from the application of the same set of phonological rules. The

purpose of the latter restriction is to separate subword units which may be heavily context

dependent. Interestingly enough, Cohen also suggests that a mechanism based on syllable

structure may be productive, but, because he did not have a mechanism for identifying

syllables, he abandoned that approach. The framework we will propose will incorporate the

syllable as a core feature.

A related problem is that the addition of new words to the recognizer's vocabulary is

di�cult with a pronunciation graph approach. This is so because the arcs supporting the

new word must be newly introduced into the graph, and all the arc weights in the added

word's prounciation graph have to be trained with instances of that new word. While

neutral weights can be used, we feel that it would be more desirable if the substructures,

which the added word shares with existing words, can inherit probabilities already learned

from related words.
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1.1.2 Implicit Sublexical Modelling

Many systems do not use pronunciation graphs to model sublexical phenomena. Instead,

they absorb the sublexical modelling into a combination of the structure/parameters of a

hidden Markov model (for systems which are based on HMMs) and the acoustic modelling

of the subword inventory units. This statement is best illustrated by example.

A successful early continuous speech recognition system was CMU's sphinx system ([39],

[41]). In the development of sphinx, Lee started with an inventory of context-independent

phonetic units and an assumption that each word had a single pronunciation. He started

with baseform pronunciations from a dictionary but then decided to replace the dictionary

baseforms with the most likely realized pronunciation for each word. At this point, the

sublexical modelling was straightforward (and inexible). Each word was associated with a

single series of phones and each phone had a single acoustic model.

Lee then recognized the existence of certain sublexical phenomena which were not cap-

tured by this straightforward model. For example, he cites the following ([41], section B):

For example, the �rst /d/ in \did" is always released while the last /d/ may not

be released. Also, closures before stops are optional.

Lee chose to model these two types of phone deletion implicitly in the parameters of the

hiddenMarkov model framework used in sphinx by allowing a state transition that skips the

phone. Lee and other researchers (e.g., [67]) also recognized that the articulation of phones

is heavily dependent upon context. Lee chose to include triphone models, models which

are speci�c to certain left and right phone contexts, in his system as well as function-word-

dependent phone models, word speci�c phone models in the case of function words only.

Lee also studied generalized triphones, which are basically a clustering of triphones so as to

avoid sparse data problems for rarely occurring triphones. In this case, the acoustic models

for the context dependent phones implicitly absorb the phonological variations speci�c to

those contexts.

There are a myriad of approaches to capturing phonological phenomena through the

selection of more speci�c phones in the lexical inventory. The term allophone (e.g., [12],

section 1.5.2) is sometimes used in the literature to refer to models of phones which are

context-dependent. Besides triphones (also diphones) and word-speci�c phones, some form

of automatic clustering can be used to select an appropriate inventory. K-means clustering
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([2]) or classi�cation and regression trees (CART), also known as decision trees ([4], [28])

have been used to accomplish this.

1.2 Towards a Hierarchical Representation

In the approaches to subword modelling we have thus far presented, there is an underlying

assumption that words are best modelled as at sequences of phone-like units. In the

pronunciation graph approach, the phonological rules are applied to sequences of phones

to generate possible variations. This is reminiscent of the rewrite rule approach in the

early seminal works on generative phonology such as the Sound Pattern of English ([7]). In

the implicit modelling approach, the use of context-dependent phones attempts to capture

phonological e�ects through examining what the neighboring phones are, which can be

thought of as a statistical method of capturing such rewrite rules.

Kahn ([33]) �rst suggested that there needs to be a unit which is larger than a phone,

but smaller than a word to help explain various phonological processes. Kahn posits (Ibid,

pp. 20):

(a) that there exists, on the phonetic level, a well-de�ned unit of perception and

production larger than the segment and smaller than the word, and (b) that

this unit plays a very signi�cant role in conditioning distributional statements,

sound changes, synchronic phonological rules, etc., i.e., that it is of general

phonological signi�cance. The unit is of course the syllable.

De�ning exactly what a syllable is has been a matter of controversy in the literature.

However, most speakers will readily agree on the number of syllables in a given word,

although where the syllable boundaries are not as clear. Most phonological de�nitions (e.g.,

[68]) hypothesize a sonority scale, which ranks the various sounds of English according to

the extent which the sonority feature is present. Sonority is what typi�es sounds which

are produced primarily via vocal-tract excitation at the glottis with little obstruction to

the air ow. Thus, vowels would rank high on the sonority scale, whereas voiceless stops,

which are produced entirely via obstruction with no vocal tract excitation, would rank at

the bottom. Given a sonority scale, a syllable is de�ned such that a well-formedness rule is

enforced: within a syllable, there is a sonority peak with surrounding segments of decreasing

sonority. Given this requirement, certain other rules help in �xing syllabi�cation, such as a

20



maximum onset principle which tries to maximize the number of consonants in the onset,

or beginning, position of a syllable, and a stress resyllabi�cation principle which prefers to

have segments assigned to a preceeding syllable if it were stressed.

Kahn's work takes a set of syllabi�cation rules which he develops and shows that they

\can be used to condition many phonological rules of English in a simple and natural way."

(Ibid, chap. 2) Kahn even further posits that the syllable may play a role in phonotactic

constraints, limiting what are permitted phonetic sequences, but stops short of giving a

complete phonotactic theory. Subsequent to the work of Kahn, Selkirk ([68]), and others,

many phonologists now recognize that

the syllable is at the heart of phonological representations. It is the unit in

terms of which phonological systems are organised... The syllable has received

a very considerable amount of attention from phonologists, especially in recent

years...

(Katamba, chap. 9, [34]). Thus, guided by the work of Kahn and other phonologists, we

believe that a subword modelling framework should not be at as in existing frameworks.

Rather, it should have at least a layer for syllabi�cation; hence, we adopt a hierarchical

approach, which we will describe in greater detail in Chapter 2.

The work of Kahn, Selkirk, and others has contributed greatly to phonological theory,

and particularly to the role of the syllable. However, their work is solely theoretical. For

the purposes of a speech recognition system, we need a computational framework. A pio-

neer in terms of creating a subword computational model, which accounted for the syllable,

was Church ([10]). Church implemented a system based on Earley's parser ([18]). It ac-

cepted phonetic transcriptions, produced by a linguistic consultant, as input and produced

a syllabi�cation from which words can be decoded.

Church's work inuenced us in several ways. He showed that phonological constraints

are actually sources of information and not noise, and that it was possible to discover syl-

lables in a bottom-up manner from allophonic and phonetic cues. As we will discuss later,

we share Church's view that subword processes are governed very much by a bottom-up

philosophy. Further, Church's success at bottom-up discovery of syllables gives us hope

that our framework can be used to address the new word detection problem, which we

will describe later in this chapter. His work also introduced to us the idea of hierarchical
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representations, which have two advantages according to Church (Ibid, sec. 1.4.1.1 and sec.

1.4.1.2): (1) improved performance due to sharing and (2) having a lexicon free of allo-

phones. The second advantage refers to organizing \the lexicon so that the common shared

sequences correspond to natural linguistic constituents ... not just arbitrary sequences of

segments. Thus, for example, the pre�x /r iy/ ought to be shared in words like reduce

and retry where it is a linguistically motivated constituent, but it should not be shared in

words like read and real where it is merely a common subsequence of segments." (Ibid, pp.

31) This is in contrast to the \put everything into context-dependent phones" approach

pioneered by Lee and discussed earlier. Our position is that we agree strongly with point

(1) and although we do not disagree that having linguistically motivated constituents is

preferable, we are not necessarily opposed to context-dependent acoustic models. We agree

on point (2) in that there is merit in a sublexical framework which has a more linguistically

motivated organization than context-dependent phones as currently de�ned; however, we

do not interpret this to mean that the inclusion of context-dependent phones or other more

speci�c acoustic units into such a framework is to be excluded. A �nal idea we adopt from

Church is that of using a context-free grammar to describe subword phenomena. The tra-

ditional linguistics community has used primarily a framework of context-sensitive rewrite

rules, which are computationally expensive to parse. However, our context-free framework,

discussed in Chapter 2 will di�er from Church's in at least one important manner. Church

marks his non-terminal categories in such a manner as to capture much of the context-

sensitive information. We will rely on an additional probability model to capture much of

the context-sensitivity.

Church has made numerous contributions, but he stopped short in one area. He did not

extend his work into a system which can handle the large, errorful phone graphs created

by the front-end of a typical speech recognition system. Church includes a chapter entitled

\Robustness Issues" (Ibid, chap. 8) where he begins to explore such an environment. He

notes that his parser works with the segmental lattice produced by a skilled spectrogram

reader6, but when he attempted to process phone graphs produced by a speech recognition

front-end from BBN, he met with little success (Ibid, sec. 8.2). Church does, however,

suggest that a probabilistic framework may help in such an environment (Ibid, sec. 8.5).

This is exactly the approach we will adopt in our framework.

6Who marks a spectrogram with hypothesized phones for various segments
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Such a probabilistic framework was pursued in the work of Meng ([49] and [47]). Meng's

layered bigram framework actually plays a very signi�cant role in the evolution of our

framework. However, although probabilities were included in her work, like Church, she

focused on a task where relatively error-free inputs were involved. The task was bidirectional

letter-to-sound/sound-to-letter generation. In either direction, the input is relatively free of

errors and the question of whether a hierarchical subword model can work with the noisy

input from a speech recognizer's front-end remains unaddressed.

1.3 Acoustics of Supra-segmental Units

Thus far, our discussion of the history leading to a supra-segmental subword unit, that is,

a unit larger than a phone unit, and a subword hierarchy has focused primarily on textual

phonetic strings, rather than the actual processing of any acoustic data. The work of

Randolph ([60]) provides a comprehensive study of the actual realizations in large acoustic

data corpora and established empirically the relevance of the syllable in explaining many

of the realizations, particularly when it comes to stop consonants. Randolph's analysis was

conducted with various statistical classi�cation methods on several corpora, including timit

([37]).

Some researchers have also considered accounting for supra-segmental units within

acoustic models in an actual recognition system, but keeping the lexical model essentially

at. Hu et al. ([29]) create syllable-like units, basically merging phones for which the

segment boundary is di�cult to discern, and achieved recognition accuracies which were

claimed to be comparable to that achieved with phone-like units on a small vocabulary

twelve-word month recognizer (95.5% vs. 96%). Jones ([32], [31]) created a syllable rec-

ognizer for a thirteen hundred word vocabulary task involving read speech. One of the

problems Jones encountered was the lack of training data for certain syllables. He varied

the number of mixtures depending on the amount of training data to compensate for sparse

data problems. Ultimately, Jones claims that word recognition accuracies using syllable

units were competitive with those obtained using phone like units.

A drawback with using larger acoustic units, as the work of Jones veri�es, is the lack of

training data. Namely, as we move from phones to syllables, the number of possible units

increases from around sixty to several thousand. One possible approach would be to have
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\a hybrid system, where the most common syllable HMMs would be used in conjunction

with whole-word and phoneme models." ([32]).

This was the approach followed with context freezing units (CFUs) ([72]). CFUs are an

attempt to capture more and more higher level context-dependent information in a single

HMM. Each word is decomposed into multiple layers7: phones, phonemes, clusters, demi-

syllables, syllables, words and compound words. Acoustic models are trained for various

units as the amount of training data allows. An HMM for a larger unit will include paths

with each possible sequence of smaller units for which acoustic models exist and also a path

with the larger unit if an acoustic model exists for it. The example given in the paper

for the German demisyllable \ urk" includes one path with just the model for \ urk" and

another path composed of the cluster \ ur " and the phoneme /k/. The \ ur " model also

includes paths for the further decomposition into phonemes as well as for the \ ur " model

itself, etc.

The use of CFUs or syllable acoustic units certainly captures some information implic-

itly about syllable structure. Even the use of context-dependent diphones and triphones

arguably captures some supra-segmental information, which may implicitly include knowl-

edge of syllable structure information. For example, certainly, some triphone sequences are

much more common in certain syllable positions than others. However, these views still

result in a at framework where the syllable knowledge is hidden in the acoustic models,

and is unnatural and di�cult to control. For example, phenomena such as always releasing

the �rst /d/ in \did" are not something we can control easily. This information is encoded

into the particular acoustic model for the corresponding syllable. We are persuaded by

the Church view that we should lean towards a linguistic, rather than acoustic, organi-

zation which corresponds more naturally to linguistic units, and thus, we lean towards a

hierarchical sublexical framework. We do not doubt that there is a value in having larger

supra-segmental acoustic units, especially when su�cient training data exist. We intend to

incorporate such acoustic models into our system at some future date. However, we believe

there is great value in a lexical model which accounts for syllable information, independent

of the choice of acoustic models. Thus, we focus, in the present work, on the task of a

subword lexical model and con�ne ourselves to context-independent acoustic phone models.

7A layered approach is one which we share in our angie framework, as described in chapter 2.
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1.4 Our Goal: A Computational Framework for Recognition

Kahn and others have introduced the concept of a hierarchical subword framework. Church

has implemented an actual computational machinery based on such a framework. However,

Church worked with relatively error free inputs. The few references we found relating to

the use of syllables for recognition in the literature8 were primarily focused on using larger

acoustic units, such as syllables. The goal of our work is to further extend the lexical line

of development of Kahn and Church to a system which attempts at modelling sublexical

phenomena in a hierarchical, syllable aware manner, and which can work with errorful

inputs, such as those generated by the acoustic front-end processor of a speech recognition

system. In order to do this, we will extend the categorical approach pursued by Church

with a probabilistic framework, much like the work of Meng, and attempt to implement

a hierarchical, probabilistic, sublexical modelling framework which can deal with large,

errorful, phonetic segmentation graphs typically encountered with speech recognition tasks.

Naturally, a major part of this e�ort will involve engineering design considerations, involving

search strategies and computational resource management (e.g., memory, time, etc.) Also,

much of the work will have an empirical avor rather than the theoretical avor found in

the phonology literature.

1.5 Possible Applications of Our Model

The goal of this thesis is not solely to demonstrate that such a hierarchical subword mod-

elling framework can be made to work. That certainly would represent an important ac-

complishment but we would like to accomplish more than an intellectual aspiration. We are

inspired to pursue such a subword model because we believe that it can better address some

of the di�cult, open issues in speech recognition research. We review three areas where we

feel that our subword model will prove advantageous.

1.5.1 New Words

New words pose a continuing problem for speech recognition systems. Despite the tremen-

dous growth in vocabulary sizes over the decades, there are still a signi�cant portion of

8For English that is. There is quite a bit more work for Chinese, where syllables are more prominent

lexical units, and hence are more comparable to using words in an English recognizer.

25



words which remain outside of even a large 100,000 word vocabulary. This poses some clear

problems for tasks such as the application of information retrieval to speech data, where

new words will not be indexable and searchable. Worse yet, even if we were willing to ac-

cept some unrecognizable words, new words also tend to cause recognition errors when they

occur and may cause other problems in a spoken language system if the misrecognitions go

undetected. Hetherington ([25], sec. 2.9) found that:

In fact, it can take very large vocabularies, on the order of 100,000 words or more,

even to get the new-word rate down to 1% for some types of tasks. We showed

that although a new-word rate of 1% may seem low enough, it can correspond

to 17% of sentences containing one or more new words. Having nearly one in

�ve utterances containing a new word is almost certainly an unacceptably high

rate. Because of the misrecognition and misunderstanding that a new word

could cause, a sentence rate as high as one in �ve would likely interfere with a

user's interaction with a spoken language system.

There are two main issues involved with new words. The �rst is how to have a recognizer

detect the presence of a new word, instead of misrecognizing a new word as some other

word in the vocabulary, which would be the natural outcome in many of today's maximum

likelihood frameworks. The second is, how do we easily support the expansion of recognizer

vocabularies, perhaps dynamically at run time, as in the case of a conversational system

returning a list of items of interest, for example, from an information resource such as a

web site.

Our work involves developing a novel framework for modelling subword lexical phenom-

ena in a speech recognition system. Through extensive hierarchical sharing, we hope that

our framework can better support generalizing learned subword knowledge to new word

additions. Also, by providing a more detailed lexical model of subword structures, we as-

pire to leverage o� these models for new word detection. In the work of De Mori and

Galler ([16]),\pseudo-syllable" acoustic units were used in an attempt to address issues of

vocabulary independent recognition, a goal which we share in principle. A novel feature of

the work was that a �rst pass search generated a syllable graph, then a second pass search

decoded it into words through the use of a series of HMM phonotactic models. Although no

concrete results were reported, we are encouraged that some success was alluded to in terms
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of decoding words from syllable-like units. The authors also reported on a very small pilot

experiment on detecting new words via the use of a syllable recognizer and mentioned some

success. We envision our framework supporting a conversational system which can detect

new words and ask the user for clari�cation, have a dynamically modi�able vocabulary,

perhaps based on dialogue context, and even generate pronunciations from the spellings of

words through the underlying linguistic framework's dual phone/letter nature9.

1.5.2 Prosody

The inclusion of prosodic information during the recognition process has been an often

cited, but elusive goal ([15]). Our subword modelling framework, by providing hypothe-

sized subword structural information during the recognition process, can be exploited by a

prosodic modelling system. Further, as discussed in the next section, we also explore the

possibility of integrating higher level linguistic information, which can also potentially be

employed by a prosodic model. While actual work on prosodic models is beyond the scope

of the present thesis, we will mention one pilot study involving the incorporation of a col-

league's duration model, which employs our interpretation of subword structure, ([9]) into

our word-spotter in Chapter 6. Durational patterns and pauses are prosodic cues generally

believed to convey information in natural speech. Duration is inuenced by several factors,

some of which angie can potentially use to provide relevant information to assist in the

construction of a duration model. Summarized from [8], these components include:

Phonological Phones have an inherent duration distribution, e.g., voiced stops are shorter

than voiceless stops and are also inuenced by contextual e�ects, e.g., when two

identical adjacent phonemes are realized as a single geminant phone.

Lexical The position of a phone within a word can greatly inuence its duration. Here,

angie can potentially provide valuable information. For example, stressed vowels are

generally longer than unstressed vowels and consonants in pre-stressed positions are

often longer than those in unstressed and post-stressed positions.

Syntactic The phrasal pattern of a sentence often a�ects phone durations. For exam-

ple, vowels in syllables preceding phrase boundaries are often longer than those in

9Details on this last capability will be discussed briey in Chapter 2 but are otherwise beyond the scope

of this thesis.
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non-phrase-�nal syllables. Also, segments preceeding a pause are often lengthened.

More important to our work, this prepausal lengthening is often accompanied by a

lengthening of syllables.

Speaking Style Naturally, a person's speaking style has a tremendous inuence on dura-

tion. Speaking rate is an important factor which has numerous phonological inuences

as well (e.g., faster speakers tend to ap and palatalize more whereas slower speakers

tend to insert glottal stops more frequently). However, because it is a continuous

variable, it is di�cult to measure reliably.

Semantic Some researchers have suggested that speakers tend to slow down at the end

of a conceptual unit while emphasis and constrastive stress tends to increase. The

integration of higher level linguistic processing into our angie framework, which we

will discuss next, has the potential of providing relevant information for the detection

of semantic dependencies.

We will incorporate Chung's duration model into our word-spotter and report on its per-

formance. Further work in this area is beyond the scope of this thesis.

1.5.3 Integrating Subword Phonological Processing with Higher Level

Linguistics

Many spoken language systems employ a higher level language understanding component

in addition to a speech recognition component. The interface between the two components

is best characterized as a feed forward only process, with either an N -best list (the top N

full sentence hypotheses from the recognizer) or a word graph (a graph representation of

the top scoring hypotheses from the recognizer, as in [71]) being passed from the recognizer

to the understanding component. The understanding component then either rescores the

hypotheses or chooses the highest scoring one that parses. Very little progress has been made

in terms of feeding knowledge in the reverse direction, from the understanding component to

the recognition component. An understanding component is needed to obtain useful results

from a spoken language system, where honoring the user's request rather than recognition

is the aim. However, attempts at leveraging o� the understanding component for better

recognition have met with only limited success (e.g., [52], [77]).
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Our subword model is based on an underlying context-free framework. Context-free

grammars also underly numerous natural language understanding systems, including the

tina system from MIT ([69]). Part of our work will be to explore whether our subword

framework can be integrated with a natural language understanding system more tightly, so

that knowledge feeds in both directions, allowing the NL system to help �lter unpromising

hypotheses early.

1.6 Recognition and Choice of Lexical Unit

So far, we have been referring to work as focused upon subword modelling. However, the

choice of words as being the ideal lexical unit is not preordained. A natural question to ask

is, what is the role of the lexical unit? We view the recognition process as divided by the

lexical units into two parts as illustrated in Figure 1-1. In the sublexical portion, we believe

bottom-up and sharing concepts tend to dominate. For example, at the very bottom, we

have some selection of phone-like units which are shared by all words. Similarly, we have

phonemic units which are also shared by all words and phonological processes which govern

the derivation of phones from phonemes. Bottom-up sharing dominates here as exempli�ed

by the observation that occurences of the same phonemes in di�erent words, but in similar

contexts, tend to be governed by similar phonological rules. Above the lexical level, we

believe that top-down ideas tend to dominate. The most striking example of this in the

English language is the occurrence of gaps, where entire phrases are moved, usually forward,

from one part of a sentence to another, as is the case when the top-level sentential structure

is a wh-query (e.g., \What meals does this ight serve [trace]10?").

The role of the lexical unit in a recognition system is to serve as a common point around

which to organize the recognition search process. As mentioned in a preceeding section,

many systems, which include higher level language understanding components, pass on an

N -best list to the understanding system. The N -best list is pruned at the lexical level and

the search processes in such systems are isolated by the lexical level. We will address what

choice of lexical units facillitates both subword modelling, higher-level linguistic processing,

and their integration. The word is one choice. Syllables and morphemes are others.

10The trace is a category which encodes the base position for a moved constituent. In this example, the

moved wh-constituent is \What meals."
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Linguistic Concept

Acoustic Signal

Lexical Unit
(word? syllable?)

Top-down design domi
(e.g., trace)

Bottom-up sharing dom
(e.g., syllables are ordere

onset-nucleus-coda

Merge point to organ
search control strat

Figure 1-1: Recognition process above and below the lexical unit.

1.7 Experimental Framework: Atis Corpus

Our experiments will be conducted on data from the Air Travel Information System (atis)

corpus ([27]), including the atis-3 additions ([14]). The main addition in atis-3 was the

expansion of the city list from 11 cities to 46 cities. We will collectively refer to atis (0-2)

and atis-3 as simply atis. The atis domain was the former common evaluation task for

ARPA spoken language system developers. The speech data consist of user inquiries related

to air travel planning to solve speci�c scenarios presented to the user. A typical scenario

(from [27], �gure 1) might be:

You have only three days for job hunting, and you have arranged job interviews

in two di�erent cities! (The interview times will depend on your ight schedule.)

Start from City-A and plan the ight and ground transportation itinerary to

City-B and City-C, and back home to City-A.

A typical user query might be:

Show me ights from Pittsburgh to Boston on September fourth in the morning.

The corpus consists of approximately 27,500 utterances of continuous and spontaneous

speech from 732 di�erent speakers. Some reasons for selecting atis include:

Continuous and spontaneous speech We feel that modern recognition systems should

support naturally spoken speech, which dictates a preference for continuous over iso-

lated speech and for spontaneous over read speech.
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Selection of keywords The various city names and airline names provide an excellent

selection of keywords for planned word-spotting experiments.

Atis-3 city additions The addition of cities to create atis-3 provides ample data where

a set of new words has been added to the vocabulary. This facilitates planned exper-

imentation involving the handling of new words.

Compatibility with previous work A very extensive study of word spotting within the

atis domain was performed by Manos in [45]. Similarly, Hetherington in [25] has

studied the impact of new words on recognition by treating the additions in atis-3 as

new words for a baseline atis-0 to atis-2 recognizer. The availability of results from

the same corpus eases the process of performance evaluation.

We will be working with a subset of the atis data to facilitate speed of experimentation.

Our subset will consist of around 5,000 utterances for acoustic and language model train-

ing, 10,000 utterances for subword linguistic training, the designated development set for

development, and the December 1993 test set for testing. We will use context-independent

acoustic models for our experiments, since, as we mentioned, our focus is on the linguistic

side and not on acoustic modelling. We report our results on a segment-based recognizer,

which we will build throughout this thesis, based on the same front-end that the MIT

summit system ([79]) uses.

1.8 Summary of Goals

In short, the goals of this thesis are to introduce a novel framework, angie, for sublexical

modelling, which we believe possesses several desirable features, and demonstrate the fea-

sibility and e�cacy of our framework in various speech recognition tasks. Some of these

desirable features include an integrated probabilistic rule-based model for phonological ef-

fects, ease of altering subword representations, sharing of subword structures, which we hope

can help with the problems of coping with new words and exible vocabularies, provision

of subword structural information for prosodic modelling, and the ability to be integrated

with higher level linguistic modelling and understanding. Feasibility of our framework will

be demonstrated via implementation in phonetic recognition, word-spotting and full speech

recognition systems, all using atis as an experimental data corpus.
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1.9 Overview

Now that we have presented some of the broader issues motivating our work along with

some background on sublexical modelling, we next present an overview of the remainder of

the thesis. In Chapter 2, we describe our angie framework for subword lexical modelling.

We will discuss its motivations, context-free structure, probability model, and some initial

perplexity evaluations. The next three chapters describe our empirical work in implementing

our angie framework within three speech recognition tasks and also mention some subword

lexical modelling studies we conducted while pursuing this work. Chapter 3, presents an

overview of a phonetic recognition system based on angie, including some background

material about the important issue of search, along with some promising initial results

using our recognizer in the task of phonetic recognition. The results will show that the

angie-based system is superior to the baseline system in terms of error rate. Chapter

4 presents some background material on the task of word-spotting, i.e., �nding keywords

in speech, and describes the implementation of a word-spotting system based on angie.

Also included is a description of a series of experiments where we varied the subword

model within the word-spotter and the results of such variations. We will show that angie

can support a competitive word-spotter and that generally, the more subword constraints

on the �ller model, the better the word-spotting performance becomes. After that, we

discuss the implementation of a full recognition system based on angie in Chapter 5. Our

system will be shown to be competitive with a baseline system which uses a pronunciation

graph. Here, we also explore an integrated recognition system where higher level natural

language constraints are combined with the subword constraints from angie in a tightly

coupled search process, and present several respectable comparisons arguing in favor of

such a combination. In Chapter 6, we present two pilot experiments involving the angie

framework, one involving work done jointly with a colleague on duration modelling and

another on the incorporation of new words into a recognition system based on angie. We

will show that angie does support the incorporation of new words into the vocabulary,

that this process is arguably simpler with angie than with other sublexical models, and

that the inclusion of a natural language component in the angie framework also supports

dynamic vocabularies. In our �nal chapter, we conclude with several closing remarks along

with suggestions for future related research.

32



Chapter 2

Angie: The Proposed Framework

In this chapter, we present a probabilistic framework for sublexical modelling which we

have named angie ([70]. The angie framework is a descendant of the framework described

in Meng ([47], [49]). The motivations behind the framework include creating a sublexical

model which:

� captures various sublexical phenomena, including phonology, syllabi�cation and mor-

phology, in a uni�ed framework;

� is probabilistic in nature;

� promotes sharing of common sublexical structures among di�erent words in the vocab-

ulary, words introduced into the vocabulary, and in principle, new out-of-vocabulary

words;

� proceeds in a bottom-up manner, reecting our bottom-up sublexical philosophy men-

tioned in Chapter 1, our desire to share and our aim to model word-like structures

for the background �ller in word-spotting and new words;

� provides a single framework for multiple tasks, including recognition oriented tasks

and letter-to-sound/sound-to-letter generation; and

� shares a common context-free framework with many natural language understanding

systems, permitting an integrated system for both phonological and linguistic mod-

elling.

At the heart of angie are a context-free grammar, a parser, and a probability model asso-

ciated with parses generated. We describe each in turn.
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2.1 Context-free Grammar

The context-free grammar is hand written and is used to obtain a hierarchical representation

of the sublexical phenomena of interest. There has been some work in the literature which

tries to automatically learn a grammar describing subword structures (e.g., [66]). How-

ever, we fear that such an approach will migrate back in the direction of implicit subword

modelling, where the actual subword relationships are hidden, not easily controllable, and

not motivated by linguistic organizations. Therefore we have chosen to maintain explicit

control over the structural organization.

A typical parse tree is shown in Figure 2-1. The hierarchical representation has a very

regular layered hierarchical structure. We have previously stated some of the motivations

for a hierarchical subword structure in Chapter 1. Here, we would also like to point out that,

from a computational framework point of view, the choice of a hierarchical structure allows

us access to information available at each layer of the hierarchy. A set of transformations

e�ected by linear rewrite rules, which is typically used in the linguistics literature, obscures

this information. The root sentence node is currently realized as a sequence of word

nodes. Presently, these two categories act as place holders, but could later be replaced with

other alternatives such as topical units, syntactic units, or both. The layers beneath the

word node capture, from top to bottom:

1. Morphology

2. Syllabi�cation

3. Phonemics

4. Phonetics

The very regular, layered structure of our parse trees is mandated by the organization of

our grammar. The categories in the grammar are grouped into separate sets for each of the

layers. The productions are written such that the left hand category belongs to the set from

a given layer and the right hand categories all belong to the set from the layer immediately

below. No productions are permitted to \skip" a layer. Thus, each parse tree permitted by

the grammar has precisely the layers described above.

The phonetics layer includes nodes for each possible phone in our phone set. The phones

are associated with acoustic models applied to the speech signal. Our phone set is given in
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SENTENCE

ISUF

NUCLAX+ CODA

/eh/ /d*ed/

WORD

S OR OT UROOT2 DSUF

NUC DNUC UCODA PAST

/ih+/ /er//n/ /t/ /s/ /t/

[ih]   [n]      [-n] [axr]

Morphology

Syllabification

Phonemics

Phonetics

[s]       [t]   [ix]   [dx] [ix][ax]    [m]

FCODAFNUC

FCN

WORD

/m//ay_i/

Figure 2-1: Sample parse tree for the phrase \I'm interested."
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Table 2-1. The phonemics layer includes nodes for our set of approximately 100 di�erent

phoneme-like units, which are listed in Table 2-2. Our lexicon is organized either as a

single level structure, with phonemic baseforms for each word, or as a two level structure,

with syllables for each word and phonemeic baseforms for each syllable. The syllables in

the two layered organization are marked for position, e.g., pre�x. Our set of phoneme-

like units includes stressed (marked by \+") and unstressed vowels, onset (marked by \!")

and non-onset consonants, some morpheme-speci�c units (e.g., /d*ed/ for the past tense

morpheme \ed"), some function word-speci�c units (e.g., /uw to/ for the /uw/ in \to"),

and several pseudo-diphthongs (e.g., /aar/). We include onset and stress markings so that

this information is readily available to the probability model at the phone layer, since both

properties are phonologically signi�cant. Function words are more frequently reduced in

realizations, hence, we felt the need to separate out their phonological e�ects from non-

function words. The few remaining cases of special markings were similarly arrived at and

validated through numerous development iterations. These iterations consisted of examining

sample forced alignment and recognition outputs and tuning the set of phoneme-like units.

The goal of such tuning was to capture information which we felt would be helpful and to

eliminate sparse data problems.

The syllabi�cation layer includes various syllable parts, such as onset, nuc+ (stressed

nucleus), and coda. Although the role of the syllable was initially somewhat controversial,

as we have noted in our introductory chapter, it has received much subsequent attention

in the linguistic community and has recently gained wider acceptance. The introduction

of the syllable greatly simpli�es many phonological rules ([33]) and it also acts as the

basic phonotactic unit (c.f. [34], sec. 9.4.1). The latter reason, allowing the inclusion of

phonotactic constraints, is particularly important to us if we want to be able to constrain

the recognition process, especially with respect to unknown words in our system1.

However, despite the acceptance of a supra-segmental syllable unit in phonology, the

rules of syllabi�cation are far from a settled issue. We have mentioned some syllabi�ca-

tion guidelines in Chapter 1, such as well-formedness in terms of the sonority hierarchy,

maximum onset, and stress resyllabi�cation, but there are numerous examples for which a

clear division into syllables is unclear. In those cases, we take the position that the precise

1Church recognized the power of phonological rules as providing constraints instead of the then dominant

view that they are a source of noise ([10], sec. 1.2.1.2).
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Standard Phones

aa bOtt iy bEEt

ae bAt jh Joke

ah bUt k Key

ao bOUght kcl k closure

aw bOUt l Lay

ax About m Mom

axr buttER n Noon

ay bIte ng siNG

b Bee ow bOAt

bcl b closure p Pea

ch CHoke pcl p closure

d Day q glottal stop

dcl d closure r Ray

dh THen s Sea

dx ap as in muDDy sh SHe

eh bEt t Tea

epi epenthetic silence tcl t closure

er bIRd th THin

ey bAIt uh bOOk

f Fin uw bOOt

g Gay ux tOOt

gcl g closure v Van

hh Hey w Way

hv aHead y Yacht

ih bIt z Zone

ix debIt

R-colored and Nasalized Vowels

aar as in are aor as in for

aen as in can ehr as in fare

Non-standard Phones

fr f r combination as in from

hl devoiced l in ight

scl captures noisy closure following fricatives, usually between s and t

ti i in the context of a preceeding alveolar stop which may have been deleted

by our segmentation algorithm, as in city

tr retroexed t burst as in trip

ts combination of a t burst and s

Pauses

*pause* sentence initial and sentence �nal pause

iwt inter-word silence

iwt2 noisy interval within a *pause* or iwt

Table 2-1: Phone set for angie37



Normal Stressed Special Normal Onset Special

aa aa+ b b!

aar aar+ ch ch!

ae ae+ d d! d*ed

ah ah+ ah does dh dh!

ao ao+ ao on f f!

aol+ g g!

aor aor+ h h!

aw+ jh jh!

ay ay+ ay i k k!

eh eh+ l l!

ehr ehr+ m m!

el el+ n n!

en and r r!

er er+ ra from

ey ey+ ey a p p!

ih ih+ s s! s*pl

ihr ihr+ sh sh!

ing sil

ix in v v!

iy iy+ iy the t t!

ng th th! th*s

ow ow+ w w!

oy oy+ wb

q y y!

uh+ z z! z*pl

uw uw+ uw to

ux you

yu yu+

Table 2-2: Set of phoneme-like units for angie

Our set of phoneme-like units includes stress (+) and onset (!) markings for many units

along with several word-speci�c units (e.g., ah does), several special su�x-morpheme-

speci�c units (e.g., d*ed and ing), and the word boundary (wb) and silence (sil) units.
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syllabi�cation is not what is most important, per se, but rather that we have consistent

syllabi�cation across words in our lexicon. This is enforced via two mechanisms. One is that

our set of phoneme-like units includes markings for onset consonants, which disambiguates

many syllabi�cations. The other is the inclusion of a probability model, which we will

describe later. The probability model will naturally favor syllabi�cations which are used

by words with similar sublexical structure in our training data, creating a self-reinforcing

consistency.

The morphology layer serves to divide a word into morpheme units. This is motivated

by two factors. One is that much work in generative phonology, including Sound Pattern of

English ([7]) and more recent work in lexical phonology (e.g., [35], [36]), recognize the inter-

action between a decomposition of the lexicon into morphemes and phonological processes.

The other is that the rules of word formation are typically morphological ones. Because we

want to recognize \word-like" structures, for the purpose of modelling new words, etc., we

felt that a layer representing morphemes would be helpful.

Unlike the framework described in [49] and [47], we do not have broad class and stress

layers. Elimination of the broad class layer had been found to help performance in the

letter-to-sound/sound-to-letter tasks in [49]. However, the same work also suggested that

elimination of a stress layer will be detrimental. Instead of an explicit stress layer, we dis-

tribute the stress information across the morphology, syllabi�cation, and phonemics layers.

Thus, for example, we have both unstressed root (uroot) and stressed root (sroot) in the

morphology layer, and, as already discussed, we have stressed and unstressed markings in

our set of phoneme-like units. The rationale for doing this is that because we have chosen

trigram bottom-up probabilities in our probability model (see sec. 2.3 infra), having stress

as a separate layer above syllabi�cation, as in [49], would render the stress information

inaccessible at the lower phonemics and phonetics layers.

Of particular interest in our grammar are the rules going from the phonemics to pho-

netics layer. These rules govern what phonological processes are permitted. Phonological

variations are typically speci�ed in terms of context-sensitive or even full Turing rewrite

rules2. However, a parser for context-sensitive rules is not known to be e�cient (i.e., not

known to be implementable within a polynomial time bound) and a parser for full Turing

rules is, naturally, known to be undecidable. Thus, we want a framework for which e�cient

2Worse yet, the rules are usually speci�ed in an explicit linear ordering (c.f. [7]).
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parsers are known to exist. As suggested by the work of Church ([10]), our framework uses

only context-free rules. We will rely on a combination of the hierarchical structure, our

choice of nonterminals, and the probability model to learn any context dependency in our

phonological rules3. A typical rule might be4:

=p= ) $pcl [$p]

indicating that the phoneme /p/ (in a non-onset position) may be realized as the phone $pcl

followed by an optional $p release. Here, we adopt the convention that brackets indicate

optional elements. For a /p!/ (in an onset position), the rule is:

=p!= ) [$pcl] $p [$hh]

$pcl

As we see with the /p!/ phoneme-like unit, markings for onset position are not carried

over into the phone layer with distinct onset and non-onset phones. Instead, we merely

indicate through our rules that an onset /p!/ may be aspirated, hence the optional $hh

phone, but a non-onset /p/ may not. The probability model then learns the probability

of aspiration for an onset /p!/. We do something similar for stressed and unstressed vowel

phonemes and function-word-speci�c phoneme-like units. Instead of separate stressed and

unstressed vowel phones, we expect that an unstressed vowel phoneme will more likely be

reduced to a schwa phone. Presently, our phone set consists of around 65 di�erent generic

phones. Our phone set is constantly evolving. The current rationale for having only very

3Church argues for a hierarchical phrase-structured grammar as a computationally feasible alternative to

linear rewrite rules for representing phonological phenomena. Our framework shares these ideas. However,

Church relies heavily on absorbing context-dependencies into the choice of non-terminals in his grammar.

Some would argue, then, that in fact, phonological rules are really inherently context-free, but that pho-

nologists have only chosen a context-sensitive representation for conciseness, for familiarity, or for some

other motive. We take no position on whether phonological rules require context-sensitivity or not. Rather,

we adopt the practical position that since we also include a probability model, we hope that it will learn

whatever context sensitivities are required. Thus, there is a compelling argument why we should use a

context-free grammar, namely, the existence of e�cient parsers, and there is not a compelling argument

against this choice.
4When we illustrate context-free rules, we will use $ for phone terminals. We depart from the [] convention

for phones because [] is usually used to indicate optional components when expressing context-free rules.
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generic phones is to avoid the possibility of splitting limited training data across multiple

phonetic units with very similar properties.5

Thus far, the bottom-most layer is indicated as being the phonetics layer. This is true for

our work, but the same framework can also be used for sound-to-letter and letter-to-sound

generation if we replace the phonetics layer with a graphemics layer ([49], [47], [70]). The

same context-free rules can be used, except that we have rules going from the phonemics

to phonetics layer in one case and rules going from the phonemics to graphemics layer in

the other case. Having a single framework for di�erent tasks is a satisfying objective.

The context-free grammar dictates which parses may be generated by the parser. Any

parse not licensed by the grammar is not allowed in our framework. Thus, the grammar

must either generate exactly, or overgenerate the set of allowed parses. Naturally, it is

very di�cult, if not impossible, to construct a grammar which generates exactly the set

of parses that occur in a natural language. Thus, we err towards overgeneration. The

probability model is then relied upon to score the resulting parses, assigning low scores to

parses which are permitted by the grammar, but which are not likely to occur in English.

For the interested reader, an example set of context-free rules used by angie is included in

Appendix A.

2.2 Parser

The parser takes as input a sequence of phone terminals and tries to generate one or more

parse trees. In the process, it also applies the probability model described in the next section

to score the parses. Our parser proceeds in a bottom-up left-to-right manner. Because of

the very regular nature of our rules, we can consider the following alternate visualization of

a parse tree. We can view the parse tree as a table. Each layer is a row in the table. Along

the bottom-most row are the phones. Each column in the table represents a path from the

root of the tree to a phone at a leaf node. The parse tree from Figure 2-1 is shown in table

format in Figure 2-2.

Our parser proceeds as follows. We start from the lower left-hand corner of the parse

5As mentioned in our introduction chapter, we are not opposed to having more context-speci�c, and

possibly supra-segmental acoustic units when the training data permits. However, for the purposes of the

present thesis, we want to concentrate on lexical modelling. We feel that without performing much work on

determining what context-sensitive units to choose, the training data will not support a blind move to such

units. Thus, we will work with generic context-independent units for the purposes of this thesis.
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sentence

word word

fcn sroot uroot2 dsuf isuf

fnuc fcoda nuclax+ coda nuc dnuc ucoda past

/ay l/ /m/ /ih+/ /n/ /t/ /er/ /eh/ /s/ /t/ /d*ed/

[ax] [m] [ih] [n] [-n] [axr] [ix] [s] [scl] [t] [ix] [dx]

Figure 2-2: Table representation of parse for the phrase \I'm interested."

table. We see if any application of rules permits the �rst phone. Then we climb our way up

the �rst column, generating di�erent theories for all the possible phoneme-like units, syllable

units, morpheme units, etc. When we are done with the �rst column, we move on to the

second column, then the third, etc. Thus, our parser proceeds in a bottom-up, left-to-right

manner. Because we always advance all theories from one column to the next, at any given

point in time, the frontier of all active theories involves the same position within the phone

string being parsed. Thus, our parser can be said to be working in a breadth-�rst manner.

The bottom-up design naturally supports a system which shares as much of the lower

level structures as possible. A top-down design would dictate that we hypothesize distinct

higher level structures, such as morpheme units, and then their decompositions. Such

a design would not allow common lower level structures to be shared during the search

process for di�erent higher level structures. Di�erent linguistic theories, which may share a

common initial sublexical structure and a common initial phone string, can share a common

set of partial parses during the search process. Furthermore, a bottom-up approach would

help in modelling new out-of-vocabulary words for a new word detector and in modelling the

background �ller for a word spotter. The breadth-�rst design is needed during recognition

because we will be working with partial phonetic hypotheses, and we need to obtain partial

scores for all possible partial parses of the hypothesized phone sequence. A more detailed

algorithmic description of our breadth-�rst parser design is included in Appendix B.

2.3 Probability Model

There are two motivations for including a probability model in angie. We had mentioned

that angie is based on a context-free grammar. However, many phonological phenomena

are typically believed to be of a context-sensitive manner. Typically, phonological rules are
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expressed relative to left, right, or both left and right contexts. Angie hopes to capture

this information as part of its probability model. Also, unlike the work of Church cited

earlier ([10]), our framework needs to support a task which generates many errorful input

phone hypotheses. We believe that a probabilistic framework is needed to cope with such

a scenario. The probability model in angie consists of two types of probabilities:

Advancement probabilities These are the conditional probabilities of a leaf node in the

parse tree (that is, a phone terminal in the bottom-most layer) given its immediate

left column. We term these advancement probabilities because we can think of angie

performing a left-to-right parse, advancing to a new phone to start the next column.

Most of the probabilistic constraints are captured by this probability.

Trigram bottom-up probabilities These are the conditional probabilities of an internal

node in the parse tree (that is, a nonterminal in any layer other than the bottom-

most layer) given its left sibling and its child. We call these bottom-up probabilities

because we can think of the angie parser generating a possible nonterminal as it

climbs a column bottom-up from a phone to the root. These are trigram probabilities

because the probability is conditioned upon two other nodes, namely the child and

left sibling.

The conditional probability of a column is the product of the conditional advancement

probability and the various conditional trigram bottom-up probabilities up to the point

where a column merges with its left column. For example, referring back to Figure 2-2, the

conditional probability of the second column is:

Pr(2nd column j 1st column) = Pradvance([m] j sent, word, fcn, fnuc; =ay l=; [ax]) �

Prbottom�up(m j =ay l=; [m]) �

Prbottom�up(fcoda j fnuc; =m=)

The probability of a parse table is the product of the conditional probabilities of the columns

in the table. Our probability model is essentially a phone bigram-like model if we consider

that adjacent phones anchor adjacent columns, but one which captures longer distance

information through the upper layers of our parse tree. The upper layers consist of units
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which are often larger than phone units. This model resembles the one in [49] and [47],

except that there, the bottom-up probabilities depend on the entire left history, de�ned as

the nodes in the left column extending from the child of the left sibling all the way up to

the root, and the current child.

A good example of how the rules and probability model work together is illustrated

in our sample parse shown in Figure 2-1. Here, the /t/ in \interested" is deleted and is

represented in the parse tree by the special phone [-n]. The deleted /t/ is in a cluster with

/n/ in a coda position with falling stress. This information is captured by the combination

of the left column, which gives us the /n/ cluster and coda information, and the bottom-

up probabilities, which would presumably permit the climb from the deletion to the /t/

(another possibility would be /d/). A brief description of the memory structures used to

implement the probability model in the parser is included in Appendix B.

2.3.1 Smoothing

While the preceeding discussion describes our probability model in general, there are a

few speci�c details involving smoothing and the handling of word boundaries about which

to be concerned. Generally, the trigram bottom-up probabilities do not su�er from many

sparse data problems because of their limited context. However, this is not the case for the

advancement probabilities. There are certain column-phone advancements which are very

rare in training data and thus their probabilities cannot be reliably estimated. To cope

with this, we have implemented some backo� smoothing. Speci�cally, let:

LC be the current left column context

p1 : : : pP be our set of phones

c(LC; pi) be the count of training data occurrences of phone pi following context LC

c(LC) =
P

P

i=1
c(LC; pi)

z(LC) be the number of di�erent pis for which c(LC; pi) is zero

Then for z(LC) > 0, we let:

Pr(pijLC) =

8><
>:

c(LC;pi)

c(LC)+k
if c(LC; pi) > 0;

k

z(LC)�(c(LC)+k)
if c(LC; pi) = 0:
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where k is some non-negative constant, currently set to 20. If z(LC) = 0, we do not do any

smoothing, that is, Pr(pijLC) = c(LC; pi)=c(LC).

At a word boundary, the issue of sparse data becomes serious for the advancement

probability to the �rst phone of a new word (because many di�erent word endings for

the previous word are possible and only a small number of them will have occurred in

training data). To mitigate this problem and also to address a di�culty with an overly

expensive search, which we will discuss later in this chapter, we have decided to condition

the advancement probability for the �rst phone after a word boundary only upon the last

phone of the previous word. In other words, we ignore the upper level structure of the left

column in this case. This change also makes it possible to merge many linguistic theories at

putative word boundaries during the speech recognition search process. Despite the pooling,

we nevertheless smooth these across-word-boundary advancement probabilities as before,

but letting k = 70. The choices for k were obtained through experimentation comparing

language model performance on development data for various values of k.

2.4 Lexical Constraints

Thus far, we have described how angie models subword lexical structure. What is missing

is how angie goes from a subword structure to an actual word (or some other lexical

unit). As alluded to earlier, we accomplish this via either a single lexicon of permissible

phonemic sequences for each word, or two lexicons, one of permitted morphemic units for

each word and another of permissible phonemic sequences for each morphemic unit. Our

earlier experiments use the �rst method, which is simpler, but our later recognition and

some word-spotting experiments use the second method. The second method, although

more complex, has the advantage of supplying more constraint to the recognition search

process. While both methods constrain words to the same possible phonemic sequences,

the second method additionally constrains permitted parse trees to those which have the

morph boundaries in appropriate locations with respect to the entries in the lexicon.

2.5 Training Procedure

Our training procedure proceeds as follows. Start with a context-free grammar and an

arbitrarily initialized probability distribution. Process the set of training sentences, where
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each sentence is a string of words and phones, as follows:

1. Parse the �rst training sentence, ignoring any zero probabilities encountered.

2. Take the most likely parse, breaking ties arbitrarily, and increment the counters asso-

ciated with the probabilities used to score the parse.

3. Recompute the probability model given the updated counters.

4. Repeat these steps with each successive sentence.

Our set of training orthographic/phonetic sentence pairs was created by computing a

set of forced alignments for approximately 10,000 utterances with the summit atis recog-

nizer ([80]). Because the summit phone set di�ers from the phone set used by angie and

because the phonological rules admitted by the two systems are also di�erent, a series of

text processing steps were applied to the summit outputs to create our training set. The

text processing steps translated phone sequences allowed by summit but not by angie

into corresponding ones acceptable to angie, and also translated what we judged to be

less preferable sequences into ones which we found more agreeable. Also, since we evolved

our phone and rule sets over time as we developed our system, analyzing failed parses and

angie forced recognition (to be discussed further in Chapter 3) outputs, further processing

steps were applied to the training set to match it to the evolution of the angie phone set.

2.5.1 Perplexity Experiments

We have conducted some initial experiments on the angie linguistic model in isolation,

that is, not as a part of a recognizer. In this experiment, no constraints on phonemic

sequences were employed and the training set was that described in the previous paragraph.

Then we ran angie's forced alignment recognizer on a set of 895 test sentences drawn

from the atis December 1993 test set, not part of the 10,000 training sentences. We

used angie's forced alignment recognizer to generate the phonetic transcriptions for the

test set rather than summit because we know that it will generate phonetic transcriptions

consistent with angie's rule and phone sets. We evaluated the per phone perplexities6

6Perplexity (PP) is a common evaluation measurement for language models. It is de�ned as

lg
�P

x
Prdata(x) lgPrmodel(x)

�
. It corresponds roughly to the average \branch-out" factor of the model.

Thus, a per phone PP of 7 would mean that the model gives roughly the same constraint as if only 7 phones

were possible and there is no model. A lower PP is better than a higher PP because it indicates that the

model is more constraining.
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Set angie Phone Bigram Phone Trigram

Training set 6.07 9.90 4.98

Test set 7.15 14.91 9.20

Table 2-3: Per phone perplexity of angie linguistic model vs. phone n-gram models.

of our angie linguistic model and compared them to traditional phone n-grams. The

results are summarized in Table 2-3. Angie's sublexical linguistic model appears to be

twice as constraining as the phone bigram model when evaluated on the basis of perplexity.

Even more promising, it appears to outperform a phone trigram model on test data by a

substantial margin.

2.5.2 Maximum Likelihood

A question to ask is whether our training procedure results in a probability model that has

the maximum likelihood of generating the training data (in the absence of smoothing, of

course). That is, of all the probability assignments possible, are the parameters we arrive

at ones which will maximize the probability of generating the training data. The answer

in our speci�c case is, unfortunately, no. The reason is that in step 2, we choose the most

likely parse and increment counters associated with it. However, which parse is most likely

depends on the sequence of training sentences seen so far (but not on the remaining training

sentences). Thus, we will not neccessarily arrive at a global maximum likelihood solution.

We see several ways to correct this drawback. One is to train our probability model

based on \correct" parse trees instead of on the most likely parse. Such \correct" parse

trees can be hand generated or automatically generated and hand veri�ed and corrected.

However, because we intend our system to be working with a large amount of training data,

this approach is not feasible. We can also go with a partial solution by �rst initializing

the probability model with a small number of \correct" parse trees and then running the

training algorithm as stated above. While this will still not result in a maximum likelihood

solution, it may result in a better solution because we bootstrap the probability model

with known correct data. Finally, another compromise we can make is to settle for what

we will call a locally optimal solution, that is, we get an initial model from the training

algorithm above and then iteratively increase the likelihood of the model until we reach
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a local optimum. This can be done in a straightforward manner with the E-M algorithm

([17]).

We have tried the locally optimal approach. The resulting model was only slightly better

than the model trained with the algorithm as originally stated. From this, we conclude that

the grammar we have is \tight" enough, that is, it does not overgeneralize much, to result

in a probability model that, although not provable as being maximum likelihood, is close

enough to a local optimum to not require E-M iterations during training. Thus, we have

adopted the basic training procedure for all future experiments.

2.6 Engineering Issues

In this section, we discuss some engineering issues involving our angie parser. The issues

primarily involve maintaining a tractable system, in terms of both time and space complex-

ity. We address in the next three subsections steps employed to prune the search for valid

parses, our strategy for managing the memory requirements of the search, and some search

design issues involving integration of angie into a recognition system.

2.6.1 Pruning

We employ several pruning mechanisms in our parser's search engine. A beam prune restricts

the possible theories attached to a given phone string by limiting the maximum number

of live theories after each column advancement. We also perform what we have dubbed

siamese twin pruning in the case where we only want a single most probable parse for a

given phone string. If there were two partial theories who agree in their �nal columns, then

the lower scoring one is pruned. Because all future parsing and probabilities only depend

on the �nal column, the pruned theory will always be inferior, so there is no need to keep

it around7.

At word boundaries, we prune much more aggressively. As may be recalled from our

description of the probability model, only a phone context is carried across word boundaries.

We mentioned two reasons for this. One is to mitigate sparse data problems. The other

is to limit the size of the search. We found that the ability to prune based on �nal phone

7We call this siamese twin pruning because the two theories are not necessarily identical twins but yet

as far as the future is concern, they may as well be, except for the score di�erence.
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contexts at word boundaries narrowed the search space tremendously, especially when angie

is incorporated into a recognition engine of some type.

Finally, in the case of training and forced alignment, when we know the word sequence

corresponding to the phone string being parsed, we can take advantage of this knowledge

by pruning away theories whose parses yield a series of phoneme-like units that do not form

legal sequences corresponding to the string of words.

2.6.2 Memory Management

A serious problem with a naive implementation of the parser relates to memory management

and usage. During training and forced alignment, this is not too much of an issue because

of the �ltering by phoneme-like units described in the previous section. However, during

recognition, the number of putative phone strings for which we need angie linguistic scores

grows very rapidly. Pruning can keep the number of active theories under control, but a

mechanism is needed for reclaiming the memory used by pruned theories and also theories

for which further advancement is no longer possible. As already mentioned, if two phone

strings share a common initial sequence, then they also share a set of common initial

partial parses. This serves to reduce memory requirements because of the sharing, but it

also serves to complicate memory reclamation. When a partial theory is pruned, we cannot

simply reclaim all the memory used by the partial theory because an initial portion of it

may be shared with other partial theories which are still alive. To solve this dilemma, we

have implemented a reference counting memory management systems. Each partial theory

is extended in terms of columns going left to right and in terms of nodes going bottom-up

within a column. Each node includes a reference counter tracking the number of extensions

which depend on that node. The situation is similar for the columns. Whenever a node

(or column) structure is disposed of, we decrement the counters for any ancestors to which

it refers. If any of those counters are decremented to zero, then we reclaim their memory

and decrement the counters of their ancestors, etc. An example showing how the reference

counting garbage collector works in the context of our parser is included in Appendex B.

2.6.3 Search Design

We have already mentioned some of the issues surrounding the design of our search within

angie. Namely, we suggested that it should be left-to-right in order to support partial
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hypotheses during recognition, and that it needs to be bottom-up to support sharing and

discovery of word-like structures for handling new words, etc. We would like to bring up

several other issues which relate to how angie's parser search interacts with an ultimate

recognition engine's search over the acoustic space. If we consider the interaction for a

moment, we realize that there are actually two search spaces which need to be merged

together: namely, an acoustic space and a lexical space. A given string of lexical phone

units can be associated with numerous paths through an acoustic phone graph. Similarly,

a given acoustic sequence can correspond to numerous lexical hypothesis, since multiple

phonemic sequences can correspond to the same phonetic realization. It is even possible

to have multiple words realized as the same phonetic sequence. This is the case not only

with homonyms, but also with highly reduced realizations of function words. An issue

is how to tie the acoustic and lexical theories together. We have adopted a strategy of

simultaneously pursuing multiple lexical theories which correspond to the same phonetic

string, and bundling them into one unit. The score used to represent this unit is taken to be

that of the highest scoring theory bundled in the unit. Certainly, this policy of letting lexical

theories ride \piggy-back" introduces search errors. Later on in this thesis (Chapter 5), we

will discuss how to represent the interaction of word theories with subword theories. In that

case, we will �nd that an attempt to bundle leads to decreased performance. However, to

represent the entire cross-product of possible lexical theories and possible acoustic theories

proves too unwieldy because of the bushiness of the search spaces for these theories. Some

practical choice is mandated, and the solution presented there is the one we selected.

A natural optimization we would like to make is to also have multiple acoustic paths

which share the same phone sequence use the same bundle of lexical theories, as opposed

to having duplicate bundles. This seems obvious and uncontroversial, in that it does not

introduce any further search errors, but this also has a rami�cation for the design of the

angie probability model. Namely, if we recognize that the �nal output desired of a recog-

nizer is some type of word sequence, we realize that once words have been proposed and

the subword score accounted for, we are no longer concerned with the exact angie parses

which generated the word hypothesis.8 Thus, if the subword structure were discarded upon

arrival at a word ending, we can increase our sharing dramatically. Namely, if two theories

8This is not strictly true. A long range prosodic model may actually care about subword structure over

several words. However, for the purposes of the work presented in this thesis, this simpli�cation holds.
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share the same phone string hypothesis, for the �nal word currently being pursued in the

recognition search, then they can share the same angie lexical-theory bundle. This repre-

sents a dramatic increase in sharing as compared to only permitting the sharing along the

entire phone string hypothesis since the beginning of the utterance match. Our original

angie design did not take this sharing into account and created a totally intractable search

when we attempted to deploy the framework in an actual recognition task.

We had mentioned that this sharing has an implication for the design of angie. The

implication is that we should be designing our framework to maximize sharing at word

boundaries. One of the simpli�cations we presented under the section on pruning (sec.

2.6.1) was actually a second generation design we incorporated to support this. Obviously,

we are referring to the reduction of the advancement probability's conditional context to a

single phone, rather than an entire column, at word boundaries. This reduction allows us

to discard all subword information except the �nal phone, once a word has been proposed

during the recognition search process. All acoustic theories which represent the same phone

sequence for the next word being searched, and which share the same ending phone, can

then share the same angie bundle, yielding a savings in both memory requirements and

computational requirements9.

2.7 Summary

In this chapter, we introduced the angie framework for sublexical linguistic modelling.

Angie is a uni�ed computational framework capturing morphology, syllabi�cation and

phonology through a layered hierarchical structure. At the heart of angie are a context-

free grammar, a bottom-up breadth-�rst left-to-right parser and a probability model. The

probability model consists of two types of probabilities, advancement probabilities and

bottom-up trigram probabilities. Our hope for the probability model is for it to capture

both some of the context-dependencies commonly believed to govern phonological processes

and also to account for variability. We believe that accounting for variability is crucial in a

system that needs to handle errorful inputs.

Lexical units in angie are tracked via a listing of legal phonemic sequences or two

9The angie bundle is only computed once rather than repeatedly for each acoustic theory, reducing

computational needs.
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listings, one of legal morphemic sequences and another of legal phonemic sequences for the

morphemic units. We have explored some of the implementational issues involved, including

time and space complexity concerns. We discussed pruning, memory management, and

issues relating to organization of theories during the search process.

Finally, we have achieved favorable perplexity results when comparing angie to a phone

bigram and phone trigram. Angie achieves a test set perplexity of 7.15 as compared

to a phone bigram's 14.91 and a phone trigram's 9.20. We also observed that angie

surpassed the phone trigram on testing data but not on training data, suggesting that while

the phone trigram may actually learn the training data better, angie's model generalizes

better to unseen test data. While perplexity results do not necessarily lead to improved

recognition performance, there is widely believed to be some correlation between the two,

and, nevertheless, the positive result is promising.
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Chapter 3

Phonetic Recognition

In this chapter, we describe the initial implementation of a recognizer based on the angie

sublexical framework. The recognizer will be focused on the task of phonetic recognition.

We feel that phonetic recognition is an appropriate task for an initial evaluation of angie

for several reasons. It is a less computationally intensive task than continuous speech

recognition of words, but it does have the bene�t of being correlated with word recognition

performance so it is a realistic indication of the framework's e�cacy. Also, since angie

is �rst and foremost a subword modelling framework, evaluation on a task that does not

involve the presence of a word lexicon seems an appropriate starting point. Any defects in

the design of the framework can be more easily isolated in the absence of words.

Building this recognizer involves several challenges. We need a set of acoustic models

for each of the phones in our phone sets. To accomplish this, we need a system which

can perform forced alignment. With such a system, we can seed the acoustic models from

an existing recognizer (summit was used in our case), and then iteratively improve the

acoustic models by performing a forced alignment pass and then retraining the models.

We also need front-end acoustic signal processing for our system. However, the main issue

underlying both the forced alignment system and the phonetic recognition system will be

the search strategy needed to combine the information from the acoustic models and the

angie sublexical model and output a reasonable hypothesis. In the sections which follow, we

will address all of these points and present some numeric results of our phonetic recognition

system. The goals at this point are to develop an angie based system for training acoustic

models, for helping to identify possible problems with our sublexical modelling framework
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and in our search strategy, and to provide a �rst test of the angie system in an actual,

recognition task involving acoustic data.

We will show that on the task of phonetic recognition within the atis domain, our angie-

based system outperforms a baseline system implemented using the MIT summit ([79])

recognizer employing a phone bigram sublexical model. The recognition error rate decreases

from 39.8% to 36.1%, with approximately 1.6 percentage points of the decrease attributable

to the addition of the upper layers in our angie framework and the remainder to the more

pure acoustic models trained with the aid of an angie forced alignment system. In the

previous chapter, our positive results with perplexity experiments empirically contributed

to the validation of our phonological framework. The favorable outcome in this chapter,

involving an actual deployment within a recognition system, supports our belief that we

have a workable framework for recognition.

3.1 Front-End

Our system has the same basic front end as the segment-based MIT summit system. The

preemphasized input audio samples undergo a short time Fourier transform (STFT), and

are passed through a bank of 40 triangular �lters ([48]) to produce Mel-frequency spectral

coe�cients (MFSCs), which are then transformed via a discrete Fourier transform (DFT)

into 14 Mel-frequency cepstral coe�cients (MFCCs). The speech signal is also segmented

into a segmentation graph (c.f. section on acoustic segmentation in [79]). Acoustic measure-

ments are computed for each segment. Each segment in the graph may be a proposed phone.

Our set of measurements are very generic: Averages of the MFCCs across the �rst, middle

and �nal thirds of each segment, derivatives slightly in from the left and right boundaries,

and absolute segment duration, a total of seventy-one measurements. A principal compo-

nent analysis is performed on the measurements. Context-independent mixture diagonal

Gaussian acoustic models are created for each unit in our phonetic inventory. Each phone

is actually associated with two mixture models, one for the absolute duration measurement

and another for the remaining measurements. We have �ve and ten mixtures for each, re-

spectively. We also process the acoustic data through a causal energy based silence detector,

similar to that described in [38]. We do this because our segmentation algorithm generates

a very densely populated graph around silence regions, which tends to slow down our search
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considerably. We used the information from the silence detector to do some extra pruning

in detected silence regions during the early development of our system. As we progress to

the next chapter on word-spotting, the silence detector will actually be discarded as the

acoustic models will have been adequately trained by iterative training to render the silence

detector extraneous.

3.2 Recognition Search

An important module of any speech recognition system is the search component. We have

already discussed the generation of a segmentation graph, with phone scores for each seg-

ment in the graph. However, in order to generate an output hypothesis, be it a string of

words, as in a normal speech recognition system, or a string of phones, as in our phonetic

recognition system, we need to �nd a \good" path through the segmentation graph1. In

determining what is \good," we need to take into account both the phone scores computed

as described in the previous section along with the constraints on valid phone sequences and

their scores, which will be provided by angie in our case. For small enough segmentation

graphs, an exhaustive search is possible, yielding an optimum result, that is, �nding a path

which is highest scoring. For reasonably sized graphs, such a search, sometimes referred to

in arti�cial intelligence literature as a British Museum search, will not be computationally

tractable. Nevertheless, optimal search algorithms do exist if certain constraints can be

imposed on the organization of the search graph and also on the scoring model. We do

not mean to imply, however, that optimal search is necessary. In many cases, a suboptimal

search will �nd an adequate solution.

Almost every speech recognizer has some kind of a search strategy. Some systems use

a single pass search; others use a multiple pass search, with one pass generating a set

of hypotheses to be �ltered by the next pass. Each pass may consist of a single search

algorithm or may consist of multiple algorithms operating in a dovetail manner | that is,

one search algorithm activates another search algorithm operating in parallel. At the most

basic level, most of the search algorithms used in speech recognition can be subdivided into

1While we focus our exposition on searching through segmentation graphs because we are using a segment-

based framework, many of the comments apply to frame-based systems as well, except the search graph will

include an assignment of frames to putative phones, hence conceptually creating an analogous segmentation

graph.
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two broad subcategories: dynamic programming approaches and A� variants, of which the

widely used stack decoder ([30], [56], [55], [57]) is one.

3.2.1 Dynamic Programming Approaches

Several recognizers employ a dynamic programming approach ([13], chap. 16) in the search

component. In order to employ a dynamic programming approach, the search problem must

be cast into a form such that there is an optimal substructure property, that is, the optimal

solution of a larger problem involves �nding the optimal solutions to smaller problems;

and an overlapping substructure property, that is, the solution to a smaller subproblem is

used repeatedly. The most widely used technique in this class for speech recognition is the

Viterbi search ([74]). MIT's summit ([79], [80]) system and Philips' research system ([53])

are examples of systems which use a Viterbi search in an early pass. With a Viterbi search,

we have a graph, frequently known as a trellis or a lattice, where there are a series of nodes

associated with each time boundary and there are edges associated with phonetic units2.

For expository purposes, let us assume that we are working with a system where each edge

can connect only nodes associated with adjacent time boundaries. Our trellis is then a very

regular two dimensional table with time on one axis and possible phonetic units on the

other.

Let t 2 1::T be the time boundaries and p 2 1::P be the phonetic units. Denote a node

in the graph as nt;p for the node corresponding to time t and phonetic unit p. An edge

from nt;p1 to nt+1;p2 corresponds to phonetic unit p1 having been spoken to get to time

boundary t and phonetic unit p2 to get from time t to t+1. Let Et;p1;t+1;p2
be the score of

this edge computed from the acoustic model. Similarly, let St;p represent the best score of a

path from the beginning to node nt;p. The Viterbi algorithm then implements the following

dynamic programming recursion:

St;p = max
1�i�P

St�1;i +Et�1;i;t;p

Observe that in this example, all the scores for time t must be computed before we can

compute the scores for time t+1. For this reason, the Viterbi search is referred to as a time

synchronous search. In general, this strict time synchronicity can be relaxed somewhat

2Or perhaps syllable or word units.
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depending on the structure of the trellis. For example, in a segment-based system like

MIT's summit ([79]), the edges are associated with segments which may skip certain time

boundaries. Nevertheless, the search proceeds in a generally time synchronous fashion.

The Viterbi search, as described, is optimal in that the backtrace of the highest scoring

path is indeed one of the highest scoring paths. In general, this optimality is guaranteed only

if the score of each edge in the path depends only on that edge. Thus for example, if we were

searching through a word trellis, the use of word bigram scores satis�es this requirement

because each edge identi�es the two words needed to compute the bigram score. However,

if we were to use trigram scores, we would have to expand the trellis such that each node

represents a two-word context in order to use a Viterbi search. This is one of the major

drawbacks of Viterbi search. Any attempt to incorporate longer distance information will

increase the search complexity greatly, in terms of both time and space, because of the need

to add many nodes to adequately capture context. Another signi�cant drawback of the

Viterbi search is that it can only yield the best scoring answer and not a list of top scoring

answers. A list of top scoring answers, also known as an N -best list, would be useful if we

were performing a multi-stage search where the later stage either resorts or �lters the list.

The Viterbi search runs in �(TP 2) time, which is one of its greatest attractions. The

stack decoder search and other variants of an A� search (described in the next section) do

not have a nice polynomial bound on time complexity. In practice, some form of beam

pruning is usually employed to accelerate the Viterbi search further. Typical approaches

might be to eliminate all nodes which fall below a certain absolute score threshold or to

eliminate the nodes at a given time boundary which are not within a certain threshold of

the best scoring node.

As mentioned earlier, the classic underlying common element in a dynamic programming

approach is the organization into a search lattice such that there is an optimal substructure

property and that there are overlapping subproblems. In speech recognition, these two

criteria are met when we organize the search along a time line and restrict a scoring model

to considering only local information. Thus, in the case of the Viterbi search, �nding the

optimal solution at time t involves �nding the optimal solutions to each possible node at

time t � 1. In this case, the time t � 1 problem is a subproblem of the time t problem.

The local constraint requirement insures an optimal substructure property. Without it, at

time t, we may have an optimal solution which does not involve an optimal solution to
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any time less than t. For example, a trigram model may favor a given three unit sequence

tremendously. The optimal one or two unit sequences are of little consequence once we

reach a third unit which completes the favored sequence. Finally, because many nodes need

to be considered at time t, for the di�erent possible phone extensions from time t � 1, we

have to look at the optimal solutions at time t� 1 on multiple occassions, hence, we have

overlapping subproblems.

3.2.2 A
� Search

The basic A� search proceeds as follows ([76], pp. 94, modi�ed to suit the environment of

a speech recognition system):

1. Form a one-element priority queue with an initial path consisting only of the start

node

2. Until the highest scoring path in the priority queue reaches the end of the utterance

or the queue is empty:

(a) Remove the highest scoring path from the priority queue

(b) Find all possible extensions of the path

(c) Insert the extended paths back into the priority queue, with a score consisting of

the partial path score plus the future estimate, an estimate of the highest score

until the end of the utterance.

3. If we reach the end of the utterance, we have succeeded, else, we have failed

If the future estimate were always an underestimate, that is, it never estimates a score

higher than the highest actual score to the end of the utterance, then the A� search results

in an optimal solution, in that the path we have found is a highest scoring path. (This is

often referred to as an admissible search.) If we have no future estimate, then the search

becomes a best-�rst search.

The primary bene�t of an A� approach over a dynamic programming approach is that it

allows for the incorporation of arbitrarily long-distance constraints and that, by continuing

to run the search after obtaining the �rst answer, we can get multiple answers in declining

order of score, yielding an N -best list. However, we pay a great cost in terms of time
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complexity. Unlike the Viterbi search, there is not a nice polynomial bound on an A�

search. In practice, much pruning needs to be done and the result is often some type of

beam search. Also, in speech recognition, it is usually not possible to �nd an admissible

future estimate. Some type of suboptimal heuristic estimate is frequently used. In some

cases, no future estimate is used, resulting in a best-�rst search, which was actually how

we implemented our phonetic recognition system3. The most popular A� variant in speech

recognition is the stack decoder, whose description we defer until the chapter on word-

spotting (Chapter 4).

3.2.3 Combinations of Searches

In speech recognition systems, multiple searches are frequently used. For example, in the

MIT summit system ([79], [80]), a forward Viterbi search is used to generate a word-graph,

which is then searched backwards via an A� search. In that implementation, the Viterbi

scores are used as the future estimates during the second pass. In the 1994 BBN byblos

speech recognition system [54], a �ve pass search is performed, with some passes going

forwards and others going backwards! Multiple pass searches are typically employed so

that a faster running search can be used in earlier passes to generate a pruned graph or an

N -best list, with more detailed but slower running searches deferred until a later stage.

3.3 Our Best-First Search

For our recognizer, we have implemented a single pass best-�rst search of the segmentation

graph. The score of each recognizer theory is the combination of the acoustic scores asso-

ciated with the phones and segments in the theory, the angie score4, with some heuristic

adjustments, and some heuristic weights.

The heuristic weights are necessary to overcome a common problem with best-�rst search

strategies being employed in a system where scores are tied to probabilities attached to each

segment in a path. Because probabilities are always less than or equal to one, and because

3In the absence of a future estimate, it may be necessary to introduce other heuristic mechanisms to

normalize the scores of long vs. short theories, particularly in systems based on probabilistic models since

longer theories will tend to have lower probabilities. We will discuss our set of heuristics when we describe

our best-�rst search.
4Recall from chapter 2 that we can have multiple angie parses for a given string of phones. We take the

score of the highest scoring parse and use that in our recognizer theory.
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logs of probabilities are typically used as scores5, the scores are always negative. As a path

becomes longer, there is an ever increasing negative bias on the scores. The net result is

that a best-�rst search will always tend towards extending the shorter paths, making very

slow progress to the end of the utterance. In an A� search, a reasonable future estimate can

help counteract this bias. In our case, we introduce several heuristic rewards to mitigate

the situation. We include:

Phoneme reward A constant is added for each phoneme in the theory.

Time reward To favor progress along the time line in the theory, a value proportional to

the length of the theory, in terms of units of time, is added.

Thus, as a path becomes longer, it will get an extra \boost" fpr having more phonemes and

more time accounted for. Of course, if the rewards were not chosen carefully, we may end

up \rushing ahead" with an inferior theory. By this, we are referring to the case when an

inferior theory happens to account for more time or more phonemes and is favored at the

expense of a potentially better theory which happens to be shorter at the time. This then

becomes a self-ful�lling prophecy as the longer, inferior theory is extended.

Despite the addition of these heuristic weights, we had discovered that by themselves,

they did not prove adequate empirically to enable our recognizer to succeed. We explored

numerous other heuristics and settled upon the following scoring adjustments in our recog-

nizer:

Mean-sigma acoustic score normalization Normalize the scores from the mixture di-

agonal Gaussian models by subtracting the mean and dividing by the variance of that

model as scored on a forced alignment of training data.

Mean entropy angie score normalization Modify the angie probabilities by subtract-

ing the mean training data entropy over all phones following a speci�c left phone

context.

The idea behind these rewards is to give theories a score of zero on average, so that those

which are better than average get positive scores and those which are worse than average

5Computational precision is much better with addition of log probabilities than multiplication of proba-

bilities. The latter tends to be rounded down to zero after a few multiplications.
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get negative scores. The net result of the mean-sigma acoustic score normalization is such

that on a forced alignment run over training data, the acoustic models will be normalized

to have an average score of zero and a variance of one. The mean entropy normalization

results in an average linguistic score of zero following every phone on angie parses of the

training data. We have experimented with several normalizations of the angie scores. We

have also considered o�setting by the mean entropy following a left-phone context and also

for no context but for the speci�c phone being predicted. Of all of these, we have found

o�setting by the mean of the left phone context to be the most e�ective.

We are not particularly pleased with the use of so many heuristics in the search strategy.

In the next chapter, when we discuss word-spotting, we will switch to a di�erent search

strategy which both proves much more e�ective and requires fewer heuristics.

3.3.1 Pruning

As mentioned earlier in this chapter in the introductory material about search, various

pruning strategies, both admissible and inadmissible, are often used to speed up the system.

We implemented several pruning mechanisms in our search:

Prune inferior theories at same time boundary If we have multiple recognizer theo-

ries which end at a given time boundary and they share the same angie linguistic

theory, then we prune all but the highest scorer. (The di�erent theories may result

from di�erent paths through the segmentation graph.)

Acceptable acoustic scores Do not consider theories where a hypothesized phone has an

unacceptably low score. Require a minimum threshold on acceptable acoustic scores.

Maximum queue size During our best-�rst search, limit the number of live theories by

limiting the total size of the queue. If the queue size exceeds the limit, prune the

lowest scoring theories until it returns within the limit.

Maximum paths per time boundary At any time boundary, after encountering a cer-

tain number of theories, only consider another theory at that boundary if its score

exceeds the average score of the theories already seen. We actually have two thresh-

olds. An absolute one for all boundaries and another smaller one for boundaries which
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are more than a predetermined amount of time behind the theory which has advanced

the most timewise.

The �rst of these is an obvious admissible pruning strategy in that it will not result in a

suboptimal search. Actually, since our angie probability model only relies on the left phone

context across word boundaries, we can compare only the �nal phones at word boundaries

and still have an admissible pruning strategy. We adopt this improvement.6

The others are inadmissible and result in a type of beam pruning. We have tried a

variety of strategies to make our search run under acceptable computational resources. For

example, we had also tried a variation of the \maximum paths per time boundary" pruning

where we consider instead the number of theories which cross a boundary7. We have found

that alternative to be ine�ective.

A more detailed description of the best-�rst search implementation used in our phonetic

recognizer is given in Appendix C.

3.3.2 Forced Alignment

Thus far, the recognizer we have described works for both the forced alignment task as well

as the phonetic recognition task. However, during forced alignment, because we know the

correct orthographic transcriptions of the utterances, we can apply additional constraints

during the search process to prune away theories which do not correspond to the given

orthographies. As we discussed in section 2.6.1, we can prune paths whose phone sequences

do not correspond to linguistic theories with the correct sequence of phonemes for the given

orthography. Furthermore, as we arrive at each word ending, we can check to see if the

words associated with the linguistic theory match the orthography, and, if not, we can prune

the path. A sample forced alignment output is shown in Figure 3-1.

6Originally, our �rst angie implementation carried the full column context across word boundaries.

However, driven by both the need to speed up the search process, and to mitigate sparse data problems, we

reduced the context to be left phone only. Without this simpli�cation, we had great di�culty controlling

both the time and memory resources required by the search process.
7Because our segmentation graph has overlapping segments, not all theories will have to include a certain

time boundary. Some theories may include a segment that crosses but does not end or begin at a given

boundary.
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Figure 3-1: Sample output of forced alignment process. Shown are the word and phone

alignments for the partial utterances \...ights from Orlando to Mon[treal]..."

3.4 Phonetic Recognition

Our �rst experiment in evaluating the feasibility of angie as a sublexical model for a speech

recognizer is on a phonetic recognition task. In Chapter 2, we had observed that angie

achieves respectable performance in terms of phone perplexity as compared to bigram and

trigram phone model (7.15 vs. 14.91 and 9.20). The strong language model constraints

provided by angie will hopefully result in better recognition. The experiment here will be

the �rst test to determine whether this is indeed the case or not.

To use angie within a phonetic recognition system, we permit angie to propose word-

like structures, which we will call \pseudo-words," based on its set of rules and probabilities.

Thus, no explicit word (or syllable) constraints are employed. Angie can, and does, propose

novel and non-sensical syllables, although their probabilities will be lower because they are

not well supported by training data. However, there is an ordering constraint at the syllable

layer, so that for example, if a bottom-up angie parse results in a pre�x syllable, it would

be permitted only in the pre�x position of a pseudo-word.

Because the atis corpus is not phonetically labeled, we choose to use the forced align-
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ment outputs of our own recognizer as the correct reference answers. We believe this to be

a reasonable approach because the ultimate goal is to evaluate the feasibility of our frame-

work for a full word recognition system, and it is the case that if we can engineer a phonetic

recognizer to output the phone strings of the forced alignment process, then we would have

perfect recognition. Thus, measuring how close we can get to that point, in terms of phone

error rate8 is a reasonable approximation. This approach has been used before for eval-

uating phone recognition on corpora without expert-created phonetic transcriptions. For

example, Ljolje ([43]) used this technique with the Resource Management corpus ([58]).

In this experiment, we choose as our training data a 5000 utterance subset of the atis-3

corpus. As our test data, we use the atisDecember '93 test set of just under 1000 utterances.

We train our angie probabilities on training data that includes the orthographies, but

during the actual phonetic recognition process, we do not impose any constraints on what

constitutes a \word" other than that from the angie grammar and probabilities. In other

words, we use our angie model to guide the recognizer search process in proposing word-

like structures, but we do not require that proposed pseudo-word boundaries result in a

sequence of actual words in our lexicon. For example, if the system is able to propose a

word boundary after the phone sequence [s ae n f r ae n], which may correspond to the

beginning of the word san francisco, then we will permit it to do so although no baseform

in the lexicon permits a word boundary at that location. The system is also able to propose

totally nonsensical words, such as the phone sequence [ae f th], which might be written in

letters as \afth," as shown in the Figure 3-2. For comparison, we created a baseline phone

recognizer based on the summit architecture, using a phone bigram as the sublexical model.

There are two possible baseline comparisons. One is to take the phone set and acoustic

models from the summit atis recognizer ([80]) along with the forced alignments from the

full summit atis recognizer as the correct reference phone strings to score against. In

this comparison, we are exploring the e�ects of both angie's higher level modelling, that

is, its inclusion of higher level sublexical structure beyond a simple phone bigram, and of

angie's phonological exibility. We believe that angie's representation allows for better

phonological modelling than a pronunciation graph generated through the application of

8Accuracy is de�ned as the percent correct minus the percent of deletions and insertions. The substitu-

tions, deletions and insertions are calculated based on an alignment of the reference and hypothesis strings

which maximizes the accuracy. The term error rate is de�ned as 100% minus the accuracy.
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phonological rules along with iteratively trained arc weights9. This allows us to have cleaner

acoustic models for the phones because we can absorb more of the phonological variation

into the sublexical model and avoid polluting the acoustic models.

On the other hand, we can run the summit recognizer using the exact same phone set

and acoustic models as angie, so that the only di�erence is in the sublexical models10.

This comparison will isolate the improvement due to the higher level structure modelled by

angie but not by the phone bigram.

The �rst comparison is probably more worthwhile if we take the view that phonetic

recognition is just a stepping stone to a full word recognizer and we are comparing against

a baseline for a full working atis recognizer. However, the second comparison is nevertheless

informative because it helps indicate whether the additional layers in angie's hierarchical

model are doing anything useful. Unfortunately, neither comparison allows us to isolate

the e�ects of our best-�rst search process as compared to summit's Viterbi search. A �nal

complication arises in that the di�erent phone sets will make a direct comparison di�cult.

However, we can always project both phone sets to a single phone set.

An example of the output from our phonetic recognition system is shown in Figure 3-2.

In this example, several phones are correctly hypothesized such as the [d ey y iwt q ae

f] sequence. Also included in the �gure are hypothesized pseudo-word boundaries, that

is, places where the angie model �nds it probable to terminate a pseudo-word. These

are not used to score the phonetic recognition results, but are included in the �gure to

provide the reader with a sense of what pseudo-word boundaries are proposed by angie.

Some of the hypothesized pseudo-words correspond to correct words in the utterance, e.g.,

\[Wed]nesday." Others correspond to reasonable real words in English, but incorrect words

for this particular utterance, e.g., \the" and \�ne." Finally, there are also totally nonsensical

words in English, which are considered word-like by angie's rules and probabilities, e.g.,

\afth."

The results of the three experiments are summarized in Table 3-1. We have mapped all

the phones to the CMU 39 phone set ([40]), commonly used in the literature, for comparison

purposes. The complete mapping of angie phones to CMU 39 phones is shown in Table 3-2.

9The generic pronunciation graph framework can model all the variations that angie can. However, the

lack of the upper sublexical layers may force us to create more lax, that is, more overgenerating, phonological

rules than we would in angie.
10
summit is very exible in terms of which set of acoustic models and phones it uses.
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Figure 3-2: Sample output of the phonetic recognition system. Above the spectrogram is

the forced alignment system's output, taken to be the reference answer. Below the spec-

trogram are the phonetic recognizer's phone string output and its pseudo-word boundary

hypotheses. The utterance shown is \[Wed]nesday after �ve." The phonetic recognition

system hypothesized word boundaries which correspond to \[Wed]nesday afth er �ne." The

phones shown are from the actual angie phone set, before conversion to the CMU 39 phone

set.
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Recognizer Sub Del Ins Overall Error

Phone bigram (summit atis phones/models) 19.2% 10.6% 10.1% 39.8%

Phone bigram (angie phones/models) 18.7% 11.5% 7.6% 37.7%

angie 20.8% 7.9% 7.4% 36.1%

Table 3-1: Phonetic recognition results

We are encouraged by the positive results of the angie recognizer and sublexical model.

3.4.1 Analysis

The overall error rate decreased from 39.8% with the summit atis context-independent

baseline to 36.1% with angie. We hypothesize that there are two primary factors contribut-

ing to the improvement. One is that, because angie provides a more exible phonological

model, it can choose more precise acoustic segments, allowing the acoustic models for the

phones to absorb less variation, thus, becoming more pure. The other factor is the strong

language model that describes probabilistically the syllable structure of English. This is

manifest in the low perplexity angie realizes on test data. The combination of of these two

factors was e�ective in reducing the error rate by 9.3%. To better tease apart the contribu-

tions of each of these factors, we can examine the experiment with the phone bigram and

angie phones/models. That experiment resulted in an intermediate error rate of 37.7%.

This suggests that the cleaner acoustic models were responsible for 2.1 percentage points of

the error rate reduction and that the other 1.6 was contributed by the additional linguistic

information provided by the upper layers of the angie framework.

Table 3-3 summarizes the top errors in each category: substitutions, deletions and

insertions. The substitutions for all three experiments look like reasonable confusions, such

as vowel confusions, with perhaps the exception of the [cl]! [dh] substitution in the angie

case. We suspect an explanation may be that the function word \the," which is often

sloppily realized, is being inserted to �ll in noisy silence regions. Thus, the noisy silence

regions, included under the [cl] phone, are misrecognized as [dh], a phone very prevalent in

\the." The high incidence of insertion of [dh] is probably due to the same reason, insertions

of \the." We have noticed other indications that function words may be overweighted in

angie as well, and will attempt to address this problem in subsequent work. The other top

errors do not appear to be remarkable.
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aar, aor, aar r, aor r ! aa r k ! k

ae ! ae l ! l

aen, aen n ! ae n m ! m

ah, ax ! ah n ! n

ow ix, ow iy, ao ix, ao iy ! oy ng, ng n ! ng

ao, ow, aa ! aa p ! p

aw ! aw r ! r

ay, ay iy ! ay sh ! sh

b ! b th ! th

ch ! ch dx ti ! dx iy

d ! d tcl ti ! cl iy

dh ! dh tcl t ti ! cl t iy

dx ! dx ti ! dx iy

eh ! eh tr r, tr w ! t r

ehr, ehr r ! eh r t, tr ! t

ey ! ey kcl ts, kcl ts s ! cl k s

ey y ! ey y ts, ts s ! t s

f ! f s ! s

fr, fr r ! f r uh ! uh

g ! g uw, ux ! uw

hh ! h v ! v

hl, hl l ! l w ! w

ix, ih ! ix y ! y

iy, iy y ! iy z ! z

jh ! jh hv, scl, bcl, pcl, dcl, tcl, gcl, kcl, q,

epi, iwt, iwt2, *pause* ! cl

Table 3-2: Mapping of angie phones and phone sequences to phones and sequences in the

CMU 39 set. \cl" designates the closure phone in the CMU 39 phone set.

Phone Bigram Phone Bigram angie

(summit atis phones) (angie phones)

Sub Del Ins Sub Del Ins Sub Del Ins

z ! s cl cl aa ! ah cl cl ix ! eh cl cl

k ! t ix t m ! n ix n ah ! eh n n

m ! n n n eh ! ix n z m ! n l ix

d ! t ah f n ! m ah l ah ! aa ix v

l ! w l r k ! t l t cl ! dh ah dh

Table 3-3: Top �ve phonetic recognition errors
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3.5 Summary

In this chapter, we discussed the design of a phonetic recognizer utilizing the angie frame-

work as its sublexical model. We presented some background on the issue of search and

discussed the implementation of a best-�rst search strategy in our recognizer. We used our

recognizer to both iteratively train acoustic models (in forced alignment mode) and as a

phonetic recognition system. We provided some preliminary baseline comparisons for our

phonetic recognition system. The comparisons were performed on outputs normalized into

the CMU 39 class phone set. Because we do not have human created phonetic transcriptions

for atis, forced recognition transcriptions were used as references. The early results were

promising, showing that angie is competitive with a phone bigram in phonetic recognition.

The angie-based system acheived an error rate of 36.1%, lower than the baseline phone bi-

gram system's error rate of 39.8%. A close evaluation suggested that improved phonological

modelling accounted for roughly 2.1% of the gap and the more powerful language model due

to the longer distance, upper layer information from the angie framework accounted for the

other 1.6%. An analysis of the phonetic recognition results suggested that our recognizer

may su�er from excessive insertions of function words, particularly \the." Care will have

to be taken to address this problem in subsequent work.
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Chapter 4

Word-Spotting

In this chapter, we describe a word-spotting system based on angie. The task of word-

spotting is to detect the presence of a set, typically a small set, of keywords in speech. We

will be testing our angie-based word-spotter on trying to detect the city names in atis. Our

goals in implementing a word-spotter are several. We want to further evaluate the feasibility

of angie. We want to work towards a continuous speech recognition system. One of the

pieces missing from the phonetic recognition system was the lack of lexical constraints on

what phonemic sequences form legitimate lexical units, typically words, in the lexicon.

A word-spotting platform allows us to experiment with including such constraints in the

search process in a more controlled manner than attempting full recognition. In the limit,

we can think of a word-spotter with many keywords as approaching a full recognizer with

the keywords being the vocabulary. Word-spotting is a task which typically includes a

combination of both known words, the keywords, and unknown words, usually modelled via

�ller models. This combination allows us to experiment with di�ering sublexical constraints

on the unknown word space.

We will begin this chapter with some background information on the standard evaluation

methodology, which we adopt, for word-spotters, along with a brief summary of prevalent

approaches to the word-spotting task. Next, we will describe our implementation of a word-

spotter using the angie framework. Finally, we conclude with the results from a series of

experiments involving a range of subword constraints on the �ller model, from simple phone

bigram to full word recognition, conducted within the angie-based word-spotter.
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4.1 Background

4.1.1 Evaluation Methodology

In a word-spotting task, the goal is to detect the appearance of one or more keywords in an

utterance. However, detection percentage by itself is insu�cient as an evaluation measure.

We would not want a system which frequently claims that a keyword is present when in fact,

the keyword is not present. Thus, we must take into account the number of false alarms as

well. The two obvious extremes in the tradeo� between detection and false alarms are to

have no detections/no false alarms or 100% detection and lots of false alarms. Naturally,

neither of these operating points are desirable. Instead we want a point in between the

extremes. Better yet, we want to be able to choose an operating point along a curve of

possible operating points.

The curve to which we have referred is known as the receiver operating characteristics

(ROC) curve and is a fairly common way of characterizing a word-spotter's performance.

Typically, we have detection rate on the vertical axis and false alarms per keyword per hour

of speech (fa/kw/hr) on the horizontal axis. Both axes are usually reported on a percentage

basis, so for example, 5 fa/kw/hr refers to 0.05 false alarms per keyword per hour. Detection

rate at n fa/kw/hr (p(n)) is computed as follows. For each keyword, order the hypothesized

detections by descending score. Mark each hypothesized detection as a hit or a false alarm.

A hit is de�ned as the midpoint of the hypothesized keyword time span falling within the

time span of an actual occurrence of that keyword. p(n) is then the number of keywords

scored above the n'th false alarm1 divided by the number of keyword occurrences in the

test set. A more detailed description of this procedure is given in [73].

To facillitate comparison of various word-spotting systems, a summarized �gure of merit

(FOM) ([73], [6]) is typically cited. The FOM is the detection rate averaged over one through

ten fa/kw/hr. The calculation of the FOM accounts for boundary data points on the ROC

curve and is given by:

FOM =
1

10T

0
@�p(N + 1) +

NX
j=1

p(j)

1
A (4.1)

� = 10T �N (4.2)

1This is summed across all the lists for all the keywords. The n'th false alarm is the n'th time a false

alarm occurs in each list.
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T = number of hours of speech (4.3)

N = first integer � 10T �
1

2
(4.4)

For our evaluation, we will be considering the set of city names in atis as our keywords.

The list of keywords along with their frequency of occurrence in training and test data are

given in Table 4-1. We chose this particular keyword set because work on word-spotting

with this set of keywords and in the atis domain2 has been performed in the area of varying

acoustic units by Manos ([45]), and we can use the results there as an approximate guideline

for judging the competitiveness of our system.

4.1.2 Typical Approaches

There are two primary approaches to word spotting. One of them is to perform full con-

tinuous speech recognition and then detect the presence of the keywords in the recognized

speech ([75], [65]). While deceptively primitive and computationally expensive, this ap-

proach seems to yield the best results in many cases ([45]). The competing approach is to

model the keywords and the background \garbage" or \�ller" separately. Either a frame-

based HMM approach (e.g., [62]), a segmental approach (e.g., [45]), a neural network (e.g.,

[1]), or a combination (e.g., [42]) can be used for the word spotter. While this approach

does not typically outperform the continuous speech recognition approach, it does have the

bene�t of requiring less computation. Also, there is the possibility of combining background

�ller models with a continuous speech recognition approach. Such an approach has been

found to be not too promising when whole word �ller models are used ([75]) but much more

promising when subword �ller models are used ([64]).

4.2 Angie Word-Spotter

For our word-spotter, we adopt a �ller model approach. We use angie as the subword lexical

model for both the keyword and �ller space, the sole di�erence being that for the keywords,

we introduce an additional constraint on the permitted phonemic baseform, whereas for the

�ller space we allow any phoneme sequence. For the score to associate with each keyword

hypothesis, we take the di�erence in path score at the beginning and end of the hypothesized

2But with a much larger data set than the subset we have selected
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Keyword Training Count Testing Count

atlanta 74 4

baltimore 120 11

boston 116 16

burbank 42 27

charlotte 134 20

chicago 164 46

cincinnati 87 17

cleveland 145 18

columbus 82 3

dallas 70 20

denver 210 26

detroit 82 11

houston 119 19

indianapolis 144 32

kansas city 184 23

las vegas 158 34

long beach 64 1

los angeles 125 17

memphis 115 34

miami 243 39

milwaukee 219 53

minneapolis 93 6

montreal 89 16

nashville 73 10

new york 294 44

newark 162 17

oakland 23 18

ontario 30 7

orlando 197 51

philadelphia 30 5

phoenix 150 34

pittsburgh 89 12

saint louis 110 27

saint paul 65 4

saint petersburg 68 11

salt lake city 109 35

san diego 109 14

san francisco 177 7

san jose 87 12

seattle 149 30

tacoma 81 10

tampa 72 15

toronto 141 17

washington d c 57 7

westchester county 24 4

Table 4-1: Our set of keywords and their frequencies in training and test sets.
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keyword. At �rst, we thought that the simple addition of lexical constraints to our phonetic

recognition system from Chapter 3 was all that was needed. However, this implementation

performed poorly.

A closer examination revealed that a major contributor to the poor results was a mis-

behaving search strategy. Speci�cally, the problem of comparing short vs. long theories

exhibited the following phenomenon, which manifested itself in the word-spotter. Suppose

an utterance has a low scoring region within it. As the paths approach this region, their

scores would naturally drop, pushing them to the bottom of the stack. At the bottom of the

stack, the paths encounter the very real risk of being pruned due to low scores compared to

other paths in the stack. In fact, such pruning does tend to occur. So the situation is, the

best paths entering the bad region are the ones most likely to be pruned. Now, we are left

with the lower scoring paths entering the bad region. Since the stack only has lower scoring

paths by now, these are the ones which survive past the bad region. One obvious solution

would be to increase the stack size to reduce the e�ects of pruning. Unfortunately, with

our implementation, this results in unacceptable running times. One natural question to

ask is what happened to the balancing heuristics we used in phonetic recognition and why

our search strategy worked for phonetic recognition but not for word-spotting. Our belief

is as follows. In the task of phonetic recognition, getting a small number of phones wrong

is not disastrous. However, when we have to decode the phones into real keywords, the

impact is substantially greater since we need to hypothesize longer, accurate consecutive

strings of phones in order to decode successfully into keywords. Of course, the probability

of making no errors decreases when a longer string must be correctly hypothesized, in some

cases exponentially, with the length of the string. The previously successful heuristics em-

pirically proved insu�cient in our word-spotter. We experimented with a variety of other

heuristics to try to salvage the system, but eventually we decided to explore alternate search

organizations. The one which proved most successful for us was the stack decoder.

4.2.1 Stack Decoders

The basic stack decoder was introduced by IBM in the 1970s ([30]). A typical stack decoder

operates as follows, as described by Doug Paul ([56], [55], [57]):

1. Initialize the stack with a null theory.
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2. Pop the best (highest scoring) theory o� the stack.

3. Perform acoustic and language-model fast matches to obtain a short list of candidate

word extensions of the theory.

4. For each word on the candidate list:

(a) Perform acoustic and language-model detailed matches and add the log-likelihoods

to the theory log-likelihood.

i. if (not end-of-sentence) insert into stack.

ii. if (end-of-sentence) insert into stack with end-of-sentence ag = TRUE.

5. Go to 2.

The description above describes a procedure that is essentially identical to a best-�rst

search if the stack3 were a priority queue. However, a typical implementation of the stack

di�ers from a priority queue in one crucial respect. Instead of sorting the theories solely by

decreasing order of score, we �rst sort the theories by increasing order of time, and then by

decreasing order of score. Thus, when we remove a theory from the stack, we are always

removing a theory which is one of the theories furthest behind in time. This also has the

e�ect of causing all theories which end at a particular point in time to be explored together

as a group.

The fast matches referred to in step 3 are computationally inexpensive scoring mecha-

nisms for reducing the number of word extensions which must be checked with the more

expensive detailed matches ([3], [5]).

A feature of the stack decoder organization worth mentioning is that there tends to

be an \active window" over which the search algorithm is actively pursuing at any given

time. This is enforced by the primary sort of the theories by time. This has a potential

advantage in that the search progresses in a regular, left-to-right manner, which is conducive

to pipelined implementations, easing the implementation of systems with features such as

\always live" microphones. This also has a potential disadvantage in that very promising

theories are not allowed to progress much faster than other theories, as would be the case

with a best-�rst search.

3Note that the use of the term stack here is borrowed from the speech recognition literature and bears very

little relationship to the use of that term in computer science literature to describe a LIFO data structure.
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4.2.2 Angie's Stack Decoder Implementation

For our word-spotter, we adopt a variant of the stack decoder. We use no fast-match and

we advance by the phone instead of by the word. Also, we employ the pruning strategies

we had used with our phonetic recognition system (Chapter 3) with two modi�cation: 1)

At word boundaries, we have to match not only the last phone, but also the identity of

the last word before we can prune, and 2) Instead of constraining the total queue size and

the number of paths crossing a given boundary, we now limit the number of paths ending

at each time boundary. We have no overall restriction on total stack size, but because

each hypothesized segment can span only a small number of boundaries, there is a de facto

limit on overall stack size, hence, keeping memory usage manageable. We have not chosen

to have the causal silence detector in our word-spotter. After some experimentation, we

discovered that our acoustic models have successfully learned what silence is through the

many iterations during our phonetic recognition work, and are actually better at classifying

silence than the causal silence detector.

The use of the stack decoder implementation yields much more acceptable results. We

believe that the e�ectiveness of this particular search organization derives from a critical

statement we made earlier, namely, that all theories which end at a particular point in time

are explored together as a group. Thus, the theories competing against each other during

the search process all cover the exact same acoustic space. As the reader may recall from

our earlier discussion of search in phonetic recognition, the problem of balancing short vs.

long theories is a major one. With the stack decoding strategy, the theories cover the same

time span, and hence, require less normalization before they can be e�ectively compared.

In our �nal word-spotter implementation, we eliminated the mean-entropy normalization

and time rewards used in the phonetic recognizer. With roughly comparable theories, the

mean-entropy normalization actually degrades our word-spotter in our experiments. The

time reward is, of course, irrelevant since all theories compared will have the same time

reward. We did not remove the phoneme reward because there remains the issue of how

to compare theories of di�ering linguistic lengths; that is, one theory may hypothesize a

long phonetic sequence and another a short one even though they both end at the same

point in time. An alternative way of organizing the stack decoding strategy might be to

sort the stack �rst by the number of linguistic units in each theory rather than by time, in
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which case, we can eliminate the phoneme reward instead of the time reward. We did not

explore this alternative because we were satis�ed with our word-spotter's performance with

the current search strategy.

While we were satis�ed with having removed a major heuristic, the mean entropy nor-

malization, we did have to add one new heuristic. However, this heuristic is a simple set

of constants and is easier to understand and justify than the mean entropy normalization.

We included a reward for the detection keywords to encourage their selection. This is a

common technique (e.g., it was used in [45]) to improve performance, since predicting extra

occurrences of keywords does not increase the false alarm rate unless the scores are not

su�ciently discriminating. As long as the false detections have lower scores than actual de-

tections, introducing them does not negatively impact either the ROC curve or the FOM.

The keyword rewards were optimized on development data in our �nal system. We defer

the actual performance comparison until we present our comparison of possible subword

lexical �ller models.

4.3 Varying Subword Lexical Model for Fillers

With our basic angie word-spotting system implemented, we decided to conduct a series of

experiments in which we varied the subword lexical constraints on the �ller model. There

has been quite an amount of previous work in terms of exploring the e�ects of acoustic

modelling on word-spotting, in terms of keyword-dependent acoustic models, etc., (e.g.,

[63], [64], and [45]), but relatively little in the area of lexical models. Few researchers

have held the acoustic models constant and focused on the lexical constraints. The only

reference we came across in this area was Meliani and O'Shaughnessy [46] where the authors

considered implementing the �ller model as an alteration of the lexical models only, and

not of the acoustic models. In that work, the authors looked at using syllables to model the

�ller space. We will mention some more details comparing our results to those of Meliani

and O'Shaughnessy when we discuss our experimental outcome.

In our work, we will vary the subword lexical model for the �ller space from a relatively

simple phone bigram to a highly constraining full word model. Angie's framework provides

us a great deal of exibility in the design of the �ller model. Our hypothesis is that the more

constraining the model, the better the performance. The success of using full recognition for
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word-spotting supports this viewpoint. However, we will also try to quantify exactly how

much various constraints contribute to performance along with determining running speed

vs. performance tradeo�s. The subword lexical models we have looked at are as follows:

Phone Bigram A phone bigram model constrains the probability distribution of phones in

the �ller space. This model is roughly comparable to the context-independent phones

as �llers con�guration in [45]. We will use this as a baseline.

Pseudo-words Angie is trained with full knowledge of the atis lexicon, but during word-

spotting, the word constraints for the non-keywords are removed. Thus, similar to

our phonetic recognition setup (Chapter 3), the system proposes possible subword

structures for the �ller space and governs where the proposed \pseudo-words" can

end. Recall from the discussion on phonetic recognition that nonsensical and novel

syllables are permitted, but a constraint is imposed on syllable order. An example of

a pseudo-word might be afth: [ae f th] (the example we saw in Chapter 3).

Syllables Angie has access to a lexicon of permissible syllables and proposes combinations

of these for the �ller space. Since the syllable is the highest level unit, we simplify the

probability model across syllable boundaries to be based only on left-phone context,

as is the case for word boundaries. Also, we do not restrict the ordering of syllables,

so nonsensical orderings are permitted. An example of a syllable sequence is ciscofran:

[s ih s kcl k uh f axr n].

Morph Constraints Angie has a lexicon of morph-like units, which are essentially sylla-

bles but with additional designations for relative ordering, as in the pseudo-word case.

These morph-like units are combined to propose pseudo-words. We use the full angie

probability model within each morph-like unit; however, other than the constraint on

ordering, novel and non-sensical combinations are not prohibited. An example of a

valid pseudo-word with morph constraints is conighting: [kcl k aa n f l ay tcl t iy

ng].

Known Words plus Pseudo-Words Angie has a lexicon of approximately 1200 known

words. These words are governed by the full angie probability model. However, we

additionally permit pseudo-words, which we implemented as in the morph constraints
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case. Our original thinking was that the use of pseudo-words can help model out-of-

vocabulary words in the �ller space and hence, lead to improved performance. Note

that we do not allow for cross-word language models, such as a word n-gram, because

we want the comparison to be focused on subword models. (There is, of course, the

left-phone context advancement probability in angie.) We do not use a word unigram

model either, except for the keyword boosts as described earlier.

Known Words Only As in the preceeding case, but no invention of pseudo-words is per-

mitted.

The list above is presented roughly in the order of increasing constraints, with the

exception of the syllables and morph constraints cases, which are not directly rankable in

this dimension. Each of the above cases can be implemented via a con�guration of the

angie grammar or a setting of angie parameters. For example, to implement a phone

bigram, we replace the normal context-free rules, of which examples were given in Chapter

2, with very simple ones. We associate one phoneme-like unit with each phone. Each

phonemics-to-phonetics rule is simply the phoneme-like unit non-terminal on the left-hand-

side and the phone terminal on the right-hand-side. The rules governing the upper layers

consist of one non-terminal for each layer, with a rule for each layer generating the next,

and the syllabi�cation layer generating all possible phoneme non-terminals. Of course, these

rules and non-terminals are in addition to our regular set used to model the keywords. In

all cases, cross-word language constraints were avoided, to focus the comparison on the

subword lexical model.

4.3.1 Experimental Results

We summarize the results of our �ller model experiments in Table 4-2 and Figure 4-1. We

also include an entry for running the full summit recognizer to perform word-spotting to

establish an upper limit on performance, since full recognition is generally believed to be

one of the best approaches to word-spotting. We also include relative execution times of

the various constraint sets. The times are normalized to the pseudo-words case rather than

to real time because we have not invested the engineering e�ort to bring our angie word-

spotter up to competitive speeds. We omit the time for the phone bigram case because that

can be implemented an order of magnitude faster using a Viterbi search, so a comparison
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Filler Model FOM Relative

Time

Phone Bigram 85.3 -

Pseudo-Words 86.3 1.00

Syllables 87.7 0.56

Morph Constraints 88.4 0.79

Known Words + Pseudo-Words 88.6 0.79

Known Words Only 89.3 0.74

Full Recognition w/Word Bigram 93.9 -

Table 4-2: Word-spotting FOMs for various �ller models. Smaller relative times indicate

faster running times. The pseudo-words case is normalized to have a relative time of 1.00.

Word-level statistics are excluded from all but the last system.

based on the current implementation would not be a fair presentation.

The general trend is that performance improves with increasing sublexical constraints

being imposed upon the �ller model. This is as we predicted, that having a more detailed

model leads to better performance. However, we should point out that our original hypoth-

esis that having both known words and pseudo-words is desirable, since the pseudo-words

can model the out-of-vocabulary words, was not validated empirically. Not having any

pseudo-words at all resulted in better performance. We suspect that we may not have

enough out-of-vocabulary words in our test set. It turns out that with a 1200 word vocab-

ulary, the occurrence of out-of-vocabulary words was only 0.82% in the test set. However,

cutting the vocabulary down to 400 words4, which raises the out-of-vocabulary fraction to

8%, did not change the relative rankings. We had to trim the vocabulary size down to

200 words, with an out-of-vocabulary fraction of 14%, before the pseudo-words begin to

help. We do not have a conclusive explanation for this observed behavior, but we suspect

that having out-of-vocabulary words, while found to be a signi�cant problem in recognition

(e.g., [25]), is not as much of a problem in word-spotting, since making mistakes in the �ller

space is not penalized by the scoring methodology, with the exception of hypothesizing a

false alarm. However, allowing pseudo-words creates possible competition for the keywords,

since keywords can be modelled by pseudo-words as well, albeit, with possibly lower scores.

Something unexpected shows up in the speed comparison as well. We typically attained

4Taking the 400 most frequent words, as determined by training data statistics, plus the keywords as the

vocabulary.
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Figure 4-1: ROCs for various �ller models.

improved speed along with improved FOM performance. We believe the reason for this

positive tradeo� is because the more constraining models, although more computationally

expensive to run the parser on, also narrow down the search space more by eliminating

unreasonable theories. In our case, the smaller search's bene�ts far outweigh the extra

work we have to do in the parser. Another interesting observation to make about running

speeds is the extremely fast operation of the syllables system. The reason for this is that at

the syllable boundaries, we need only compare left-phone contexts before pruning since that

is all the angie model carries across the syllable boundary. Syllable units are shorter than

word units; hence, we have many more opportunities to prune. This general theme of �nding

more opportunities to collapse theories and prune is quite prevalent in our implementation

experience. We �rst encountered it with our phonetic recognition system (c.f., Chapter 3)

where we reduced the angie context across word-boundaries to that of a left-phone context

in order to promote merging of theories at word boundaries. We will encounter this issue

again when we discuss integrating an angie recognizer with the tina natural language

processing system in a later chapter.

The results presented in this section are di�cult to compare directly to other results in
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the literature. The most direct comparison we can �nd is with a result presented in the work

of Meliani and O'Shaughnessy ([46]). In that work, the authors developed a word-spotting

system with strictly lexical �llers, that is, the only di�erence between keyword and �ller

models were in their lexical, and not acoustic modelling, much as is our case here. In that

work, with context-dependent acoustic phone models, the authors found that syllablic �llers

outperformed phonetic �llers. The other work we would like to mention is that of Manos

([45]). Manos' focus was roughly a mirror image of our focus. He studied a range of �ller

models, but in terms of acoustic rather than lexical �llers. His work reached a conclusion

similar to ours with respect to more detailed models leading to improved performance, but

in the acoustic instead of lexical domain. Although Manos used a larger data set than we,

our results for the phone bigram �ller when compared to the full summit recognition result

showed a comparable di�erence to Manos' comparison of his \CI �llers" system, which

is essentially the same as our phone bigrams, and his full summit baseline. Our FOM

dropped from 93.9 to 85.3 with the phone bigram. Manos' FOM dropped from 89.8 to

81.8 with his CI �llers. Our FOM drop was 8.6 and Manos' was 8. These are not directly

comparable on account of di�erent data sets, but because both cases involved atis and city

names as keywords, there is some relationship between the two experiments. We �nd the

similarity in drop vs. the baseline reassuring insofar as we believe our angie framework to

be competitive.

4.4 Summary

In this chapter, we discussed our word-spotting task within the atis domain. We choose to

evaluate our angie word-spotter on the task of spotting the city names in atis, since the

choice of cities as keywords is documented in the literature. We started by discussing eval-

uation methodologies and the trade-o� between detection percentage and false alarms. We

presented the receiver operating characteristics (ROC) curve as a standard representation

of the trade-o� from the literature, along with the �gure of merit (FOM) summary statistic.

Next, we described our implementation of an angie-based word-spotter, particularly our

problems with the best-�rst search used successfully in our phonetic recognition system

from the last chapter. We switched to a stack decoder strategy, which proved much more

e�ective. We believe that the primary reason for the stack decoder's better performance is
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that it always compares theories ending at the same boundary, hence theories which cover

the same acoustic space. This mitigates the di�culties in balancing scores for theories of

di�erent lengths.

With a functional word-spotter, we described a range of experiments where we varied

the subword lexical constraints for the �ller model. We considered, in order of increasing

constraint, phone bigram, pseudo-words invented by angie, syllables, morph-like units (es-

sentially syllables with ordering constraints), full words plus pseudo-words, and full words

only. We discovered, as anticipated, that performance generally improved with increased

constraints. However, we were surprised to see that having pseudo-words in addition to

known words, in an attempt to model out-of-vocabulary words, hurt the process, even if

we lowered the vocabulary coverage of the test set to 92%. To make the pseudo-words

helpful, we had to lower coverage further to 86%. We believe that in word-spotting, hav-

ing the pseudo-words potentially cover the keyword space is detrimental unless there is a

high percentage of unknown words, which would bene�t from the pseudo-words. We also

discovered, perhaps surprisingly, that speed actually tends to improve with the more con-

straining models, so there is a positive speed vs. FOM trade-o�. We believe that the extra

constraints narrowed down the search su�ciently to o�set the added computational cost of

their implementation. Of all the �ller models compared, the syllables model ran exception-

ally fast. This was probably due to the additional pruning possible at syllable boundaries.

This may suggest that the syllable could form a productive unit for bottom-up processing

into an intermediate representation for further consideration by a linguistic processing sys-

tem, such as a natural language understanding system. We will explore this possibility in

our work on continuous speech recognition (Chapter 5). However, we will discover that the

apparent advantages of syllables are o�set by other disadvantages, at least for the English

language.
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Chapter 5

Continuous Speech Recognition

In this chapter, we describe the implementation of a full speech recognition system based

on the angie framework. We consider word recognition to be the �nal and most di�cult

test of the feasibility of angie as a sublexical modelling infractructure. We will explore

using both words and syllables as lexical units in our system. Our �nal results show that

we can implement a recognizer using angie that is competitive in performance, though not

in speed, with a baseline system using summit. In both cases, a word bigram provides the

word language model constraints. More interestingly, we will also explore the integration of

the angie framework with a context-free grammar based natural language understanding

system, tina ([69]). We will show that the angie framework can indeed be integrated in

a tight manner, without the use of N -best lists or word graphs, and that this integration

leads to a 21% drop in recognition error rate as compared to a word bigram, whereas N -best

resorting with tina leads to only a small improvement.

5.1 Experimental Framework

In this chapter, we will be evaluating our angie based recognizer on the task of word recog-

nition. However, because our system is still in the developmental stages, and because we

want to speed up the development/test iteration cycle, we will be operating our recognizer

on phone graphs which have been pruned down to a more manageable size rather than

the full phone graph hypothesized by the front-end from the raw waveforms. The pruning

is done by using the baseline summit recognizer with a word bigram language model and

keeping only the phones which occur on the higher scoring paths. We will consider the
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the paths that correspond to the top N (100 in our case) theories. This technique is an

adaptation of the common practice of working from word graphs in the word language mod-

elling community. There, a recognizer generates a word graph from the higher scoring paths

encountered during recognition using some baseline con�guration. This word graph is then

searched with the language model under development. Since we are dealing with subword

modelling, we naturally extend this development and evaluation paradigm to a graph of

subword units, in our case, phones, because phones are what the angie framework takes

as initial inputs. We use this technique to reduce both the time and space complexities

of our recognizer, which, in its current state, has not been su�ciently engineered into a

system that operates in an acceptably e�cient manner when processing raw waveforms1.

It may indeed turn out that some form of �rst stage \fast match" recognition may be an

appropriate design for a practical system.

As in our phonetic recognition work (Chapter 3), we will be using error rate as the eval-

uation function, except that instead of measuring phone error rate, we will be considering

word error rate. We will also be using the same training, development and test sets used

previously in phonetic recognition and word-spotting.

5.2 Basic Recognizer Implementation

The implementation of a basic recognizer using angie for its sublexical model and using

a word bigram for the word level language model is relatively straightforward. The same

fundamental setup from our word-spotting work (Chapter 4) extends naturally and e�ec-

tively to a word recognizer. We incorporate the word bigram statistics at the end of a

putative word. The stack decoding strategy from our word-spotter proves workable for

word recognition. The pruning mechanisms from the word-spotter also prove to be safe for

our recognizer. They took into account a single word left-context when considering whether

a pruning operation is safe or not in order to distinguish keywords from each other and

keywords from �llers. Because we are using a word bigram for the word level statistics, a

single word left context is a safe mechanism for the current task as well. If we were using

longer context n-grams, then the pruning would need to be changed to examine longer

left-contexts. Two changes were needed, however, and we mention them next. The �rst

1We leave such engineering optimizations to future work.
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change is the elimination of the keyword boosts used in the word-spotter. The other change

is more substantial and we devote a detailed discussion to it because, like our switch to

a stack decoder when we implemented the word-spotter (Chapter 4), we learned a lesson

about engineering search organizations that is not readily apparent except through empirical

experimentation.

5.2.1 Homonym Related Search Issues

The other change addresses a familiar but delicate trade-o� that has to do with homonyms.

In the word-spotter, we did not encounter any homonyms because our keyword set did not

have any homonyms. Even with words for the �llers, we could safely ignore homonyms,

since errors in the �ller space do not penalize us and because no cross-word constraints were

used. The issue with homonyms in a bottom-up system, such as angie, is what to do with

the two or more theories being proposed bottom-up for each homonym. We can either keep

the two theories bundled together riding \piggy-back" or we can split them into di�erent

paths in the top-level search. We have encountered this issue once before, in handling

multiple angie parses for a given phone sequence (Chapter 2). There, we have decided

to keep the theories bundled together and to take the highest score as the representative

score for the bundle. However, theories which lead to word terminations are split out into

a bundle separate from the partial word theories. The main factor a�ecting this decision

is an e�ciency vs. search accuracy consideration. With the theories bundled, because we

are taking a representative score instead of the actual scores, we introduce the potential for

suboptimality in the search. However, bundling the theories reduces the number of paths

which must be pursued independently, and improves both the time and space requirements

of the search. Whether the suboptimality which results from bundling is detrimental enough

to o�set the time and space bene�ts of bundling is an empirical issue.

In the case of multiple angie parses for the same phone sequence, bundling the theories

was almost a necessity because of the large number of possible parses for many phone

sequences. However, when it comes to recognizing words, the potential search errors of

bundling pose a much greater risk. Our initial attempt at implementing a recognizer with

bundling proved disappointing enough that we reimplemented the search with the di�erent

homonyms separated out. We believe the reason for this is the importance of the word

bigram statistics, which in the bundled case, are taken from the best scoring homonym.
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Recognizer Total Sub Del Ins

Summit 18.9% 11.7% 4.9% 2.3%

Angie Syllable Units 26.6% 14.4% 8.7% 3.5%

Angie Word Units 18.8% 11.7% 4.2% 2.9%

Table 5-1: Recognition error rates for summit and angie based recognizers employing a

word bigram.

However, when we reach the end of the next putative word, there is a very real, and

empirically damaging, possibility that the greedy choice of the best previous word is no

longer appropriate. The net result appears to be that the distorted scores cause many more

correct theories to be dropped from the stack due to pruning. Thus, we modi�ed the search

to unbundle homonyms into separate theories, but only after the acoustic scores have been

consulted on a shared bottom-up theory. The concept of bundling vs. unbundling will be

revisited again when we describe tina natural language integration. We believe it to be an

important, albeit seldom enunciated, engineering issue when organizing search strategies

for recognizers.

5.2.2 Basic Recognition Results

The word error rate results of our angie based recognizer are summarized in Table 5-1. We

include the results for both a baseline summit system and our angie-based system. We

also include the results of an angie-based system where the lexical unit is a syllable instead

of a word; that is, angie's lexicon consisted of a list of syllables and their baseforms. A

separate lexicon of words and their decomposition into syllables was used to decode words

from the syllables. No intermediate syllable graph is created. Rather, the word decoding

constraints are applied on-the-y as hypotheses with syllables are generated bottom-up by

the angie recognizer.

As can be seen from the table, the use of words in an angie-based system is competitive,

but the use of syllables falls short. A likely explanation is that having the strong constraints

at the syllable boundaries is bene�cial to performance, and therefore, their removal results in

a large degradation. As we had previously observed, the use of syllables as �llers provided a

tremendous speed advantage in our word-spotter (Chapter 4), but their use actually slows

down our recognizer when we have to decode into words. A possible reason for this is
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Angie Summit

Sub Del Ins Sub Del Ins

ight ! ights the the ight ! ights the a

ights ! ight a and a ! the a the

a ! the is to ights ! ight to to

list ! is in a which ! what i and

y ! ight of on in ! and of in

Table 5-2: Top �ve errors for angie and summit word recognition systems

that in word-spotting, there is no need to decode into words, so pruning can happen at

syllable boundaries. For word recognition, we do not have this advantage. Worse yet,

the removal of the stronger constraints at syllable boundaries leads to a much bushier

search space, increasing the time requirements. We should caution, however, that the

poor performance of syllables in English does not necessarily imply that for languages

where syllables are the natural lexical unit (e.g., Chinese), syllables will not perform better.

One of our main motivations for attempting syllables was that we wanted to integrate a

natural language understanding system together with our angie recognizer without having

to ever decode into a word representation, so that the same arrangement can carry over

naturally into such syllable-based languages. A syllable-based approach can also facilitate

a vocabulary-independent recognizer implementation. However, after our disappointment

here, and continued disappointment when we attempted NL integration, we decided to stay

with words when dealing with English.

The top �ve errors in each category (substitutions, insertions, and deletions) for the two

systems are given in Table 5-2. A closer comparison of the angie and summit systems

does not show any remarkable di�erences. In both cases, the top three substitution errors

were the same and the next two were words common in the atis task. The top deletion

and insertion errors in both cases were short function words, which is to be expected since

they are both frequent in occurrence and incur little acoustic and linguistic penalty when

deleted or inserted. Angie tends to have extra insertions over deletions, however, unlike the

agrant case with the [dh] phone in our phonetic recognition system (Chapter 3), we do not

consider the percentage di�erence, nor the evidence gathered from a random examination

of several recognized utterances, to warrant concern.
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5.3 Natural Language Integration

Another major goal of our work in angie recognition is the integration of natural language

understanding constraints in a tight manner, without having to generate either an interme-

diate N -best list or a word graph. As has been noted by other researchers (e.g., [52]), the

incorporation of NL constraints has generally not resulted in much improved recognition

performance when measured by word error rate. However, we observe that as the integra-

tion becomes tighter, for example, when word graphs are used instead of N -best lists, the

results are more promising (e.g., [71]). Since angie's recognizer uses a search strategy that

supports parsing and long distance constraints, it should be relatively straightforward to

integrate the NL constraints directly into the recognition search process.

We would like to mention two prior attempts at integrating NL into the recognition

process itself, as opposed to a feed forward process involving N -best lists or word graphs.

In Zue et al. ([77]), one of the approaches taken was to compile an NL grammar into a word

n-gram. While this does permit some NL constraints to be applied during the recognition

process, a word n-gram is substantially less powerful than a context-free grammar with

probabilities. For example, it is possible for this approach to admit a sentence which

cannot be parsed by the grammar. Finally, this approach cannot not directly lead to a

meaning representation at the end of recognition process. Another interesting approach

is that of Goddeau ([21]). There, a shift-reduce parser is integrated into an A� search

in a manner very similar to how we will integrate an NL system into our stack decoder.

However, the parser used was not truly an NL system in that it was unable to generate

a meaning representation. Further, the important issue of robust parsing, which we will

address later in this section, was handled in a manner that cannot be used to derive a

meaning representation. Speci�cally, in the event of a parse failure, Goddeau's system

backed o� to a word n-gram. Finally, we should note the author reported only small

performance improvements, citing as a possible culprit a problem with the future estimate

used in the A� search. The author further suggested as a future possibility the use of a

stack decoder, which does not require a future estimate. In our work, we will be pursuing

such a strategy.
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5.3.1 Tina and Top-Down Processing

For our NL integration work, we used MIT's tina system ([69]). Like angie, tina is also

based on a context-free framework. The context-free rules used by tina are also written by

hand, as is the case with angie. Tina has several other features worth mentioning:

Constraints Constraints are used for certain syntactic features such as number agreement

and verb tense enforcement. These are items which would be unwieldly to express in

a pure context-free grammar because it would require categorizing non-terminals by

their features, resulting in a dramatic expansion of the grammar, especially since many

non-terminals can have multiple feature categorizations. Constraints are also used to

handle gaps which are fairly frequent in wh-queries in English. For example, the wh-

query \What meals does this ight serve?," can be thought of as corresponding to the

same deep structure as the normal ordered sentence, \Does this ight serve dinner?"

Constraints are used to enforce where moved constituents may be \absorbed." A

more detailed discussion can be found in [69].

Probabilistic Framework As in the case of angie, tina also has a probability model to

better select among multiple errorful inputs presented to it by a recognizer, or among

ambiguous parses for a single hypothesis, or among a combination of both. As in

angie, the framework is organized to easily generate a probability for the next word

given the preceeding partial parse tree.

Automatic Training The probabilities in tina are automatically derived from training

data as in angie. This permits tina to learn information from training data, in

addition to the information provided by the human engineered rules and constraints.

Robust Parsing Ungrammatical sentences are frequently encountered, either due to care-

less verbalization, or due to recognition errors. A natural language system needs to

handle such sentences without completely failing to parse. Tina includes such a

mechanism for robust parsing.

Instead of pursuing a bottom-up strategy, tina is primarily a top-down driven system.

So, instead of starting with the �rst word in a sentence, and pursuing possible theories

which start with the given �rst word, tina starts with the sentence, and pursues possible
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derivations from that until it �nds theories which can start with the given word. The

di�erent top-down tina and bottom-up angie strategies reect a design philosophy which

we had earlier enunciated. Namely, as we discussed in the introduction to this thesis, below

the level of the word (or other lexical unit), we want bottom-up sharing. However, above

the lexical level, we �nd it much easier to capture phenomena such as gaps in English via

a top-down strategy. It is possible to capture gaps bottom-up, however, it is conceptually

trickier to visualize the process. For example, we will have to be constantly proposing

possible acceptor locations, with little constraint, for each hypothesized trace and carrying

the proposals towards the top of the parse tree to verify or reject them. The alternative, to

pursue a uniform top-down strategy, even below the lexical level, is also possible. However,

we feel that certain desirable features, such as widespread sharing of word substructure,

and also the support of new word theories, which we ultimately want angie to be able to

handle, will be di�cult to implement top-down.

Given that we are keeping a top-down design for the supralexical parser and a bottom-up

design for the sublexical parser, the natural organizational point is at the level of the lexical

units. Since we are using a stack decoder, which supports long distance constraints, this is

not too di�cult. Essentially, we have angie propose the words bottom-up. At that point,

the stack decoder consults tina for an NL score, much as it previously consulted a word

bigram, merges the two scores, and puts the new theory back onto the stack. An illustration

of this process is shown in Figure 5-1. Because there is pruning at three levels, �rst in terms

of a maximum number of angie theories per phone sequence, then in terms of a maximum

number of tina theories per word sequence, and �nally, in terms of a maximum number of

recognizer theories on the stack, this organization is not as integrated as a single massive

search that prunes at only one location. As an example, perhaps a poor angie theory may

be o�set by a very good tina score, but it will still get pruned in our organization since the

angie theories are pursued separately from the tina theories. However, our integration is

still much tighter than a word graph organization. The reason is that this separate scoring

gets uni�ed together at each word boundary. With a word graph, the entire word graph is

generated without any information from the NL system, hence, the separate scoring is only

integrated at the end of the utterance, resulting in a much greater possibility of errors due

to the pruning involved in generating the word graph.
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ANGIE Theory

ANGIE Theory

ANGIE Theory

ANGIE Theory

ANGIE Theory

word n

TINA Theory

TINA Theory

TINA Theory

TINA Theory

2. ANGIE proposes word end
and returns score to stack decoder

1. Stack decoder passes phones
to ANGIE for scoring

3. Stack decoder asks TINA
to extend its theories by word n

word n

1

2

34. If TINA returns a valid parse,
then word n is added to the

stack decoder theory in place
of the phones which constitute

the word.

4

TINA

ANGIE

Stack Decoder

Figure 5-1: Integration of tina into the search process.
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5.3.2 Robust Parsing

One issue with which we have to deal in our NL integration is robust parsing. Robust

parsing typically allows an utterance to be parsed as fragments, in an attempt to increase

a natural language's coverage. It is di�cult to have the grammar itself have a very high

coverage due to both sloppy verbalization and also recognition errors. We started with the

same tina grammar for atis that was used in the word graph NL integration work of [69].

In that system, robust parsing is handled by having top level grammatical rules whose net

e�ect is similar to2:

sentence ) skip word� [full parse] (skip word j partial parse)�

The idea is that we want to �nd a full parse, embedded in some combination of skip

words and partial parses. A full parse is the most desirable type of parse. It is a well

formed grammatical clause which our NL system can analyze and generate into a semantic

frame. The partial parses and skips are to absorb random surround, such as false starts,

�lled pauses, and other disuencies. Only non-content words are allowed to be skipped.

We discovered that this method of supporting robust parsing results in an extremely bushy

search process, because the NL parser has to hypothesize the possibility of ending a partial

parse or inserting a skip after almost every word. Our initial attempt at using a grammar

with this avor of robust parse support took on the order of forty-�ve to sixty minutes to

recognize a typical atis utterance on a Pentium Pro 200 MHz based machine, clearly an

untenable situation. Even after we reduced the complexity of the grammar somewhat, the

running time was still extremely slow.

We suspected the expense of this particular robust parsing mechanism as the culprit,

so we pursued an alternate strategy. We decided to take the robust parse handling out of

tina and moved it into the recognizer search. The recognizer search takes the following

strategy along a particular path hypothesis. Parse as many words as possible, supported

by full parse theories only. When tina fails, retrace backwards until we �nd a place where

the tina theory can end a \sentence." Then try starting a new parse from that point going

forward. This is not as robust as the previous robust parse mechanism since we restrict the

point at which to reparse to be only the one which requires the least backward retracement

2Here, the * refers to zero or more, the j refers to alternatives, and [] means optional.
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and we do not even consider it at all unless triggered by a parse failure. The more expensive

robust parsing strategies would have considered all possible breaking points, regardless of

parse failure. However, in practice, this greedy strategy turns out to be adequate in our

experiments. We also needed to include a heuristic penalty so that theories with excessive

fragmentation are penalized when compared against comparably scoring theories with fewer

(or no) fragmentation. This alternate implementation operated with much more reasonable

speed, taking roughly 2.5 times longer than with a word bigram rather than two orders of

magnitude longer, as in the full robust parse case.

5.3.3 Merging Theories to Increase Pruning Opportunities

With the introduction of an integrated NL system and hence, extremely long distance

constraints, the opportunities to prune theories at word boundaries, taking only the last

word in the theory into account, is diminished greatly. While we can merge theories which

share the same word sequence, which occur when di�erent acoustic hypotheses decode into

the same word sequence, this results in a signi�cant drop in pruning opportunities. One

of the ideas we explored is to come up with merge categories, that is, to create a set of

categories where the tina theories may be pursued as a merged bundle. An example of

a merge category in our system is a \direct-object." Say a given sequence of words form

a direct-object. Regardless of where in a theory this sequence of words appears, it should

always have the same score. Thus, once this sequence of words has been parsed as a

direct-object, the parse information and score can be shared across all occurrences of the

sequence. In essence what we are trying to do is to reintroduce bundling opportunities

into the NL mechanism. Because of its extremely long distance constraints, it is more

di�cult to locate such opportunities when considering linear sequences of words. However,

by considering subtrees with common categories, we feel that we may have opportunities

to share computation.

We implemented such a strategy with approximately ten merge categories. However,

we did not witness a noticeable impact on either running speed or error rate performance.

A closer evaluation shows that our hypotheses generate relatively few merge candidates.

Perhaps more fruitful merge categories can be chosen. Because our system ran acceptably

in terms of demonstrating NL integration with angie, we chose not to pursue this line

of exploration further in this work. We will comment further about the general issues of
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when to merge and bundle in our concluding remarks in the �nal chapter, as this theme is

prevalent throughout this thesis.

5.3.4 Syllables vs. Words

One observation to make is that if our recognizer were intended to be deployed as part of a

conversational system where understanding, and not word recognition, is the goal, then we

are not really limited to choosing words as the lexical unit. We can, for example, choose

syllables, which may be easier to deal with in terms of exible vocabularies, etc. However,

much as in the case of trying syllables with our basic recognizer, we were not very successful

in the tina intergrated recognizer either. Our suspicions already mentioned for the basic

recognizer are repeated in this case as well. Given our poor track record with syllables and

recognition, at least for English, we did not invest in further examination along these lines.

5.3.5 NL Integration Results

Table 5-3 summarizes the results when the tina NL component is integrated into our

angie recognizer. Included as baselines are the results of summit without tina, summit

with tina 100-best rescoring and angie without tina. As can be seen from the table,

the integrated angie plus tina recognizer performs much better than the baseline bigram

based systems. Morever, tight integration performs much better than an N -best rescoring

attempt using the 100 best summit hypotheses. In that rescoring experiment, we actually

combine the tina score with the summit score (which includes both acoustics, sublexical

model score, and word bigram score) with a weighted linear interpolation. If we try using

the tina score alone, the results were very poor. The weights were selected in a \best

case" manner, via optimization on the test set, so the actual performance of the rescoring

system may be lower. However, our goal is to show that the integrated angie plus tina

recognizer performs substantially better, which we believe to be the case illustrated by the

results provided.

The error rate reduction with tina integration occurred mainly in the substitutions

category. Insertion errors were also reduced but deletion errors actually increased slightly.

The error rate breakdown for various systems are included in Table 5-3. The top �ve

errors in each category for the two systems are given in table 5-4. The top fourth and

�fth substitution errors in the angie plus tina case appear to be directly attributable to
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Recognizer Total Sub Del Ins

Summit w/Word Bigram 18.9% 11.7% 4.9% 2.3%

Angie w/Word Bigram 18.8% 11.7% 4.2% 2.9%

Summit w/Word Bigram and Tina 100-best Resorting 18.2% 10.8% 5.5% 1.9%

Angie w/Tina Integrated 14.8% 8.7% 4.5% 1.6%

Table 5-3: Comparison of recognition error rates with incorporation of tina NL processing

system.

NL confusions. For example, in our grammar, \a" and \an" are generally interchangeable.

Similarly, in most cases, \I" and \I'd" are also interchangeable since \I like" and \I'd

like" are both well-formed. A few of the other top substitutions can also be explained

by NL ambiguity. For example, the top sixth is \Newark" becoming \New," as in \New

York," a much more common city name than Newark, but grammatically interchangeable

with Newark in most cases and acoustically confusable with it. In this case, we would

imagine that the word bigram should have a similar confusability. The reason this particular

confusion pair shows up now is probably because we are giving tina a much higher weight

than we give the word bigram, because on held-out data, tina was found to work better

with a higher weight. This is not unexpected since we believe that tina provides a superior

linguistic model. The top seventh substitution is \only" becoming \all," also gramatically

interchangeable. These last two examples are causes of concern, because, although they are

gramatically valid substitutions, they result in the wrong semantic interpretation. The top

deletions do not show anything extraordinary. The top insertions, however, seem to con�rm

that the Newark/New York problem is indeed a problem that may need to be address in a

deployed system. It also helps explain why insertions is the only error category where the

angie plus tina system did worse than the angie plus bigram system.

5.4 Summary

In this chapter, we discussed the implementation of a full word recognition system based on

angie. We consider this to be the most challenging test of angie's feasibility as a framework

supporting speech recognition tasks. Because of engineering e�ciency issues involving our

developmental stage implementation, we decided to conduct our experiments on a pruned

phone graph instead of the full phone graph as derived from acoustics. This practice for
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Angie plus Word Bigram Angie plus Tina

Sub Del Ins Sub Del Ins

ight ! ights the the a ! the the and

ights ! ight a and ights ! ight a the

a ! the is to ight ! ights i york

list ! is in a a ! an to to

y ! ight of on i ! i+d and a

Table 5-4: Top �ve errors for angie word recognition systems with word bigrams and with

tina integration

language modelling is fairly common when dealing with word language models, where word

graphs are frequently searched with the new model. We extend the paradigm to subword

language models by working o� a pruned phone graph to expedite experimentation.

The implementation of our recognizer was a straightforward extension of our word-

spotter from the previous chapter. We did encounter an issue new to the present chapter,

namely, what to do with homonyms. In word-spotting, even when using words as �llers,

homonyms can be safely neglected because they were not part of our keyword set and their

misrecognition in the �ller space did not impact word-spotting performance. However, with

recognition, we concluded that splitting homonym hypotheses into di�erent theories in the

search performs better than keeping them bundled in a \piggy-back" manner. Our angie-

based recognizer achieves an error rate comparable to a summit baseline system, also using

a word bigram. The top errors in both cases were similar as well, suggesting that angie is a

competitive word recognition framework, but is otherwise unremarkable in this incarnation.

We had also attempted using syllable units for the lexical units instead of word units, but

that results in noticeably inferior performance.

Where the angie-based recognizer produces a signi�cant improvement, from 18.9% error

rate to 14.8%, is when it is integrated with the tina natural language processing system.

Previous experience at bringing in an NL system resulted in only a small improvement when

an N -best resorting paradigm was used ([52]) and our own validation experiment with using

tina to resort a 100-best list from summit mirrors that experience. In our experiment, we

combine the summit score with a tina score using an experimentally optimized weight.

The tina con�guration used in our resorting experiment was the same one that was used

in the integration experiment. A substantially better performance improvement has been
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reported when the interface is tightened to that of a word graph ([71]). In our work, we

take the integration one step further and merge the NL system into a combined search

process. Because angie, like the tina NL system, is based on a context-free foundation,

our search engine naturally supports the long distance constraints provided by tina and

can be expanded to achieve this integration.

Conceptually, it is possible to have one parser handle both the subword context-free

rules of angie and the supraword context-free rules of tina. However, because we feel that

the subword model is better handled in a bottom-up paradigm, to promote sharing and to

permit generalization to new words, and the supraword model is better handled in a top-

down manner, to more easily handle such phenomena as gaps without making the search

too expansive, we did not choose this route. Instead, we decide to back o� the integration

by one step. In particular, we will continue to have angie generate word hypotheses bottom

up, but at the end of each word, we will bring in the tina model. Thus, we have three

search threads proceeding in a lock-step manner. This compromise still represents a much

tighter integration than a word graph, because the tina constraints are brought to bear at

each word ending, whereas a word graph is generated without any knowledge of the tina

model. In word graph implementations, the tina model is only consulted after the complete

word graph for an utterance is generated.

A major problem encountered with our NL integration attempt is the bushiness of the

search needed to support robust parse, which was expressed as context-free rules permitting

partial parses and the insertion of \skip words" (�llers). In an N -best or word graph

paradigm, the search space over which we need to pursue possible NL parses is much smaller

and robust parse is not as much of a problem. To overcome this problem, we factor the

robust parsing mechanism out of the context-free rules. Instead, our search strategy pursues

an NL theory until it dies, then backs up until it can �nd a breaking point to break the

theory into two theories, one ending at the break, and a new one starting there. While not

as comprehensive as the original mechanism, the revised strategy proved su�cient in terms

of achieving empirically good performance at acceptable speeds. We also experimented with

the idea of merging NL theories at certain \merge categories," categories where we believe

the work done within the subtree for the category can be shared with other occurrences

of that subtree. An example of a merge category would be a \direct object." However,

that attempt did not a�ect time complexity noticeably and had little impact on recognition
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performance.

An analysis of the errors in our angie-plus-tina system shows that some within cat-

egory confusions were introduced. For example, we saw many cases of \New York" being

substituted for \Newark." Both are in the same NL category, \city name," and are acous-

tically confusable. Because New York is much more common, the confusion is natural.

The reason why the problem is more prevalent with tina than in the word bigram case is

that, because tina is a much more powerful linguistic model, it receives a higher weight

than the word bigram in the �nal scoring. But tina is not able to su�ciently distinguish

Newark from New York, so, the increased linguistic model weight given to tina leads to

the confusion.

In our tina NL integration work, we also attempted to use syllables instead of words as

the lexical units, but without much success. Note that our work is in atis, which is English.

Syllables may work better for other languages, which are more naturally syllable-based, such

as Chinese.

We are satisi�ed that angie proved feasible as a full word recognition framework, and

further, that the integration of the tina NL system was successful. In the next chapter, we

will report on some pilot studies we have conducted on trying to add new words, which we

believe angie to support well, and on prosodic modelling taking advantage of the angie

parse structure.
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Chapter 6

Pilot Studies in New Words and

Duration Modelling

In our motivating remarks regarding the angie design, we had mentioned two possibilities

which we will explore in terms of pilot studies in this chapter. One of our claims is that

angie can support exible vocabulary changes, for example, incremental addition of words

to the recognizer, better than other subword lexical models. The other is that angie, be-

cause it provides a subword decomposition in terms of a parse tree, can potentially support

novel models which make use of such information, for example, prosodic modelling. Our

two pilot studies will begin to explore how well the angie framework supports these two

motivating goals. The �rst study is an attempt to determine whether angie better supports

the addition of new words to the vocabulary of a recognizer, because it can provide some

subword support for the new word through sharing of substructures with existing words.

Our results will show that angie by itself performs comparably in the presence of these

new word additions to our baseline summit system. The baseline summit system uses a

pronunciation graph, so we will give the new words neutral pronunciation weights for the

various arcs in the graph. However, because of angie's support for tina integration (Chap-

ter 5), we �nd that the integrated angie plus tina system has a measurable performance

lead, even in the presence of new words.

The second pilot study involves work done jointly with our colleague, Grace Chung.

Chung has implemented an angie-based hierarchical duration model which has been found

to improve phonetic recognition performance over a simple phone duration model ([8]). We
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will take her model and integrate it into our word-spotter (Chapter 4). We found that the

inclusion of the Chung duration model into keyword scoring increases the performance of

our best word-spotter con�guration from a FOM of 89.3 to 91.6. We also found that on the

acoustically confusable \New York" vs. \Newark" keyword pair, the duration model can

cut the error rate by up to 68% if we only consider the error rate in terms of disambiguating

those two keywords, treated speci�cally.

6.1 Incorporating New Words

We had stated early on that one of the goals of our angie framework is to be able to

support exible vocabularies. By this, we mean that we would like to be able to easily

change the vocabulary of our recognizer with a minimum, preferably no, retraining of the

angie probabilities or alteration of the context-free rules. Angie's bottom-up design, with

its extensive sharing, is supposed to allow for generalization of learned probabilities from

known words to newly added words. Our �rst pilot study attempts to determine to what

extent we have achieved this goal.

6.1.1 Experimental Framework

We envision the following scenario as the backdrop of this pilot experiment. Assume that

our angie-based recognizer is used within a conversational system, such as MIT's galaxy

system ([22]). Such a system may retrieve information from a database in response to a user

query. For example, the user may ask the system about ights from Boston to California

and the system may respond with a list of cities in California. Naturally, we would expect

the user to respond with one of the cities on the list. Now, imagine that the list includes

both cities in the recognizer's vocabulary and cities not in the vocabulary. It would be nice

at this point, if the vocabulary can be dynamically adjusted to include all the cities present

in the list. This is precisely the setup we are assuming for the purposes of this pilot study.

Although the particular choice of city names is somewhat contrived, the concept could be

applied much more extensively, as for example, to a list of bookstore names in Cincinatti

retrieved from the web.

How do we obtain pronunciations for the words to be added to the vocabulary? They

may be found in a dictionary or generated by a letter-to-sound system. Since the angie
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framework supports letter-to-sound generation, we can even use angie itself for this pur-

pose. Some work on using angie for letter-to-sound generation is reported in [70]. However,

because letter-to-sound generation is beyond the scope of the present thesis, we will, for the

purposes of this pilot study, assume that the pronunciations have been given to us.

To insure that we have a properly trained baseline system, in terms of the new words

being added to the vocabulary, we will adopt the following experimental methodology. We

will take the existing angie-based and summit recognizers used in Chapter 5, and we will

arti�cially remove a list of words from their vocabularies. The list of words will be the words

whose addition to the vocabulary we are simulating. This insures that we have baseform

pronunciations for the \new" words with a known performance in a fully trained system.

The full recognizers will form the baseline comparisons, and we will simulate adding the

words to the reduced recognizer to see how well the recognizers handle the addition of new

words as compared to the baselines.

Our particular choice of simulated new words will be a list of some of the city names in

atis. Recall that atis-2 had one list of city names, which was later expanded in atis-3. We

view this as a natural choice for the simulated new words, namely, the new city names added

in atis-3. There is a natural basis for this choice, for we can imagine having developed the

recognizers initially for atis-2 and then deploying a system in an environment where the

full set of atis city names show up when data are retrieved from a database. Moreover,

this particular choice of simulated new words has been used previously in the literature in

the new word characterization work of Hetherington ([24], [26]). Hetherington also followed

a methodology for creating an arti�cially reduced vocabulary system very similar to ours.

The list of atis-2 and atis-3 cities is given in Table 6-1.

6.1.2 Summit Implementation

In the MIT summit system, which we consider to be one of our baseline comparisons,

subword modelling is handled via a pronunciation graph. The pronunciation graph is gen-

erated by taking a list of baseforms for each word in the vocabulary, and then applying

phonological rules to generate a variety of possible phonetic realizations for each word.

These phonetic realizations are what is represented in the pronunciation graph. Moreover,

each edge in the graph has a weight associated with it. The weight represents a reward or

penalty for transitioning that edge, that is, for having that phone in the realization. The
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City Training Count Testing Count

Atis-2 and Atis-3 Cities

atlanta 74 4

baltimore 120 11

boston 116 16

dallas 70 20

denver 210 26

detroit 82 11

oakland 23 18

philadelphia 30 5

pittsburgh 89 12

san francisco 177 7

washington d c 57 7

Atis-3 Only Cities

burbank 42 27

charlotte 134 20

chicago 164 46

cincinnati 87 17

cleveland 145 18

columbus 82 3

houston 119 19

indianapolis 144 32

kansas city 184 23

las vegas 158 34

long beach 64 1

los angeles 125 17

memphis 115 34

miami 243 39

milwaukee 219 53

minneapolis 93 6

montreal 89 16

nashville 73 10

new york 294 44

newark 162 17

ontario 30 7

orlando 197 51

phoenix 150 34

saint louis 110 27

saint paul 65 4

saint petersburg 68 11

salt lake city 109 35

san diego 109 14

san jose 87 12

seattle 149 30

tacoma 81 10

tampa 72 15

toronto 141 17

westchester county 24 4

Table 6-1: City names in atis-2 and atis-3. The atis-3 only city names were the simulated

new words in our pilot experiment on exible vocabulary recognition.
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current summit architectural implementation does not, per se, permit ease of additions to

the vocabulary because the application of the phonological rules cannot be performed on

incremental changes. However, we view this as a limitation of the present implementation,

and not as a fundamental shortcoming of the pronunciation graph approach. For example,

the work of Mohri on �nite-state transducers ([50], [51]) can in theory be used to create

a transducer representation of phonological rules, which can then be applied dynamically

to a pronunciation graph. We are not aware of an actual existing implementation of such

a system, nor of whether any engineering di�culties will arise so as to render such an ap-

proach impractical. In principle, we can envision such a possibility and for the purposes of

our study, we will assume that a mechanism for incremental updates exist. The issue then

is how to set the weights for the arcs of the newly added words. We will simply set their

weights to zero, which corresponds to a neutral weight in the summit system.

For the purposes of the pilot study simulation, we take the full recognizer as the well

trained recognizer. We modify the atis-3 city names in the pronunciation graph so that

they have arc weights of negative in�nity associated with them to simulate the stripped

recognizer which only knows atis-2 cities. We choose to do this rather than remove the

words from the vocabulary and attempt to train a new pronunciation graph because we do

not have a mechanism for obtaining forced alignments for utterances with unknown words.

Removal of the sentences containing atis-3 cities would leave us with a very small training

set. Furthermore, development of a well trained recognizer takes numerous iterations and to

train a true \small" recognizer would require a large investment in time and e�ort. Finally,

we change these same arc weights to zero to simulate a recognizer with the atis-3 cities

added to the vocabulary as new words.

A �nal issue is how to handle the simulated new words in the word bigram language

model. Since our simulated environment assumes that we know the category of the new

words, namely city names in our case, we can use a class bigram where all the city names

form a class. Speci�cally, we let

Pr(citynjwordn�1) = Pr(citynjcity class) � Pr(city classjwordn�1)

For the Pr(citynjcity class), we discovered that in a fully trained system, setting this proba-

bility to be 1=number of cities results in error rate equivalent to using the actual unigram

within-class probabilities. Since this uniform within-class prediction makes handling the

addition of city names straightforward and it does not detrimentally alter the baseline error
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rate performance, we adopt this mechanism. Note that the same bigram language model is-

sues arise for the angie (with word bigram) recognizer and we will adopt the same approach

there.

6.1.3 Angie Implementation

Recall from Chapter 2 that angie consists of both a set of context-free rules and also a

probability model. We believe that our rules are not speci�c to any lexicon. Thus, we do

not see any need to alter our rules neither in the creation of the reduced recognizer nor in

the subsequent addition of simulated new words to the recognizer. On the other hand, the

probabilities are likely to be greatly impacted from not having the simulated new words in

the training data. To simulate training in the absence of the new words, we will follow a

procedure similar to the one we used for the summit case. Namely, we will keep the new

words in the training set; however, when it comes time to update the angie probabilities

in the training process, we will not update those attributable to the new words. Thus, the

reduced recognizer will have an angie model trained without any contributions from the

new words.

We had hoped that angie's extensive sharing would be su�cient to support the new

words once their baseforms were added to the lexicon, without further complications. Unfor-

tunately, we discovered one serious problem. In paticular, our trained model had numerous

zero advancement probabilities for many of the new words. This is not unexpected, as the

advancement probabilities are conditioned on the entire left column context, which includes

the upper layers of the subword structure as well as the lower ones. Given that our vocabu-

lary size is limited, we can only expect to see a subset of all possible patterns for left column

contexts. The bottom-up trigram probabilities did not prove to be a problem because the

space consists of only three categories and was apparently well covered by training data.

We can suggest at least four ways to work around this problem. The �rst approach

is to smooth the advancement probabilities in some manner. This was what was done in

e�ect in the summit case, where the assignment of neutral arc weights can be thought of as

\stealing" a small amount of probability mass for the new words. This may have a serious

disadvantage in that zero probability events tend to provide a large amount of constraint

and we do not want to lose them if possible. Thus, it would be desireable to only remove the

zero probabilities when they a�ect the new words. This brings us to the second approach.
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The second approach is to observe that a given phoneme generates only a small subset

of possible one or two phone sequences. We can consider the phonemic baseform for the new

word, and generate a list of possible phone sequences using a very simple model, such as

a model which accounts for bigram probabilities at phoneme boundaries for the generated

phone sequences. These phone sequences can then be parsed via angie, and the appropriate

probabilities updated.

However, since we have an excellent model of subword structure, namely angie, why

not use it to generate the phone sequences as well? This use of angie is very similar to

the sound-to-letter work reported in [70], except, here we are generating phones instead of

letters. This was the approach we followed. We ran angie in a phoneme-to-phone mode

to generate possible phone sequences for the phonemic baseforms for the new words. We

can do this by searching over possible phone sequences with angie, and constraining the

permitted phoneme sequence. We took the phone sequences obtained in this manner and

added them to the training data to give some support for the new words when simulating

their addition to the system. Examples of the phone sequences generated in this manner

are shown in Figure 6-1. Our implementation ran in batch mode, however, it can be easily

adopted to run online in an actual deployed system, perhaps after a list is retrieved from

an information source.

A �nal possibility would be to mark the baseforms for the new words added to the

system, and as we encounter those baseforms in the search process, modify any zero (or

very low) probabilities encountered to permit the parse within the new word to proceed.

The advantage of this approach is that only a few new words are likely to be postulated for

a given utterance. This approach would only perform the computation needed to handle

those words, rather than for the entire list of new words. The entire list can be quite long if

a database retrieval results in many matches. We believe this solution to also be a relatively

straightforward process, although we have not invested the e�ort into implementing it for

the pilot study.

6.1.4 Angie-plus-tina Implementation

The addition of new words to tina can be handled in a manner similar to the mechanism for

the word bigram. For tina, it is actually easier because the tina grammar already includes

a non-terminal category for city names. We simply license the new words as terminals
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New Word Generated Phonetic Realizations

Charlotte sh epi aar r l ax tcl t

sh epi aar r l ix tcl t

sh epi aar l ax tcl t

sh epi aar r l ax t

sh aar r l ax tcl t

sh epi aar l ix tcl t

sh epi aar r l ix t

sh epi aar l ax t

sh aar r l ix tcl t

sh epi aar r l ax dx

Tampa tcl t ae ah m pcl p ah

tcl t ae ah m pcl p ix

tcl t ae hv m pcl p ah

tcl t ae hv m pcl p ix

tcl t ae ah m pcl ah

tcl t ae m pcl p ah

tcl t ae m pcl p ix

tcl t ae ah m pcl p ax

tcl t ae hv m pcl ah

tcl t ae hv m pcl p ax

Figure 6-1: Top ten phone sequences hypothesized by angie for the new words \Charlotte"

and \Tampa."
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summit angie angie-plus-tina

Reduced Vocabulary 34.2% 31.2% 32.8%

Augmented Vocabulary 19.2% 19.2% 15.2%

Full Vocabulary 18.9% 18.8% 14.8%

Table 6-2: Error rates of di�erent systems in the presence of simulated new word additions

to the active vocabulary.

under the city name category and dynamically redistribute the probabilities under that

category uniformly over all terminals in it. Tina also has certain \context-dependent start

probabilities" based on a rule-external left context. Those probabilities were disabled for

the city name category for the purposes of this experiment. Since our experimental setup

supposed that we know the category of new words, inserting the new words under the city

name category is a fair approach.

6.1.5 Results

We compared the incorporation of new words into the active vocabulary across several data

points. We want to see how angie-based subword models compare to a pronunciation

graph model. We also want to see how tina integration compares to the word class bigram

language model. Finally, we want to know how far away our simulated new word enhanced

systems are from a well trained system. The results are summarized in Table 6-2. Along one

dimension is the vocabulary used: reduced (without atis-3 cities), augmented (with atis-3

cities added as simulated new words), and full. Along the other dimension is the particular

system: summit (pronunciation graph with word class bigram), angie (with word class

bigram), and angie-plus-tina (with integrated tina).

There are several points worth noticing. Perhaps the most disappointing to us is that

the augmented angie system does not perform any better than the augmented summit

system. This may suggest that angie's extensive sharing is not of immense bene�t. A

closer evaluation shows that the explanation is that in this test case, the lack of subword

training does not result in a serious degradation in performance in the �rst instance. The

full vocabulary angie and summit achieved error rates of 18.8% and 18.9%, respectively.

The augmented angie and summit systems both achieved error rates of 19.2%, only 0.3%

to 0.4% higher. Our results here are actually consistent with those obtained in Hetherington
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([25], section 5.5.2):

Overall performance was virtually identical between the two systems. Over

the new words only, the word-error rate increased by only 0.4% (factor of 1.1).

Evidently, the lexical arc weights were unimportant for the new words. Training

the lexical models on examples of the new words, as in the baseline system, did

not improve performance signi�cantly. These results suggest that we do not

need to worry about computationally expensive corrective training when adding

new words.

However, they seem to contradict other �ndings in the literature which conclude that the

lexical weights do matter (e.g., [78]). One possible explanation is that our choice of the

simulated new words relies less on the subword model because our new words are relatively

unambiguous in terms of pronunciations and occur in contexts which are well speci�ed by

the word language model. In the context of a conversational system retrieving a list of items

from a database, the latter condition will likely be met on many occassions. However, further

experimentation in cases where the �rst condition does not hold is warranted to better

determine the importance of subword training for new word additions to the vocabulary.

Another item to note is that when the vocabulary is reduced, the angie system performs

better than the summit system. This may suggest that angie is better at handling unknown

words during recognition, however, without a more extensive study, we hesitate to state this

as a concrete conclusion at this point.

When we look at the angie-plus-tina system's performance, we see that it su�ers

a small degradation (14.8% to 15.2% error rate) going from the full vocabulary to the

augmented vocabulary. When we dissect this experiment by considering an augmented

angie and a fully trained tina and vice-versa, we �nd that the degradation is split evenly

into a slight increase (0.2%) for each. Thus, tina su�ers a very slight decline from having

a well trained model of city name probabilities to one of uniform distribution over the

city name category. Despite this, the augmented vocabulary angie-plus-tina system still

performs much better than even the full vocabulary summit system. Thus the bene�ts of

tina integration exist even in the presence of new word additions. We should keep in mind

that the tina system has a much higher level of performance than the class bigram system;

thus, it is not unreasonable to see tina su�er slightly more when the available training data
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are reduced.

One �nal point to mention is that the one case where tina integration seems inferior

to using a word bigram is in the reduced vocabulary case. Here, we see that angie-plus-

tina achieves a 32.8% word error rate vs. 31.2% for angie plus word bigram. A likely

explanation for this is that with the reduced vocabulary, the frequent occurrence of unknown

words makes it impossible for tina to �nd a reasonable parse for many utterances, even

with our robust parsing mechanism described in Chapter 5.

6.2 Hierarchical Duration Modelling

The Chung duration model ([9], [8]) is based on angie and attempts to account for the

durational relationships of sublexical units residing at various levels of the phonological

hierarchy. For example, in extracting the duration pattern at the syllable level, the model

tries to compensate for e�ects at lower levels in the hierarchy, such as at the phoneme

level, through a process of normalizing the observed syllable distribution across di�erent

phonemic realizations. Similarly, phonemic durations are normalized across phonetic vari-

ations. Further, Chung's model is able to account for speaking rate variability. Her model

calculates a speaking rate parameter from a single word occurrence by comparing the nor-

malized duration for that word to the normalized duration for all words. The normalized

duration already accounts of variability across di�erent words and di�erent realizations for

the same word. For example, consider two occurrences of the word \butter" where the /t/

is apped in one case and not in the other. If we considered only the absolute durations

of the word \butter," we may wrongly conclude the the apped realization reects a faster

speaking rate, even when the speaking rates are equal, because the apped realization is of

shorter duration. The normalization within her model would account for such phenomena

to achieve a more accurate speaking rate calculation. Chung has implemented her model

within the angie framework and has found it to reduce phonetic recognition error rates

within the atis domain by up to 7.7% (from 29.7% to 27.4%) in some cases. For our second

pilot study, we obtained Chung's duration model and incorporated it into our word-spotter

(Chapter 4) to see if it would lead to any improvement.

Our �rst experiment was to select a case where we expect duration modelling to be

an immense help, and which proves to be quite di�cult for our word-spotter to handle.
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Speci�cally, we are referring to the \Newark" vs. \New York" confusion. One of the major

negative factors a�ecting our word-spotter's performance is the system's tendency to output

\Newark" as the spotted keyword where the actual keyword present in the acoustics is \New

York." We took a subset of utterances consisting only of those with \Newark" or \New

York" and evaluated them with a Chung duration model based post-processor. The initial

results were quite promising. The original confusion error rate was 19%. After rescoring the

regions where either \Newark" or \New York" were predicted with the duration model, the

error rate was reduced to 6%. We should recall that the original front-end processor already

has a simple phone duration model. The improvement was attributable to the contribution

of Chung hierarchical duration model, made possible through the use of angie, beyond the

contribution of the simple phone duration model.

The �rst test was somewhat biased since we picked an area where we expect duration

modelling to help greatly, namely an otherwise acoustically confusable pair. Inspired by the

initially promising results, the other experiment we performed was to incorporate duration

scoring for all the words in our keyword set and to integrate this score directly into the word-

spotter's search rather than as a post-processor. After doing so, with word �ller constraints,

the FOM of our word-spotter increased from 89.3 to 91.6, which reduces the gap between

our word-spotter and a full word recognition system (93.9 FOM) to half its former value.

Since we were conducting the experiments on the word �ller constraints system, we also

tried incorporating Chung duration scoring for the �ller space as well as for the keyword

space. However, our attempts at doing so were woefully unsuccessful. Performance de-

teriorated tremendously. Our suspicion is that the duration model is only e�ective when

used on roughly correctly hypothesized words. Without cross word constraints, such as a

word bigram, the �ller space in our word-spotter, with whole word �llers, is undoubtedly

highly errorful. While this does not hurt the word-spotter performance, we believe that the

Chung duration model did not operate well when overwhelmed by the number of incorrect

hypotheses. In other words, we suspect that the Chung duration model is good at distin-

guishing between several reasonable hypotheses, but it breaks down when applied to less

reasonable hypotheses. Clearly, further work needs to be performed to better evaluate the

situation. Some further analysis can be found in [8].
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6.3 Summary

In this chapter, we described two pilot experiments we have conducted in an attempt to

validate some of the perceived and claimed bene�ts of our angie framework. Our �rst

experiment tries to support our claim that angie is better able to handle exible vocab-

ulary recognition than other frameworks. Namely, through extensive subword sharing and

bottom-up parsing, the addition of words to the angie vocabulary is relatively straightfor-

ward and does not require further lexical training, as in the case of lexical arc weights in a

pronunciation graph based system. Our testing scenario is that of a conversational system

retrieving a list of of items, some of which may not be in the recognizer's vocabuary, in

response to a user query. The goal is to dynamically expand the vocabulary to support the

new words. For our actual study, we simulated a system which knows only about the atis-2

cities, and not the atis-3 cities, by taking out the lexical data for the atis-3 cities from

our models. For the summit system, this meant reducing the lexical arc weights for the

atis-3 cities to negative in�nity to simulate a reduced system, and resetting them to zero

to simulate augmenting the reduced system with the atis-3 city names. For angie, this

meant not updating the counts attributable to atis-3 cities during training, and removing

them from the lexicon during testing. For the purposes of our experiments, we assume that

the correct phonemic baseforms for the simulated new words are provided to us already. An

actual mechanism for doing so might be a dictionary, or a letter-to-sound system, perhaps

based on angie itself.

After adding the new words to the subword lexical modelling system, the other issue we

have to worry about is the word language model. We considered two such language models,

a word bigram and the tina natural language understanding system. For the word bigram,

we created a class bigram where \city name" appears as a class and the probabilities within

the class are uniformly distributed. For tina, there is already a non-terminal category for

city name, so we merely altered the probability model to likewise be uniformly distributed

over the city names.

If we actually try to run the augmented angie-based system, we discover a problem

with zero advancement probabilities. We can add a mechanism to smooth away these zero

probabilities to enable the added words to be recognized and we have done so. When we

we compare the angie-based system to the summit pronunciation graph based system,
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both using the same word class bigram, we discover that the performance was exactly the

same, 0.2% to 0.3% worse for the augmented systems than for the fully trained versions.

Thus, it would seem that in this respect, angie's extensive sharing does not result in an

observable performance advantage. However, we should note the limited conditions of our

test, namely, that the choice of city names, which are relatively unambiguous and do not

share much with existing words in the vocabulary, may bias the test towards not showing an

advantage. The fact that performance overall only declines by 0.2% to 0.3% further suggests

that our particular choice of new words does not bene�t much from lexical training. The

general experience in the literature is that lexical training does help in many cases (e.g.

[78]). Further, while in theory, the implementation of dynamic application of phonological

rules within a pronunciation graph approach can be done, for example, through the use

of �nite-state transducers, we do not know of an actual implementation of such. The

engineering issues involved may be more complex that those involved with smoothing the

zero advancement probabilities within angie. We should also note that the reduced angie

system performs better than the reduced summit system 31.2% error rate vs. 34.2%). This

may suggest that angie is better able to handle recognition under the adversity of a high

frequency of occurrence of unknown words.

Further, when we consider the addition of tina to the angie-based system, we �nd that

the angie-plus-tina combination performs better in the augmented con�guration than even

the fully trained summit with word bigram con�guration. The decline in performance as

compared to a fully trained angie-plus-tina system is small, from 14.8% error rate to

15.2%. This decline is split about evenly between angie and tina, each contributing 0.2%.

Overall, we are delighted to see that overall, the angie-plus-tina system performs very

favorably in the presence of new words added to the vocabulary.

The other pilot study is an attempt to leverage o� the angie parse tree for prosodic

modelling. Speci�cally, we incorporate Chung's hierarchical duration model ([9], [8]) into

our word-spotter. An initial test suggests that the model, which makes extensive use of the

relative duration of subword units between adjacent levels in the angie layered represen-

tation, is very helpful at disambiguating two highly confusable words, \Newark" and \New

York." Encouraged by the positive results, we integrated the Chung model into the word-

spotter and found that if we include duration scoring for the keywords, we can improve the

FOM from 89.3 to 91.6 for the known word �ller con�guration. We also tried using the
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Chung model for the words hypothesized for the �ller space as well, but performance dete-

riorated greatly. We suspect this is because the �ller space is hypothesized with numerous

errors and this causes the Chung model to break down.

The two pilot experiments reported here suggest that some of the perceived bene�ts of

angie we envision have indeed been realized, e.g., the ability to include a subword structure

based duration model. However, some others, such as the promise of exible vocabularies,

have only been partially proven, e.g., in the case of the combined angie-plus-tina system.

Further work needs to be done to see exactly how many promises angie can ful�ll. For

example, the better ability to cope with a higher unknown word rate, along with the ability

to integrate with an NL system, may facilliate the implementation of a new word detector

with more extensive subword and higher-level linguistic support. Overall, we found the

results of our pilot studies to be promising.
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Chapter 7

Summary and Future Directions

In this thesis, we worked towards an integrated system for speech recognition motivated

by an underlying bottom-up parsing philosophy beneath the word level and a top-down

natural language understanding one above the word level. The subword lexical modelling

framework, angie, was designed in a manner to promote maximal bottom-up sharing, so

that common substructures can be pooled during training and generalized to unseen in-

stances. The angie framework also attempts to model syllable structure explicitly, within

a hierarchical structure. We combined angie with a top-down linguistic component, the

tina natural language understanding system, to implement a single integrated system ac-

companied by improvements in recognition performance.

Below, we summarize the developments in this thesis. We start by introducing subword

lexical modelling to capture phonology, both existing approaches and our innovations, and

introduce our angie framework. Next, we recapitulate the implementation of various speech

recognition systems based on angie, including some of the engineering issues encountered,

and ending with a system that includes an integrated tina natural language understanding

component. Then we describe two pilot studies conducted in the area of adding new words

to the system's vocabulary and duration modelling. Finally, we conclude with suggestions

for natural extensions of our work.

7.1 Phonological Modelling

A typical speech recognition system needs to be able to handle variations in the pronunci-

ations of various words. These variations may arise not only because of the possibility of
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alternate pronunciations, as in the two manners of saying \either," but also because of the

various phonological variations. For example, the /t/ sound in \butter" may be carefully

pronounced, with the speaker placing the tip of her tongue to the back of her upper front

teeth to generate a complete closure followed by an aspirant burst. However, it is also

possible for the speaker to generate the same /t/ by quickly apping her tongue to the roof

of her mouth. Such variations in speech are quite common and must be accounted for by

a recognizer. Most modern recognizers model acoustic sounds via units typically the size

of a phone. The use of subword units mitigates training data sparsity by allowing a given

subword unit to be shared across multiple words in the vocabulary. The recognizer has a

collection of subword units and it needs to decode hypothesized strings of these units into

words, taking into account the variations in pronunications of words. The component which

makes this process possible is the subword lexical model, the focus of this thesis.

7.1.1 Existing Approaches

We can categorize the existing approaches to subword lexical modelling into two broad

classes. The �rst is the explicit phone graph approach. A phone graph is used to represent

the permissible pronunciations of a given word. A path through the graph corresponds to

a pronunciation consisting of the phones associated with the edges traversed in the path.

To capture the likelihood of various pronunciations, the edges are associated with weights,

which represent the costs (or bene�ts) of traversing the respective edges. The other primary

class of modelling techniques is to implicitly model the variations through the parameters of

a hidden Markov model or through the parameters of the acoustic model or through both.

In both of these cases, there is an underlying assumption that a word is best modelled solely

as a sequence of the subword units. Speci�cally, the subword structure being modelled is

at.

7.1.2 Inspiring a Hierarchical Model

Much work in phonology suggests an alternative subword model, namely, one that is hierar-

chical and is aware of intermediate layer above the phones, but below the words, consisting

of syllables. The work of Kahn ([33]), in particular, demonstrated the importance of syl-

lables in explaining phonological processes. Further, Church ([10]) was actually able to

implement a computational framework, which can take a string of phones, and discover
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a sequence of syllables in a bottom-up manner. Church's success, although limited to an

environment in which only primarily error-free phone strings were encountered, suggested

to us that a bottom-up, hierarchical subword lexical model may possibly be productive in

addressing the problems relating to new words, in terms of facilitating their detection and

also of easing their incorporation into the system's vocabulary. Thus inspired, we to design

our framework, named angie.1

7.1.3 Angie

Angie is a hierarchical, layered, probabilistic subword modelling framework for speech

processing. We presented the details of the framework in Chapter 2. In our model, subword

structure is represented via a context-free grammar, presently generated by hand, and

an automatically trained probability model. The angie framework captures phonology,

syllabi�cation, and morphology in a uni�ed framework. The angie parser operates in a

bottom-up manner, permitting the sharing of substructures amongst di�erent words, and

providing support for the discovery of word-like units. We believe a bottom-up design

permits the system to best support exible vocabulary recognition, since information learned

for one word may be shared with other words which have similar subword structures, even

if those words are new words being added to the vocabulary or new words being detected

in speech. An important goal of this thesis was to develop the angie framework and to

demonstrate that the framework can support various speech recognition tasks, from phonetic

recognition to word-spotting to full recognition.

7.2 Speech Recognition with Angie

In this thesis, we demonstrated the feasibility of angie as a subword model for speech

recognition by showing its e�ectiveness on several tasks. All the tasks were performed on

a subset of the atis corpus. Approximately 5000 utterances were used as acoustic training

data, and the standard December '93 test set (approximately 950 utterances) was used

as test data. Because we wanted to focus our exploration on subword lexical modelling,

the acoustic models were kept as simple as possible. Context-independent, mixture diag-

1The �rst version of the angie framework was designed by Stephanie Sene� and partially inspired by the

work of Meng ([49]). In this thesis, we developed the subsequent generations of the framework, along with

the recognition systems that use it.
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onal Gaussian models with a feature set consisting of averages of MFCCs across thirds of

segments and derivatives across boundaries were used.

The �rst task we tackled was phonetic recognition. In phonetic recognition, we demon-

strated that angie's enhanced subword model led to an improved error rate of 36.1% as

compared to 39.8% for a baseline system implemented with a phone bigram subword model.

Further examination suggested that the longer distance linguistic information available via

angie's upper layers was responsible for approximately 1.6 percentage points of the 3.7

percentage point decrease in absolute error rate. The rest may be attributable to improved

phonological modelling and other factors.

Our next challenge was the implementation of a word-spotter based on angie. The

atis city names were used as our set of keywords. Here, an assessment of our word-

spotter's performance is complicated by the lack of a directly comparable baseline system.

We implemented our angie-based word-spotter with a variety of possible subword lexical

models for the �ller space, ranging from a not too constraining phone bigram arrangement,

without any word constraints, to a very constraining, full angie subword model which

requires that only a given vocabulary of words are permitted within the �ller space. Our

word-spotter's performance ranged from a �gure-of-merit of 85.3 for the phone-bigram �ller

to 89.3 for the known-words only model. The only baseline comparison we have is that of a

full word recognition system, augmented by a word bigram, which achieves a FOM of 93.9.

Full recognition is generally believed to represent the high end of word-spotting performance.

We believe our word-spotter to be competitive because if we consider the results presented

in Manos ([45]), the drop in performance from his full recognition baseline to his context-

independent phone �llers system is similar to the drop from our full recognition baseline

to our phone bigram system. His context-independent phone �llers system matches our

phone-bigram system well, and, in both cases, atis data with city names as keywords were

used. However, Manos had larger and more balanced data sets, so the comparison is not

exact.

As we mentioned in the previous paragraph, we experimented with alternative subword

lexical models for the word-spotter's �ller space. The results of our experimentation validate

the common intuition that the more constraints placed upon the system, the better the

performance. We were surprised by three results though. One is that we generally do not

incur a running speed penality as we increased the linguistic constraint. A likely explanation
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is that the additional constraints help to control the bushiness of our search space. Another

result is that we had anticipated a bene�t from allowing the hypothesis of unknown words

for the �ller space, as opposed to permitting only words known in the vocabulary, for the

con�gurations involving word models in the �ller space. However, our experiments showed

that permitting the unknown word to be hypothesized led to inferior performance. While

our low out-of-vocabulary rate may have contributed to this outcome, we found that even

with an out-of-vocabulary rate of 8%, permitting unknown words was detrimental. This led

us to suspect that having out-of-vocabulary words appear in data to be word-spotted on is

not nearly as detrimental as having them in data to be fully recognized (e.g., [25] found an

average of 1.46 errors per new out-of-vocabulary word, substantially higher than the one

error attributable to not recognizing the word correctly). Further, permitting an unknown

word in �ller space may allow the unknown word to be hypothesized in place of a poorly

articulated keyword. Our �nal noteworthy discovery from the word-spotting �ller model

experiments was that using syllables to model the �ller space represented an impressive

speed vs. FOM trade-o�. FOM performance was very respectable, but more importantly,

the speed of this con�guration was extremely fast.

Our �nal empirical test of angie's feasibility was to implement a full word continuous

speech recognition system. The extension of our word-spotting system to full word rec-

gonition was not too di�cult. Some adjustments to the search organization were needed

along with the addition of support for a cross-word language model, in our case a word bi-

gram. Our angie-based recognizer achieved a recognition error rate of 18.8%, comparable

to a baseline of 18.9% using MIT's summit recognizer. We also attempted to implement

a syllable-based recognizer, inspired by the success of syllables in word-spotting, but were

unsuccessful, at least with the atis corpus.

In our work on full recognition, we also experimented with integrating our angie rec-

ognizer with a natural language understanding system based on tina ([69]). Previous work

suggests that an N -best rescoring approach yields only marginal improvement ([52]), but a

more tightly integrated word graph approach ([71]) results in a much larger improvement.

Tina is based on a context-free framework with automatically trainable probabilities, a ro-

bust parsing mechanism, and support for constraints to enforce agreements such as subject-

verb. We felt that angie's stack decoder recognizer implementation can easily incorporate

tina into its search process. In our implementation of an angie-plus-tina recognizer, the
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stack decoder obtains a partial parse score from tina whenever a word ending is proposed

by angie. The system had some initial intractibility di�culties which were found to be

related to the bushiness of tina's robust parse mechanism. We designed an alternate robust

parse mechanism, which operated in a much greedier manner, to make the search practical.

The inclusion of tina in our recognizer increased performance dramatically. Error rate of

the combined system fell to 14.8% from a baseline of 18.8% with angie and a word bigram.

We feel that our successful implementation of angie-based systems for three recognition

tasks { phonetic recognition, word-spotting, and full word recognition { demonstrated em-

pirically that our subword lexical modelling framework provides a feasible system for speech

recognition. We are particularly pleased with the results obtained with tina integration.

We next describe some of the main engineering issues encountered as well as some attempts

to demonstrate several advantages of our framework over existing ones.

7.3 Engineering Challenges of Search

During our implementation of various recognition systems based on the angie framework,

we faced critical engineering challenges relating to e�ective search strategies as well as

to controlling the computational complexity of our system, both in terms of time and

space. When it comes to overall search organization, the greatest problem encountered was

in how to compare theories through a segmentation graph when the theories account for

di�erent segments. Short vs. long theories proved to be particularly problematic because

longer theories tend to have lower scores in a probabilistic system, as log-likelihoods are

typically employed in the scoring function. In our �rst recognition system, the phonetic

recognizer, we used a best-�rst search and balanced o� the short vs. long theories with a

series of heuristic functions and weights. However, our subsequent work in word-spotting

necessitated an alternate solution. We adopted a stack decoder approach, where the search

queue is organized such that theories are sorted by time, the net result of which is that

theories which cover the same time span, i.e., from time 0 to time t, are compared against

each other. Of course, even paths which cover the same time span may have di�erent

numbers of lexical units accounted for, and that di�erence needs to be compensated for as

122



well. For that, we keep a phone reward heuristic.2

Besides the choice of the basic search strategy, we also repeatedly encountered a basic

tradeo� between time/space requirements and the accuracy of the scoring model employed

during the search process. This tradeo� takes many forms but it underlyingly represents

a decision as to how much distinguishing information to maintain for each individual path

hypothesis in our search. Obviously, the more information that is maintained, the greater

the space requirements of our system will be. But more importantly, if we keep much

distinguishing information for each path, then we have many fewer opportunities to prune

\similar" paths, share similar paths, or both. An early example of this tradeo� was en-

countered while we were still building the angie framework. The original implementation

required a full angie column to determine the advancement probability at all times. This

implies that the only opportunity to prune was when two paths share the same ending col-

umn, i.e., same phone and upper layer categories. This implementation became unwieldy

so we changed the design. In the new design, as soon as a word end is proposed in a path,

we carry only the identity of the words in the path and the �nal phone. This simpli�cation

enables a much greater amount of pruning at word boundaries. Moreover, it allows us to

share angie theories for the next word encountered in the path with other paths which may

be exploring similar word starting contexts, reducing space and time requirements by an

order of magnitude. However, these advantages come at a cost. Speci�cally, we no longer

have the detailed context information at the word boundaries. In this case, it worked to

our advantage because we were also experiencing sparse data problems at word boundaries.

Typically, the advantages and disadvantages have to be considered. In our experience, the

choice usually comes down to one of pragmatics and experimentation.

Throughout our implementational experience, we also encountered the issue of \bundling"

on numerous occassions. We have used the term \sharing" in this thesis to refer to orga-

nizing our searches such that computations needed by several di�erent theories are only

performed and stored once. Thus, sharing refers to a strategy to maximize memoization of

the results of computing common subproblems. Our use of the term \bundling" refers to a

related, but di�erent concept. Frequently, in speech and natural language, we arrive at a

logical unit which may have varying internal interpretations, but external to that unit, the

2Alternatively, we can sort our stack decoder queue by lexical units instead of acoustic time spans. We

have not yet pursued this approach.
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precise internal interpretation may not matter much. Rather, all that is needed is a repre-

sentative internal interpretation. This phenomenon is reminiscent of the role of functional

and data abstraction in computer program design. It appears that natural language exhibits

some of the same designs! An example of this in our work would be that once a lexical unit,

such as a word, is proposed bottom-up by angie, the speci�cs of the word substructure is

no longer useful information in our system. The only representative information we need

about the word substructure is a score.

Alternatively, perhaps the precise internal interpretation does matter, but can be com-

puted from the representative interpretation upon demand at low cost, thus favoring a

bundled implementation from a time and space complexity point of view. For example, in

our word-spotting work, even if we consider words as �llers, if a given part of the utterance,

say time t1 to t2, can be hypothesized as one of several �ller words, the precise word does

not matter much to the word-spotter. Rather, all the word-spotter needs is the score of

the best word hypothesis for the region. Thus, in our implementation of a word-spotter,

we kept homonyms \bundled" together and took the score of the best homonym as repre-

sentative. When we considered full word recognition with cross-word constraints, namely a

word bigram, this bundling simpli�cation is no longer appropriate.

We believe that a related opportunity, which we call \merging," may exist within our

NL integration work, and we have discussed some initial experiments at creating merge cat-

egories. Speci�cally, we feel that certain NL categories, such as direct objects, may provide

an opportunity for merging the alternatives within those categories to promote memoiza-

tion. A given sequence of words may be encountered multiple times and hypothesized as

a direct object. For example, this can occur with alternate theories for the remainder of

the utterance. Since direct objects occur fairly frequently and have relatively self-contained

linguistics, it would seem reasonable to avoid performing the computation to generate the

same parse each time it is encountered. One way to implement this is to separate out the

tina theories whenever a direct object is proposed and group them into a collection. If

the particular word sequence already has a parse in the collection, then we do not need

to recompute the parse. Thus, computation along multiple divergent paths can be merged

when one of these merge categories are encountered, and separated again when we exit the

merge category. Our initial experiments along this line of exploration have not yet proved

bene�cial, but we believe that since natural language understanding systems provide few
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opportunities to prune due to extremely long distance linguistic constraints (thus, it is very

di�cult to consider two theories equivalent because of the long distance context), �nding

and implementing the proper merging may reduce computational complexity signi�cantly.

7.4 Pilot Studies

Thus far, we have presented our angie framework for subword lexical modelling and have

shown that it can be used successfully to support various speech recognition tasks. While

we feel that this is a notable accomplishment, especially given that angie represents a

signi�cant departure from existing approaches to subword lexical modelling, we have more

auspicious goals for angie. We designed angie with the hope that it will be helpful in

addressing several di�cult challenges in speech recognition, including dealing with new, out-

of-vocabulary words and prosodic modelling. We have already presented one experiment,

namely the integration of angie and tina, so far in this summary, that went beyond a pure

feasibility demonstration and touched upon new ground. Our actual motivation for the

experiment was to work towards a system which can handle dynamic vocabulary updates,

addressing partially the di�culties of dealing with new words. In the chapter on pilot

studies (Chapter 6), we discussed an extended experiment on dynamic vocabulary updates

and also an experiment addressing prosodic modelling in terms of an angie-based duration

model. We summarize these two pilot studies in the following subsections.

7.4.1 New Words

Our �rst pilot experiment involved the addition of new words to a recognizer's vocabulary

without requiring any additional training data. The scenario contemplated is that of a con-

versational system retrieving a list from a database where some of the items on the list may

not be in the system's vocabulary. The recognizer must add those items to its vocabulary.

The assumptions for the scenario are that we can obtain pronunciation baseforms for the

words to be added and that we also know their linguistic category. Our actual experiment

divided the list of city names in atis into atis-2 and atis-3-only cities. We assumed that

we had a recognizer well trained with atis-2 cities and treated the atis-3-only cities as new

words to be added to the vocabulary. The challenge of dynamic vocabulary updates is that

the recognizer needs to provide both subword lexical and word linguistic support for the
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added words. Our �rst comparison was between a baseline summit system and an angie-

based system, both employing word class bigrams. In both systems, language model support

was provided by redistributing the class probabilities for the \city name" class uniformly

over the expanded vocabulary of city names. In the summit case, we simulated adding

the new words to the lexicon with neutral lexical arc weights in the pronunciation graph.

In the angie case, we added the baseforms to the lexicon, relying on angie's bottom-up

sharing to provide support for the subword structures of the added words. However, we

encountered several instances of zero probabilities in the angie probability model, which

we circumvented by applying a simulated smoothing procedure. Our results showed that

both summit and angie performed comparably, both achieving error rates of 19.2%, as

compared to fully trained systems with error rates of 18.9% and 18.8% for summit and

angie, respectively. Thus, it appeared that angie's sharing did not yield any improvement

over summit; however, we should note that the actual decrease in performance from not

having subword training was small, possibly suggesting that the city names added were

distinct enough to be easily recognized without much subword support. Further, we should

note that the simulated procedure for creating zero lexical arc weights in the summit pro-

nunciation graph may actually be very di�cult to implement in practice, whereas the only

change required in angie is the addition of the smoothing of zero probabilities, which we

believe to be more straightforward. Finally, we should mention the performances of the

reduced systems that did not know about the simulated new city names. The reduced

summit system achieved an error rate of 34.2% as compared to the reduced angie system's

31.2%, suggesting that in the presence of many out-of-vocabulary words, angie performs

better.

Our other evaluation of the addition of new words involved the angie-plus-tina sys-

tem. For tina, the simulated new words were added to the \city name" category and the

probabilities within that category were redistributed over the expanded vocabulary, as in

the word class bigram case. The combined system achieved an error rate of 15.2% with

the augmented vocabulary, as compared to 14.8% for the same system trained on the full

vocabulary. The degradation is attributable in even portions (0.2% point di�erence each) to

reduced angie and reduced tina training. We should note that the expanded vocabulary

performance exceeds the 18.8% error rate of a fully trained system using a word bigram

instead of tina by a substantial margin.
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7.4.2 Duration Modelling

Our other pilot study was in the area of prosodic modelling. Since angie provides a parse

tree describing the subword structure of each word, we realized that this information can be

leveraged for use in a prosodic model. Our colleague, Grace Chung, has been working with a

hierarchical duration model ([8]) based on angie parse trees. The only duration modelling

we had in our original system was a simple phone duration model, whose score contributed

to the acoustic score from the front-end processor. Chung's hierarchical duration model

attempts to normalize durations across the various layers in the angie hierarchy, e.g., in

extracting the duration pattern at the syllable level, the model tries to compensate for e�ects

at lower levels in the hierarchy, such as at the phoneme level, by normalizing the observed

syllable distribution across di�erent phonemic realizations. Her model can also extract a

speaking rate parameter from a single word and normalize for di�erences in speaking rate

based on it. Chung's model has been found to be e�ective in improving phonetic recognition.

We obtained Chung's model and incorporated it into our word-spotter. Recalling that

the keywords \Newark" and \New York" were a major source of errors in our word-spotter,

we evaluated the Chung model on this keyword pair. Without her model, our original

confusion error for the two keywords was 19%. With it, the error dropped to 6%. Next,

we merged the hierarchical duration score into our word-spotter's stack decoder search

process. Using the hierarchical duration score only for the keywords in our best performing

con�guration, we increased the FOM from 89.3 to 91.6. We also attempted to extend

the hierarchical duration scoring to the �ller space as well, but that resulted in extremely

poor performance. We suspect that Chung's model performs best when given reasonable

hypotheses but may deterioriate on more errorful data.

7.5 Future Work

While we have made much progress in implementing a hierarchical subword lexical mod-

elling framework, angie, in this thesis, we feel that much more work needs to be done.

The wide-ranging nature of this thesis reects the need to adequately evaluate the angie

infrastructure on a variety of tasks to ascertain its e�ectiveness and also to uncover engi-

neering issues involving the framework. This is a necessity whenever a new computational

framework is introduced, especially one which takes a signi�cant departure from existing
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approaches. Having created a release 1.0 of the infrastructure, natural suggestions for future

work fall into four categories: creating an improved release 2.0, borrowing from the lessons

learned in this thesis and retro�tting them into previous systems, further investigating is-

sues not completely resolved in this thesis, and pursuing explorations now enabled by the

existence of the new platform.

In terms of release 2.0, the obvious area to address is e�ciency. While our implemen-

tations run acceptably for a research platform in most cases, they run way too slowly and

use too much memory for a real time deployment environment. Our full recognition engine

ran unacceptably slowly even for a research platform without some preliminary pruning of

the phone graph to be searched. Another area to improve from an engineering standpoint

is to handle the smoothing of zero probabilities for new word additions in a more elegant

manner than the one we used.

In category two, adapting our techniques to existing systems, we feel that natural lan-

guage integration is one candidate. A second candidate is the work we have done in in-

corporating new words. Although our test case did not show the loss of a well trained

sublexical model can lead to a large performance drop, nor did it conclusively show angie's

sharing to be bene�cial, we feel that angie may prove bene�cial for other choices of words

to be added to the vocabulary. Given this, we feel that it may be possible to use angie to

provide the information normally obtained from sublexical training for other approaches,

such as for pronunciation graphs.

Discussion of the new word additions naturally brings us to category three. Why did

the lack of sublexical training not result in poorer performance? We have seen evidence in

the literature suggesting that it sometimes hurts ([78]) and it sometimes does not ([25]). We

need to better characterize when performance is expected to su�er without better sublexical

training. Further, we need to evaluate in those circumstances, whether angie's sharing

is bene�cial or not, and if not, what other approaches can be taken. With respect to

supporting dynamic vocabularies, we mentioned that we assumed known baseforms for new

word additions. However, since angie can also support letter-to-sound generation, a natural

extension would be to use generated baseforms. Our colleagues have performed extensive

work on evaluating letter-to-sound accuracy of angie ([70]). However, the measure we

would like to use is the e�cacy of the generated baseforms on recognition performance. If

the baseforms were slightly inaccurate, but not to the point of adversely impact recognition
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performance, we would still be satis�ed. This area needs to be explored.

Our mixed experiences with syllable lexical units also suggest an area for future work.

Finally, we had mentioned our initial exploration into creating merge categories to stream-

line NL processing. While we have not met with success in this thesis, we nevertheless feel

that the concept has merit and should be examined more carefully.

Also, the experiments reported in this thesis focused on using context-independent

acoustic models but as we mentioned in our background comments on subword lexical

modelling, an implicit modelling approach using context-dependent acoustic models to cap-

ture much of the variability in word realizations is a fairly common approach. Work needs

to be done to better characterize the interaction between context-dependent modelling and

using a framework such as angie to capture variability in pronunciations. We do not know

how well angie performs either in conjunction with context-dependent acoustic models, or

as compared to a system with such models.

In the �nal category of new work enabled by our platform, we see three broad areas

which may prove promising. The �rst is in prosodic modelling. Our full recognition system,

with tina integration, provides much information about the speech being recognized, at

both the subword levels and at the upper linguistic levels. This information can potentially

be leveraged for use in prosodic modelling. The second area we have in mind is to further

leverage the angie subword structural information in a vein similar to our duration mod-

elling experiments, but for the purposes acoustic modelling. Possibilities might include a

di�erent avor of context-dependent acoustic models enabled by having the angie parse

information, such as models for a phone appearing in a certain syllable position, or models

for larger units such as entire syllables. Such models may be applied during the search pro-

cess to rescore a hypothesis as soon as one of the larger units is proposed bottom-up. In the

prior paragraph, we had suggested a comparison involving traditional context-dependent

models, such as generalized triphones. Perhaps that comparison can be expanded to include

angie-enabled context-depedent acoustic models as well. The third area which appeals to

us is to explore the issue of new word detection, now that we have a system with subword

support for new words. New word detection has proved to be a particularly elusive goal.

We hope that our work can contribute towards progress in the area.
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Appendix A

Example Set of Rules for angie

Below are the context-free rules used by the angie-based continuous speech recognition

system described in Chapter 5. The inclusion of the rules here are intended to aid the

reader in understanding the word substructures modelled by angie. The rules are divided

into two groups, high level and low level. The high level rules describe the derivation from

the start symbol down to the phonemics layer. The low level rules govern the phonemics to

phonetics transition and, together with the probability model, account for the phonological

modelling within our framework. We should point out that these low level rules can also

be replaced with a set of rules for letter terminals for use in letter-to-sound/sound-to-letter

generation (c.f. [70]). Conventions for the rules are as follows:

� Lines starting with a semicolon (;) are comments.

� Rules are separated by blank lines.

� The left-hand symbol (LHS) of a rule appears on its own line, pre�xed by a period

(.).

� Lines following the LHS are alternative right hand sides. The alternatives are sepa-

rated by either new lines or double vertical bars (jjs).

� Alternative symbols are enclosed in parentheses (()s).

� Optional symbols are enclosed in brackets ([]s).

� Terminal symbols are pre�xed by a dollar sign ($).

A.1 High Level Rules
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;;****************************************************************

;;layer 0 (start symbol)

.sentence

word

;;****************************************************************

;;layer 1

.word

[fp] fcn

[fp] [pre] sroot [dsuf] sroot2 uroot [dsuf] [isuf]

[fp] [pre] sroot uroot [dsuf] sroot2 [dsuf] [isuf]

sroot [isuf] sroot2 [sroot3] [uroot]

sroot [dsuf] [isuf] || [fp] spre pre sroot

;;****************************************************************

;;layer 2

.fp

pau [glottal] || glottal

.fcn

[fonset] fnuc [fcoda] [fsuf]

.fsuf

(v d*ed el s*pl m)

.fonset

(sh! b! dh! w! k! f! g! h! m! s! y! d! t! y! l!)

.fnuc

(ao ae aar ah ay uw aor eh ih ow iy er ehr ey el uh)

(iy_the ra_from ey_a en_and ix_in uw_to ux_you ay_i ah_does)

.fcoda

(t d m v z s n d v p ch th f)
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.sroot

[onset] nuc_lax+ coda || [onset] nuc+ [coda] || [onset] lnuc+ lcoda || lnuc+

.spre

(^all ^ad ^com ^dis ^in ^ir ^non ^re ^sub ^un)

.sroot2

[onset] nuc_lax+ coda || [onset] nuc+ [coda] || onset lnuc+ lcoda || lnuc+

.sroot3

[onset] nuc_lax+ coda || [onset] nuc+ [coda] || onset lnuc+ lcoda || lnuc+

.dsuf

[uonset] dnuc [ucoda] || dnuc [umedial] nuc [ucoda]

.pre

[uonset] nuc [ucoda]

.uroot

[uonset] nuc

.isuf

^al (^pl ^ly ^ism) || ^ism [^pl] || ^ment [^pl] || ^th (^y ^pl)

(^th ^al ^ly ^past ^pl ^ing ^est ^er ^able ^ness ^ful ^less)

^past (^pl ^ly) || ^ing (^pl ^ly ^ful ^less ^ness)

^ly ^ness || ^ful (^ly ^ness) || ^er (^pl ^past)

.^ment

m! en t

.^day

d! ey

.^ence

en s
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.^ant

en t

.^ate

ih t

.^ace

ih s

.^age

eh jh

.^ive

ih v

.^y

iy

.^ful

f! el

.^less

l! eh s

.^ness

n! eh s

.^al

el

;;****************************************************************

;;layer 3

.pau
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wb

.glottal

q

.ambi_cons

(t! v! m! p! n!)

.onset

s! (p t k) [r] || s! (p k) l || s! k (w y) || s! (p t k m n l w)

(p! t! k! b! d! g! r! y! h! l! n! w! m!)

(p! t! k! b! d! g!) r || (p! k! b! g! v!) l || (d! t! k! g! v!) w

t! y || (f! v! m! p! k! b! d! h! s!) y || (f! th!) [r]

(dh! s! sh! z!) || sh! (r w) || s! (f l w) || f! (l r) || (ch! jh! zh! v!)

.uonset

s! (p t k) || s! t r || (p! f!) r || k! w

(p! t! k! b! d! g! r! y! h! l! n! w! m! dh!)

(s! sh! zh! z! th!) || (ch! jh! v! f!)

(f! v! m! p! k! b! d! h! s! n!) y || (p! t! k! b! d! g!) r

(b! p! g! k!) l || (t! k! g!) w || t! y

.dnuc

(eh aa ah ow iy ih ao yu aor uw er em ehr) || (en el ay ae ey ing)

.nuc

(ae eh aa ah ow iy ih ao yu uw er)

(en em el aar ay ey aor) || (ay_i ix_in)

.lnuc+

(ey+ ow+ ay+ iy+ uw+ yu+ aa+) || ey+ ow+

.spre_nuc

(aol+ ihr+)
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.nuc_lax+

(ae+ eh+ ih+ uh+ ao+ ah+ aa+)

.nuc+

(el+ oy+ aw+ ao+) || (aol+ ehr+ aor+ aar+ ihr+ er+) || (ux_you ay_i iy_the)

.coda

t || (m n ng l r) || (m l) (b p f) || (l n) (t d ch) || n (z s)

l (t k g m v) || ng (k g) || (sh ch jh z v n l) || (f v th dh zh)

[s] (p k t) || d s t || (b d g) || (f p k) t || (p k t) s || n jh || (z dh) m

.umedial

(s! b! p! t! l! h! n! k! g! z! v!) || s t! [r] || k (t! s!) || d s! || n m!

.ucoda

(m n l r) || (sh ch jh s v n l ng z) || (f v th dh) || dh m || (p k t b d g)

n (s d t jh) || m (p f) || (k t) s [t] || k t || p t

.lcoda

dh || (m n ng l) || n (t d jh ch) || (z ch jh v n l r) || (f v th s sh zh)

(p k t b d g) || [k] s t || l (d t)

;the function word set

.^indef

ey_a

.^def

dh! iy_the

.^and

en_and d

.^does
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d! ah_does z

.^on

ao n

.^in

ix_in n

.^from

f! ra_from m

.^to

t! uw_to

.^you

ux_you

.^self

ay_i || ay_i (el d m v)

;;;the inflexional suffix set.

.^able

ah b! el || ah b! l iy

.^al

el

.^ly

l! iy

.^er

er

.^ton

t! en
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.^son

s! en

.^ham

h! ae m

.^y

iy

.^th

[eh] th

.^past

d*ed

.^pl

s*pl

.^ing

ing

.^est

eh s t

.^ism

ih (dh z) m

;;the stressed prefixes

.^all

aol+

.^ad

ae+ (d b)
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.^com

k! aa+ m

.^dis

d! ih+ s

.^in

ih+ n

.^ir

ihr+

.^non

n! aa+ n

.^re

r! iy+

.^sub

s! ah+ b

.^un

ah+ n

A.2 Low Level Rules

;;layer 4

.p

$pcl [$p]

.p!

[$pcl] $p [$hh] || $pcl
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.t

($tcl $scl) ($t $tr) || ($-s $dx $-n $tcl $scl $t $ti) || $-hv

.t!

[$dcl] $d || [$tcl] $t [$hh] || ($tcl $scl) $t

[$tcl] $tr || ($dx $dcl $scl $tcl)

.k

$kcl $k [$hh] || $kcl [$k]

.k!

[$kcl] $k [$hh]

.b

[$bcl] $b || $bcl [$b]

.b!

[$bcl] $b || $bcl [$b]

.d*ed

$scl [$d] || $tcl [$t] || $dcl [$d] || [$ix] $dx || ($ix $eh) $dcl [$d]

.d

[$dcl] $d || $dcl [$d] || ($dx $-n)

.d!

($scl $dcl) $d || ($dx $d)

.g

[$gcl] $g || $gcl [$g]

.g!

[$gcl] $g || $gcl

.m

140



$m

$m $hv

.m!

($m $-m)

.em

($eh $ih $ix $ax) $m [$hv] || $m

.en

($eh $ih $ix $ax) $n [$hv] || $n

.en_and

($aen $ix $eh) $n || ($n $aen)

.n

($n $-aen) || $n $hv

.n!

($n $-n)

.ing

($ix $iy $ti) $ng ($n $hv) || ($ix $iy $ti) $ng

.ng

$ng || [$ng] $n [$hv]

.s

($s $sh $ts) || ($ts $s) $epi || ($z $ts) $s

.s!

($s $sh $-s $ts) || ($ts $s $-s) $epi || $ts $s

.sh

$sh [$epi]
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.zh

$sh

.zh!

$sh [$epi]

.sh!

$sh [$epi] || $-sh

.ch

$tcl $ch [$epi]

.ch!

($tcl $scl) $ch || $ch

.jh

[$dcl] $jh [$y]

.jh!

[$dcl] $jh

.f

$f [$epi] || $pcl $f

.ra_from

$r ($ah $ax) || ($-fr $axr)

.f!

($f $-f) [$epi] || $fr || $pcl $f

.v

($m $v)

.v!

$v
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.th

[$tcl] $th || $dh

.th!

[$tcl] $th

.dh

$dh

.dh!

[$dcl] $dh || $-n || $-s

.uw_to

$-tr || $ix $hv || ($ux $uw) [$w] || ($ax $ix $uh)

.ux_you

($ux $-ux) || $jh $ux

.uw

($ux $uw $ix $axr)

.er

($r $er $axr $ax)

.ae

($ae $aen $ax $ix $-axr $eh) || ($ae $ix) $hv

.ey_a

$ey [$y] || ($axr $ax $ix $ah)

.ey

($ey $iy) || $ey ($y $hv)

.ay_i

($ay $ax $ix) || $ay $iy
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.ay

$ay [$iy]

.oy

($ao $ow) $ix [$iy]

.ehr

$axr [$r] || $ehr [$r]

.eh

($eh $ih $ix $ax $-axr)

.ix_in

($ix $ih)

.ih

($ih $ix $-axr $eh $-s $axr) || $ih $hv

.ah_does

($ax $ix $ah)

.ah

($ah $ax $axr $ix) || $ah $hv || $-axr

.uh

$uh

.aor

$axr || $aor [$r]

.ao

($ao $aa $ax $ah) || $ao $ah

.aar

$axr || $aar $r
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.aa

($aa $ah $ix)

.ow

($ow $uh $l $axr) || $ow $w

.iy_the

($iy $ix $ax $ah $-dh $l $axr)

.iy

$iy ($y $hv) || ($ti $iy $ix $-axr $-ti) || $y

.uw+

($uw $-ux) || $ux [$uw] || $uw $w

.er+

($axr $er)

.ae+

($ae $aen) || $ae ($hv $ah)

.ey+

$ey ($y $hv) || $ey

.ay+

$ay $iy || ($ay $ey $ae) [$hv]

.oy+

$ow ($iy $ix)

.ehr+

$ey $ehr || ($eh $ehr $axr) || $ehr ($axr $r)

.eh+

($eh $ah $ix)
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.ihr+

$ih $axr

.ih+

($ih $ix $uh)

.ah+

$ah [$hv] || $ax

.uh+

$uh

.aor+

($aor $axr) [$r] || [$aor] $axr [$hv]

.aol+

$ao [$l] [$hv]

.el+

$eh $l || $ah $l

.ao+

$ao [$hv] || $aa

.aar+

$aar [$r]

.aa+

$aa [$hv]

.ow+

$ow [$w] || $uh

.aw+

$aw [$hv]

$ah
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.iy+

$iy [$y] [$hv]

.r

($r $-tr $axr)

.r!

$r

($-axr $axr)

.l

$l [$hv] || $hl [$l]

.l!

($l $-l)

.el

[$ax] $l

.w

$w

.w!

$w

.y

($y $-sh $jh $-ch)

.y!

($ch $y $-sh) || $-sh $epi

.yu+

[$y] ($uw $ux) [$w] || $jh $ux

.yu
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($y $jh) $ux [$w] || $ux

.h!

($hh $hv)

.s*pl

[$z] $s [$epi] || ($ix $eh) $z $s || $ts $s || ($ts $sh) [$epi]

.z

[$z] $s [$epi] || [$z] $sh || $z

.z!

[$z] $s [$epi]

;;word boundary

.wb

$iwt || $iwt $em $iwt

;; glottal

.q

$q
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Appendix B

Some Details on the Parser

Implementation

In this appendix, we describe some of the details of how we implemented our angie parser.

The description is not meant to be the provide an optimal implementation, but more as an

aid to help the reader understand the framework design and as a starting point for other

implementations.

B.1 Parser Implementation

Recall from Chapter 2 that the angie parser proceeds in a bottom-up, left-to-right manner

and that a path from a terminal to the root of the tree is called a column in our terminology.

At any given position in the input string, our parser takes as an input a collection of possible

partial parse trees for the phone string prior to the given position and also the phone at

the given position. (If we are at the beginning of a word, the partial parse is empty.) We

extend the partial parse to include the phone at the given position as follows:

1. For each partial parse in the collection of partial parses:

(a) Create a single node representing the terminal phone at the given position. The

node is marked with layer information and also with a pointer to the partial

parse, also known as the left context, so far.

(b) Check to see that the advancement probability for this phone. If it is zero, then

this partial parse cannot continue and can be garbage collected.
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(c) Create a linked list, l, with only this node.

(d) Add the nodes in the result of Climb(l) to the set of possible parse extensions.

2. Consider the set of possible parse extensions as the new collection of partial parses

for processing the next input position.

Our collection of possible parses is maintained as a linked list sorted in order of decreas-

ing score. We impose a limit on the maximum number of entries in this list, presently set

at �fteen. This limit was referred to in the beam pruning discussion in Chapter 2 and was

optimized on development data.

The Climb(l) function is implemented as follows:

1. If l is empty, return an empty list.

2. If the nodes in l are already at the top-most layer, that is, the root, then stop and

return l.

3. Initialize a new linked list, lnew, to be empty.

4. For each node, n, in the linked list l:

(a) Consider all possible climbs up the column by checking to see if a given symbol is

permitted by the rules and has a non-zero bottom-up trigram probability. Note

that the regular nature of our rules, namely that the left-hand side and right-

hand side are on adjacent layers, makes this a straight-forward process. For each

permitted climb:

i. Create a new node, nnew. This new node should inherit the left context from

n and should also contain a pointer back to n so the parse tree information

is available from a root node.

ii. Add nnew to lnew.

(b) If there are no possible climbs, then n can be garbage collected.

5. Recurse and return the results of Climb(lnew)
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B.2 Garbage Collection

As we can see from the previous section, there is substantial sharing that makes memory

reclamation di�cult. Consider the case of climbing a column from a given phone. The

phone node is shared by all possible upward extensions above it. The same holds true for

any other node created in the process. Thus, say the possible climbs from a given phone

node are known to all reach dead ends until the Climb function reaches the morphology

layer. It is not safe to garbage collect the particular phone node until the Climb function is

called on the linked list at the morphology layer and discovers that no climbs are possible.

At that point, the Climb function will garbage collect all the nodes at the morphology

layer. The garbage collection process must then know that the nodes in the syllabi�cation

layer are also safe to garbage collect, since there are no possible climbs at the morphology

layer. As mentioned in Chapter 2, this can be determined by maintaining a reference

count. In this case, each time the Climb function creates nnew, which points to n, it should

increment the reference counter for n. When a node is garbage collected, all the nodes

pointed to should have their reference counters decremented, and should any reach zero,

a recursive invocation of the garbage collection routine should occur. This same strategy

can be followed for garbage collecting partial parses, where the sharing arises from multiple

possible extensions to a given partial parse.

B.3 Probability Model Implementation

Recall from Chapter 2 that angie has two types of probabilities, advancement and bottom-

up trigram probabilities. The advancement probability is conditioned upon the left context,

which consists of six nodes from the leaf to the root of the parse tree. We store these

probabilities in a tree-like structure, where the root corresponds to layer 0 of an angie

parse tree (the root), and has entries for all possible symbols that can occur on layer 1.

Retrieving the record for a speci�c symbol, s, provides a set of entries which correspond to

possible symbols at the next layer under s. At the bottom is a structure with all possible

phones and the advancement probabilities for them. A separate table holds the start of

word probabilities, which are conditioned only upon the left phone context. Storing the

bottom-up trigram probabilities is straight-forward in our implementation. Because the

number of possible trigrams is small, we store these probabilities in a three dimensional
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array. Probabilities are trained by tabulating frequencies of occurrence in a large corpus of

parsed training sentences, and normalizing all counts leaving each context condition to sum

to 1.0.
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Appendix C

Phonetic Recognizer's Best-First

Search Details

A general outline of the best �rst search used in our phonetic recognition system is given

below:

1. Insert an empty path theory onto the stack

2. Remove the highest scoring path theory from the stack. Also, prune on maximum

stack size as needed.

(a) Check maximum paths per time boundary to see if this path theory gets pruned

or not. If so, go to step 2.

(b) If the linguistic angie theory associated with this path theory has not been fully

computed, �nish computing it. If angie returns a zero probability, prune the

path and go to step 2.

(c) Consider all possible phones and segments to extend this path theory. For each

one that has an acceptable acoustic score, see if a corresponding linguistic angie

theory has already been explored.

� If so, take the score from that. Check to see that no other path theory

with the same linguistic theory covers the same time boundary with a better

score. Insert the newly extended path into the stack.

� If not, partially build the linguistic theory. If angie returns a zero proba-

bility, prune the extended path, otherwise insert the extended path into the
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stack.

3. Go to step 2

We compute the total angie linguistic score in two steps. The reason for this is one of com-

putational e�ciency. Recall from Chapter 2 that the angie probability model consists of

two types of probabilities. It turns out that the advancement probabilities are easy to com-

pute and are where most of the probability discrimination comes from. On the other hand,

the trigram bottom-up probabilities are less important although somehat more expensive

to compute. By only computing the advancement probability, a partial angie score, we can

eliminate some poor scoring theories, which have an unacceptable advancement probability,

early on because the low score will cause those theories to drop down in priority on the

stack and be pruned.

We also see that there is a constant distinction between the linguistic angie theory

and the path theory. A linguistic theory only knows about the sequence of phones and

higher level partial parses of the phones. It knows nothing about the alignment of the

phones to the acoustic data along the time line. A full path theory needs to know the

actual path through the segment graph as well and hence knows about time. The upshot

is that there can be many di�erent path theories which share the same linguistic theory.

Our implementation takes advantage of this by sharing the same linguistic theory amongst

di�erent path theories.

As in the case of the angie parser described in Chapter 2, memory usage is a serious

issue to contend with in our best-�rst search. We adopt the same reference counting memory

reclamation technique as the angie parser in our best-�rst search. We will also perform

the same garbage collection in our stack decoder, described in Chapter 4 as well.
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