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Abstract

This thesis explores the use of discriminative training to improve acoustic modeling
in a segment-based speech recognizer. In contrast with the more commonly used
Maximum Likelihood training, discriminative training considers the likelihoods of
competing classes when determining the parameters for a given class’s model. Thus,
discriminative training works directly to minimize the number of errors made in the
recognition of the training data.

Several variants of discriminative training are implemented in the SUMMIT rec-
ognizer, and these variants are compared using results in the Jupiter weather infor-
mation domain. We adopt an utterance-level training procedure. The effects of using
different training criteria, optimizing various model parameters, and using different
values of training control parameters are investigated. Consistent with previous stud-
ies, we find the most common objective criteria produce very similar results. We do,
however, find that with our training scheme optimizing the mixture weights is much
more effective than optimizing the Gaussian means and variances.

An extension to the standard discriminative training algorithms is developed
which focuses on the recognition of certain keywords. The keywords are words that
are most important for the proper parsing of an utterance by the natural language
component of the system. We find that our technique can greatly improve the recog-
nition word accuracy on this subset of the vocabulary. In addition, we find that
choices of keyword lists which exclude certain unimportant, often poorly articulated
words can actually result in an improvement in word accuracy for all words, not just
the keywords themselves.

The accuracy gains reported in this thesis are consistent with gains previously
reported in the literature. Typical reductions in word error rate are in the range of
5% relative to Maximum Likelihood trained models.

Thesis Supervisor: I. Lee Hetherington
Title: Research Scientist
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Chapter 1

Introduction to Discriminative

Training

1.1 Introduction

Modern speech recognition systems typically work by modeling speech as a series
of phonemes. These phonemes are described using some sort of probability density
functions, often mixtures of multivariate Gaussian components. Various recogni-
tion hypotheses are ranked by determining the likelihood of a set of input waveform
measurements given the distributions of the hypothesized phonemes, combined with
syllable and word sequence likelihoods imposed by the grammar of the language. The
goal of the speech recognition process is to produce a transcription of the speaker’s
utterance with the minimum number of errors.

A major problem in building a successful speech recognition system is how to
find the likelihood functions for each sub-word class. Given a set of transcribed
training data, a set of modeling parameters must be found which will minimize the
number of recognition errors. The standard approach is to train the model parameters
using Maximum-Likelihood (ML) estimation. This approach aims to maximize the
probability of observing the training data for each class given that class’s parameter
estimates. However, maximizing this probability does not necessarily correspond

to minimizing the number of misclassifications. ML estimation does not take the
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likelihoods of incorrect classes into account during training, so potential confusions
are ignored. Therefore, Maximum-Likelihood training does not always do a good job
of discriminating near class boundaries.

Discriminative training aims to correct this deficiency by taking the likelihoods
of potential confusing classes into account. Rather than trying to maximize the
probability of observing the training data, it works to directly minimize the number
of errors that are made in the recognition of the training data. More attention is
given to data lying near the class boundaries, and the result is an improved ability
to choose the correct class when the likelihood scores are close.

The goal of this thesis is to comparatively evaluate several discriminative training
techniques in a segment-based speech recognition system. The next section provides
an overview of previous research which serves as an introduction to some of the issues
involved. Following that is a precise statement of the objectives of this thesis and an

outline of the remaining chapters.

1.2 Previous Research

Much research has already been done on discriminative training of speech recognition
parameters. Discriminative training procedures always employ an objective function
which is optimized by some sort of update algorithm. The objective function should
measure how well the current set of parameters classifies the training data. The
update algorithm alters the system parameters to incrementally improve the objective
score. The calculation of the objective function and subsequent alteration of the
system parameters are repeated until the objective score converges to an optimum
value.

The most common discriminative training criteria are Maximum Mutual Infor-
mation (MMI) [21] and Minimum Classification Error (MCE) [7]. The basic aim of
MMI estimation is to maximize the a posteriori probability of the training utterances
given the training data, whereas MCE training aims to minimize the error rate on

the training data. MMI focuses on the separation between the classes, while MCE
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focuses on the positions of the decision boundaries.

The standard MMI objective function [27] encourages two different optimizations
for each training sample: the probability of observing the sample given the correct
model is increased, and the probabilities of observing the sample for all other models
are decreased. Classification errors will hopefully be corrected since the likelihood
of the correct model for each sample is increased relative to the likelihoods of all
other models. However, the amount of optimization is not dependent on the number
of errors; even in the absence of classification errors on the training data significant
optimization of the objective function can be performed. This is because MMI does
not directly measure the number of classification errors on the training data, but

rather the class separability.

By contrast, a wide variety of different objective functions are used for MCE
estimation. MCE objective functions measure an approximation of the error rate on
the training data. While a simple zero-one cost function would of course measure this
error rate perfectly, it is a piecewise constant function and therefore cannot easily be
optimized by numerical search methods. A continuous approximation to the error
rate must be used instead. Some simple objective functions (perceptron, selective
squared distance, minimum squared error) are discussed in [16]. In most practical
MCE training procedures [7, 14, 16] a measure of misclassification is embedded into
a smoothed zero-one cost function such as a translated sigmoid. Thus almost no
penalty is incurred for data that is classified correctly, and data that is misclassified
incurs a penalty that is essentially a count of classification error. MCE directly acts
to correct classification errors on the training data; data that is classified correctly
does not significantly influence the optimization process.

A comparison between the MMI and MCE criteria is done in [25]. It is shown
that both criteria can be mathematically expressed using a common formula. The

criteria are found to produce similar results in practice.

The most common update algorithms used to iteratively alter the system pa-
rameters are Generalized Probabilistic Decscent (GPD) and Extended Baum-Welch
(EBW). GPD [6] is a standard gradient descent algorithm and is usually used to
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optimize MCE objective functions. EBW [13] is a procedure analogous to the Baum-
Welch algorithm for ML training that is designed for MMI optimization. Both algo-
rithms have step sizes which must be chosen to maximize the learning rate while still
ensuring convergence. A comparison between the two optimization methods is done
in [24], showing that the differences between the two are minimal.

Many variations of discriminative training have been implemented and reported
in the literature. Numerous combinations of parameters to optimize, optimization
criteria, and recognition frameworks are possible. In [3] the mixture weights of a
system based on Hidden Markov Models (HMMs) are optimized using MMI with
sentence error rates. In [27], the means and variances of the HMM state distributions
are adjusted using MMI. Corrective MMI training, a variation on MMI in which only
incorrectly recognized sentences contribute to the objective function, is used in [19].
A less mathematically rigorous version of corrective training is used in [2] to optimize
HMM transition probabilities and output distributions. In [14], MCE training is
used to compute means and variances of HMM state likelihoods. Relative reductions
in word error rate of 5-20% compared to the same systems trained with the ML
algorithm are typical.

Note that almost all of the previous research on discriminative training has been
done using HMM-based recognition systems. By constrast, the research for this thesis
will be performed using SUMMIT [10], a segment-based continuous speech recognition
system developed by the Spoken Language Systems group at MIT. The opportunity
to measure the effectiveness of discriminative training in a segment-based recognition
framework is one of the original characteristics of the research that will be performed

for this thesis.

1.3 Thesis Objectives

The principal goal of this thesis is to compare the effectiveness of various discrimina-
tive training algorithms in a segment-based speech recognizer. While many previous

experiments have utilized somewhat simple acoustic models (e.g., few classes or few
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Gaussian components per mixture model) the experiments in this thesis will evalu-
ate recognition performance using the full-scale SUMMIT recognizer in the medium-
vocabulary Jupiter domain. This should provide a more realistic view of the acoustic
modeling gains that may be possible in real speech recognition systems. The data
from these experiments will allow a direct comparison of the effectiveness of MCE
and MMI training. Also, the relative merits of altering different system parameters
(i.e., mixture weights versus means and variances) can be compared. Finally, it will be
possible to observe the effects of using different values for several training parameters,
such as the step size and the number of hypotheses used for discrimination.

Another goal of this thesis is to extend the existing body of discriminative train-
ing techniques for speech recognition. To this end a keyword-based discriminative
training algorithm is developed. The goal of this technique is to shape the acoustic
models to allow optimal recognition of the words that the system most needs in order
to understand an utterance. This technique should reveal the extent to which the
alteration of acoustic model parameters can be used to achieve specific recognition
goals.

Chapter 2 describes the experimental framework for this thesis. The Jupiter
domain is described and an overview of the SUMMIT speech recognizer is provided.
A detailed discussion of the acoustic modeling component of the recognizer is given.

Chapter 3 describes the technique of Gaussian Selection, which is used to reduce
test set evaluation times in this thesis.

Chapter 4 discusses the details of the discriminative training algorithm. The objec-
tive functions that will be used in this thesis are presented along with the algorithms
used for parameter optimization. The implementation of discriminative training in
SUMMIT is also discussed.

Chapter 5 presents results of various discriminative training experiments. Perfor-
mance using both the MCE and MMI criteria for altering mixture weights, means
and variances is evaluated.

Chapter 6 describes the new keyword-based discriminative training technique.

Alterations to the standard discriminative training algorithm are introduced. Results

15



of some experiments are presented which show that the keyword-based technique
actually produces the best results reported in this thesis using either a keyword-error
rate metric or the overall word-error rate.

Finally, Chapter 7 summarizes the lessons of this thesis and presents some sug-

gestions for future work in this area.
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Chapter 2

Experimental Framework

This chapter contains background information for the experimental work presented
in this thesis. First, the Jupiter weather information domain, which is used for all
experiments in this thesis, is discussed. Next, an overview of the SUMMIT speech
recognition system is presented that illustrates how the acoustic modeling component
fits into the recognizer as a whole. Finally, the acoustic modeling component is

described in more detail.

2.1 The Jupiter Domain

Recognition experiments were performed using the corpus associated with the Jupiter
telephone-based weather information system [30]. Users can call and receive weather
information from various online sources over the phone. Jupiter has information
on approximately 500 cities, 60% of them in the United States. The system can
provide weather reports for a given day or for a period of several days. It can also
answer specific questions about such weather phenomena as temperature, wind speed,
precipitation, sunrise and sunset times, pressure, and humidity. An example dialogue
between Jupiter and a real user is given in Table 2.1.

The Jupiter corpus contains quite a realistic body of data. Jupiter has a medium
vocabulary of 1957 words, of which nearly half are geography-related words. The

spoken utterances come mostly from calls to a toll-free number; almost all of these
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Jupiter: Hi! Welcome to Jupiter, the MIT Lab for Computer Science

weather information system. This call is being recorded for system development.
You may hang up or ask for help at any time. How can I help you?

User: Can you tell me what’s the weather like in Boston today?

Jupiter: In Boston this afternoon. Partly sunny early. Then becoming cloudy
with 30 percent chance of showers toward evening. Tonight: rain. Possibly heavy
at times. Near 100 percent chance of rain. Can I help you with something else?
User: Yes what about San Francisco?

Jupiter: In San Francisco today: patchy fog near the ocean morning.

Otherwise mostly sunny. Tonight: areas of coastal fog and low clouds. Otherwise
fair. Is there something else I can do for you?

User: Yes, how cold is it in Dallas Texas today?

Jupiter: In Dallas today: high upper 40s. Tonight: lows near 32. What else
would you like to know?

User: I'd like to know whether it’s snowing in Detroit.

Jupiter: I'm sorry, I didn’t understand you. Please rephrase your query.

User: What is the weather in Detroit?

Jupiter: In Detroit this afternoon: occasional light rain and drizzle. Tonight:
rain showers likely. Becoming snow showers by late tonight. 70 percent chance of
precipitation.

Table 2.1: Example of user dialogue with the Jupiter weather information system.

consist of spontaneous speech from untrained or self-trained users. Only spontaneous,

in-vocabulary utterances are used for training in this thesis.

In this thesis, three sets of training data are used. The first, train_6000, is used for
the majority of experiments with traditional discriminative training and contains 6000
utterances. The second, train_12000, is used for comparative purposes and contains
12000 utterances. The third, train_18000, contains about 18000 utterances and is
only used for the keyword-based training experiments in Chapter 6. During training,
the training sets are subdivided into two functional groups: eighty percent of the data

is used for training, and twenty percent is set aside for development evaluations.

Two test sets are used. The first, test_500, is used for the majority of recognition
experiments and contains 500 in-vocabulary utterances. For the more successful ex-
periments, performance is further measured using the 2500 utterance set test_2500,

which contains a full sampling of in-vocabulary and out-of-vocabulary utterances.
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2.2 Overview of SUMMIT

SUMMIT is a segment-based continuous speech recognition system developed at MIT
[10]. This type of recognizer attempts to segment the waveform into predefined sub-
word units, such as phones, sequences of phones, or parts of phones. Frame-based
recognizers, on the other hand, divide the waveform into equal-length windows, or
frames [23]. The first step in either approach is to extract acoustic features at small,
regular intervals. However, segment-based approaches next attempt to segment the
waveform using these features, while frame-based recognizers use the frame-based

features directly.

The result of the segmentation is a sequence of hypothesized segments together
with their hypothesized boundaries. As discussed in section 2.2.2, the signal can
either be represented with measurements taken inside the segments or measure-
ments centered around the boundaries. In this thesis, only boundary-based mea-
surements are used. Thus the recognizer must take a set of acoustic feature vectors
A = {a1,d3,---,an}, where N is the number of hypothesized boundaries, and find
the most likely string of words @* = {wy, we, - - -, wy} that produced the waveform.
In other words,

w* = arg max Pr(w|A) (2.1)

where  ranges over all possible word strings. Each word string may be realizable as
different strings of units @ with different segmentations s, but since all hypotheses are
evaluated on the same set of boundaries when using boundary-based measurements,
the likelihood of s need not be considered when comparing the likelihoods of different

word strings. Thus equation (2.1) becomes:
w* = argmax Y  Pr(w, @A) (2.2)
Yoa

where « ranges over all possible pronunciations of w. To reduce computation SUM-
MIT assumes that, given a word sequence w, there is an optimal unit sequence which

is much more likely than any other 4. This replaces the summation by a maximization
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in which we attempt to find the best combination of word string and unit sequence

given the acoustic features:
{w*, 4"} = argmax Pr(w, @|A) (2.3)
w,u

Applying Bayes’ Rule, this can be rewritten as:

Pr(A|d, @) Pr(@|d) Pr(d)

{w*,a*} = arg max Pr(A) (2.4)
= argmax Pr(A|w@, @) Pr(¢|w) Pr(w) (2.5)

The division by Pr(A) can be omitted since Pr(A) is constant for all & and @ and
therefore does not affect the maximization.

The estimation of the three components of the last equation is performed by,
respectively, the acoustic, lexical, and language modeling components. The following
four sections briefly describe the major components of the recognizer: segmentation,
acoustic modeling, lexical modeling, and language modeling. Afterwards we describe
how SUMMIT searches for the best path and the implementation of SUMMIT using

finite-state transducers.

2.2.1 Segmentation

The essential element of the segment-based approach is the use of explicit segmental
start and end times in the extraction of acoustic measurements from the speech signal.
In order to implement this measurement extraction strategy, segmentation hypotheses
are needed. In SUMMIT, this is done by first extracting frame-based acoustic features
(e.g., MFCC’s) at small, regular intervals, as in a frame-based recognizer. Next,
boundaries between segments must be hypothesized based on these features. There
are various ways to perform this task. One method is to place segment boundaries at
points where the rate of change of the spectral features reaches a local maximum; this
is called acoustic segmentation [9]. Another method, called probabilistic segmentation

[17], uses a frame-based phonetic recognizer to hypothesize boundaries. In this thesis,
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acoustic segmentation is used.

2.2.2 Acoustic Modeling

There are two types of acoustic models that may be used in SUMMIT: segment models
and boundary models [26]. Segment models are intended to model hypothesized
phonetic segments in a phonetic graph. The observation vector is typically derived
from spectral vectors spanning the segment. Segment-based measurements from a
hypothesized segment network lead to a network of observations. For every path
through the network, some segments are on the path and others are off the path.
When comparing different paths it is necessary for the scoring computation to account
for all observations by including both on-path and off-path segments in the calculation
[5, 11].

In contrast, boundary models are intended to model transistions between phonetic
units. These are diphone models with observation vectors centered at hypothesized
boundary locations. Some of these landmarks will in reality be internal to a phone, so
both internal and transition boundary models are used. Every path through the net-
work incorporates all of the boundaries through either internal or transition boundary
models, so the scores for different paths can be directly compared.

Boundary models are used exclusively in this thesis for two reasons. First, since
every recognition hypothesis is based on the same set of measurement vectors, col-
lecting statistics for discriminative training is much easier. Second, performance in
Jupiter has been shown to be better using boundary models than when using context-
independent segment models [26]. With considerably more computation, context-
dependent triphone segment models can improve performance further.

SUMMIT assumes that boundaries are independent of each other and of the word
string, so that

N
Pr(Al, @) = [] Pr(dilb) (2.6

1=1
where b; is the /th boundary label as defined by #. During recognition, the acoustic

model assigns to each boundary in the segmentation graph a vector of scores corre-
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sponding to the probability of observing the boundary’s features given each of the
boundary labels. In practice, however, only the scores that are being considered in
the recognition search are actually computed.

The details of how the likelihoods of a given measurement vector are computed

for each boundary label are presented in section 2.3.

2.2.3 Lexical Modeling

Lexical modeling is the modeling of the allowable pronunciations for each word in
the recognizer’s vocabulary [29]. A dictionary of pronunciations, called the lexicon,
contains one or more basic pronunciations for each word. In addition, alternate
pronunciations may be created by applying phonological rules to the basic forms.
The alternate pronunciations are represented as a graph, the arcs of which can be
weighted to account for the different probabilities of the alternate pronunciations.
The probability of a given path in the lexicon accounts for the lexical probability

component in (2.5).

2.2.4 Language Modeling

The purpose of the language model is to determine the likelihood of a word sequence
. Since it is usually infeasible to consider the probability of observing the entire
sequence of words together, n-grams are often used to consider the likelihoods of
observing smaller strings of words within the sequence [1]. n-grams assume that the

probability of a given word depends on only n — 1 preceding words, so that:
N
PI‘(’U_f) = H Pr(wi\wi_l, Wi—2," " ,wi_(n_l)) (27)
i=1

where N is the number of words in w. The probability estimates for n-gram language
models are usually trained by counting the number of occurrences of each n-word
sequence in a set of training data, although smoothing methods are often needed to

redistribute some of the probability from observed n-grams to unobserved n-grams.
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In all of the experiments in this thesis, bigram and trigram models (n=2 and 3,

respectively) are used.

2.2.5 The Search

Together, the acoustic, lexical, and language model scores form a weighted graph
representing the search space. The recognizer uses a Viterbi search to find the best-
scoring path through this graph. Beam-pruning is used to reduce the amount of
computation required. In the version of SUMMIT used in this thesis, the forward
Viterbi search uses a bigram language model to obtain the partial-path scores to
each node. This is followed by a backward A* beam search using the scores from
the Viterbi search as the look-ahead function. Since the Viterbi search has already
pruned away much of the search space, a more computationally demanding trigram
language model is used for the backward A* search. This produces the final N-best

recognition hypotheses.

2.2.6 Finite-State Transducers

The recognition experiments in this thesis utilized an implementation of SUMMIT
using weighted finite-state transducers, or FSTs [12]. The FST recognizer R can be

represented as the composition of four FSTs,

R=AoDoLoG (2.8)

where A is a segment graph with associated acoustic model scores, D performs the
conversion from the diphone labels in the acoustic graph to the phone labels in the
lexicon, L represents the lexicon, and G represents the language model. Recognition
then becomes a search for the best path through R. The composition of D, L, and
G can be performed either during or prior to recognition. In this thesis Do Lo G is
computed as D o min(det(L o G)), and the composition with A occurs as part of the

Viterbi search.
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2.3 The Acoustic Modeling Component

As seen in the previous section, the job of the acoustic modeling component of the
recognizer is to compute Pr(A|w@, @). This reduces to a product of individual terms
of the form Pr(d;|b;), where b; is the Ith boundary label defined by @. This section
describes how the probability density functions for each boundary label are modeled,

and how the model parameters are trained given a set of training data.

2.3.1 Acoustic Phonetic Models

Acoustic phonetic models are probability density functions over the space of possible
measurement vectors, conditioned on the identity of the phonetic unit. Normalization
and principal components analysis are performed on the measurement vectors prior
to modeling. Then the whitened vectors are modeled using mixtures of diagonal

Gaussian models, of the following form:

p(dlu) = ;wipi(c_i\u) (2.9)

where M is the number of mixture components in the model, @ is a measurement
vector, and u is the unit being modeled. Each p;(@) is a multivariate normal prob-
ability density function with no off-diagonal covariance terms, whose value is scaled

by a weight w;. The mixture weights must satisfy

M
S wi=1 (2.10)
i=1

0<w; <1 (2.11)

Thus the parameters used to model a given phonetic unit are M weights, M d means,
and Md variances, where d is the dimensionality of the whitened measurement vector.

The score of an acoustic model is the value of the mixture density function at the
given measurement vector. For practical reasons, the logarithm of this score is used

during computation, resulting in what is known as the log likelihood score for the

24



given measurement vector.

2.3.2 Maximum-Likelihood Training

Before the Gaussian mixture models can be trained, a time-aligned phonetic tran-
scription of each of the training utterances is needed. These are automically gener-
ated from manual word transcriptions using forced phonetic transcriptions, or forced
paths. Beginning with a set of existing acoustic models, we perform recognition on
each training utterance using the known word transcription as the language model.
Next, the principal components analysis coefficients are trained from the resulting
measurement vectors, producing a set of labeled 50-dimensional vectors. The data
are separated into different sets corresponding to each lexical unit.

Training a Gaussian mixture model for a given unit is a two-step process. In the
first step, the K-means algorithm [8] is used to produce an initial clustering of the
data. In this thesis the number of clusters generated (i.e., the number of mixture
components) is either 50 or the number possible with at least 50 training tokens per
cluster, whichever is smaller. This ensures that each mixture component is trained
from sufficient data. In the second step, the results of the K-means algorithm are used
to initialize the Expectation-Maximization (EM) algorithm [8]. The EM algorithm
iteratively maximizes the likelihood of the training data and estimates the parameters
of the mixture distribution. It converges to a local maximum; there is no guarantee
of achieving the global optimum. The outcome is dependent on the initial conditions
obtained from the K-means algorithm.

The result of the training is a set of model parameters which maximizes the
likelihood of observing each class’s training data given the parameters. Note that only
the training data belonging to a given class affects that class’s parameter estimates.
Discriminative training aims to incorporate additional knowledge by also using the

data associated with potential confusing classes.
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Chapter 3

Gaussian Selection

This chapter discusses the technique of Gaussian Selection [4, 18]. First, the motiva-
tion for using Gaussian Selection and mathematical formulation of the technique are
presented. Next, the results of applying Gaussian Selection to the acoustic models in
SUMMIT are discussed. Finally, the most important features of Gaussian Selection

are summarized.

3.1 Description of Gaussian Selection

Gaussian Selection is a technique which reduces the time required to estimate acoustic
likelihood scores from Gaussian mixture models. This section discusses the motivation

for using this technique and the details of its implementation.

3.1.1 Motivation

In a real-time conversational system such as Jupiter, not only the accuracy but also
the computational requirements of the acoustic models are critical. Overall, up to
75% of the recognizer’s time is spent evaluating the likelihoods of individual Gaussians
in the various Gaussian mixture models. Thus it is necessary to keep the number of
Gaussians evaluated as low as possible in order to perform recognition in real time.

Previously, techniques such as beam pruning during the Viterbi search have been
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used to reduce the number of scores that need to be computed, but these techniques
result in a large degradation in recognition accuracy. We need to find a way to prune
away computations that do not have much effect on recognition accuracy.

In practice, the majority of the individual Gaussian likelihoods are completely
negligible. The total likelihood score for a Gaussian mixture model is the sum of
these individual likelihoods. There are usually a few Gaussians which are “close” to
a given measurement vector and have much higher likelihoods than the rest of the
Gaussians. Thus, the score for the mixture is approximately equal to the sum of the
these few likelihoods. The likelihoods for the rest of the Gaussians do not need to be
computed to maintain a high degree of accuracy in the overall score.

The motivation behind Gaussian Selection is to efficiently select the mixture com-
ponents that are close to a given measurement vector, so that only the likelihoods for
these Gaussians must be computed. The algorithm for accomplishing this is described

next.

3.1.2 Algorithm Overview

To evaluate a model, the feature vector is quantized using binary vector quantization,
and the resulting codeword is used to look up a list of Gaussians to evaluate. The
lists of Gaussians to be evaluated for each model m and codeword k are computed
beforehand.

A Gaussian is placed in the shortlist for a given m and k if the distance from its
mean to the codeword center is below some threshold ©. The distance criterion used
is the squared Euclidean distance normalized by the number of dimensions D. Thus

we select Gaussian 7 in model m if

= 3 (i) — ()P < © (3.1)

There are two other ways a Gaussian can be placed in shortlist (m, k). A Gaussian
is automatically placed in the list if its mean quantizes to k. This means that every

Gaussian will be selected for at least one codeword. If m has no Gaussians associated
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with £ based on the above criteria, the closest Gaussian is placed in the list. This
ensures that at least one Gaussian will be evaluated for every model/codeword pair,
preserving a reasonable amount of modeling accuracy.

During model evaluation likelihood scores are computed for the Gaussians at each
of the indices specified in the shortlist. Only these scores are combined to produce

the total likelihood score for the model.

3.2 Results in SUMMIT

The effectiveness of Gaussian Selection was evaluated in Jupiter. Two similar metrics

of computational load were used. The first metric is the computation fraction as

defined in [4] and [18]:

— Nnew + VQcomp

C
Nun

(3.2)

where Ny, and Ny, are the average number of Gaussians evaluated per feature
vector in the systems with and without Gaussian Selection, respectively, and V Qcomp
is the number of computations required to quantize the feature vector. The second
metric is a ratio of the overall recognition times with and without Gaussian Selection.
Word accuracy in Jupiter is plotted against these metrics in figures 3-1 and 3-2.
Curves are plotted for codebook sizes of 256, 512, 1024, and 2048. Each curve is
swept out by varying the distance threshold ©. The data for these curves was collected
running the recognizer on a set of 500 test utterances.

As can be observed from the figures, very little recognition accuracy is lost for
values of © down to 0.7. Lowering © further causes accuracy to degrade quite rapidly.
Performance does not appear to be terribly sensitive to the choice of codebook size.

At the optimum point for this data (512 codewords, © = 0.7), a 67% reduction
in Gaussian evaluations results in an overall reduction of recognition time of 45%,
a speedup by a factor of 1.8. Thus it is obvious that reducing computation in the
acoustic modeling component has a large, direct impact on the speed of the recognizer,
with little degradation of accuracy.

We have tried the more complex weighted distance criteria described in [18], but
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these did not offer any advantages in our system. We also tried using a Gaussian log
probability in place of squared distance without noticing any improvement. Finally,
we tried limiting the size of the shortlists as in [18], but this did not improve upon

the speed/accuracy tradeoff [26].

3.3 Summary

This chapter discussed the technique of Gaussian Selection. By vector quantizing the
feature vector and only evaluating Gaussians which are within some distance threshold
from the codeword center, the computation required to score acoustic models can be
greatly reduced. In SUMMIT, we found that the overall recognition time can be
decreased by 45% with a very small decrease in word accuracy.

Gaussian Selection has now been incorporated into the mainstream SUMMIT
recognizer; for an example of how it is used see [26]. Since this thesis aims to use
the most realistic recognition conditions possible, Gaussian Selection is used in all
recognition experiments. One major reason for discussing Gaussian Selection here is
to emphasize that this introduces a small amount of extra uncertainty in the test set
accuracies. For example, a gain obtained from altering the acoustic models may be at
least partially accounted for by a coincidental decrease in errors caused by Gaussian
Selection in the new acoustic space. However, we have seen that Gaussian Selection
is not terribly sensitive to the exact values of the parameters in the models; thus,
for the incremental changes used in discriminative training, the extra uncertainty in

comparing accuracies should be quite small.
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Chapter 4

Implementing Discriminative

Training in SUMMIT

This chapter discusses the procedures used for discriminative training in this thesis.
The training process requires a body of training data, an objective function, and a
parameter optimization method. The training data is first scored using the current
classifier parameters. The objective function then takes in these scores and provides a
measure of classification performance. The parameter optimization method provides
a way to alter the chosen parameters in order to maximize or minimize the objective
function. If the objective function is a good measure of classifier accuracy, then
optimizing it will minimize the number of recognition errors made. The first section
describes two different ways of dividing up the training data and computing scores
to be fed into the objective function. The next two sections describe the objective
functions and parameter optimization formulas used in this thesis. Finally, we give

an overview of the implementation of the training process as a collection of routines

in SUMMIT.

4.1 Phone- Versus Utterance-Based Training

The first decision that must be made is how to divide up the training data into func-

tional units that can be scored using the classifier parameters. The two possibilities
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considered here are the use of phone-level scores and the use of utterance-level scores.

If a phone-level discriminative criterion is to be used, the training data is broken
down into a set of labeled phonemes. Each observation vector is sorted into a group
based on its assigned label. The scores to be fed into the objective function are the
pure classifier scores for each observation vector. The correct score is the score for the
model corresponding to the vector’s label, and the competing scores are the scores
for all of the other models. This criterion attempts to maximize the acoustic score of
the correct phone model for each observation vector independent of the context from

which it was derived.

With an utterance-level discriminative criterion, on the other hand, the training
data is organized into utterances. Each utterance consists of a sequence of observation
vectors. The scores to be fed into the objective function are the complete recognizer
scores for each utterance, i.e., the sum of the acoustic, lexical, and language model
scores. The correct score is the recognition score for the actual spoken utterance, and
the competing scores are the scores for all other possible utterances. Of course, it is
not practical to train against every possible utterance, so an N-best list of competing
utterances is used. This criterion attempts to adjust the acoustic models to maximize
the chances of the correct utterance hypothesis being chosen, taking into account the

effects of the non-acoustic components of the recognizer.

Some preliminary tests were run using several of the objective functions and op-
timization methods to be discussed in the next two sections. While phone-level dis-
criminative training decreased the number of classification errors made on unseen
observation vectors, it actually increased word error rates when the updated acous-
tic models were incorporated into the recognizer. We believe this to be due to the
fact that the assignment of the correct label to a given boundary does not necessar-
ily occur when g. — gn, > 0, where g. and g5 are the acoustic scores for the correct
and best competing models, respectively. Instead, proper assignment occurs when
ge — gn > O, where © is some threshold determined by the relative non-acoustic
scores of the hypotheses differing only at that boundary. In fact, © can be —oo if

linguistic constraints make the competing label impossible at the boundary. Thus,
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Models Word Accuracy
ML Models 89.6
Phone-Level Training 89.2
Utterance-Level Training | 90.2

Table 4.1: Word Accuracies for Preliminary Test Comparing Phone-Level and
Utterance-Level Criteria

phone-level discriminative training can make many alterations that do not improve
the recognizer and, in fact, may degrade its accuracy. Utterance-level discriminative
training, which takes non-acoustic scores into consideration when altering the acous-
tic parameters, improved both classifier performance and the word accuracy of the
recognizer. In light of this, utterance-level scores were chosen for use in this thesis.

Table 4.1 gives word accuracies from one of the preliminary tests illustrating the
superiority of the utterance-level criterion. These accuracies were obtained training
the mixture weights with an MCE objective function (to be discussed in the next
section). Exactly ten training iterations were performed, and the resulting models
were evaluated using the test_500 set. Clearly, training with a phone-level criterion
has a negative impact on word accuracy, while the utterance-level criterion produces
the desired effect.

Thus, one set of scores is passed to the objective function for each utterance: the
combined recognition score for the correct hypothesis, and recognition scores for the
N hypotheses in some N-best list. This set of scores is very similar to that which

was used for sentence-level training in [3].

4.2 The Objective Function

A variety of different objective functions are possible in discriminative training. There
are two primary characteristics that are desirable in any choice of objective function.
First, as the function’s value is improved, the classifier performance should also im-
prove. Second, it should be continuous in the parameters to be optimized so that

numerical search methods can be employed. Most discriminative training algorithms
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reported in the literature use a variant on one of two broad classes of objective func-
tions: a Minimum Classification Error (MCE) discriminant or a Maximum Mutual
Information (MMI) discriminant. Descriptions of these classes of objective functions

as well as the particular realizations that are used in this thesis are given next.

4.2.1 The MCE Criterion

A large variety of different objective functions are classified into the category of MCE
discriminants. The defining characteristic of this group is that the functions are
designed to approximate an error rate on the training data. A simple zero-one cost
function would measure this error rate perfectly, but it violates the constraint that
the function should be continuously differentiable in the classifier parameters. As
noted in Chapter 1, most practical MCE training procedures in the literature use a
measure of misclassification embedded into a smoothed zero-one cost function. An

example of a common misclassification measure [16] is:

1
Nh,s n

ds(Xs;A) = _gc,s(XSaA) + gh,s()(s;A)77 (41)

Nh,s h=1

where X, denotes the sequence of acoustic observation vectors for the sentence, A
represents the classifier parameters, g. s is the log recognizer score for the sentence’s
correct word string, g s is a log recognizer score for a competing hypothesis, and N,
is the number of competing hypothesis in the sentence’s N-best list. From this point
forward gcs, gn,s, and Np ; are shortened to g, gn, and N}, for notational convenience,
but it should be remembered that these are all different for every sentence. 7 is
a positive number whose value controls the degree to which each of the competing

hypothesis is taken into account.
This misclassification measure can be embedded in a number of smoothed zero-one
cost functions. In this thesis we choose:

_ 1
T 1t erdra)

fs(ds) (4.2)
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where p is the rolloff, which defines how sharply the function changes at the transition
point, and « defines the location of the transition point. In this thesis « is always set

to zero. The contribution of each utterance to the total objective score is given by

fs-

It turns out that the misclassification measure of Equation (4.1) is not very sensi-
tive to the value of 7 for the numbers we use. For simplicity, then, n is set to 1. After
moving the g, term inside the sum and substituting the new formula for d; into the

equation for f,, we get:

1

1 4 " Lt (9e(Xes0) =g (Xo,0))

fs(X37A) = (43)

Equation (4.3) is still just the cost function of [16], with 7 set to 1 and « set to 0.
We decided to experiment with another equation similar to (4.3), but with the sum

over competing hypotheses done outside instead of inside the sigmoid:

1 M 1
fs(Xs, M) = Fh h2::1 1 + eP(9e(Xs,A)—gn(Xs,A)) (4.4)

This function still ranges from 0 to 1, but it allows each competing hypothesis to
make a more individual contribution to the value. In the limiting case as p — o0,
the function in Equation (4.3) can only take on two distinct values (0 and 1), but the
function in Equation (4.4) can take on (Nj, + 1) different values (Nih,O < k < Np).
For moderate values of p, however, equations (4.3) and (4.4) produce very similar
behaviors. This is illustrated in figure 4-1, which traces the curves of (4.3) and (4.4)
with typical values for the competing scores. The only difference between the two
curves is that the one defined by (4.4) transitions a bit more slowly. We choose to
use the form in (4.4) since it is easier to calculate the derivative when the sum is on

the outside.

To get the complete objective function, the cost functions of all of the training

utterances are averaged together. Thus, the formula for the MCE objective function
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Figure 4-1: Comparison of cost functions of equations (4.3) and (4.4). Four competing
hypotheses are used, whose scores are fixed at -549.0, -549.1, -550.3, and -550.6. This
is a typical score pattern that might be observed for the top 4 hypotheses in an N-
best list. p is set to 4.0. The curves are swept by varying the score of the correct
hypothesis between -564.0 and -534.0.

1s:
1 X
Fuce(A) = N Z fs(Xs, A) (4.5)
$ s=1
1 N1 e 1
N, e Ny, Pt 1+ eP(9c(Xs,A)—gn(Xs,A))

where N is the total number of training utterances. This is the function we will use

for MCE training experiments in this thesis.

4.2.2 The MMI Criterion

Unlike the MCE case, the MMI criterion comes with one standard objective function
[27]. In place of a cost function to be minimized, there is a likelihood ratio to be

maximized. This ratio is given by:

pC(-XSa A)
pc(Xsa A) + ZhNil ph(Xsa A)
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where p. and the p,’s are the linear versions of the recognizer scores, i.e.:
gh(X37 A) = logph(Xsa A) (48)

The log is used in the likelihood ratio to avoid computing with very small numbers.
In terms of the log likelihood scores that the recognizer actually produces, (4.7) can

be rewritten as:

Np
Ls( X5, A) = ge(Xs, A) — log(e9eZed) - 57 eon(Xeh)) (4.9)
h=1

In order to compare the behavior of /; in the MMI criterion with the behavior of f, in
the MCE criterion, figure 4-2 shows £, plotted as a function of g, for the same compet-
ing hypotheses as in figure 4-1. As can be seen in the figure, ¢, is approximately linear
up to the point when the correct score is slightly greater than the best competing
score. At this point /, levels off and asymptotically approaches 0. Note that because
of the logarithm, there is no lower bound on ¢,, which implies two things. First, ¢, can
vary over a much larger range than f; from the MCE case. Second, when the score
for the correct hypothesis is much worse than the scores for competing hypotheses,
/s can still have a significant derivative with respect to changes in parameter values.
Thus MMI will encourage optimizations to improve very poorly scoring utterances,
in contrast to MCE which is relatively insensitive to these utterances. This can have
a negative effect on error rates if these optimizations never improve the targeted ut-
terances enough to actually correct any errors, while at the same time detracting
from optimizations meant to improve more typical utterances. In order to keep MMI
training from encouraging these optimizations, a score threshold 7 can be introduced.
The highest score among the correct and competing hypotheses is the best score. Any
of the other scores for which p, < Tppest are treated as if they were Tppes;. In other
words, a floor is placed on the score values. When small changes are made to these
score values, they will still be treated as Tppest, and thus the objective score will
no longer be sensitive to very poorly scoring hypotheses. Figure 4-2 also shows the

behavior of ¢, when a score threshold is used.
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Figure 4-2: Plot of MMI log likelihood function of equation (4.9), with and without
a score threshold. As in figure 4-1, four competing hypotheses are used, whose scores
are fixed at -549.0, -549.1, -550.3, and -550.6. 7 is set to 0.1. Again, the curves are
swept by varying the score of the correct hypothesis between -564.0 and -534.0.

To get the complete objective function, the log likelihood functions of all the train-
ing utterances are averaged together. Thus, the final formula for the MMI objective

function is:

1 &
s s=1
1 N Nj,
= ge(Xs, A) — log(e9eXeh) 4 > e9n(Xs:A)) (4.11)
Ns .= h=1

4.3 Parameter Optimization

Once an objective function is chosen, a procedure is needed for finding the param-
eter set A that optimizes its value. The nature of the problem suggests the use
of a gradient-based approach. Two standard methods based on gradient search are
discussed here: Generalized Probabilistic Descent (GPD) and Extended Baum-Welch
(EBW) [24]. The search formulae are slightly different depending on whether mixture

weights or means and variances are to be adjusted. The next two sections describe

40



optimization for each of these parameter sets.

4.3.1 Adjusting the Mixture Weights

As discussed above, we will examine two different search techniques. The first, GPD,
is a standard gradient descent algorithm usually used to optimize MCE objective

functions. The GPD formula for updating the set of mixture weights  is [6]:
W =10+ eVgF (4.12)

where € is a constant that governs the learning rate and VF is the instantaneous
gradient vector of F. € is positive for MMI training and negative for MCE training,
since F is to be maximized in MMI and minimized in MCE. Thus, each individual

weight is updated according to:

. oF
%,

where w; ; is the j™ Gaussian of the i mixture.
The second search technique, EBW, is a procedure analogous to the Baum-Welch
algorithm for ML training that is designed for MMI optimization. The EBW formula

for updating the mixture weights is [27]:

’wm'{ oF +C}

Ow;,

oF
25 Wi {awi,j +C }

A

Wij =

(4.14)

The constant C' governs the learning rate in this equation, and it is chosen such that
all parameter derivatives are positive.

We automatically chose GPD to optimize the MCE objective function since EBW
is only used with MMI in the literature. For MMI, we ran some preliminary tests to
determine whether GPD or EBW performed better. Consistent with the findings in
[24], the two optimization methods seemed to produce nearly identical results. We

choose GPD in this thesis because it makes the calculation of the new weights much
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simpler. From this point forward EBW is no longer considered.

4.3.2 Adjusting the Means and Variances

When the means and variances are to be adjusted, the optimization method will be
almost the same. There are, however, two differences: first, these parameters are
multidimensional, and second, we will wish to take the variances into account when
altering the means.

The multidimensionality of the parameters means that the alteration of each in-
dividual mean or variance will now be a vector alteration. This can be handled by
adjusting each dimension separately. Partial derivatives can be taken with respect to
each dimension; each dimension will then be altered based on its own partial deriva-
tive. This means that the amount of computation required will go up by a factor of
D, where D is the dimensionality of the feature space. As we will see in Chapter 5,
though, it is possible to alter only a subset of the dimensions and still get accuracy
gains.

We wish to take the variances into account when altering the means so that
each step produces comparable results. If a given dimension has a large variance
in a Gaussian, its mean will need to be altered by a large amount to produce any
noticeable changes in modeling effectiveness. Likewise, if the Gaussian has a very
small variance, small alterations in its mean can produce large changes.

Taking into account these considerations, the GPD update formulas for the means

and variances can be written as:

oF
b = s+ el 4.15
Hij,d = Hij,d T €0 54 a,ui,j,d ( )
and
2 s e OF
Oijd=0ija+t 5@ (4.16)

where d represents a given dimension of the mean or variance vector. The stepsize is

multiplied by the variance when a given dimension of a mean is altered. The stepsize
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of €/2 for the alteration of the variances is the same as was used in [24].

4.4 Implementational Details

This section provides an overview of the routines used to implement discriminative
training in SUMMIT. The training process is divided into two major parts: collection
of training statistics and the iterative alteration of parameter values. The statistics
collection gathers the relevant parts of the data into a compact format; the parameter
alteration iteratively improves the objective function’s value on this data. The details

of each one of these phases are described next.

4.4.1 The Statistics Collection

The goal of the statistics collection phase is to take in a set of transcribed utterances
and write their acoustic data in a compact format to a file. Since we are doing
utterance-level discriminative training, we not only need to write out the data for the
correct hypothesis, but also the data for the competing hypotheses. The phone string
for the correct hypothesis is known from the transcription, but the N-best competing
hypotheses must be generated during the collection.

The statistics collection process is begun with a call to a Tcl script. This script
goes through the file containing the utterances and loads them one by one. For each
utterance, calls are made to SAPPHIRE objects which cause a measurement vector
to be computed for each boundary. In addition, the reference transcription for the
utterance is loaded from the transcription file. This word string is saved into the
classifier object using one of the object’s methods.

Data for the correct hypothesis and all of the competing hypotheses must then
be collected. This data includes the non-acoustic score for the hypothesis and the
phonetic labels assigned to each boundary. This information is first collected for the
correct hypothesis running a forced Viterbi search. If this forced search is unable to
produce a string matching the reference word string, the utterance is flagged to be

thrown away. This usually happens when the search encounters no final states at the
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last boundary. Note that this means that the number of utterances actually used for
training will turn out to be a bit less than the number of utterances in the training
set. However, less than five percent of the utterances are thrown out in this manner.
Otherwise, the non-acoustic score and sequence of labels assigned to each boundary
are stored.

For those utterances on which the forced search is successful, a special method of
the Viterbi object is called which generates an N-best list of hypotheses. For each of
the hypotheses, a non-acoustic score and a list of models indices for each boundary
are provided. If the correct hypothesis is among this list, it is thrown away. The non-
acoustic scores and model index lists for the rest of the hypotheses are kept. This is
all the information that is needed to completely characterize the hypotheses.

Note that in order to generate an N-best list of competing hypotheses, a set of
starting point acoustic models must be provided for the statistics collection. In order
to make these N-best lists as accurate as possible, we use a set of ML-trained models.
These ML models were trained from the same pool of training data as we are using for
the discriminative training. This strategy means that the hypotheses to be trained
against are the best competing hypotheses when ML-trained acoustic models are used
in the recognizer. It also means that the ML-trained parameters will eventually be the
starting point for the parameter alteration. Thus, the baseline accuracy in training
experiments will end up being the ML accuracy, and any gains in accuracy through
the iterative process can be directly interpreted as gains relative to ML training.

To summarize, the following data gets stored in the statistics file. For each utter-
ance, the sequence of observation vectors is first written. Next comes the non-acoustic
score and a sequence of phone indices for the utterance’s correct hypothesis. Finally,
the non-acoustic score and phone indices are written for each of the competing hy-

potheses. The format of the statistics file is listed in Appendix A.

4.4.2 The Parameter Adjustment

The parameter adjustment phase needs to read in the data in the statistics file and

use it to iteratively improve a given set of parameters. Every iteration of parameter
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adjustment consists of derivative computation, incremental parameter addition, and

the calculation of new scores.

The training data is first read in from the statistics file and placed in an array
of utterance structures. Each structure contains the following fields: the number of
boundaries in the utterance, measurement vectors for each boundary, the number of
hypotheses for the utterance, a list of phone indices for each hypothesis, and non-
acoustic scores for each hypothesis. The values in these fields never change. The
structure also has fields for acoustic scores for each hypothesis and boundary, and
total scores for each hypothesis. The values in these fields are modified during the

training process as the acoustic models change.

The training procedure takes in the initial acoustic models and the array of utter-
ance structures. Before the iterative process begins, initial acoustic scores are com-
puted for each utterance, hypothesis, and boundary, by passing the phone index and
measurement vector for the boundary to the normal mixture scoring procedure. To-
tal scores for each hypothesis are also computed by adding together the non-acoustic
score and all of the acoustic scores. As noted in Chapter 2, about 20 percent of the
training data is held out of the training process and used to evalute the training’s
progress. An initial objective function value and sentence error rate are computed for

this development data to give a baseline reference for training performance.

Each iteration begins with a set of derivative calculations. Derivatives are calcu-
lated separately for each utterance’s cost or likelihood function. A numerical deriva-
tive is used; a small change § is made to the parameter value and new acoustic scores
are computed for each boundary affected by the change. The cost/likelihood function
is recomputed with the resulting new total scores, and the derivative with respect to

the parameter is:

8.f — fnew - .fold
0o )

(4.17)

where f stands for the MCE cost function or MMI likelihood function, and A repre-
sents the parameter being altered. Since the objective function is just the sum of the

individual cost/likelihood functions, the derivatives for the separate utterances can
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simply be accumulated to produce the total derivative with respect to the parameter.

Next, the array of partial derivatives with respect to each parameter is used to alter
the parameters. The alterations are done exactly according to the update formulas in
section 4.3. It should be emphasized that all of the derivative calculations are done
before any of the parameter alterations are done. The alternative is to alter each
parameter immediately after calculating the corresponding derivative. The method
used here has generally been found to lead to smoother convergence.

We have found that when parameter alteration is performed, the silence models
can quickly come to dominate the acoustic space. Presumably this is because they
make up a significant portion of every sentence and thus occur much more often in the
training data than other models. After many iterations of adjustments, the recognizer
begins to pick the empty hypothesis a disproportionate number of times. Besides,
improved silence modeling does not offer much potential for improvement since the
presence or absence of silences in the recognized string does not affect word accuracy.
For these reasons, silence models are left unaltered during the iterative process.

Finally, all of the acoustic and total scores are updated to reflect the new acous-
tic model parameters. The objective function value and sentence error rate for the
development data are again calculated to see if performance is still improving and if

the parameter values are converging.

4.4.3 Implementational Summary

In summary, these are the features of the implementation that may have some effect

on the results:

e During statistics collection, less than five percent of the training data gets
thrown out due to a failed forced search. This means that the amount of data

used for training is slightly less than the size of the training set.

e ML-trained models are used in order to generate N-best lists of competing
hypotheses. The ML models then provide the starting point values for the

parameters.
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Eighty percent of the available data is used for training, twenty percent for

evaluation.

Numerical differentiation is used, with a parameter § that controls how far the

parameters are perturbed.

All derivative calculations are done before any alterations are done.

Silence models are not altered.

4.5 Summary

This chapter discussed the algorithms used for discriminative training in this thesis.
We chose utterance-based training over phone-based training to make the criterion
more relevant to the metric of word error rate. Formulas for and properties of the
MCE and MMI objective functions were presented. We showed how to adjust the
parameters based on gradients of the objective functions. Finally, we discussed the
implementation and some of its implications.

We are now ready to test the effectiveness of discriminative training. The next

chapter analyzes the results of a large variety of training experiments.
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Chapter 5

Discriminative Training Results

This chapter runs through a series of experiments designed to test the effectiveness
of discriminative training in SUMMIT. We wish to test many combinations of model
parameters to be optimized, training criteria to be used, and training control param-
eter values. The general methodology employed is to alter one degree of freedom
in the training specifications at a time, and observe the results of each alteration.
Each section in this chapter describes the effects of changing a single training control
parameter.

Recognizer accuracies are measured after each training iteration by extracting
the acoustic models at that point and using them on the 500 utterance test set,
test_500. For the more successful training runs the recognizer accuracy for the final
model set is measured on the 2500 utterance test set, test_2500. Word error rate is
used exclusively with test_500 since it does not have enough utterances to make a
meaningful measurement of sentence error rate; both word and sentence error rates
are measured when test_2500 is used. These numbers can be compared with the
sentence error rates on the development data to see if there is a strong correlation
between them. We also want to know how quickly the parameters converge, which can
be measured by looking at the changes in the objective function and the magnitude
of the parameter alterations at each iteration.

The initial parameter values for all training experiments in this chapter come

from the same set of ML-trained models. This allows direct comparisons to be made
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between the various training runs. We have, however, run experiments with other

starting point models and observed similar gains.

5.1 Results of Mixture Weight Training

The first group of training runs to be examined will involve the alteration of the
mixture weights. Later, we will look at the effects of altering the Gaussian means
and variances. This section first describes MCE training of the weights and then

proceeds to MMI training.

5.1.1 MCE Training of the Mixture Weights

We examine the effects of MCE weight training by first describing a base training run,
and then comparing this base case with the results when various training parameters

are changed.

Examination of a Base Case

As a base case we examine a training run using the train_6000 set with N-best lists
of 5 hypotheses (i.e., N = 5), € (the step size) set to 2400, and p (the rolloff) set to
4.0.

Figure 5-1 shows the change in the unnormalized objective function measured on
the 1200 development utterances at each iteration. The unnormalized objective func-
tion is just the expression of equation (4.6) without the 1/N; term in the front; since
the values are larger, they are easier to compare. Each bar in the figure represents
the objective function value at the previous iteration minus the value at the current
iteration. As can be seen, the changes get smaller and smaller over the long term.
This shows that the objective function is converging to some value as the vector of
weights is adjusted.

Figure 5-2 contains more evidence of the convergence of the training process.
This figure shows the average magnitude of the weight alterations at each iteration.

It is apparent that the alterations are decreasing in magnitude roughly exponentially
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Figure 5-1: Change in Unnormalized Objective Function Value vs. Iteration Index
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MCE Weight Training, Base Case
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Figure 5-3: Sentence Accuracy on Development Data vs. Iteration Index for MCE
Weight Training, Base Case

as the training proceeds. MCE seems to have a smooth, well-behaved convergence

characteristic.

The effectiveness of the parameter alterations can be measured as the training
proceeds using the sentence error rate on the development utterances. Figure 5-
3 shows the sentence accuracy on this data as a function of the iteration index. A
sentence is considered to be recognized correctly if its correct hypothesis scores higher
than all of the hypotheses in the N-best list. Of course, this does not take into account
the possibility of hypotheses not in the original N-best list eventually scoring better
than the correct hypothesis, but for sufficiently large list sizes this should not happen
very often. The accuracy is seen to increase fairly steadily and then settle around
some final value. About five percent of the original sentence errors are corrected by

the end of the training process.

Finally, we examine the test set accuracies after every iteration to see if the
sentence-level gains on the development data translate to word error rate gains on
test data. Figure 5-4 shows the word accuracy on the test_500 set at each iteration.
The accuracies exhibit a general increasing trend except for a period of about ten

iterations where they fluctuate a bit. This fluctuation can perhaps be attributed to
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Figure 5-4: Word Accuracy on test_500 vs. Iteration Index for MCE Weight Training,
Base Case

the relatively small amount of training data used or the small size of the N-best lists;
the following sections will investigate the effects of increasing these numbers. The ac-
curacy settles at about 90.2%, which is a 5.8% relative error rate reduction compared

to the baseline accuracy of 89.6%.

Altering the Step Size

Now that we have observed the outcome of one specific case, we can begin to test the
effects of changing various training parameters. We start by trying different values of
the step size €. The step size controls the rate of learning; too small a value will lead
to very long training times, and too large a value will make the training unstable.
The base case used an € of 2400, so we will perform the training with €’s of 1200 and
4800 and compare.

To get an initial indication of the effects of changing e, we can observe what
happens to the objective function. Figure 5-5 gives the values of the unnormalized
objective functions on the development data at each iteration using the three different
step sizes. As would be expected, the rate of the initial drop in the objective function

is roughly proportional to the step size. With each of the step sizes the objective
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Figure 5-5: Unnormalized Objective Function vs. Iteration Index for MCE Weight
Training with Various Step Sizes

function converges at a different point. Presumably this is due to the presence of
many local minima in the parameter space that can attract training runs with lower
values of e. Note that the objective function curve when ¢ = 4800 is not as smooth
as the other two curves; in fact, it is not even monotonically decreasing. This may
be a sign that for this step size the training is just barely stable, and the test set

accuracies may fluctuate more wildly.

To test this hypothesis we can examine the test set accuracies after every iteration
for each step size. Figure 5-6 shows the word accuracies on the test_ 500 set for the
two new training runs; the accuracies for the base case were shown in figure 5-4. As
predicted by the objective function curve, the accuracies when € is 4800 reach the
highest point but also fluctuate the most wildly. The final accuracies when e = 4800
and ¢ = 2400 are the same, and are a bit greater than the final accuracy when
€ = 1200; this is also to be expected since the objective function decreases more
for the larger step sizes. In the end, the base step size of 2400 seems to provide
a reasonable balance between achieving the largest gains and keeping the training

process stable.

LY.



90.4 T T T T T

90.2

©

o
T

N

89.8+ ! .

Test Set Word Accuracy (%)

1200
89.6 ... 4800 .
0 5 10 15 20 25 30

Iteration Number

Figure 5-6: Word Accuracy on test_500 vs. Iteration Index for MCE Weight Training
with Various Step Sizes

Altering the Rolloff

Next we investigate the effects of changing the rolloff p. The rolloff controls the
abruptness of the zero-one transition in the MCE cost function. Choosing a rolloff is
a tradeoff between approximating a step more closely (high rolloff) and providing a
smoother derivative (low rolloff). The base case used a p of 4.0; here we will also try
p = 1.0 and p = 10.0.

The effects of rolloff on differentiation can be seen in the maximum alteration
magnitudes. Larger rolloffs lead to greater derivatives in the transition region of the
cost function, and this means that the resulting alterations can be larger. Figure 5-7
shows the magnitudes of the largest alterations at each iteration for each value of p.
It is apparent that the largest alterations tend to be much greater as p is increased
(though this is certainly not the case at every iteration). Excessively large alterations
could have a negative impact on the resulting accuracies if those alterations come to
dominate the training process.

On the other hand, when p is too low the cost function will no longer look like
a step. Thus, it seems intuitively that improving the objective function may not

have the desired effect on error rates. To test the impact of high and low rolloffs on
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Figure 5-7: Maximum Weight Alteration Magnitude vs. Iteration Index for MCE
Weight Training with Various Rolloffs

training effectiveness, we examine the test set accuracies for each value of p. Figure
5-8 gives the word accuracies on the test_500 set for the two new rolloffs. With
p = 10.0, the accuracies behave very similarly to the accuracies when p = 4.0 (figure
5-4). They fluctuate a bit more near the beginning, when the largest of the individual
alterations occur, but the final accuracies are the same in both cases. With p = 1.0,
accuracy gains are observed through the first 18 iterations of the training. After this
point, however, the accuracies begin to fall off rapidly. This can be attributed to the
lack of a steep transition region in the cost function curve. This does not cause any
problems during the initial iterations when coarse adjustments are made, but as finer
adjustments are made later on it is apparent that the minimization of the objective
function is not directly connected to improvement in word accuracies. Thus, we see

that the greatest danger to training effectiveness lies in making the rolloff too small.

Increasing the Number of Hypotheses Used for Training

Up to this point, N-best lists of 5 hypotheses have been used with the training
utterances. This is a relatively small list size, and it is quite possible that important

competing hypotheses are not included. If this is the case, the training might by
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Figure 5-8: Word Accuracy on test_500 vs. Iteration Index for MCE Weight Training
with Various Rolloffs

coincidence make them score high enough to overtake even the correct hypotheses,

thus causing a degradation in test set accuracies.

In this section we try training with N-best lists of 20 and 40 hypotheses, in
addition to the lists of 5 hypotheses used previously. The behavior of the training
indicators, i.e. the objective function and the accuracy on the development data,
is virtually the same regardless of the list size. This is to be expected, since these
measures are only functions of the data available, and not any data that might be
outside the lists. Recognizer accuracy on the test set is the only measure that indicates

whether it is helpful to use more competing hypotheses.

Figure 5-9 shows the word accuracies on test_500 for the two new N-best list
sizes. With 20 hypotheses, the accuracies after the early iterations are greater than
with 5 hypotheses, but the final accuracy is the same. With 40 hypotheses, on the
other hand, the final accuracy improves to 90.4%, compared to 90.2% for the base
case. It seems that it is possible to achieve greater gains using more than 5 competing

hypotheses.

When increasing the size of the N-best lists it is important to remember that

the training time and memory requirements are each proportional to this size. If
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Figure 5-9: Word Accuracy on test_500 vs. Iteration Index for MCE Weight Training
with Various Numbers of Competing Hypotheses

computational factors are important, it may be undesirable to increase the list size

past a certain point.

Increasing the Number of Training Utterances

It is also possible to increase the number of utterances in the training set. As is the
case with standard ML training, increasing the number of training samples is expected
to increase the predictive power of the discriminatively trained models. Therefore, we
expect the test set accuracies to improve. Figure 5-10 shows the word accuracies on
test_500 for a set of models trained using the train_12000 set. The training parameters
are the same as they were for the base case. As can be seen, the final accuracy is
90.3%, compared to 90.2% for the base case. This is a bit of an improvement, but
perhaps not as great as would be expected for a doubling of the number of training
utterances. This lack of a major improvement seems to indicate that discriminative
training does most of the good it can do with very few training utterances; in other
words, discriminative training requires less training data than ML training. This fact
means that discriminative training offers potential advantages in situations where the

amount of training data is limited, as we will see in later chapters.
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Figure 5-10: Word Accuracy on test_500 vs. Iteration Index for MCE Weight Training
using train_12000

As was the case when we increased the size of the N-best lists, it must be remem-
bered that the training time and memory requirements are each proportional to the
number of training utterances used. Thus, it is undesirable to increase the number of

training utterances to the point where accuracy gains are minimal.

Summary of Accuracies for MCE Weight Training

In summary, the training is not terribly sensitive to the exact value of the step size
parameter as long as it is in a moderate range. Likewise, as long as the rolloff is not
too low its exact value is not critical. Test set accuracies seem to increase somewhat
as more training data or more competing hypotheses are used. Since measurements
on test_500 could be fairly noisy, we can get a more precise measurement of the ef-
fects of increasing these values by using the test_2500 set. Table 5.1 summarizes the
word accuracies on both test_500 and test_2500 for the ML-trained models and the
final model sets from various training runs. It also provides sentence accuracies for
test_2500 since this set contains enough utterances to make this measurement mean-
ingful. The accuracies on the test_ 2500 set seem to confirm the previous statement

that increasing the size of the training set from 4800 to 9600 utterances does not
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Training Run test_-500 WA  test_2500 WA  test_2500 SA
ML Models 89.6 81.7 64.3
train_6000, N =5 | 90.2 82.1 64.9
train_12000, N =5 | 90.3 82.2 64.8
train_6000, N = 20 | 90.2 82.4 65.1
train_6000, N = 40 | 90.4 82.5 65.3

Table 5.1: Summary of Accuracies for MCE Weight Training with Various N-best
List Sizes and Training Set Sizes.

improve the results much. In fact, the sentence accuracy actually goes down a bit
with the extra training data. However, increasing the size of the N-best lists from 5
to 20 or 40 does have a significant positive impact. The data from test_ 2500 makes
this benefit much clearer than the previous 500 utterance data. Increasing N from 5
to 20 almost doubles the improvement in word accuracy over the ML models (0.4%
improvement to 0.7% improvement). Increasing N again to 40 results in even better
word accuracy, though it is only a bit of an improvement over N = 20. The sentence
accuracies also go up when N is increased. This data makes it clear that it is best to
use an N-best list size that is greater than 5.

From the data collected in this section, it seems that a reasonable set of parameters
to carry forward is € = 2400, p = 4.0, N = 20, and a training set size of 4800
utterances. These choices provide a good tradeoff between accuracy gains and training

time.

5.1.2 MMI Training of the Mixture Weights

We now switch objective functions and train the weights using the MMI criterion. We
specifically wish to see how the MMI trained models compare with the MCE trained
models, and whether there are any major differences in the training processes. Many
of the issues involved, such as the choices of step size, N-best list size, and number of
training utterances, are conceptually the same as in the MCE case. Thus, only the

experimental results of these choices need be discussed here.
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Figure 5-11: Change in Unnormalized Objective Function Value vs. Iteration Index
for MMI Weight Training, Base Case

Examination of a Base Case

Again, we start with a base case to glean the basic properties of MMI training and
establish a reference to compare against later. For the MMI base case we examine a
training run using the train_6000 set with N-best lists of 20 hypotheses, € set to 480,
and 7 (the score threshold) set to 0.1.

Figure 5-11 shows the change in the unnormalized objective function measured
on the development utterances at each iteration. This is the same information as was
presented in figure 5-1 for the MCE base case. As before, the changes get smaller
and smaller over the long term; however, they seem to be decreasing in a much
more orderly fashion. Specifically, it looks as though the changes decrease roughly
exponentially. While the decay is more orderly, it is also much slower: after 30
iterations the changes are still about 1/3 as big as the first few changes. In contrast,
after 30 iterations the changes in the MCE objective function were less than 1/10 as
big as the first few changes. This may suggest that the step size is a bit too small.

The theme of slow convergence is continued in figure 5-12. Here we see that the
average magnitude of the weight alterations decreases monotonically as the training

progresses. However, the rate of decrease is extremely slow (compare with figure 5-2,
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Figure 5-12: Average Magnitude of the Weight Alterations vs. Iteration Index for
MMI Weight Training, Base Case

which has the same scale). It appears as if hundreds of iterations will be required
before the average alteration magnitude approaches 0. Thus, we expect that the
accuracies of the resulting models may not converge to any particular value over the

iterations of interest.

As a first step towards determining if this is the case we examine the sentence
error rate on the development utterances. Figure 5-13 shows the sentence accuracy
on this data for each iteration index. Somewhat surprisingly, the accuracies do not
fluctuate much more than those for the MCE base case. Moreover, they seem to
increase by about the same amount and again settle around some final value. About
four percent of the original sentence errors are corrected by the end of the training

process, as compared to five percent for MCE.

Next we wish to see if the test set accuracies are as well behaved. Figure 5-14
shows the word accuracy on the test_500 set at each iteration. This seems to follow
the same kind of pattern as the MCE accuracies. In addition, the accuracy for the
final model set is 90.5%. This is an 8.7% relative error rate reduction compared to the
baseline accuracy of 89.6%. It is unknown why, on average, fairly large alterations are

still made to the weights at later iterations, yet the resulting model accuracies seem
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ing, Base Case
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Figure 5-15: Word Accuracy on test_500 vs. Iteration Index for MMI Weight Training
with Various Step Sizes

to settle at certain values. Perhaps as the training proceeds some of the alterations

begin to cancel each other out.

Altering the Step Size

Again, we would like to try different step sizes to determine the optimum value. The
issues involved with the step size are the same as they were with MCE, and will not
be discussed again here. The base case used a step size of 480, so we will perform
training with €’s of 240 and 960 and compare. Note that the step sizes are much
smaller than in the MCE case; this is because the MMI objective function has a
larger magnitude, making its derivatives larger. Therefore, in order to get parameter
alterations of comparable sizes, the multiplying factor ¢ must be smaller.

The qualitative behavior of training runs with different step sizes is similar to
the behavior when changing the step size in MCE, so we will jump straight to the
results. Figure 5-15 shows the word accuracies on test_500 using the two new values
of e. With ¢ = 240, the training seems to do almost as well as with a step size
of 480. As expected, the rise in accuracies seems to occur about half as fast. The

accuracies also seem to be settling at a slightly lower point than the 90.5% that the
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base case achieved. With ¢ = 960, accuracies increase very rapidly for the first ten
iterations. After this point, however, they drop just as rapidly and end up worse
than the starting point accuracy. Clearly, this step size is too large. This does not
cause any problems for the early iterations when coarse adjustments are needed, but
later, when finer adjustments are required, the alterations are unable to settle the
parameters at an optimum point. The fact that this step size is too large is a bit
surprising in light of our earlier observation that the base step size results in very
slow convergence. Perhaps an intermediate value would be the best choice, or even
the use of a large step size for the first few iterations, followed by refinements using
a smaller step size. Of the three step sizes used here, however, it appears that 480 is

the best.

Altering the Score Threshold

Recall from section 4.2.2 that a lower bound can be set on the MMI log likelihood
function using a score threshold 7. 7 is a number between 0 and 1. Larger 7’s reduce
the range of the log likelihood function, but also make it less likely that derivatives
of the function will be useful. The base case used a 7 of 0.1; here we will also try
7 =0.05 and 7 = 0.5.

It turns out that with these different thresholds there is almost no observable dif-
ference between the various training runs. The objective functions, average alteration
magnitudes, and development set sentence error rates are nearly exactly the same on
every iteration. To illustrate the sameness of the training runs, figure 5-16 shows
the word accuracies on test_500 using the two new values of 7. As can be seen, not
only do the accuracies all settle at the same value, but they assume almost the same
values at every iteration. It is apparent that the choice of score threshold does not

have much effect on MMI training.

Changing the Number of Hypotheses Used for Training

Again, we wish to observe the effects of the N-best list size on training. The issues

involved are the same as in MCE training. The MMI base case used lists of 20
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Figure 5-16: Word Accuracy on test_500 vs. Iteration Index for MMI Weight Training
with Various Score Thresholds

hypotheses, so here we consider lists of 5 and 40 hypotheses.

Figure 5-17 shows the word accuracies on test_500 for the two new N-best list
sizes. With 5 hypotheses, the accuracies appear to bounce around more than usual.
In addition, they seem to be on a significant downward trend in the later iterations.
It is reasonable to conclude that 5 hypotheses are insufficient for MMI training. The
use of 40 competing hypotheses seems to produce similar accuracy gains as in the
base case. Thus, the initial choice of 20 competing hypotheses appears to be a good

one.

Increasing the Number of Training Utterances

We found with MCE that doubling the number of training utterances improved test
set accuracies a bit, but perhaps not as much as would be expected. Now we wish to
see if this same pattern holds for MMI.

Figure 5-18 shows the word accuracies on test_500 for models trained using the
train_12000 set. The accuracies appear to rise to the same point as when train_6000 is
used, though they take longer to get there. This seems to provide additional evidence

that discriminative training requires a relatively small amount of data, and using
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Figure 5-17: Word Accuracy on test_500 vs. Iteration Index for MMI Weight Training
with Various Numbers of Competing Hypotheses
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Figure 5-18: Word Accuracy on test_500 vs. Iteration Index for MMI Weight Training
using train_12000
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Training Run test_500 WA  test_2500 WA  test_2500 SA
ML Models 89.6 81.7 64.3
train_6000, N =5 90.0 81.9 64.7
train_6000, N =20 | 90.5 82.6 66.0
train_6000, N =40 | 90.5 82.6 66.0
train_12000, N = 20 | 90.5 82.6 66.1

Table 5.2: Summary of Accuracies for MMI Weight Training with Various N-best
List Sizes and Training Set Sizes.

more provides little benefit.

Summary of Accuracies for MMI Weight Training

We find that the results of the training do not change much as the step size parameter
and the score threshold are varied, as long as they assume moderate values. This is
similar to the observation made earlier about the step size and rolloff in MCE. A table
similar to table 5.1 can be constructed to get a more precise measurement of the effects
of changing the number of competing hypotheses and the amount of training data.
Table 5.2 summarizes the word accuracies on test_.500 and the word and sentence
accuracies on test_2500 for the ML-trained models and the final models from various
training runs. Note that this data supports the previous observation that moving
from train_6000 to train_12000 does not offer much accuracy improvement. We see
that for MMI, like MCE, better results are achieved with an N-best list size that is
greater than 5. However, for MMI recall that the accuracies do not seem to converge
at all when N = 5, whereas with MCE they converged but at a lower point than
when N was 20 or 40.

We also see from table 5.2 that the word accuracies on test_2500 are only slightly
better with MMI than with MCE. This supports previous studies (e.g., [25]) which
have concluded that MCE and MMI tend to produce similar gains. Strangely, how-
ever, the sentence accuracies show significantly more improvement using MMI. If
sentence accuracy is the most important metric, MMI may be the better choice in

consideration of this data. On the other hand, an advantage of MCE is that it re-
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quires less training time due to the extra logarithms and exponentials which must be
calculated in the MMI objective function. In the end, it seems that either criterion

will be an acceptable choice for most applications.

5.2 Results of Training the Means and Variances

Now that we have observed the results of altering the mixture weights, we proceed to
the alteration of Gaussian means and variances. MCE will be used here since it was
found to have slightly better convergence behavior in the last section, and because it is
a bit faster than MMI. There are several inherent differences between altering weights
and altering means and variances. The most obvious difference is that the means and
variances are multi-dimensional. This means that there are potentially more degrees
of freedom in parameter alteration, but also that the training can potentially take
much longer. Another difference is that we wish to take the variances into account
when altering the means, and vice versa. We begin by analyzing a training run which
alters only one dimension of the means and variances, and then compare this to other

training runs.

5.2.1 Altering One Dimension of the Means and Variances

The feature vectors used in this thesis are 50 dimensional. Thus, we expect alteration
of the full mean and variance vectors to take 50 times longer than alteration of just
the mixture weights. If weight training runs overnight, training the entire means and
variances should take weeks. This is beyond the time scale that is practical for this
thesis.

Luckily, it is possible to update each dimension of the means and variances inde-
pendently of the other dimensions. We can begin by altering only the first dimension,
and observing the accuracy gains this produces. If both the means and variances are
altered, this should only take twice as long as weight training (because two parameters
are being altered instead of one).

Equations (4.15) and (4.16), discussed in section 4.3.2, are used here to perform
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Figure 5-19: Change in Unnormalized Objective Function Value vs. Iteration Index
for Mean/Variance Training, One Dimension

the parameter updates. We use train_6000 with N-best lists of 5 hypotheses, € equal
to 960, and p set to 4.0. It turns out that a few very large alterations can have
a negative effect on the training process, so we dynamically limit the size of the

alterations at each iteration. This is discussed more in section 5.2.3.

Figure 5-19 shows the change in the unnormalized objective function measured
on the development utterances at each iteration. Due largely to the limits placed
on the alteration magnitudes, the objective function converges very smoothly and
quickly in the later iterations. It is interesting to note, though, that the objective
function actually gets worse on iterations 7 and 8. This never happened during weight
training, and is perhaps a sign that training the means and variances may be plagued

with more instability.

The average magnitudes of the parameter alterations do not contain much infor-
mation in this case, because they are strongly influenced by the limits placed on the
maximum alterations. We can jump straight to an analysis of the sentence error rate
on the development utterances. Figure 5-20 shows the sentence accuracy on this data
as a function of the iteration index. Notice that the sentence accuracy settles at a

much lower value than we have previously seen for weight training. In addition, the
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Figure 5-20: Sentence Accuracy on Development Data vs. Iteration Index for
Mean/Variance Training, One Dimension

accuracy actually decreases on the first iteration! These are signs that perhaps this
training will be less effective in improving test set accuracies than weight training.
We examine the test set accuracies after every iteration next. Figure 5-21 shows
the word accuracies on test_.500. The accuracies seem to be very erratic, dropping
significantly at the beginning before eventually settling at a higher point. Also, the
final accuracy (90.1%) is lower than for any of the weight training runs. It seems
that training the means and variances is not translating to higher accuracies in our

system; in fact, the effects seem quite unpredictable.

5.2.2 Altering Only the Means

A variation on the previous experiment is to try altering only the means. The vari-
ances are left constant throughout the training. The training parameters are kept the
same as before, and still only one dimension is altered.

The results of this experiment are no better than those of the previous experiment.
Figure 5-22 gives the word accuracies on test_500 at each iteration. The accuracies do
not follow any general upward trend, even over the long term. In fact, they are almost

periodic, rising for a few iterations and then falling again. One possible explanation
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Figure 5-21: Word Accuracy on test_500 vs. Iteration Index for Mean/Variance
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Figure 5-22: Word Accuracy on test_500 vs. Iteration Index for Means Only Training,
One Dimension
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is that means are simply shifting between the same places again and again, with one
Gaussian constantly taking the place of another Gaussian at any given point in the
mean space. If this was the case, the accuracies might exhibit the periodic behavior
seen in the figure. In any case, it appears that it is better to keep the variance

alterations in the training.

5.2.3 Limiting the Maximum Alteration Magnitude

It was noted before that limits are placed on the maximum alteration magnitudes
during training of the means and variances. This section explains why this is needed
and how it is accomplished.

When training is performed without this maximum alteration limit, the maximum
alteration magnitude does not tend to change very much from iteration to iteration.
The average alteration magnitude does tend to decrease, however, so the ratio of
the two gets greater and greater. Because of this, a few alterations begin to be
much more important than any other alterations. This has a negative impact on
the acoustic models. To illustrate this, figure 5-23 gives word accuracies on test_500
for the same training run as in section 5.2.1 but without limits on the maximum
alterations. An almost periodic pattern of the accuracies emerges, similar to the
pattern when only means were altered. Clearly, the presence of the larger alterations
causes the accuracies to become much more erratic, demonstrating the need to limit
the size of any one alteration.

The technique used for limiting the alteration magnitudes is to employ the maxi-
mum alteration size from the previous iteration. With this scheme, the first iteration
is allowed to proceed without limitation. For the second iteration, any alteration
greater than some threshold in magnitude is reduced to have the threshold’s mag-
nitude. This threshold is set to be a constant (typically 0.75) times the maximum
alteration magnitude from the first iteration. The maximum alteration magnitude
for the third iteration is the constant times the maximum alteration magnitude from
the second iteration, and so on for later iterations. Eventually, the maximum allowed

alteration size will approach the average alteration size; by this time, however, con-
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Figure 5-23: Word Accuracy on test_500 vs. Iteration Index for Mean/Variance
Training Without Maximum Alteration Limits, One Dimension

vergence of the parameters will have already taken place. Thus, most average-sized

alterations are not affected by this magnitude limitation.

5.2.4 Increasing the Number of Dimensions Altered

Having been able to at least achieve a modest accuracy increase altering only one
dimension of the means and variances, the next step is to try altering multiple di-
mensions at once. The hope is that the gains from optimizing various dimensions will
to some extent be additive, resulting in higher test set accuracies than in previous

experiments.

We again use the same training parameters as in previous mean/variance training
experiments. For practical reasons, the number of dimensions altered is only increased
from 1 to 3. Figure 5-24 shows word accuracies on test_500 after each training itera-
tion. Unfortunately, this training run does not seem to have been any more effective
than the previous one; in fact, the test set accuracies settle at exactly the same value
(90.1%). The potential for greater accuracy gains from optimizing larger numbers of

dimensions seems limited at best.
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Figure 5-24: Word Accuracy on test_500 vs. Iteration Index for Mean/Variance
Training, Three Dimensions

5.2.5 Summary and Conclusions

In summary, altering the means and variances seems to be far less effective than
altering the mixture weights. Accuracies of the output models tend to be very erratic,
and a great deal of manipulation (e.g. limiting the maximum alteration magnitudes)
is required to get the accuracies to converge at all. Training does not seem to improve

as more and more dimensions are optimized.

In reality, the experiments here might even be an optimistic view of mean /variance
training effectiveness. We have tried many different combinations of parameters and
many slight changes to the training algorithm, always achieving little to no accuracy
improvement. Usually the accuracies bounce around for many iterations and never
seem to settle at any particular value. The reasons for this behavior are not com-
pletely understood. One possibility, that the Gaussians are merely shifting around
and replacing each other at various points in the space, was mentioned above. The
conclusion seems to be that this discriminative training algorithm is not well suited

to the optimization of the means and variances.
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5.3 Summary

This chapter discussed the results of a series of experiments designed to test the ef-
fectiveness of discriminative training in SUMMIT. First, we optimized the mixture
weights. We compared the MCE and MMI criteria and found that they produced
very similar accuracy improvements. The best relative reduction in word error rate
achieved on the test_2500 set was 5%. We found that for both MCE and MMI,
increasing the number of competing hypotheses seemed to improve accuracies more
than increasing the number of training utterances. Apparently this is because dis-
criminative training does most of the good it can do with very few training utterances.
We found that other training parameters could be set anywhere within wide ranges
with negligible effect on the results. Training of the mixture weights generally seemed
to have a smooth, well-behaved convergence characteristic.

We also attempted to optimize the means and variances using the same discrimi-
native training algorithm. Very little, if any, accuracy gains were observed. Training
seemed to be less well-behaved than when weights were optimized, and the result-
ing accuracies were usually very erratic. Optimizing the mixture weights is clearly
preferable to optimizing the means and variances in this system.

Now that we have experimented with some of the established discriminative train-
ing algorithms, we may wish to see how they can be modified to better meet our
ultimate goal of improved understanding of user queries. This is the focus of the next

chapter.
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Chapter 6

Keyword-Based Discriminative

Training

Up to this point, the focus has been on improving overall word error rates in the
SUMMIT recognizer. We have assumed that improving this metric will improve
Jupiter’s performance. But word error rate is not necessarily the most meaningful
metric in a conversational system. Ultimately, it is only important that an utterance is
properly understood, even if some words in the utterance are not recognized correctly.
In this chapter, we attempt to focus our training efforts on this goal of better utterance
understanding.

Certain words in any utterance are more important for correct understanding
than others. For example, if the user says “weather in Boston please”, the words
‘weather’ and ‘Boston’ must be recognized in order for the natural language unit to
parse the sentence correctly. The words ‘in’ and ‘please’ are not very important; if
the recognizer replaces ‘in” with ‘on’; or ‘please’ with ‘these’, the natural language
unit will still be able to understand the utterance and initiate the proper response.
If we can somehow identify the important words and focus the model training on
improving the recognition of just these words, perhaps we can maximize the overall
system’s effectiveness.

The following sections describe an attempt to implement such a training scheme.

The first section defines hot boundaries, which are used to identify the more important
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segments of the training utterances. Next, we describe how we use these special
boundaries to focus discriminative training on improving the recognition on a set
of keywords. Finally, we analyze a keyword-based training experiment, and try to

explain some unexpected results.

6.1 Hot Boundaries

As we have previously seen, when an utterance is to be recognized it is first broken
down into a sequence of hypothesized boundaries, each with an associated feature
vector. In our standard discriminative training experiments, no one part of a training
utterance was more important than any other part, and thus there was no need to
differentiate between the boundaries. Now we wish to focus the training on correcting
only misrecognitions of keywords, so we will need a way to distinguish between the
important and unimportant segments of the training utterances. The boundaries
lying in the important segments are called the “hot boundaries.”

The hot boundaries are determined during the statistics collection phase, and are
chosen as follows. For each training utterance, a list of the keywords contained in the
correct hypothesis is compared to lists of keywords in each of the competing hypothe-
ses. When a competing hypothesis has the same keywords as the correct hypothesis,
regardless of their position in the sentence, no hot boundaries are generated. When
there is a mismatch in the keyword lists, all of the boundaries spanning all of the
mismatched keywords are flagged as hot boundaries for the utterance. In this way,
we hope to capture all of the regions of the utterance that have a high risk of causing
a keyword recognition error.

The process of choosing the hot boundaries is best illustrated using several ex-
amples. These examples are shown in figure 6-1. Notice in the first example that
even though the keywords do not appear in the same positions in both hypotheses,
the keyword lists for the hypotheses are the same, and thus this pair does not pro-
duce any hot boundaries. The second example is straightforward, and shows that hot

boundaries are only produced where there are mismatched keywords, not mismatches
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‘wWeather |in | Boston | please kevwords: weather, Boston
Wweather | please | in |Boston kevwords: weather, Boston

Eoth contain same keywords -> no mismatch -= no hot boundarnes

Weather | in | Boston kevwords: weather, Boston
Weather | on| Austin kevwords: weather, Austin

hiot boundaries

WAL | rain [tomorromw keywords: rain, tomorrow
WAt | rain| it | or | oh keywoaords: rain

hiot bourndaries
Weather | tomormow keywords: weather, fTomorrow
Today's | weather kevwords: weather, today's

hot boundaries

Figure 6-1: Examples of Choosing Hot Boundaries

in other words. The third example shows that insertions or deletions of keywords,
not just keyword exchanges, produce hot boundaries. The fourth example shows that
hot boundaries are produced at all positions spanned by a mismatched keyword in
any hypothesis—in this case this includes almost the entire utterance.

A list of the hot boundary indices is saved out to the statistics file with the rest of
the data for each utterance. The next section describes how the training procedure

is changed to take advantage of this information.

6.2 Changes to the Training Procedure

Recall that on each iteration of discriminative training, three steps are taken: scores
are computed from the training data, these scores are used to calculate an objec-
tive function, and derivatives of the objective function are used to alter the chosen
parameters. We will modify the training procedure by changing only the first step,

the computation of scores from the training data. This in turn affects the objective
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Utterance has Non-Acoustic Score of -400
30 hot boundaries, sum of acoustic scores is -500
10 other boundaries, sum of acoustic scores is -300

Old Utterance Score = -400 + (-500) + (-300) = -1200
New Utterance Score = (-400)(30/40) + (-500) = -800

Figure 6-2: New Score Computation Using Hot Boundaries

function and the parameter alterations, and thus achieves the goal of focusing the

training on the hot boundaries.

The scores used up to this point have been the sum of the acoustic and non-
acoustic scores for each utterance hypothesis. The acoustic scores have been the
sums of the scores at each boundary. To focus the training on the keywords, we can
simply modify this score to be the sum of the scores at each hot boundary. Other
boundaries do not contribute to the acoustic score. The data associated with those
boundaries will then have no effect on the objective function, hence it can have no
effect on the parameter alterations. Training is only being influenced by the important

segments of the training utterances.

We should also scale down the non-acoustic score to account for the fact that less
boundaries are contributing to the acoustic score. This keeps the relative importance
of both types of scores roughly the same. In this scheme we simply multiply the true
non-acoustic score by the fraction of the utterance’s boundaries that are hot. This
is not a perfect solution since it does not account for the influence of unimportant

words on the language model, etc., but it turns out to be a reasonable approximation.

Figure 6-2 illustrates this new score computation process. With it in place, we
are ready to run a training experiment to test the effectiveness of the keyword-based

approach.
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Place Names Weather Terms Dates/Times

Boston SNOwW tomorrow
India humidity o’clock
mi_t weather January
southeast_asia advisories sixth

Figure 6-3: Typical Keywords
6.3 A Training Experiment

The first issue to consider when running a keyword-based training experiment, which
has not been addressed to this point, is how to obtain the list of keywords. We
manually choose a list of 1066 words out of Jupiter’s 1957 word vocabulary. Figure 6-
3 illustrates typical words chosen as keywords; they are mostly place names, weather-
specific terms, and date/time words. Some other words were included which were
subjectively determined to be important for the natural language unit to parse the
sentence. The complete list of keywords may be found in Appendix B. Automated
means of determining keywords from the parse grammar may be possible, but have

not been investigated here.

Once the keywords are in place, statistics can be collected and training can be
performed. We will use the MCE objective function to adjust the mixture weights.
The train_18000 set will be used with N-best lists of 20 hypotheses, € equal to 2400,
and p set to 4.0.

The reason for choosing the train_18000 set is that much of the training data goes
unused. Any competing hypothesis with the same keywords as the correct hypothesis
is thrown away during statistics collection, since it cannot result in any parameter
optimizations. If every competing hypothesis gets thrown away, the entire training
utterance gets thrown away. For this reason the number of training utterances and
the average number of competing hypotheses will each be lower than the maximum

amounts possible. As a first step it is useful to measure how much data is kept, since
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Figure 6-4: Change in Unnormalized Objective Function Value vs. Iteration Index
for Keyword Training

this will establish which previous training experiments are most comparable. It turns
out that 12,933 utterances survive the statistics collection phase (10,348 for training
and 2,585 for evaluation). On average, the n-best lists for these utterances contain 5.2
hypotheses. Thus, the MCE weight training experiment which utilized train_12000
and n-best lists of 5 hypotheses will be a good basis for comparison. Later on, we will
examine results of keyword training on train_12000 as well to verify that any extra

accuracy gains are not solely due to the characteristics of train_18000.

Now we begin to analyze indicators of training performance taken during the
training run. Figure 6-4 shows the change in the unnormalized objective function
measured on the development utterances at each iteration. The pattern of conver-
gence of the objective function looks very much the same as in previous training
experiments. This is expected since the same training procedure is being used, only
with different utterance scores. The average magnitude of the weight alterations at
each iteration is shown in figure 6-5. The alterations also follow a familiar pattern
of decrease. Overall, it seems that the use of the new utterance scores does not have

much observable effect on the training indicators.

The next step is to see if this training really has the intended effect of producing
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Figure 6-5: Average Magnitude of the Weight Alterations vs. Iteration Index for
Keyword Training

Training Type test_2500 Keyword Accuracy
ML Models 86.1
MCE, train_12000, n =5 | 86.2
MMI, train_6000, n = 20 | 86.4
MCE, train_6000, n = 40 | 86.4
Keywords, train_12000 86.9
Keywords, train_18000 87.1

Table 6.1: Summary of Keyword Accuracies for Various Types of Training.

higher keyword accuracies. Figure 6-6 shows the keyword accuracy on the test_500 set
at each iteration. The accuracies seem to be increasing fairly steadily. They increase
quite a bit, starting at 94.0% and settling around 94.8%, a 13% relative reduction in
keyword errors. This seems to give an initial indication that keyword training may
be effective in improving the keyword accuracy.

For further corroboration of the training’s effectiveness, we can observe the final
accuracies on test_2500. We would like to see how much the keyword accuracy is
improving relative to previous discriminative training runs. Table 6.1 gives the final
keyword accuracies on this set for various types of training. An additional keyword

training run using train_12000 is included here; as mentioned earlier, this provides
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Figure 6-6: Keyword Accuracy on test_500 vs. Iteration Index for Keyword Training

verification that any extra accuracy gains are not solely due to the characteristics
of train_18000. As the table shows, the keyword-focused training improves keyword
accuracies much more than the previous types of discriminative training. The previous
training run with a comparable amount of data used (¢rain_12000, n = 5) barely
increased keyword accuracy at all relative to the ML models. The best that any
previous training run did was to increase the keyword accuracy from 86.1% to 86.4%.
Keyword-based training increases the keyword accuracy to 86.9% using train_12000,
and all the way to 87.1% using train_18000, which means that about three times as
many keyword errors are corrected. Clearly, our technique is causing the training to

focus more attention on the most important words.

It is also informative to observe the effect of keyword-based discriminative training
on overall word accuracy. We expect this accuracy to be roughly the same as the
ML word accuracy. Since non-keywords are ignored during the training, we expect
accuracy on these words to drop, offsetting the gains achieved on the keywords. This
would result in little net change in the overall word accuracy. To test whether this is
the case, we first observe the overall word accuracies on test_500 at each iteration of
the keyword training run using train_18000. These accuracies are shown in figure 6-7.

Contrary to our expectations, the overall word accuracies improve very steadily as
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Figure 6-7: Overall Word Accuracy on test 500 vs. Iteration Index for Keyword
Training

Training Type test_2500 Word Accuracy
ML Models 81.7
MCE, train_12000, n =5 | 82.2
MMI, train_6000, n = 20 | 82.5
MCE, train_6000, n = 40 | 82.5
Keywords, train_12000 82.6
Keywords, train_18000 82.7

Table 6.2: Summary of Overall Word Accuracies for Various Types of Training.

the iterations progress! They eventually settle at 90.9%; for previous training runs,
this accuracy had settled at no higher than 90.5%. We seem to be improving the
modeling not only for the keywords, but for all the words!

This point is verified in table 6.2, which gives the final overall word accuracies
on test_2500 for various types of training. This table shows that keyword training
causes twice as much increase in overall word accuracy as the previous comparable
training run (train_12000, n = 5). The accuracies of 82.6% using train_12000 and
82.7% using train_18000 are also higher than was achieved with any other previous
training run. Keyword-based discriminative training not only optimizes recognition

of the keywords, it also seems to optimize recognition overall.
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It is quite surprising that modeling of words which are ignored during training
is actually improved. The next section poses a hypothesis for why overall word
accuracies increase for keyword-based training, and describes an experiment to test

this hypothesis.

6.4 Omission of Unimportant Words

One hypothesis to explain why keyword-based discriminative training improves overall
word accuracy is that training data from certain words actually makes the trained
models less accurate. Suppose there are a set of words which are usually unstressed,
poorly articulated, and not important to the meaning of an utterance. The acoustic
features derived from within these words are likely to be erratic since a consistent
manner of articulation is not always employed, i.e., the speaker may be sloppy in
articulating these words. Thus the observation vectors for the various subword units
may not tend to fall into neat clusters. When Gaussian means and variances are
trained, they may be skewed away from their “correct” locations by the presence
of these somewhat random observation vectors. Thus modeling of more precisely
articulated realizations of the subword units may be harmed in an attempt to model
realizations which are essentially unpredictable.

According to this hypothesis, the reason why keyword-based training would im-
prove overall word accuracy is that it does not use data from these unimportant words
when updating the model parameters. As a result, it should focus the training effort
on ensuring that the more predictable vectors (the well-enunciated ones) are always
classified correctly. This would not have much effect on the classification of vectors
from the unimportant words, since these are spread across a large region of the feature
space.

In this section, we run training experiments to see whether this hypothesis might
be a good explanation of the gain in overall word accuracy. These experiments are
run just like the previous keyword training experiments, except that a different list

of keywords is used. This time, the list consists of all words in the vocabulary except
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Figure 6-8: Overall Word Accuracy on test_ 500 vs. Iteration Index for Omitted
Words Training

a manually chosen set of 148 words. We placed any words in this set that we thought
were unimportant to sentence understanding and were likely to be poorly articulated.
The list of omitted words can be found in Appendix B. If our hypothesis is correct,
we expect the overall word accuracies on the test sets to approach the levels achieved
by the keyword training experiments, since the poor quality data is excluded from

both training runs.

As a first indication, figure 6-8 shows the word accuracies on test_500 at each
iteration for omitted words training using train_18000. The pattern of accuracy in-
crease looks similar to that of the corresponding keyword training experiment. In the
end, the accuracies settle at 90.7%, which is slightly lower than the final accuracy for
keyword training but higher than the accuracy for any previous training experiment.
This is a good indication that the omission of the unimportant words is the most

important factor in increasing overall word accuracies.

Again, we use final word accuracies on test_2500 to confirm these results. Table
6.3 compares the final accuracies for omitted words training to the final accuracies
of some previous experiments. Looking at the training runs using train_12000, the

overall word accuracy jump from standard to keyword-based discriminative training
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Training Type test_2500 Word Accuracy
ML Models 81.7
MCE, train_12000, n = 5 82.2
Omitted Words, train_12000 | 82.6

Keywords, train_12000 82.6
Omitted Words, train_18000 | 82.6
Keywords, train_18000 82.7

Table 6.3: Overall Word Accuracies for Omitted Words Experiments Compared to
Other Types of Training.

seems to be completely accounted for by the fact that the unimportant words are
omitted. With train_18000, the overall word accuracy is very nearly as high for the
omitted words training as for the keyword training. One reason the accuracy might
not go quite as high is that the manually selected list of unimportant words was not
complete, and certain words that were used for the training still had a negative effect
on overall accuracies. In any case, it seems clear that the omission of unimportant

words from the training improves the overall quality of the acoustic models.

6.5 Conclusions

The experiments in this section have indicated that it is possible to improve the
recognizer’s accuracy on a subset of words in the vocabulary. This is useful for
ensuring that the most important words in an utterance have the best chance of being
recognized correctly. It is possible, however, that the benefits of this technique may
be limited to domains similar to Jupiter: moderate-sized vocabulary, spoken dialog
systems. Naturally, focusing on certain keywords seems less appealing in dictation
systems, where it is equally important to recognize every word correctly. Also, as
vocabularies get larger and larger, it becomes harder to identify a small set of keywords
that are much more important than other words. For systems like Jupiter, though,
keyword-based discriminative training seems to have the potential to offer substantial
increases in utterance understanding rates. Since conversational systems like this

are becoming more and more common, the technique might be applicable in many

88



circumstances.

In our pursuit of lower keyword error rates we have also stumbled upon an insight
into improving the acoustic models overall. It seems that preselecting certain higher
quality parts of the training data can increase the general usefulness of the resulting
models. This insight could have applications in types of training other than discrim-
inative training. For example, if the training tokens derived from short, unimportant
words are thrown out prior to ML training, it is possible that accuracy gains will
still be observed. The experiments in this chapter support the idea that realizations
of subword units can vary widely depending on their positions in an utterance, with
some realizations being much more precise than others. Perhaps even greater accu-
racy gains are possible if this phenomenon is studied more closely and exploited to a

greater degree.
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Chapter 7

Conclusion

7.1 Thesis Overview and Observations

This thesis explored the use of discriminative training to improve word error rates in
a segment-based speech recognizer. This was motivated by the fact that Maximum-
Likelihood training does not take the likelihoods of incorrect classes into account,
so potential confusions are ignored. We hoped to improve classifier performance by
focusing the training directly on the minimization of erors on the training data.

Before discussing discriminative training, we presented some work on Gaussian
Selection in Chapter 3. This technique reduced the number of Gaussian likelihood
computations that needed to be evaluated to produce acoustic scores given a mea-
surement vector. Recognition experiments showed that the number of Gaussians
evaluated decreased by about 67%, resulting in a decrease in recognition time of
about 45%.

Next we discussed our implementation of discriminative training in SUMMIT. We
chose to use utterance-level scores on the training data in order to take linguistic con-
text into account when updating model parameters. Both MCE and MMI objective
functions were implemented, similar to those previously reported in the literature. We
settled on a simple parameter update formula based on a step size and a derivative
of the objective function with respect to the parameter being updated.

The results of a set of discriminative training experiments were similar to those
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previously reported in the literature. The MCE and MMI objective functions pro-
duced about the same accuracy gains when the mixture weights were updated. We
found that updating the Gaussian means and variances did not produce very reli-
able gains; in fact the training behavior was usually quite erratic. The best result
on test_2500 for these experiments was a 5% relative reduction in word error rate

compared to the ML-trained models.

In Chapter 6 we presented a modification to the discriminative training algorithm
meant to focus more attention on the recognition of certain keywords. We modified
the utterance score computation so that it was only composed of acoustic scores from

”

certain “hot boundaries.” Hot boundaries were defined as boundaries spanned by a
mismatched keyword in one of the utterance hypotheses. This keyword-based training
improved the accuracy gains on a manually chosen set of keywords by a factor of
three relative to our previous experiments. We also found the keyword-based training
produced higher gains in overall word accuracy than we had previously achieved. We

attributed this to the fact that certain poorly articulated, acoustically unpredictable

function words were no longer being used to update the model parameters.

A few observations arise related to the work in this thesis. First, it seems likely
that discriminative training will be most useful in situations where the amount of
training data is limited. As the amount of training data is subsequently increased,
the discriminatively trained models do not get much better, while the ML-trained
models tend to consistently improve. With this in mind, discriminative training might
be used in initial deployments of a new conversational system, in order to produce
the most accurate recognition as quickly as possible. Another use might be in more
heavily context-dependent modeling (e.g. triphones or quinphones), where by nature

the amounts of training data for certain models are always somewhat limited.

Another observation is that this work seems to confirm that there is little practical
difference between the various forms of discriminative training. This suggests that
research into new objective criteria and training procedures is unlikely to produce
any substantial accuracy gains. The gains available from discriminative training can

likely be exploited equally well with many different algorithms.
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Finally, as discussed in Chapter 6, it seems possible to focus the training process
on certain subsets of the training data. With different choices of the subset many
different behaviors could possibly be obtained. For systems similar to Jupiter a wide
range of applications of keyword-based training schemes can be imagined, which may

all have different effects on the recognizer.

7.2 Suggestions for Future Work

As mentioned previously, there is likely not much more to be gained from research
into discriminative training schemes similar to previously reported algorithms. Prob-
ably the most fertile area for future work related to this thesis lies in the exploration
of topics related to our keyword-based training. Within the discriminative training
framework presented here, much work could be done on refining the selection of key-
words and the choice of hot boundaries. A different kind of non-acoustic score could
also be developed based solely on the keywords in an utterance. Many different vari-
ations on the technique reported here are possible which could significantly improve
the effectiveness of the training.

The concept of preselecting certain parts of the training data and throwing out
the rest also need not be restricted to discriminative training. One could also try to
select the training tokens from keywords and then use those for Maximum Likelihood
training. If this produced gains in word accuracy similar to those of our keyword
experiments, perhaps it would be more useful than discriminative training, due to
the significantly reduced training time. Finally, further extensions could be explored
where the keywords are modeled with one set of units and all other words are modeled
with another set of units. This way the non-keyword data would not be thrown out,
but instead used specifically to model phones from the set of non-keywords. This
kind of scheme could prove the most useful in ensuring that the keywords are spotted

while robustly recognizing the complete utterances.
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Appendix A

Statistics File Format

The statistics file has the format of:
<utterance-1>
<utterance-2>

<utterance-3>

The <wutterance> has two possible formats, depending on whether hot boundary
information is included. If it is not, the format is:
-200
<hypothesis-1>
<hypothesis-2>
<hypothesis-3>
<dimensionality-1>
<wector-1>
<dimensionality-2>

<wvector-2>
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If hot boundary information is included, an <wutterance> has the format of:
-201
<hot-boundary-1>
<hot-boundary-2>
<hot-boundary-3>
-50
<hypothesis-1>
<hypothesis-2>
<hypothesis-3>
<dimenstonality-1>
<wector-1>
<dimensionality-2>

<wvector-2>

A <hot-boundary> is just an integer (a boundary index). A <dimensionality> is
also just an integer—the number of measurements in the following vector. A <wvector>
is a sequence of floating point numbers.

The <hypothesis> has the format of:

-400
<non-acoustic-score>
<class-index-1>
<class-index-2>
<class-index-3>

-10 or -20

The <non-acoustic-score> is a floating point number. Each <class-inder> is an
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integer—the index of the model corresponding to the next boundary in the hypothesis.
A <hypothesis> is terminated with -10 if it is the correct hypothesis, and -20 if it is
a competing hypothesis.
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Appendix B

Lists of Words for Keyword

Experiments

B.1 Keywords for Keyword-Based Training

a_m aalten aberdeen abidjan abilene abu_dhabi acapulco accumulation accumulation ad-
dis_ababa adelaide advisories afghanistan afternoon afternoon+s ainsworth airport akron
alabama alaska albany alberta albuquerque alexandria algeria algiers algonquin_park al-
lentown altus amarillo american_samoa amherst amman amsterdam anaheim anchorage
anderson angola ankara ann_arbor annapolis anniston antigua appleton april argentina ari-
zona arkansas arlington aruba asheville asia aspen astoria asuncion athens atlanta atlantic
atlantic_city au_claire auckland august augusta augusta austin australia austria b.c b_w_i
baghdad bahamas bahrain baja bakersfield bali baltimore bangalore bangkok bangladesh
bangor bar_harbor barbados barcelona basel baton_rouge bc beaumont beijing beirut belarus
belfast belgium belgrade belize bellevue bellingham belmont berkeley berlin bermuda bern
bethesda billings binghamton birmingham bismarck bloomington boca_raton bogota boise
bolivia bombay bonn bordeaux bosnia bosnia bosnia bosnia_herzegovina boston boulder
bowling green bozeman brasilia bratislava brazil brazzaville breckenridge bridgeport bris-
bane bristol britain british_columbia british_columbia brooklyn brownsville brunei brunswick
brussels bucharest budapest buenos_aires buffalo bulgaria burbank burlington butte buz-
zards_bay bye cairo calcutta calgary cali california cambodia cambridge camden canary _islands

canberra cancun cannes canton cape_cod cape_hatteras cape_may cape_town caracas cari-
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bou carmel carson_city casablanca casper cayenne cedar_city cedar_rapids celsius celsius
centigrade central asia champaign champaign urbana chapel hill charleston charlotte char-
lottesville charlottetown chatham chattanooga cheyenne chicago chile china christchurch
christmas cincinnati cities city clearwater cleveland cocoa_beach coeur_d+alene cold cologne
colombia colombo colorado colorado_springs columbia columbus columbus concord condi-
tions congo connecticut copenhagen corpus_christi corsica costa_rica cozumel crete cuba
cupertino curacao cyprus czech d_c d_f w dakar dallas dallas_fort_worth damascus danbury
danville dar_es_salaam darwin davenport davis day days daytime daytimes dayton day-
tona_beach dearborn death_valley december del_rio delaware delhi delmar denmark denver
des_moines detroit detroit_lakes dewey_beach district_of_columbia district_of_columbia dji-
bouti dodge_city dominican republic dover dublin dubuque dulles duluth durango durham
dusseldorf east east east_asia east_texas eastern eastern eastern_europe ecuador edinburgh
edmonton egypt eight eighteenth eighth eighty el dorado el paso el salvador eleven eleventh
elkins elmira england england enid erie essen estonia ethiopia eugene europe evansville
evening evening+s everett extended fahrenheit fairbanks fairfax falls_church falmouth fargo
fayetteville february fergus_falls fifteenth fifth fifty fiji finland first five flagstaff flint florence
florence florida forecast forecast fort_collins fort_knox fort_lauderdale fort_myers fort_smith
fort_wayne fort_worth forty four fourteenth fourth framingham france francisco frankfurt
fredericksburg french_guiana fresno friday friday+s gadsden gainesville galveston general
geneva georgetown georgia germantown germany gibraltar glacier_park glasgow glenwood_springs
goodbye grand_canyon grand_cayman grand_forks grand_island grand_rapids great_britain
great_falls greece green_bay greenland greensboro greenville grenoble groton guadalajara
guadaloupe guam guangzhou guatemala gulfport guyana hagerstown haiti halifax ham-
burg hampton hanoi harare harbin harriman harrisburg hartford havana hawaii heidelberg
helsinki hidden_valley high high hilo hilton_head hingham ho_chi_minh city hobart holiday
holland hollywood honduras hong_kong honolulu hot hot hot_springs houston how_about hu-
mid humidity hungary huntington huntsville hutchinson hyannis iceland idaho idaho_falls
illinois independence india indiana indianapolis indonesia innsbruck international falls iowa
iran iraq ireland irvine islamabad island israel istanbul italy ithaca ivory_coast j_f k jackson
jackson_hole jacksonville jakarta jamaica january japan jersey_city jerusalem johannesburg
jonesboro jordan july june juneau jupiter kabul kahului kalamazoo kalispell kampala kansas

kansas_city katmandu kenosha kentucky kenya key_west kiev kilimanjaro killington kingston

100



kinshasa kittyhawk knoxville kodiak korea kourou kuala_lumpur kunming kuwait kyoto 1.a
la_guardia la_paz laconia lafayette lagos lahaina lake powell lake tahoe lancaster lansing
las_cruces las_vegas latvia lawrence lebanon lebanon leesburg lewiston lexington lhasa libya
lihue lima lincoln lisbon lithuania little_rock liverpool london london_heathrow long_beach
long_island long range los_altos los_angeles louisiana louisville low lowell luanda lubbock
lusaka luxembourg lynn lyon macon madison madras madrid maine malaysia mali malta
managua manchester manchester manhattan manila manitoba march marquette marseille
martha+s_vineyard martinique maryland mass mass massachusetts massachusetts maui
may medford melbourne memphis menlo_park meridian mexico mexico_city miami michi-
gan milan milwaukee minneapolis minnesota minot minsk mississippi missoula missouri
mobile mogadishu monaco monday monday+s montana monte_carlo montego_bay mon-
terey monterrey montevideo montgomery month monticello montpelier montreal monument
moorhead morning morning+s morocco moscow mount_mckinley mount_washington munich
murmansk muskogee myanmar myrtle_beach nagano nairobi nanchang nanjing nantucket
naperville naples nashua nashville nassau natchez nebraska nepal netherlands netherlands
netherlands nevada new_bedford new_brunswick new_caledonia new_delhi new_hampshire
new_haven new_jersey new_mexico new_orleans new_york new_york_city new_zealand newark
newfoundland newport newport_news niagara falls nicaragua nice nigeria nine nineteenth
ninety ninth nome norfolk north north north_carolina north_dakota north_florida north_platte
northern_europe northern_ireland northwest_territories norway nova_scotia november o+clock
o+hare oakland ocean october ogden ohio oklahoma oklahoma city olympia omaha one on-
tario orange_county oregon orlando osaka oslo ottawa oxford p_m pacific pakistan palm_beach
palo_alto panama city paraguay paramaribo paris park_city park_rapids pasadena pearson
pegasus peking pendleton pennsylvania pensacola peoria perth peru philadelphia philippines
phnom _penh phoenix pierre pine bluff piscataway pittsburgh pittsfield pocatello poland
port_au_prince portland portland portsmouth portugal pottersmill poughkeepsie prague
presque_isle pretoria prince_edward_island princeton providence provincetown provo pueblo
puerto_rico puerto_vallarta puson pyongyang qingdao quebec quebec_city queens quincy
quito rabat rain rain rainfall raining raining raleigh raleigh durham rapid_city redmond
regina reno report reston reykjavik rhode_island rhodes richmond riga rio rio_de_janeiro rise
rise riyadh roanoke rochester rockford rockville romania rome rotterdam russia rutland s f o

sacramento saginaw saint_croix saint_george saint_john saint _kitts saint_louis saint_lucia
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saint_martin saint_paul saint_petersburg saint_thomas salem salina salisbury salt_lake salt_lake_city
salzburg samoa san_antonio san_diego san_francisco san_jose san_jose san_juan san_luis_obispo
san_salvador sanibel island santa_barbara santa_clara santa_cruz santa_fe santiago santo_domingo
sao_paulo sapporo sarajevo sarasota sardinia saskatchewan saskatoon saturday saturday-+s
saudi_arabia sausalito savannah scotland scotts_bluff scottsdale scranton seal beach seat-

tle second seneca_falls senegal seoul september serbia set seven seventeenth seventh sev-

enty seville shanghai short_term shreveport sicily singapore sioux_city sioux_falls six six-
teenth sixth sixty slovakia snow snowfall snowing snowmass sofia somalia south south_africa
south_bend south_carolina south_dakota south_florida south_texas southeast_asia southern_europe
spain spartanburg spokane springfield springfield springfield sri_lanka st_john st_johns st_petersburg
stafford springs stamford state_college stockholm stockville strasbourg stuttgart sun_valley
sunday sunday+s sunnyvale suriname sweden switzerland sydney syracuse syria tacoma
tahiti tahoe taipei taiwan tallahassee tallinn tampa tampere tanzania taos tashkent tasma-

nia teen tegucigalpa tehran tel aviv temecula temperature temperature ten ten tennessee
tenth texarkana texas thailand thank you thanks thanks thanksgiving third thirteenth thir-
tieth thirty thirty first three thursday thursday-+s tianjin tibet timbuktu today today to-
day+s todays tokyo toledo tomorrow tomorrow+s tonight tonight+s topeka toronto tor-
rence toulouse traverse_city trenton trinidad tripoli troy tucson tuesday tuesday-s tulsa
tunis tunisia turkey tuscaloosa twelfth twelve twentieth twenty twenty_eighth twenty_fifth
twenty _first twenty_fourth twenty_ninth twenty_second twenty_seventh twenty_sixth twenty_third
twin_falls two u_k u_s u_s_a uganda ukraine united_arab_emirates united_kingdom united_states
united_states_of america urbana uruguay usa utah utica uzbekistan vail vancouver venezuela
venice vermont vernal vero_beach victoria vienna vietnam vilnius virgin_island virginia
vladivostok voyager waco wales warm warning warnings warsaw warwick washington wash-
ington_d_c waterbury waterloo watertown waterville weather wednesday wednesday-+s week
weekend weekend wellington west west_palm_beach west_texas west_virginia western west-
ern_europe what_about wheeling white plains whitehorse wichita wichita_falls williamsburg
williamsport wilmington windsor windy windy winnipeg winston salem wisconsin wood-

land hills woods_hole worcester wyoming xian yakima yangon yellowknife yellowstone yes-

terday yesterday+s yokohama yorktown yukon yuma zambia zimbabwe zurich
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B.2 Omitted Words for Omission Experiment

<> <oh> <pausel> <pause2> <uh> <um> <unknown> a an and are as at be been blah
but by can can_i can_you did didn+t do do_you does doesn+t doing don+t done else ever
for from get give give_me go going going on going to got had has have having here hey hi
how how_is i_am i_will i would if in is isn+t it it_is it_will its let+s let_me like made make
many may may_i more much my need next no not now of okay on once one ones only or
our out said same say show so some sure than that that+s that_will the them then there
there+s these they this those through to too towards until up us use very want want_to
wanted was wasn+t we we+re were what what_are what_is what_will when when _is where
where_is which who who+s why will with won+t would wouldn+t yeah yes you you+ve

you.are your
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