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Abstract

In this thesis, the framework for a proper name recognition system is studied. We attempt to
combine the informetion in both the spelling and the pronunciation of a proper name and find
ways to let both sources of information improve the recognition accuracies of that name from the
accuracies obtained by performing the spelling recognition and pronunciation recognition tasks

separately.

A set of “morph” sub-units is introduced. These syllable-sized units capture both orthographic
and phonemic information of the names they represent. Our morphs are arbitrarily categorized
into six groups. prefix, onset, rhyme, uroot, dsuf and isuf. Certain combinations of these morph
categories, defined by a specific word decomposition rule, are used to represent proper names.

For each proper name, the name-spelling utterance is recognized by aletter recognizer. Then, the
proposed letter sequences are parsed by the TINA parser into possible sequences of morphs.
These sequences of morphs are used to provide additional constraints for the morph recognizer,
which is responsible for proposng morph segquences from the corresponding pronounced
utterance. Since both orthographic and phonemic information is encoded in morphs, the letter and
phone recognition accuracies can be caculated from the proposed morph sequence. Various
methods of providing the morph recognizer with the spelling knowledge using two types of
morph representation are explored.

The results are promising. In most of the cases, the spelling information helps improve the phone
recognition accuracy of the overdl system. There is significant reduction in phone recognition
error rate when the system is provided with the correct letter sequences. However, there is no
promising sign that the pronunciation knowledge could help the letter recognition task in most
cases.
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Title: Principal Research Scientist






Acknowledgements

It has been a long and challenging task to complete this thesis. Along the way, supports from
many people help me get through al the obstacles. Stephanie Seneff is the first person to be
praised for her tireless effort in this work. She not only guided me into this field of research but
aso was the one who understood me very well. | would like to thank T.J. Hazen, Lee
Hetherington, and Jm Glass for their patient explanations through out this research. Many tharks
are due to Victor Zue for being a group leader who is the center of such a friendly atmosphere in
the SLS group. | thank al of the students and staff at the SLS group for sharing their visions and
knowledge.

I would like to thank dearly to my family for al the love and support from far away. | would like
them to know that their messages in my mailbox re-energized me times after times. During my
deepest londliness, they were my mom’s messages that help me get through.

Findly, I would like to thank the Ananda Mahidol Foundation for the financial support.

This research was supported in part by DARPA under grant number N66001-99-1-8904,
monitored through Naval Control, Command and Ocean Surveillance Center.






Contents

F Y 0 1 = o APPSR 3
ACKNOWIBAGEMENLS ...ttt sb e e e e e b e ntesaeesae e e e 5
(@001 01 £ U OPR PR PPPTR 7
IS 0 T U= 9
LiSt OF TADIES ...t sttt 11
1o L8 o 1o O SPRPRR 17
1.1 Problem DefiNiTiON........ccooiiiiiiireneeeee e s 17
2T o V1Yo o I 019700 U= 11 oo PSSP 18

1.3 RESEAICN GOAIS. ... ..ottt 19

I (S s o T = o S 20

1.5 Chapter SUMMIEIY ......cceeiuiieeiieeieseesieeieesee e eeesreesseeae s e e sneesreesseensesseenseeneesnes 24

1.6 ThESIS OULIINE ...t st nns 25
Morph Representations and TINA ..o 27
2.1 MOUVALTON. ...ttt bbbt enes 27

2.2 Word formation Of Proper NAIMES.........cc.eccueeiieiieeiie e see st e e 28

2.3 MOIPN NOLALTIONS ...ttt r e 31

2.4 TINA: A Natural language system for spoken language applications................ 32

2 4.1 OVEIVIEIW ..ottt st be sttt et et e s ae s be st e beeneeneene e 32

2.4.2 TINA’S QIaMIMEAIS ....coouieeeeeiee e e siee et e st sre e eeesseesneesbeaanseesseesnneenneesnnas 33

2.4.3 Training of Probabilities...........ccoiiiiiiiie e 34

2. 4.4 ParSiNG N-DESt [ISIS ...cuviiieiieciecee et 36

2.5 Using TINA at the SUb-Word 18VEL...........cocooiieiieie e 38

2.6 Chapter SUMMBIY .......cciiirierieriieieeeeee et eesn et e b et enes 40

The SUMMIT Speech RECOGNIZEN .......cccuveiieieeiieseeiesteesie et sae e s re e snee e 43
G0 AV Lo (V7 1 o o A PSRRI 43

3.2 Speech recognition iN SUMMIT ... 43

3.3 Finite State TranSdUCErS (FSTS) ....uciuiiierieieseerieersee e eeesreesseeeessee e sseesseenseens 48
3.3 1FSA, FST and weighted FST ........cccooiiiiiinereeseeeee e 48

3.3.2 COMPOSITE FST ...t sttt s be e nne s 50

3.4 Composite language model of our pronunciation recogniZers..........ocvevereeeneene. 52

3.5 Chapter SUMIMAIY ........ocveiieeie ettt e e te e sreenne e 52

[ = ST PP PR 53
Y/ o Y= (] o USSR 53

4.2 Type Of datanNERUEM .........cceeieeeeeeee e ne s 53

4.3 DALA SOUICES .......eeeieeeiieeiiee et ettt et e st e be e sae e s be e s aeeesbeesaneesneesmneeneesnneenns 54
I 0 I N\ = 0 S TR 54

4.3.2 AUAIO TIES....oeieeeeee et 54

4.4 Jupiter data Preparation...........ccceeceececeeieeee e e nre s 55

45 Thetraining set and the test SEL ... 57

4.6 Chapter SUMIMAIY ......c.coiviieriiriesiesiesiese et st see b e e s st sbeseesaesne e e ns 61

The Integration of COMPONENES ........cccceiieieiieriere e ree e 63
LI AV Lo (V7 1 o o SRR 63

LA O Y= = Y S 63



5.3 Details Of INtEGratioN...........ccviieiieiie ettt ne s 64

5.4 Chapter SUMIMAIY .....cccooeiiiieieiiesieesie ettt sre et e se e s tesneesseenee e 69
TRE TECOGNIZENS.....ceiieeeeeeieee ettt a e bt bbb e e e 71
GT0 1Y/ o V7 1 o o OSSPSR 71
6.2 The “general” |etter reCOgNIZES .........ooiiiiiieieee e 71
6.2.1 General INFOrMELION........cceeiieeeiee e e 71
6.2.2 PEITOIMMANCE ..ot 72
6.3 The “training-set oriented” letter recognizer .........cccoccveveevieccie s 73
6.3.1 General INfFOrMELION........cceeiiieiiee et 73
6.3.2 PEITOIMMANCE ..o e 74
6.4 Letter recognition result analysis and COMPariSon...........cceeeevveeeeneereseeseeenenn 74
6.5 The morph recognizer using the morph representation Type |l .......ccccceveevieennee. 75
6.5.1 General INFOrMELION........cceeieeeeseee e sre e 75
6.5.2 PEIfOIMMANCE ..o e 76
6.6 The morph recognizer using the morph representation Type Il ........ccccevuenneee. 78
6.6.1 General INFOrMELION........cceeiieieeiee e 78
6.6.2 PEITOINMANCE ..ot 78
6.7 Morph recognition results’ analysis and COMPariSON..........ccveveeeieeeveesireesieennnes 80
6.8 Chaper SUMMIBIY .......oouiieiiieieerte et 82
Experiments using the morph representation TYPE | ....ceovveveeeeeieese s 83
48 1Y, o 17 11 o o OSSP R 83
42 € o= 3SR 83
AT 0= o LU = 84
T.3. L OVEIVIBIW ..ottt sttt bbb b et 84
7.3.2 Providing the correct spelling knowledge...........cooviieiinieninnecieseee 86
7.3.3 Utilizing the pdling information from the proposed n-best list from the
L L0 g (= o000 7 G 88
7.3.4 Utilizing the spdling information from the most preferred |etter sequence
from the [Etter FECOGNIZES .........oiiiereeeeeee e 90
7.4 ReSUITS aNd @NAIYSIS....cveeeeieeeie ettt ae e e reenne e 92
7.5 Chapter SUMMEIY ......ccceiieiicieciece ettt e et e e nesneenne s 102
Experiments using the morph representation TYPe 1 .....c.eveeeiereninnereeee e 105
S 00 1Y/ o) (V7= 1 o o S 105
B2 GOBIS ...ttt ettt 105
B.3PIOCEUUIE ...ttt ettt st et ae et sneenns 105
8.4 ReSUITS AN BNAIYSIS ......coiuiieriiiiiiiieie e 106
8.5 Chapter SUMIMAIY ....c..ecveiieie ettt e e e e reeneenns 118
SUMMary and FULUrE WOTK .........oocuieiieiiece ettt 119
9.1 THESIS SUMIMBIY ...ttt sttt s b sr e b e 119
9.2 Training TINA on alarger set of NAMES.......cccoveeviece s 123
9.3 Experiment with alternative ways of passing spelling knowledge ................... 124
9.4 Improvements to SPEECH FECOGNIZEN'S .......ceivererrieerieeee et ee e 124
9.5 Automatic extraction of spelled and pronounced waveforms..............ccoceeennee. 126
211 o] oo | =" 0|28 127



List of Figures

Figure 1-1: Block diagram of the letter recognition task ..........cccccvevevieveereccieceese e 21
Figure 1-2: Block diagram of the morph recognition task............ccccecerererenenenenenene. 21
Figure 1-3: Block diagram of the integrated system performing both the spelling and
PronuNCIation FECOGNITION........ciueeiiirieseeie ettt st sre e 21
Figure 1-4: Block diagram of the experiments conducted in thisthesis.........c.ccccccveneee. 23
Figure 2-1: Our decomposition of a proper NAME' S StTUCLUNE..........ocvveveecieeiie e 29
Figure 2-2: Network structure of & proper NAIME...........coveierereeeeieereese s 30
Figure 2-3: Network structure of @n SrO0L ........cceecicieiieseccec e e 30
Figure 2-4: An example of TINA'STUIES........cooiiiiiireee s 33
Figure 2-5: Parsing of noun phrases according to the rules givenin Figure 2-4............. 33
Figure 2-6: lllustration of NOuNn Phrase parsetree.........cocueveeeeeeiereeneneseese s 34
Figure 2-7: An example of a probabilistic network for Noun Phrase in the example ...... 35
Figure 2-8: Probabilistic network derived from given rules..........cccooeveeieniininienene, 36
Figure 2-9: (@) An example of an N-best list of sentences (b) its corresponding cross-
POHINGLEA Graph......c.eeeeeeeie e e 37
Figure 2-10: TINA’s parse tree of the name “dephillips’ (de- ph==ill+ -ip =9) ............. 39
Figure 3-1: An example of word recognition results for the name “Mark”...................... 46
Figure 3-2: Anexample of @ FSA ..o s 49
Figure 3-3: An example of aweighted FST..........cov oo 50
Figure 3-4: (a) FST, in the example (b) FSTy, in the example (c) (FSTa 0 FSTy)............. 51
Figure 4-1: Sizes of the name lexicons of the training set and thetest set ..o, 59
Figure 4-2: Sizes of the morph lexicons of the training set and the test set ..........cc.c....... 60
Figure 5-1: The integration of the COMPONENLS..........cccceevieiicieeseece e 65
Figure 5-2: Examples of the 10-best output letter SEQUENCES ........cceevverirerenerereeeeee 66

Figure 5-3: An example of the FSTs of the morph sequences from TINA, for the spelled

100 I I PSP 68
Figure 5-4. Another example of the FSTs of the morph sequences from TINA, for the

Spelled WOrd “BOD™ ... 68



Figure 7-1: Block diagram of the experiment in which the correct letter sequences are

810}V (= o E USSP TR 86
Figure 7-2: Block diagram of the experiment in which the combined FSTs built from the
proposed 10-best letter sequences form the letter recognizer..........ccceeveeeveeenene. 88

Figure 7-3: Block diagram of the experiment in which the combined FSTs built from the
top choice of the proposed 10-best letter sequences form the letter recognizer ... 91

10



List of Tables

Table 2-1:0ur morph categories and their definitions...........ccccevveceievecce e 28
Table 2-2: MOrph CaLEQOIIES. ..ot 31
Table 2-3: Examples of proper name decomposition using morph representation Type 132
Table 4-1: Details of the traiNiNg SEL.........cocviieiieieee e 58
Table 4-2: Details Of the tESE SaL........cii i 58
Table 6-1: The performance of the “general” letter recognizer..........cccveveevciveveeccieennnnns 73
Table 6-2: The performance of the “training-set oriented” letter recognizer ................... 74
Table 6-3: The morph recognition accuracy of the morph recognizer ..........ccccccceveuennen. 76
Table 6-4: The phone recognition accuracy of the morph recognizer ...........cc.ccocevveeenens 77
Table 6-5: The letter recognition accuracy of the morph recognizer...........cccccevecveunennen. 77
Table 6-6: The morph recognition accuracy of the morph recognizer ...........c.ccoceeeveeenen. 78
Table 6-7: The phone recognition accuracy of the morph recognizer ...........ccccceeeveueennen. 79
Table 6-8: The letter recognition accuracy of the morph recognizer...........ccccoveeecvreennens 79

Table 6-9: Comparisons between various accuracies of morph recognizers usng morph

representation Type | and TYPE Hl.......oeeiiiiieeeee e 81
Table 7-1: Morph recognition accuracy of the morph recognizer with bigram language

MOAE! (TYPE 1) ettt sr e e b e e re e neennee s 92
Table 7-2: Phone recognition accuracy of the morph recognizer with bigram language

ppeTe L= I QI L ) S 92
Table 7-3: Letter recognition accuracy of the morph recognizer with bigram language

ppeTe L= I Q1Y 1= ) S 93
Table 7-4: Morph recognition accuracy of the morph recognizer with trigram language

pgTeTe L= I Q1Y 1= ) 93
Table 7-5: Phone recognition accuracy of the morph recognizer with trigram language

pgTeTe L= I Q1Y 1= ) 93
Table 7-6: Letter recognition accuracy of the morph recognizer with trigram language

MOTE! (TYPE ) et 9

Table 7-7: Letter recognition accuracy of the “generd” letter recognizer with trigram
language MOdEl  (TYPE 1) e 9



Table 7-8: Letter recognition accuracy of the “training-set oriented” |etter recognizer with

trigram language MOdel (TYPE 1) ...oiveriieiieeee e 9
Table 7-9: Morph recognition accuracy of the system when the combined FSTs between

the basdline FST and the FSTs built from the correct |etter sequences are used as

the language MOdEl (TYPE 1) weeveeieeeeece e 95
Table 7-10: Phone recognition accuracy of the system when the combined FST's between

the basdline FST and the FSTs built from the correct |etter sequences are used as

the language MOdel (TYPE 1) et 95
Table 7-11: Morph recognition accuracy of the system when the combined FSTs between

the basdline FSTs and the FSTs built from the 10-best | etter sequences, proposed

by the “genera” letter recognizer, are used as the language model (Typel)....... 97
Table 7-12: Phone recognition accuracy of the system when the combined FST's between

the basdline FSTs and the FSTs built from the 10-best | etter sequences, proposed

by the “genera” letter recognizer, are used as the language model (Typel) ....... 97
Table 7-13: Letter recognition accuracy of the system when the combined FSTs between

the basdline FSTs and the FSTs built from the 10-best | etter sequences, proposed

by the “genera” letter recognizer, are used as the language moddl (Typel)....... 97
Table 7-14: Morph recognition accuracy of the system when the combined FSTs between

the basdine FSTs and the FSTs built from the 10-best letter sequences, proposed

by the “training-set oriented” letter recognizer, are used as the language model

Table 7-15: Phone recognition accuracy of the system when the combined FSTs between
the basdline FSTs and the FSTs built from the 10-best | etter sequences, proposed
by the “training-set oriented” letter recognizer, are used as the language model

Table 7-16: Letter recognition accuracy of the system when the combined FSTs between
the basdline FSTs and the FSTs built from the 10-best | etter sequences, proposed

by the “training-set oriented” |etter recognizer, are used as the language model

Table 7-17: Morph recognition accuracy of the system when the combined FSTs between
the baseline FSTs and the FST's built from the top choice of the 10-best | etter

12



sequences, proposed by the “generd” letter recognizer, are used as the language

MOTE! (TYPE ) et 99
Table 7-18: Phone recognition accuracy of the system when the combined FST's between

the basdline FSTs and the FSTs built from the top choice of the 10-best letter

sequences, proposed by the “general” letter recognizer, are used as the language

MOAE! (TYPE 1) et nes 100
Table 7-19: Letter recognition accuracy of the system when the combined FSTs between

the basdine FSTs and the FST's built from the top choice of the 10-best |etter

sequences, proposed by the “general” letter recognizer, are used as the language

pp0To L= I I/ L ) USSR 100
Table 7-20: Morph recognition accuracy of the system when the combined FSTs between

the basdline FSTs and the FST's built from the top choice of the 10-best letter

sequences, proposed by the “training-set oriented” |etter recognizer, are used as

the language MOdEl (TYPE 1) weeveeieeeecece e 100
Table 7-21: Phone recognition accuracy of the system when the combined FST's between

the basdline FSTs and the FSTs built from the top choice of the 10-best letter

sequences, proposed by the “training-set oriented” |etter recognizer, are used as

the language MOdE! (TYPE 1) .o.veeiieieeeeee e 101
Table 7-22: Letter recognition accuracy of the system when the combined FSTs between

the baseline FSTs and the FST's built from the top choice of the 10-best letter

sequences, proposed by the “training-set oriented” |etter recognizer, are used as

the language MOdE! (TYPE 1) ..eeeiiiieeeeeee e 101
Table 8-1: Morph recognition accuracy of the morph recognizer with bigram language

MOTE! (TYPE 1) e 107
Table 8-2: Phone recognition accuracy of the morph recognizer with bigram language

(p0T0To < I Q1N 1 1 ) USSR 107
Table 8-3: Letter recognition accuracy of the morph recognizer with bigram language

(pgT0Te (< I Y/ oL ) OSSR 107
Table 8-4: Morph recognition accuracy of the morph recognizer with trigram language

ppT0To L= I Q1Y 1= 1 ) TSSO 108

13



Table 8-5: Phone recognition accuracy of the morph recognizer with trigram language

MOTE! (TYPE 1) e 108
Table 8-6: Letter recognition accuracy of the morph recognizer with trigram language
MOTE! (TYPE 1) e 108

Table 8-7: Letter recognition accuracy of the “generd” letter recognizer with trigram

[aNQUAGE MOTE ... e e 109
Table 8-8: Letter recognition accuracy of the “training-set oriented” letter recognizer with

trigram 1anguage MO ..o 109
Table 8-9: Morph recognition accuracy of the syssem when the combined FSTs between

the basdline FST and the FSTs built from the correct letter sequences are used as

the language MOdel (TYPE 1o 110
Table 8-10: Phone recognition accuracy of the system when the combined FST's between

the basdline FST and the FSTs built from the correct |etter sequences are used as

the language MOdEl (TYPE 1) .ceeeie e 110
Table 8-11: Morph recognition accuracy of the system when the combined FSTs between

the basdline FSTs and the FSTs built from the 10-best letter sequences, proposed

by the “general” letter recognizer, are used as the language moddl (Typell).... 111
Table 8-12: Phone recognition accuracy of the system when the combined FSTs between

the basdine FSTs and the FST's built from the 10-best letter sequences, proposed

by the “general” |etter recognizer, are used as the language moddl (Typell).... 111
Table 8-13: Letter recognition accuracy of the systern when the combined FST's between

the basdline FSTs and the FSTs built from the 10-best | etter sequences, proposed

by the “general” letter recognizer, are used as the language moddl (Typell).... 112
Table 8-14: Morph recognition accuracy of the system when the combined FSTs between

the basdline FSTs and the FSTs built from the 10-best | etter sequences, proposed

by the “training-set oriented” letter recognizer, are used as the language model

Q1Y L= ) S 112
Table 8-15: Phone recognition accuracy of the system when the combined FST's between

the basdline FSTs and the FSTs built from the 10-best | etter sequences, proposed

by the “training-set oriented” |etter recognizer, are used as the language model

(TYIE ) ettt e et b e e b ne e 112

14



Table 8-16: Letter recognition accuracy of the system when the combined FSTs between

the basdine FSTs and the FSTs built from the 10-best | etter sequences, proposed

by the “training-set oriented” letter recognizer, are used as the language model

(TYIE 1) ettt e bt e 113
Table 8-17: Morph recognition accuracy of the syssem when the combined FST's between

the basdine FSTs and the FST's built from the top choice of the 10-best |etter

sequences, proposed by the “general” |etter recognizer, are used as the language

(pgToTe (< I Y/ oL ) SRR 114
Table 8-18: Phone recognition accuracy of the system when the combined FST's between

the basdline FSTs and the FST's built from the top choice of the 10-best letter

sequences, proposed by the “generd” |etter recognizer, are used as the language

ppTeTo L= I Q1Y 1= 1 ) OSSR 115
Table 8-19: Letter recognition accuracy of the system when the combined FSTs between

the basdline FSTs and the FSTs built from the top choice of the 10-best letter

sequences, proposed by the “generd” letter recognizer, are used as the language

ppT0To L= I Q1Y 1= 1 ) TS 115
Table 8-20: Morph recognition accuracy of the system when the combined FSTs between

the baseline FSTs and the FST's built from the top choice of the 10-best | etter

sequences, proposed by the “training-set oriented” |etter recognizer, are used as

the language MOdel (TYPE 1) ... 115
Table 8-21: Phone recognition accuracy of the system when the combined FST's between

the baseline FSTs and the FST's built from the top choice of the 10-best letter

sequences, proposed by the “training-set oriented” |etter recognizer, are used as

the language MOdel (TYPE 1) ..o 116
Table 8-22: Letter recognition accuracy of the system when the combined FSTs between

the basdine FSTs and the FSTs built from the top choice of the 10-best |etter

sequences, proposed by the “training-set oriented” |etter recognizer, are used as

the language MOodel (TYPE ). 116

15



16



Chapter 1

| ntroduction

1.1 Problem Definition

The universe of proper names is a large set of words, many of which have very rare usage.
Computer conversational system will benefit greatly if machines can understand proper names.
For example, an automatic flight reservation system would be more practica if the machine can
understand al proper names that are absent from its name lexicon, including the names of place
of origin and degtination, as well as the person it is conversing with, correctly. Two important
capabilities that would help a computer to achieve a goa of universa name recognition are (1)
given a sequence of letters in a proper name, the machine should be able to know how that letter
sequence is pronounced, and (2) given the pronunciation of a proper name, it should be able to
propose plausible spellings for that name.

The problem of automatic speech recognition of proper nouns is different from the one of
common words in severa ways. Proper nouns have a different structure from common words.
Specifically, common words can be decomposed into substructure such as prefix, stressed-root,
unstressed-root, suffix, etc. In proper nouns, it is possible to do such subword decomposition, but
the rules and the units used should be different. In other words, the decomposition rules that work
well with most of the common words are not appropriate for proper nouns. Furthermore,
recognition of foreign proper names, which can be spelled using the English aphabet, can be
hard. For example, a Japanese name like “Takayama’ does not have an obvious stressed root.
Some letter sequences rarely occur, if a al, in English common words but appear quite
prevaently in popular names. For example, “-ohn”, in the name “John”, israrely, if ever, used in
common words. This problem is even more pronounced in foreign names, such the “vI” in
“Vladimir”.
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When a human hears the pronunciation of proper names that he/she has never encountered before,
he/she might not be able to recognize those names perfectly and is likely to try to get more
information about them. One of the additiona pieces of information one of ten seeks to have is the
spelling of those names. On the other hand, when one comes across a sequence of letters that one
is unfamiliar with, the pronunciation of that letter sequence often yields understanding. So, it
should be reasonable to apply the situations above to computer recognition of proper nouns.
Specificdly, the machine should be able to utilize mutualy supportive information between the
pronunciation and spelling of a proper noun in the genera proper noun recognition task.

1.2 Subword modeding

It is very inefficient, if possble, to let a machine know all of the proper names by making it
memorize each proper name as a whole word, due to the large number of possible names. In order
to handle this problem, the idea of teaching the machine to understand unknown words by
learning from some relevant information obtained from known words needs to be deployed. One
way of doing this is to break known words into sequences of smaler units and then reassemble
these units to represent the desired unknown words. Sequences of phonemes are one of the
possible aternatives for representing words. Given that we have al possble phonemes in our
inventory of subword units, we can represent any words by sequences of our phonemes.
However, without any intermediate layers between word and phonemes, the order of phonemesin
aword can be quite arbitrary. Learning the sequences from a given set of words does not provide
strong enough constraints for a machine to propose the phoneme sequences for unknown words.
Replacing phoneme sequences with syllable sequences yields stronger congtraints with a larger
inventory size. Y, in this representation, there is ill the lack of a postiona property. More
specifically, given a specific syllable, we do not know where it would most possibly occur in the
sequence of syllables for a word. To gain still more congtraints, one can explore the idea of
marked syllables, in which each syllable is attached with positional marker. This method makes
the order of subword units for representing words less arbitrary. For example, if a syllable is
marked “prefix”, this syllable can be used to represent a word only when it can be put at the very
front of the sequence. One can use Satistical methods to distinguish the properties of a syllablein
this prefix position from those of other syllables.
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Lau [2] and Parmar [1] used a set of subword units called “morphs’ to represent common words.
In this thesis we will adopt the idea of morphs as well. We expect this morph notation will work
with the proper name decomposition task as well asit did for the common word case in Lau’'s and
Parmar’ s research.

Parmar used the probabilistic framework called “ANGIE” [5] to decompose common words into
their corresponding morph sequences. For each common word, a parse tree, with word as its root,
letters as its leaves and morphs as an intermediate layer helping constrain the parse tree, was
congdructed. In this thess, we will explore the possbility of utilizing another probabilistic
framework called TINA [4], instead of ANGIE, to provide the decompositions of proper names.
Although TINA was originally designed to parse a sentence into its corresponding word
sequences, we believe that TINA can be adapted to accomplish the proper name decomposition
task as well, by looking at the proper names as if it were a sentence with the individual letters
subgtituting for termina nodes.

The details of TINA and our morph representation will be discussed in Chapter 2.

1.3 Research Goals

The primary goa of this thess is to propose a framework for recognition of proper names,
especidly people’'s names. The class of names we are interested in is not restricted to only
English or American names but also includes any names that can be spelled using the English
alphabet. The moativation behind this thesis is that, when someone would like to tell his name to
other people, if the name is not a very common proper name, such as “John” or “Bill” for
example, it usually helps others to recognize the name more eadly if the speaker spells his name
for them. This shows that people use the information residing in the spelling to help understand
more about the name they hear. Conversely, even though a spoken spelling of a word might not
sound clear enough to a listener, they usudly figure out what that spelling is once the word is
pronounced. In this thesis, we study ways to use such mutua information in the spelling and
pronunciation to improve the recognition performance of both the recognition of the spelling
alone and the recognition of the pronunciation alone.
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We will use “morphs’, defined as a particular spelling convention representing the syllables of
words, as the medium to convey information between the pronounced utterances and the name-
spelling utterances. The spelling knowledge from the name-spelling utterances is encoded in the
morph representation. Also the information about pronunciation is encoded in the same
representation. Then, the recognition results for both phonemics and spelling can be derived
directly from morphs. The details of the morph representation will be discussed in later chapters.

One of the tasks embedded in our primary goa is to study how different sets of morphs and word
decomposition rules affect the overall recognition results. To be more specific, we would like to
see the difference between the performance of the system using different sets of morphs and ways
to decompose words. We would aso like to find out whether the sets of morphs derived from a
limited corpus of data can be reasonably used to represent a different body of proper nouns and
yield plausible performance for the overall system.

In the rest of this thesis, we will use the word “name-spelling utterance” to refer to the utterance
that contains the spelling of the name, suchas® davi d”. And we will refer to the utterance that
contains the spoken name as “ pronounced utterance’.

Conducting experiments on the framework of joint recognition between spelled and pronounced
names, we can extend our study to cover the studying of the letter-to-sound and the sound-to-
letter problem. Since we have name-spelling utterances and pronounced utterances as inputs to
our integrated system, and can process the recognition results in order to get resulting phone and
letter sequences, this integrated system can be viewed as another aternative method for letter-to-
sound and sound-to-letter generation.

1.4 Research Plan

The primary god of this research is to develop a framework for recognition of proper names by
usng mutud information in both pronounced and spelled utterances. In order to evaluate the
recognition performance of the developed framework, we need to have the basdine
performances. These numbers are the performances of the letter recognizer and morph recognizer,
which are also the recognizers to be used in the block called integrated system in Figure 3.

20



According to Figure 1-3, ingead of performing the recognition on each piece of information
separately, both name-spelling utterances and pronounced utterances are fed into the integrated
system, and the system proposes the final recognition result. The letter recognition accuracy
obtained in this case is compared with the letter recognition accuracy obtained from running the
letter recognizer in Figure 1-1 aone, while the phone recognition accuracy is compared with the
phone recognition accuracy obtained from the recognizer in Figure 1-2.

name-spelling : letter
utterance letter recognizer ——— re(;rogg{rrI ? on
Figure 1-1: Block diagram of the letter recognition task
morph (phone)
pronounced | morphrecognizer —— . iti
ecognition
Ltterance result
Figure 1-2: Block diagram of the morph recognition task
: |etter
name-spelling recognition
integrated
system
phone
pronaunced ] recognition
utterance result

Figure 1-3: Block diagram of the integrated system performing both the spelling and
pronunciation recognition
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In the block called integrated system in Figure 1-3, name-spelling utterances are fed to the same
letter recognizer in Figure X1, while pronounced utterances are fed to the morph recognizer in
Figure 1-2. Then the proposed letter sequences from the letter recognizer are parsed by TINA, a
natural language system that is capable of proposing candidate morph representations of the input
letter sequences. Then these sets of morph representations are used as additional constraints for
the morph recognizer for recognizing the corresponding pronounced utterance. To gain more
knowledge about how suitable different sets of morphs and word decomposition rules are for
representing the proper nouns, the system in Figure 13 is daborated into the block diagram in
Figure 1-4 below. Each block is the same as the block called integrated system in Figure 1-3 but
with different inventories of morphs and different rules for decomposing proper nouns into
sequences of morphs. In this thesis, two types of morph representations are used. These two sets
of morphs were developed aong the way as we observed the training data and built the two

recognizers.

- Experiments done on “morph representation type I’ are discussed in Chapter 7.
- Experiments done on “morph representation type 11" are discussed in Chapter 8.

Furthermore, in addition to the information on spelling obtained from the proposed letter
sequences from the letter recognizer, experiments are also conducted by giving the morph
recognizer perfect knowledge of each name's spelling. This perfect knowledge of the spelling is
obtained by providing TINA with the correct letter sequences for each name instead of the noisy
letter sequences from the letter recognizer. The performance of the system in this case should
provide ingght into how well the system performs on the letter-to-sound task augmented with a
spoken pronunciation.

In summary, the series of experiments conducted are grouped according to the morph inventories
used. In each group, the varied parameters are the language model for the morph recognizer. The
baseline morph recognizer has language models which are the bigram and trigram constructed
from the lexicon of training data. Then, by composing this basdline language model with various
sources of spdling information, we can generate different language models. The sources of
spelling knowledge are the following:
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- Spdling knowledge obtained from the ten letter sequences most preferred by the
letter recognizers.

- Spdling knowledge obtained from the top choice of the proposed letter sequences
from the letter recognizers.

- Spelling knowledge obtained from the correct letter sequence.

After we have the results from various experiments, we can compare the letter and phone

accuracy with the ones from the baseline recognizer. Then the analysis and comparisons are done
to identify the most suitable scenarios for the proper name recognition task.

correct
letter sequence

- =, letter

name-spelling N morph L. recognition
o .

utterance — representation ﬁ:e
type | L. recognition

result

h letter
morp —— recognition

pronounced representation result

utterance phone
type 1 —— recognition

result

letter
morph L. recognition

tati result

representation phone
type N L. recognition

result

Figure 1-4: Block diagram of the experiments conducted in thisthesis
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1.5 Chapter Summary

Enabling computers to understand proper names can be very beneficia to conversational systems.
Proper names are distinctly different from common words in terms of their pronunciations and
spellings. In this thesis we are trying to study how we could combine the information in both the
spellings and pronunciations of proper names and use the combined information to fully
recognize those proper names, assuming they are absent from the lexicon. One of the key ideas in
this system is the proper name decomposition, in which a proper name was parsed into its sub-
word unit representation. “Morphs’, syllable-sized sub-word units, were used to represent proper
names. This work is to some degree an extenson of a previous study of the procedure for
representing words using these morphs as basic units. It was shown, in the common nouns case,
that a morph representation can provided substantial coverage for common English words, along
with reasonable accuracy in terms of pronunciations [1].

The primary god of this thesis was to propose a framework for recognition of proper names. This
framework incorporates knowledge about the spelling of a proper name with knowledge of its
pronunciation in order to improve the recognition performance. Our experiments varied along

several dimensions, including the type of morphs and word decomposition rules used.

Basdine recognizers, both for letters and morphs, were built. Their recognition results were kept
in order to be compared with the corresponding recognition accuracies of the integrated system.
An overview of the experiments conducted is described in Section 1.4. Various language models
for the pronunciation recognizer in the integrated system were used in the experiments, and their
resulting accuracies were compared with the corresponding accuraciesin the baseline case. Each
language model to be used was composed of two parts. The first part was common for al names,
while the other part was derived specificaly for each name from its corresponding spelling
information obtained in various ways, including the letter recognition results from the letter
recognizer and the correct letter sequences. Furthermore, two types of morph representation and

their corresponding word decomposition rules were used in the experiments.
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1.6 Thesis Outline

In this chapter, we talked about the motivation of this thesis. Some of the background about the
components used in building the system was discussed. Other background materia, not discussed
in this chapter, will be covered in later chapters.

In Chapter 2, we will look at the TINA natura language system [4], which alows us to perform
the word decomposition task, along with the details concerning the morph representation and the

word decomposition procedure.

The background used in building speech recognizers, another important component of the
framework, will be discussed in Chapter 3. The system that is the basis of the recognizers built in
thisthesisis caled the SUMMIT recognition system [9], [10]. The details about using this system
in building two types of specific recognizers will be discussed later in Chapter 6.

Anocther important part of these experiments is data. In Chapter 4, we will provide the
information about the data we used throughout this research. The information includes the types
of data we need, their sources, how we divide them into groups according to the purpose we want

to use each group of data for, and some details about their contents.

After describing the basis of the required components, we will introduce the integration of
various components together. The broad picture of the overdl system will be provided, and some
issues about their interconnection will be discussed.

In Chapter 6, we will describe how we build the recognizers we used to obtain the basdine
performances. There are two recognition systems, the letter recognizer and the morph recognizer.
Two of each type of recognizer were used in this research. The baseline accuracies of these
recognizers will be shown.

Chapter 7 and Chapter 8 are devoted to the actual experiment conducted in this research. The
experiments in the two chapters differ by the morph representations and word decomposition
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rules used. The goad of each experiment will be described aong with the corresponding
procedures. The results will be shown and analyzed.

Findly, in Chapter 9, we will conclude our research and propose some possible work that can be

done on the results we obtained. Also we will suggest some possible future experiments that
cannot be done in this thesis due to time congtraints.
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Chapter 2

Morph Representations and TINA

2.1 Motivation

In order to let the components involved in our framework share information, we use a syllable-
sized subword unit that we call “morphs’ to represent proper names. In this chapter, we will
introduce these morphs and discuss the method we used to decompose a proper name into the
corresponding sequence of morphs. These morphs were used as the common unit for both the
phone recognizers and the letter recognizers. Different sets of morphs and their corresponding
word decomposition rules were used in the system in order to study the differences that various
methods provide in term of recognition performance.

One of the questions we are addressing in this thesis is whether TINA, a probabilistic natural
language framework intended to parse sentences into linguistic substructure, can be adapted to the
task of parsing words into morphological substructure. The earlier part of the TINA discussion
will provide the overview of the sysem and the basic operations TINA performs on
understanding sentences, namely parsing sentences into the syntactic and semantic constituents
defined in its grammars. Also, TINA can take an N-best list and turn it into a cross-pollinated
graph to be parsed in a single search to yield M-best parse trees. The later part of the TINA
discussion concerns how we can create TINA grammars to be used in the task of parsing a proper
noun into a sequence of morphs. In other words, we look at the proper nouns in this case as the

whole sentences and treat |etters as words, which are termina elements of the parse tree.
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2.2 Word formation of proper names

Since the universe of proper names is alarge set of words, it is impractica to provide al of them
to the vocabulary of a recognition system in order to understand al of the proper names. One
approach, which is also adopted in the common word casg, is to find methods to represent this
whole universe of words with sequences of smaler units, which, hopefully, are far fewer in
number. In English, one might use syllabification for dividing a word into its corresponding
sequence of smaler units, which are then syllables. We fed that syllable-sized units provide a
reasonable sized inventory with coverage over the mgjority of unseen names. However, due to the
lack of a positional property of the syllable, we believe that it overgeneralizes the characteristics
of its pattern. Thus, it sacrifices some potential constraints. For example, we believe that the
occurrence of a syllable that appears at the front of a proper noun has a dramatically different
probability distribution from the case when that syllable appears at the end, or any other location.
Thus, we adopt the idea of syllable-sized units but incorporate some postiona congtraints into
our subword unit, which is expected to provide us considerably stronger constraints for the proper
noun recognition task. These units are called “morphs™. In order to discriminate the probability
spaces among the morphs in different positions, our morphs are somewhat arbitrarily divided into
five categories. The five categories and their definitions are shown in Table 2-1. In the
probabilistic training of our parser, the counting of the occurrences of letter sequences takes the
morph categories into account. Thus, for example, we can distinguish between the probability of
the letter “0” followed by the letter “n” in the prefix “on-" from the probability of the same letter
sequence in the dsuf “-on”.

Morph categories Definition

Prefix an unstressed syllable preceding the first stressed syllable

Sroot astressed syllable

Uroot an unstressed syllable immediately following a stressed syllable

Dsuf a default unstressed syllable not falling in any of the other categories
| suf aterminal unstressed syllable characteristic of proper nouns

Table 2-1:0ur morph categories and their definitions

L“Morphs’ are arbitary subword units defined to represent wordsin our research. They are unrelated to
“morphemes” in the classical linguistic theory.
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In order to make these sub-word units more general, sroot is further divided into smaler units

caled onset expressing al initid consonants, and rhyme, containing the stressed vowel and all
subsequent consonants.

word

prefix  sroot uroot dsuf isuf sroot isuf

onset  rhyme onset  rhyme

Figure 2-1: Our decomposition of a proper name's structure?

There are some heuristic context-free rules governing the decomposition of a proper noun. Such
rules were deployed to keep the decomposition meaningful and consistent. The rules were
developed according to the definition of each morph category. The entire space of proper noun

decomposition according to the rules we used in this thesis is shown in the network in Figures 2-2
and 2-3.

2 The pattern repeats for words with multiple stressed syllables.
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Figure 2-2: Network structure of a proper name

Figure 2-3: Network structure of an sroot
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2.3 Morph notations

As mentioned above, we used “morphs’ as the common units for conveying information between
a spelled utterance and a pronounced utterance. Morphs are defined as syllable-szed units of a
word, with both a phonemic and orthographic representation. Each morph belongs to one of the
sx sub-word unit categories, prefix, onset, rhyme, uroot, dsuf and isuf. Also, each morph consists
of letters, upper and/or lower case, and a sub-word category marker. Sub-word category markers
are the symbols, including “-”, “=", “+", used to denote different sub-word categories. How these
marked morphs relate to the six categories is shown in Table 2-2 below.

Category Marker Example morphs
prefix “morph-" mc-, pro-, for-
onset “morph=" j= J, bh=, dr=
rhyme “=morph+” =incet, =at+, =Ar+
uroot “morph” ad,i
dsuf “-morph” -y, -ie, -ger, -ga

isuf “=morph” =S, =son, =sen

Table 2-2: Morph categories

Word decomposition into the sequence of morphs was designed in such away that, if we discard
al the markers appearing in each morph and convert al of the upper-case letters to lower-case,
we can restore the way the original word was spelled. Apart from the spelling information that is
encoded in the morphs, morphs aso contain pronunciation information. Each morph has one or
more pronunciations depending on how we design the morph system.

In this thesis, we used two systems of morph representations in separate experiments, in order to
study how we can design a suitable morph representation for proper names. The main distinction
between the two is the issue of how to deal with spelling sequences that produce exactly the same
morph except with different pronunciations. In the first system, each morph has a unique

pronunciation. In this system we exploit upper-case letters in order to construct morphs with
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different pronunciations but the same orthographies. An example of such a case is shown in Table
2-3 below.

decompositions morphs pronunciation
di ane : d= =i + =ane+ =i+ : ay
di az : d= =l + =az+ _ o
=l+ oy
jon ©J= =on+ Jj= 1 jh
j ose : J= =0+ s= =E+ J= : hh

Table 2-3: Examples of proper name decomposition using morph representation Type |

The other system we used in this thesis does not use upper-case letters, but, instead, each morph
is dlowed to have multiple pronunciations. So, the number of morphs in this system is less than
in the first system but, in return, we face more confusion about the pronunciation of each morph.
The names “diane” and “diaz” in Table 24 can be decomposed using the same “=i+", while the
pronunciations of “=i+" can be either “ay” or “iy”. And the names “jon” and “jose” can be
decomposed using the same “j=", where the pronunciations of “j=" can be either “jh” or “hh”

2.4 TINA: A Natura language system for spoken language applications

2.4.1 Overview

TINA is a naturd language system developed by the Spoken Language Systems group,
Laboratory for Computer Science, a MIT, for applications involving spoken language tasks.
TINA produces a highly congtraining hierarchica probabilistic language modd to improve
recognition performance. TINA has the ability to convert the input sentence into a parse tree
corresponding to the sentence according to the given rules. TINA’s grammar rules are written
such that they describe syntactic structures at high levels of a parse tree and semantic structures at
the low levels. All of the meaning-carrying content of the sentence is completely encoded in the
names of the categories of the parse tree. The context free rules are automatically converted to a
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shared network structure, and probability assignments are derived automatically from a set of
parsed sentences. In the next section, we will discuss the detailed description of TINA’S

grammars and the probabilistic models.

2.4.2 TINA’s grammars

TINA’s context free grammars are the rules that let TINA know all the possible structures of the
sentences of interest. For example, if we wish to parse a noun phrases (NP), one could provide the
rules asin Figure 2-4 below to TINA.

NP
Article [Adjective] [Adjective] Noun

Sent ence
NP

Figure 2-4: An example of TINA’srules

Each word is the name of a category or node in the parse tree, i.e. Sentence, NP, Article,
Adjective and Noun, where the brackets signify optiona nodes in the structure. This grammar can
be used to parse the set of phrases shown on the left of Figure 2-5, each of which corresponds to
the parsing result shown on the right.

“a boy” NP = Article Noun

“the bottle” NP = Article Noun

“a beautiful town” NP = Article Adjective Noun

“the bl ue box” NP = Article Adjective Noun

“a cute young girl” NP = Article Adjective Adjective Noun

“the white tall building” NP = Article Adjective Adjective Noun

Figure 2-5: Parsing of noun phrases according to the rules given in Figure 2-4

The grammar is converted to a network structure by merging common elements on the right-hand
side of dl rules sharing the same left-hand side category. Each left-hand side category becomes
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associated with a parent node whose children are the collections of unique categories appearing in
the right-hand sides of al the rules in the common set. Each parent node establishes a two
dimensional array of permissible links among its children, based on the rules. Each child can link
forward to al of the children that appear adjacent to that child in any of the shared rule set.
Probabilities are determined for pairs of siblings though frequency counts on rules generated by
parsing the training sentences. The parsing process achieves efficiency through structure-sharing

among rules, resembling in this respect a top-down chart processor.

Noun Phrase

/

C‘St@_’Artice djective Q@_’ED

Figure 2-6: Illustration of Noun Phrase parse tree

2.4.3 Training of probabilities

The grammar is built from a set of training sentences. TINA is exposed to this set of sentences
and the probabilities of every arc between siblings is computed. More specificaly, a record is
kept of the relative counts of each subsequent sibling, with respect to each permissible child of
the parent node as they occurred in an entire set of parsed training sentence. For example, in the
noun phrase case above, suppose we end up with the probabilities as trained from the “corpus’ in
Figure 25 as in Figure 27. We can see that [Adjective] is followed four time by [Noun] and
twice by [Adjective], so the network shows a probability of 1/3 for the self loop and 2/3 for the

advance to [Noun].



Figure 2-7: An example of a probabilistic network for Noun Phrase in the example

In Figure 27, we can see that there is one self-loop in the network. The network with a self-loop
is generalized to include any number of elements whose nodes contain the loop to themsalvesin a
row. So, in our example, the rule is now capeble of including any number of adjectivesin a row.
A phrase like “a thin tall Chinese guy” can be handled by the rule “NP = Article Adjective
Adjective Adjective Noun”. Furthermore, there is a significant amount of sharing of individua

sbling pairs among different rules. This sharing causes the so-called “cross-pollination effect”.
An example of this effect is shown below.

Suppose we have the following rules:
Parent = Child_1 Child_2 Child 2
Parent = Child_1 Child_2 Child_3
Parent = Child_2 Child 4

Parent = Child_1 Child_3 Child 4

We can obtain the probabilistic network asin Figure 2-8 below.
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Figure 2-8: Probabilistic network derived from given rules

From the network in Figure 2-8, we can see that the [Parent] that has structure like:

Parent = Child_1 Child_2 Child_3 Child 4
Parent = Child_1 Child_3

can be parsed perfectly even though we did not specify this pattern explicitly in the rules.

2.4.4 Parsing N-best lists

The input passed to TINA is usualy the recognition result from a speech recognizer. Thus, apart from
taking one sentence and parsing it into a series of parse trees, TINA is also capable of taking in an N-best
list of sentences, which can come from a speech recognizer’s output, as an input for building the resulting
parse trees. By first turning the input N-best list into a cross-pollinated graph, in which the same words
appearing in any of the N-best list items are treated as the same node in the graph, TINA searches for M
best resulting parse trees according to the graph and its trained grammars. This mechanism of constructing
an interconnected graph allows an expansion of the solution space, which might permit the recovery of the
correct answer omitted in the original list due to the recognition error. An example of an N-best list and its

corresponding interconnected graph areillustrated in Figure 2-9 below.
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NBEST

Wrd_1 Wrd_2 Wrd_3 Wrd_4
Wrd 5 Wrd 3 Wrd 4
Wrd 1 Wrd 5

Wrd_ 1 Wrd_ 2 Wrd_3
Wrd 6 Wrd_ 4

(@)

(b)

Figure 2-9: (&) An example of an N-best list of sentences (b) its corresponding cross-pollinated
graph

In the next section we will look a how we can decompose words like proper names into sub-
word units and then discuss how we define the word decomposition rules for TINA to construct a
parse tree of a proper name.
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2.5 Using TINA at the sub-word level

We have mentioned how TINA can parse sentences into a series of words. Here, we are going to
look at the sentence level as only one word, more specifically, one proper name. TINA’stask isto
decompose the proper name into a series of appropriate morphs according to the given rules. In
order to obtain the probabilistic network as in Figures 2-2 and 2-3, the following rules are
provided to TINA.

sentence = [ prefix | sroot [ dsuf | sroot uroot [ dsuf | [ isuf ]
sentence = [ prefix ] sroot uroot [ dsuf | sroot [ dsuf | [ isuf |
sentence = [ prefix ] sroot uroot [ dsuf | sroot [ dsuf ] isuf
sentence = sroot isuf sroot [ uroot | [ dsuf ] [ isuf ]

sentence = sroot isuf sroot sroot [ uroot ] [ dsuf ] [ isuf ]
sentence = sroot [ dsuf | [ isuf ]

sentence = prefix sroot

soot  =[ onset | rhyme

According to this set of rules, the network looks like the one in Figures 2.2 and 2.3. The
probabilities of the arcs are trained by providing TINA a name training lexicon. In this lexicon,
the names in the training set are lited and provided with the corresponding morph
representations. By counting the frequency of each pair of sub-word categories and normalizing,
the probabilities are added to the appropriate arcs. An example showing the results of word

decomposition according to this set of rulesis shown in Figure 2-10.

38



sentence

word

prefix sroot dsuf Isuf

N

onset rhyme

d2- e2- p2= hl= =i3+=|2+=]1+-i2 -p2 =sl

d e p h i I I 1 p S

Figure 2-10: TINA's parse tree of the name “dephillips’ (de- ph= =ill+ -ip =3)

The root of the parse tree is the sentence layer, which acts as the parent of the word layer.
Directly below the word layer is the morph category layer, in which the names of morph
categories appear. The word layer sprouts nodes on the morph layer according to the word
decomposition rules given to TINA. The pre-terminal layer is the morph layer. Morphs presented
in this layer of a TINA parse tree are not encoded as whole morphs. Here each morph is
represented by a sequence of pre-terminal units, which are derived from the corresponding morph
by separating each letter in that morph into a separate pre-terminal unit. Then, each pre-termina
unit is attached with the order of the letter in the origina morph, counted from right to left. For
example, the first letter in a three-letter morph is marked with number three following that letter.
The second is marked with number two and the last letter is marked with number one. In order to
identify the morph category, the morph category markers are preserved in each pre-termina unit.
For example, the pre-termina unit representation of the morph “=Ind+" is “=13+ =n2+ =d1+".
Each pe-termina node has one child which is the letter used in that node. Thus, the termina
layer of the parse tree in the sub-word case contains the letters used to spell the origina proper
names. The reason why we marked the pre-terminal nodes with their ader is to prevent some

cross-pollination effects that will bring an over-generdization problem in the morph level. If we
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omit the numbers in the nodes in the pre-termina layer, TINA is alowed to create undesired
morphs by cross-pollination, because those nodes are considered the same node in the
probabilistic network. An example of such a case is when we have the morph “=inet” and
“=er+”, without the order notation in the pre-termina layer, TINA might come up with a morph
like “=iner+”, which is not alowed, a least, for its multi-syllable property. And, since the pre-
termina nodes, in the same morph category, labeled with the same letter but different number are
consdered different nodes in the probabilistic network, the creation of undesired morphs is
reduced, if not eiminated. According to the previous example, the pre-termina unit “=el+" in
“=inet” is different from the pre-terminal layer node “=e2+" in the other morph. This dso yields
a sgnificantly more specific probability model, encoding sequence information at both the morph
and the letter level.

Another interesting issue about TINA's rules we implemented in this thesis is the division of
morph categories. We should note that no matter how we divide any morph categories in Figure
2-2, the probabilistic network will ill hold. In this thess, we suspect that the probability
distribution of uroots starting with vowels is different from the probability distribution of uroots
starting with consonants. Thus, we categorize al uroots according to whether they start with a
vowe or consonant. Similarly, we separate dsufs starting with vowels and dsufs starting with
consonants into different groups.

2.6 Chapter Summary

In this chapter, we introduced the method we used to decompose proper nouns into subword units
we cal “morphs’. The idea of this method is the blending of syllabification and morphology,
which are two of many possible technique people might exploit in decomposing English words.
Each morph is syllable-sized and does not necessarily have meaning, while it is categorized as
one of the six morph categories, which areprefix, onset, rhyme, uroot, dsuf and isuf. Proper name
decomposition into morph sequences requires specific rules, which define alowed trangtions
between morph categories in the level directly below the word level. Each morph is marked with
a specia marker according to its category. There are two types of morph representation used in
this theds. In one type, each morph has a unique pronunciation, while in the other type, the
orthography, excluding case information, of a morph is unique.
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TINA is a system originaly designed for parsing a sentence into the corresponding parse tree
according to a set of grammar rules and trained probabilities. In this thesis, we tried to adapt
TINA to a subword grammar in order for TINA to be able to work at the subword level. By
utilizing a subword grammar, TINA can be used in the proper name decomposition task.
Specificaly, TINA can propose parse trees from the input letter sequence of a proper name. The
parse trees are constructed by a top-down agorithm. They are constrained by word
decomposition rules, the inventories of morphs used, and the input letter sequences at the parse
tree terminal.
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Chapter 3

The SUMMIT Speech Recognizer

3.1 Motivation

In this chapter, we will describe the recognition system that we used to build the recognizers used
in this thesis. This system is cdled the “SUMMIT” recognition system [9], [10]. The purpose of
this chapter is to provide the basic idea about this recognition system. The background in this
chapter should be useful in understanding the building of recognizers, to be described in
Chapter 6.

3.2 Speech recognition in SUMMIT

The SUMMIT recognition system is a segment-based speech recognition engine developed in the
Spoken Language System group at MIT. This system is used in the group to build speech
recognizers, based on a probabilistic framework. The function of this system is to find the word
sequence, which is probabilistically closest to the nput acoustic information contained in the

audio waveform.

Speech recognizers typically represent the acoustic information as a frame-based sequence of
observations. They convert the input acoustic information into a series of vectors. Each vector
captures information about the speech signal during a short window in the input speech
waveform. Such windows are usualy called “frames’. The observation frames are usually equaly
gpaced and dightly overlapping in time. The full set of frame-based observations is represented
as.
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O={01,0;, ..., On}

where O : sat of observations
O, : aframe-based observation vector.

Ns : tota number of frames throughout the waveform.

Usualy, the observation vectors are some representations of the spectral information of the
waveform presented in the corresponding frames. The spectral representation that is widely used
is Md frequency scale cepstral coefficients (MFCC's). In frame-based approaches, such as
Hidden Markov Models (HMM’s), recognition uses the frame-based observations directly in the
probabilistic framework used for scoring and search. The problem of speech recognition in these
approaches is basically the problem of finding a hypothesized string of words, W', which is most
likdy given O, to maximize the probability that that string really occurs given the observations.

Thisis represented as.
W'=argmax p(W|O)
W

In SUMMIT, which is a segment-based system, the set of observation vectors, O, is firgt
transformed into a network of segment-based feature vectors, V. And the recognition is
performed using the segment network instead of the sequence of frames. Thus, the generic

probabilistic expression used to describe the recognition process by SUMMIT is represented as:.
W'=argmax p(W |V)
W

In SUMMIT, it is presumed that each segmental unit contains one phonetic unit. Thus, SUMMIT
models a word as a sequence of phones, each of which occupies one segment in the segment
network. Segment networks created by SUMMIT are shown in Figure 3-1. On the top is the time
waveform of the utterance “mark”. Directly below the time waveform is the corresponding
spectrogram. Shown below the spectrogram is the segment network, where the blocks with darker
shade are corresponding to the chosen phonetic string, which is shown below the segment
network. In this case, the recognized phonetic string is “m aa —r kcl k”. And the word (morph in



this case) string chosen is “m= =arc+”. The correct phonetic string, correct word string and the
original transcription for this utterance are shown at the bottom of the figure.

During the search for the best word sequence, W, SUMMIT chooses the single best path through
the segment network. Also, the search process finds the single best path of segments S through
the segment network and the single best sequence of phonetic units P’. With these additions, the

probabilistic expression describing the recognition problem becomes:
{w',P', S} = argmax p(W,P,S|V)
W,P,S
By Bayes Rules, we have:

p(V IS W,P)p(S;W, P)
\D)

pW,P,S|V)=

oW, P, S|v) = P ISW, P) p(SI P.W) p(PIW) pW)
o p(V)

And, since p(V) is congtant over al W, P and S the recognizer’s decoding expression can be

written as:
{w',P,S% = agmax p(V [S W, P)p(S|P,W) p(P|W) p(W)

We can see that the argument we want to maximize is the product of four probabilities, which are
p(VISW,P), p(SW,P), p(PIW) and p(W). According to their meaning, these four probabilities
are referred to as “the acoustic model”, “the duration model”, “the pronunciation model” and “the
language model” respectively. Each model will be discussed in the following separate sections
except the duration model. Although the SUMMIT recognition system has the capability to
incorporate a duration model, we will not use one in our work since features related to duration
are dready included in the segment feature vectorsused in V.
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F[ m [ aa [Fr | W Jk|-] [ []

Psh = M= | =arc+ | pauses »

= m aa =k kcl L e e o e i
uspl= m= =ark+ cpaused >
«

Orthography: | zpausel > m= =ark+ =pause?>

Figure 3-1: An example of word recognition results for the name “Mark”.

Note: -r isa special symbol reserved for postvocalic ‘v’
and kcl stands for the closure interval of the ‘k’ consonant
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In addition to p(V|SP,W), we can then add context dependency into our acoustic model by
augmenting the series of landmarks, Z, into the calculation of probability. The series of acoustic
landmarks represents the potential segment boundaries separating the segment elements in V.
Acoustic measurements can be made around these landmarks in both the forward and backward
directions. The acoustic information a these landmarks is caled “diphone” models since it
captures acoustic information of both the phones preceding and succeeding the phone boundaries.
The genera expression for the acoustic model when both segment and diphone models are used is
p(V,Z|SP,W). We assume independence between V and Z. Then p(V,Z|SP,W) is the product of
p(VISP,W) and p(Z|SP,W). To calculate the acoustic model, we estimate the probability density
function to be mixtures of diagonad Gaussians. These models are trained using the standard K-
means and EM agorithms. The number of mixture components in each model is alowed to vary

depending on the size of the measurement vector and the number of available training vectors.

The pronunciation modd is represented with the expression p(P|W), the probability that the given
word W has the phonetic string P. In order to calculate this probability, first, each word in the
vocabulary of the recognizer must be given a phonetic baseform pronunciation as well as its
possible pronunciations. Then, the baseform pronunciations are expanded to cover al the possible
aternatives, which might occur due to general phonologica variations. Some phonologica rules,
which define potential variations, are provided. All of the possible pronunciations for each word
are presented in a phonetic network, in which each arc has its corresponding probability of
traversing that arc. These probabilities are then used to calculate the pronunciation score.

The language mode is represented by p(W), the probability that a word W occurs. Generdly, a
form of language models cdled “N-gram” is used as SUMMIT’s language model, where N is a
number. In an N-gram language model, occurrences of each particular group of N words are
counted and then normalized in order to obtain the probabilities. The most common N-grams
used with the SUMMIT recognizer are bigram and trigram, in which probabilities of the
occurrences of particular sequences of two and three words are cal cul ated.

In this thesis, this language modéd is the part leading to most of the experiments for studying the

framework of our integrated recognizers. The details of how we vary the types of language
models used will be discussed in Chapter 7 and Chapter 8.
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In SUMMIT, the representations of the acoustic model, the pronunciation modd and the language
mode are in the form of a Finite State Transducer (FST), whose structure will be discussed in
Section 3.3. The acoustic model is represented by the FST mapping acoustic features to phonetic
units. The pronunciation model is represented by the FST mapping phonetic units to word
sequences, and the language model is represented by the FST describing the probability of
occurrence of each word sequence.

3.3 Finite State Transducers (FSTS)

Mogt of the components and constraints in a speech recognition system, for example, language
models, phonologica rules and recognition paths, are finite state. Thus, the same representation
should be utilized for consstency and flexibility. In SUMMIT, the Finite State Transducers
(FSTs) are used for the representation of these components. In this section, we will introduce the
Finite State Acceptor (FSA), which is the smpler version of the FST and then move forward to
the FST and the composition operation of the FSTs that we will use as our key operation to
construct the language models used in our experiments.

3.3.1 FSA, FST and weighted FST

A Finite State Acceptor (FSA) is a graph consisting of a finite number of states and transitions
among the states. The graph begins in a particular state and change states when specific
conditions occur. At any point in its operation, the next state can be determined by knowing the
current state and the conditions which can cause the transitions. The graph ends at one or more
fina gtates. In our notation, each circle represents a node in the graph and each arc shows the
transition between two nodes. Attached with each arc is the condition in which the transition
corresponding to that arc occurs. A double circle represents an end node. An example of an FSA

isshown in Figure 3-2.
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A Finite State Transducer (FST) is defined in the same way as an FSA except that, each transition
in an FST is dlowed to have output. Each arc in an FST is labeled by the form “input:output”.
With the conditions and outputs attached to FST arcs, it can be used to relate the input sequences
to the output sequences. Furthermore, a number can aso be attached to each arc in order to
determine the weight of the corresponding transition. An example of a weighted FST is shown in
Figure 3-3. This way of mapping the input sequence to the output sequence is used to represent
various components, including the acoustic model, the pronunciation mode and the language
moddl, in a SUMMIT recognizer. The input sequence of the FST representing the acoustic model
is the sequence of segment-based feature vectors, and the output sequence is the sequence of
phones. For the pronunciation model, the input sequence of the FST is the phone sequence and
the output sequence is the word sequence. Both the input and the output sequences of the FST
representing the language modd are typicaly word sequences, but in our case are morph
sequences. The weights along the path in each FST represent the probability of the occurrence of
the corresponding transitions. As the graph is traversed, the weights along the path passed are
accumulated. The accumulated weight when an end node is reached is the score for the mapping
between the corresponding input and output sequences.

Figure 3-2: An example of an FSA
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Figure 3-3: An example of aweighted FST

3.3.2 Composite FST

In building a series of cascaded FSTs, the composition approach is utilized. The output sequence
of an FST isfed to the input of the next FST. This approach is used to cascade the acoustic model
FST, the pronunciation model FST and the language model FST together in order to obtain the
FST that maps the input segment-based feature vectors to the output word sequence. For example,
if we have the mapping FSTs called FST, and FST, shown in Figure 34(a) and 34(b), the
composite FST (FST, o FST,) will be as in Figure 34(c). This example is adapted from Dr.
Hetherington's example of the FST compostion in his talk given in a discusson group in the
Spoken Language System group. State (a,b) in the composite FST is associated with state a from
FST, and state b from FSTy,. The fina state occurs only if both associated states from FST, and
FST, are find. The trangtion with label x:y occurs only if FST, has x:i and FST, has ity
trangition. “e” means the transition takes no input. The weights are calculated by multiplication of
the weights of the associated transitions. Suppose the input sequence is “A”, the mapping works

as follows:

(FST. 0 FST,)(A)

FST, (FSTA(A))
FST, (ab)
xz with score 0.125 or xyz with score 0.125
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@
b: z/ 0. 25
Yo b: y/ 0. 25 @
ez/1
a: x/ 0.5
(b)
A x/0.5 e: z/0.25

e y/0.25

(©)

Figure 3-4: (a) FST, in the example (b) FST}, in the example (c) (FST, 0 FSTy)

(adapted from Dr. Hetherington’s example given in a discussion group session in the SLS group)
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3.4 Composite language model of our pronunciation recognizers

As suggested in the preceding section, the basic units the pronunciation recognizer used in our
integrated system are morphs instead of words. Thus the mapping becomes the mapping from
segment-based feature vectors to phonetic sequences to morph sequences. And then the language
model specifies the probability of the occurrence of each morph sequence. In different
experiments, we use different language models. One part of the language model is the baseline
FST obtained from the training name lexicon. These FSTs are applied to every pronunciation
utterance. The other parts of the language model are the FSTs derived from the spelling
knowledge, treated in different methods. All of the language model FSTs can be considered the
mapping from input morph sequences to themselves, but with different scores in the different
FSTs. Thus, composing the basdine FST with each FST, obtained from the spelling knowledge,
creates different language model to be experimented with. More details about where each FST
obtained from the spelling knowledge comes from will be shown in Chapters 7 and 8.

3.5 Chapter summary

In this chapter, we discussed the basis of the SUMMIT recognition system, in which various
probabilities are caculated in order to perform the speech recognition task. The input waveform
is represented in the form of a segment network which is walked, and scores are cal culated based
on this network. There are three models or scores, apart from the duration mode that is not
currently used, involved in recognizing the input waveform. They are the acoustic model, which
aso includes context-dependency through the boundary model, the pronunciation model and the
language model. The acoustic modd is the probability of occurrence of the segment-based feature
vectors, derived from the input waveform, given sequences of words, segments and phonetic
units. The pronunciation model is the probability of occurrence of sequences of phonetic units
given specific words. And the language model is the probability of occurrence of each word given
its linguigtic context. Also, the FST representation, which is used to represent the models in the
SUMMIT recognizer, is discussed aong with examples of composition among various FSTs.
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Chapter 4

Data

4.1 Motivation

Since data play a crucia part in our research, we dedicate this chapter to describing the data and
how we prepare and use them. Apart from the data in the form of audio files, we aso made use
of alist d proper names gathered from various places as the source used to obtain statistical

models of letter sequences for names. The separation of the data into sets and the broad
characteristics of each set will also be discussed.

4.2 Type of data needed

The data we used throughout this research can be divided into two main categories. First are the
audio waveforms. These data required somebody to say or spell the names while being recorded.
These audio files are then categorized into two groups according to their contents. The audio files
whose contents contain spelled proper names are called “name-spelling utterances’. In the other
group, the contents of the audio files contain pronunciations of proper names. These audio files
are called “pronouncing utterances’ .

The other type of data needed is alot simpler but as important. These data are the list of proper
names that provide us with examples of letter patterns in proper names. These data are collected
in the form of plain text. We would like to collect as many proper names as possible in order for
them to represent the universe of the spelling of proper names. We should note that, by using the
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word proper names, we realy are interested in peopl€' s names, as opposed to, for example, place

names.

4.3 Data Sources

The sources of data can be divided according to the type of data, i.e. name lists and audio files.

4.3.1 Name ligts

This type of data was easier to collect and required less work to prepare since they are in plain
text form. We gathered the names from various sources, especialy from the World Wide Web.
Such websites where we gathered names were, for example, websites providing telephone
directories, websites dedicated to baby naming and websites containing census information.
Another portion of our name list came from publications containing people’s names, such as,
names of US senators and names of MIT’s personnel. Apart from those sources mentioned, we
also obtained some names from transcribing the audio files. The sources of these audio files will
be discussed in the next section.

The total number of names gathered was 104,356 names. The spellings of the names in this name
list were used to train the language model for the “genera” letter recognizer, to be discussed in
Chapter 6.

4.3.2 Audio files

Throughout the period of this research, we obtained the audio files we need from two sources.
The firgt source is the OGI corpus [12], [13], which is the spelled and spoken word telephone
corpus created by the Oregon Graduate Ingtitute (OGI). This corpus consists of speech
recordings from over 3650 telephone calls, each made by a different speaker, to an automated
prompting/recording system. Speakers were asked to say their name, where they were calling
from, and where they grew up. Also, they were asked to spell their first and last names. However,



the data we used were the waveform files whose contents contained the saying and the spelling of
the first and last names only. Each response to a prompt was stored as a separate waveform file,
tp make it easier to use the data in our experiments. Also the text transcription of each utterance
was aready provided.

The other source of audio files is the Jupiter [11] system built by the Spoken Language Systems
group, Laboratory for Computer Science at Massachusetts Ingtitute of Technology. The Jupiter
system is the system where people can call via a toll-free number and ask about the weather
forecast and some other weather related questions. Our data were collected over a period of
severa months n 1999. Each caler was asked to say and spell a name of a person he or she
knew, at the very beginning of their dialogue. The response to this prompt was recorded as one
waveform file. Thus, in order to use the audio files recorded from the Jupiter system, the files
needed to be properly cut into pieces. Each piece contained either the spelling or the pronouncing
information only.

Though both sources provide telephone-quality audio files, we prefer to have more of the data
from the Jupiter domain since these data better represent the real data in the system we are going
to deal with in the future at the Spoken Language System group. However, due to time constraints
and the amount of data we need, we found it necessary to fully utilize the OGI corpus together

with the data form the Jupiter system.

4.4 Jupiter data preparation

Since the naturalness of the speech is concerned, we have asked each caller to say and spell a
person’s name in one turn and we did not restrict how the callers formulate their expressions.
Thus, we cannot expect consistent structure for each utterance. Also, the quality of utterances
varied from cdl to call due to the fact that the calls were made through the phone line. Due to
these variations, collecting the audio data to be used in the research was selective, and the
extraction of the name-spelling utterances and the pronunciation utterances from the original
waveforms was done manually, with the help of aforced recognition technique.
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Some examples of the utterances from which we can extract the name-spelling utterances and/or
the pronounced utterance are in the following forms.

“Bob” ‘bo by

‘brittany’ “Brittany”

The name of someone | know is“Michelle’
“Jm” “Glass’ ‘jim “Jm” ‘gl ass “Glass’
Uh“May” ‘mary’

‘fason’ jas [ incomplete]

“John” j o[ incomplete ]

[ incomplete] —ohn‘john’

[ incomplete] usan “Susan”

“ Stephen”

joe

Double quotes indicate that the word enclosed by them can then be extracted as the usable
pronounced utterance and single quotes indicate that the word enclosed can be the name-spelling
utterance.

There are some utterances that we discard since they contain no usable information. The types of
utterances we did not use are, for example, the utterances in which both saying and spelling of the
names are incomplete, the utterances which are too noisy or unintelligible, and the utterances that

contain neither the saying nor the spelling of proper names.

The first step in preparing the audio files was to transcribe al of the utterances collected. Then
we listed al the vocabularies used aong with their pronunciation. All of the utterances were
forced recognized in order to create the time-aligned phonetic path for each utterance. By looking
a the time-aligned phonetic paths, we could then tell the location of the desired part of the
waveform with respect to time. Consequently, we extracted the waveform in the time interval we

want and suitably stored it as the name-spelling utterance or the pronounced utterance.
Apart from the preparation of the audio files, we aso need a name lexicon which provides a

pronunciation in the form of morphs in both Type | and Type Il formats. The names were given

the pronunciation by manually decomposing each name. During the process of building the name
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lexicon, the morph lexicon in which the pronunciation of each morph was defined was created
from the list of morphs used in the name lexicon.

4.5 The training set and the test set

We divided our data into two sets, namely, atraining set and atest set. The datain the training set
were used in various tasks throughout the research. The tasks we used the training set for were as

follows:

- The namesin the training set were studied in order to define the inventories of morphs for
both Type I and Type Il. In other words, both morphs Type | and Type Il were defined to
cover all the namesin the training set.

- The spdlings of the names in the training set were used to build the bigram and trigram
language models for the “training-set oriented” |etter recognizer, to be discussed in Chapter 6.

- The morph decompositions of the names in the training set were used to train the probabilities
of TINA’s grammars for both Type | and Type .

- The morph decompositions of the names in the training set were used to build the bigram and
trigram language models for the baseline morph recognizer

- Inthe experiments, to be discussed in Chapter 7 and Chapter 8, we adjusted the parameters of
the integrated system to optimize the performance of each case based on the training st.

The data in the test set were used for testing the performances of the pronunciation and letter
recognizers. Also they were used to test various frameworks of the integrated system defined in
Chapter 7 and Chapter 8.

Some of the names in the training set came from the OGI corpus and the others come from the
data collected earlier in the Jupiter system. The names in the test set came form the data collected
from the Jupiter system &fter the training set was defined. The details about the two sets are
shown in Tables 4-1 and 4-2.
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The training set

Sources OGI corpus/ Jupiter system
Number of pronounced utterances oGl 1299
Jupiter 3126
Number of name-spelling utterances oGl 1169
Jupiter 3572
Number of unique names oGl 574
Jupiter 1887
Total number of pronounced utterances 4425
Tota number of name-spelling utterances 4741
Total number of utterances 9266
Total number of unigue names 2248

Table 4-1: Details of the training set

The test set

Sources Jupiter system

Number of pronounced utterances 1383

Number of name-spelling utterances || 1275

Number of unique names 475

Total number of utterances 2658

Table 4-2: Details of the test set

58




We provided the name lexicon and morph lexicon of both types for each of the sets. There were
1266 Type | morphs and 1087 Type Il morphs used in the name lexicon of the training set and
451 Type | morphs and 412 Type Il morphs used in the name lexicon of the test set. The sizes of
the overlap were 390 morphs for Type | and 377 for Type Il. Note that, in building the morph
recognizer and defining TINA'’s rules, only the morphs appearing in the training set were used.
And, since 91.5% of Type Il morphs used in the test set are dso used in the training set, while it
is 86.4% for Type | morphs, Type Il morphs should have better generdizing properties than Type
I morphs. Among the 475 names in the name lexicon of the test set, there are 275 names that are
also present in the training set.

Figures 41 and 42 below illugtrate the sizes of the various name and morph lexicons aong with
their overlaps.

Sy X
gy esT

Figure 4-1: Sizes of the name lexicons of the training set and the test set
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(b)

Figure 4-2: Sizes of the morph lexicons of the training set and the test set

(a) using morph representation Type |
(b) using morph representation Type I
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4.6 Chapter summary

There were two types of data used throughout this research. They were lists of names and audio
files containing either pronunciations or spellings of proper names. The list of names used was
gathered from various sources including transcription of the audio files. Some audio files were
obtained by recording the utterances from phone calls to the Jupiter weather information system.
Other audio files were taken from the OGI corpus, which contained telephone-quality utterances
of people spelling or saying names. Data were grouped into two sets, the training set and the test
set. The details of each set as well as their corresponding morphs, both Type | and Type Il, as
well as their sizes and overlapped portions were discussed in the chapter.
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Chapter 5

The Integration of Components

5.1 Motivation

In Chapter 2, we talked about TINA, which is the natural language component used to propose
pronunciations from the given letter sequences. In this chapter we will describe how we
combined TINA and other components together in order to perform the letter and pronunciation
task we desired. The other two components apart from TINA are the two recognizers performing
two different tasks, which are (1) recognizing the letter sequences from the name-spdling
utterances, and (2) recognizing the morph sequences from the pronounced utterances. How the
functions of the two recognizers are related in the system with the assistance of TINA will be
discussed. The details in building the two recognizers will be discussed later in Chapters 6 and 7.

5.2 Overview

The god of our system is to gather the information contained in both the name-spelling utterances
and the pronounced utterances and use the information from the two sources together to propose
the recognition result of both types of utterances. The hope is that the recognition results of this
integrated system will provide better accuracy in terms of both the letter recognition accuracy and
the phone recognition accuracy than running the spelling recognition task and the pgronunciation
recognition task individualy.

In order to accomplish this, we need at least three basic functions in this system. First, we need a
component that is able to dea with the name-spelling utterances and propose the possible letter
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sequences for those utterances. Next, we need a component that is able to recognize the input
pronounced utterances. The morph sequences corresponding to the input pronunciation utterances
are expected from this component. Finaly, we need a way for the two components to share
information where appropriate. And the morph unit is chosen as a means for the two recognizers
to share information.

Clearly, the first two components are the letter recognizer and the morph recognizer. Our
expectation is that the letter recognition task should be easier and yield more accurate recognition
results than the morph recognition task. Therefore, we designed the system so that the preliminary
letter recognition task does not use any information contained in the pronounced utterances but
pays attention to the name-spelling utterance aone. Then, the morph recognition task exploits the
information in the proposed letter sequences from the letter recognizer along with the information
in the input pronounced utterances. Thus, we need a component that alows parsng from the
letter sequences into the form that the morph recognizer can use. Thisis where TINA comes into
play. TINA, operating at a sub-word level, is responsible for turning the input letter sequences
into the appropriate morph sequences for each name. These morph sequences are used as

additional congtraints for the morph recognition task.

The proposed morph sequences, derived from the name-spelling utterances via the letter
recognizer and TINA, are the recognition results of the integrated system. From these proposed
morph sequences, we can determine the pronunciation and the spelling recognition performance
of the system, due to the fact that both the pronunciation and the spelling information are encoded
in each morph aready.

5.3 Detalls of integration

A block diagram of the interconnection between the components in our system is shown in Figure
5-1 below.



letter

n-best
_ list
name-spelling __ | letter TI NA
utterance recogni zer
morph
FST
additional constraint
[
pronounced | nor ph proposed name
utterance recogni zer

Figure 5-1: The integration of the components

At the output of the letter recognizer, the 10-best list of the proposed letter sequences is
presented. This list contains the ten letter sequences with the highest total score from the letter
recognizer. The letter sequences were listed in a certain format, in which the 10-best list letter
sequences corresponding to each name-spelling utterance is grouped together. Some examples of
letter sequences sent to TINA are shown in Figure 5-2.

TINA has a mechanism to construct an interconnected graph from an nbest list, which provides
an expanded solution space due to cross-pollination, as mentioned earlier in Chapter 2. We felt
that this mechanism might permit the recovery of a correct letter sequence that was absent from
the origind list. For example, if we look at the last 10-best list in Figure 5-2, we can see that if we
do the cross-pollination between the letter sequences in the third choice and the ninth choice, we
can recover the letter sequence “ c h.ad”, which is the correct letter sequence. TINA needs a
trained grammar in order to be able to parse the graphs of the letter sequences into the possible
morph decompostions. TINA was trained on the name lexicon of the training set in the
experiment conducted with the morph representation Type | in Chapter 8, while, in the
experiment conducted with the morph representation Type Il in Chapter 9, TINA was trained on
the same set of names but with different (Type Il based) transcribed morph representations.
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Figure 5-2: Examples of the 10-best output |etter sequences

for the inputs “abdullah”, “abu”, “adam” and “chad”
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TINA presented the proposed morph sequences with their corresponding scores in the farm of
Finite State Transducers (FSTs). An example of such a network is shown in Figures 53 and 5-4.
The concatenation of the morph specified along each path between the start node and the end
node is one of the morph decomposition hypotheses according to the input letter sequences in the
n-best file. The number shown aong with the morphs is the score aong that arc. TINA was set,
as a default in this thesis, to propose up to ten morph decomposition hypotheses for each name-
spelling utterance. In genera, TINA would create the FSTs with ten paths between the start node
and the end node. However, if TINA could not come up with ten hypotheses for a given search
depth, it was perfectly legal for the FSTsto have fewer than ten paths.

On the pronunciation front, the language mode of the morph recognizer was pre-trained with the
name lexicon of the training set. This trained language modd was then converted into the FST
form and combined with the FST of the morph representation from TINA in order to recognize
the pronounced utterance whose content was the same proper name as the one spelled in the
name-spelling utterance. So, for each pronounced utterance, the language model of the morph
recognizer was the combination of the baseline FST, common to dl of the names, and the FST
from the corresponding name-spelling utterance.

The FSTs created from TINA were associated with adjustable weights to optimally compose the
two independent language models. In the composing process, the score on each arc is computed
by multiplying the scores on the corresponding pardld paths and summing up the scores on the
corresponding serid paths. The paths that do not have corresponding paths in the other FST are
pruned away in the resulting FST.

With the language model being dynamically updated according to the names contained in the
content of the pronounced utterances, the morph recognizer then proposed the recognized morph
sequences from the information on both the name-spelling utterances and the pronounced
utterances. The morph sequences proposed at the last state can be converted to phone sequences
by looking up the morph pronunciations in the morph lexicon. Also, the letter sequences can be
obtained from the morph sequences by discarding al of the markers tagged with the morphs.
Then we can compare the pronunciations and the spellings of the proper names with the baseline

systems running separately.
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Figure 5-3: An example of the FSTs of the morph sequences from TINA, for the spelled word
“Lisa’
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Figure 5-4: Another example of the FSTs of the morph sequences from TINA, for the spelled
word “Bob”
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5.4 Chapter summary

In this chapter, we talked about how the three components, the letter recognizer, the morph
recognizer and TINA, share information and provide assistance to the common goal. The letter
recognition process, considered to be the task given the more reliable result, was operated on the
name-spelling utterances without the help of the other components. From the 10-best letter
sequences, TINA proposed the possible morph representations in the form of a Finite State
Transducer (FST). The FST of the morph sequences was composed with the baseline language
model, common to al of the utterances, of the morph recognizer in order to recognize the
corresponding pronounced utterances. The morph recognizer then proposed the possible morph
recognition results of the pronounced utterances with the assistance of the spelling knowledge
conveyed through the letter recognizer and TINA. Both the pronunciation and the spelling
information have already been encoded in the morph notations. Thus, from the proposed morph
sequences of the morph recognizer, we could examine the pronunciation and the spelling
recognition results.
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Chapter 6

The recognizers

6.1 Motivation

In the last chapter, we described the interconnection of the components required in the framework
designed to use both the spelling and pronunciation knowledge in recognizing proper names. The
natural language component, which is used to propose the possible pronunciations from the letter
sequences, and the morph notations used in the system are described in Chapter 2. In this chapter
we will focus on the letter recognizers and the morph recognizers used in the integrated system
mentioned in Chapter 5. The first letter recognizer to be mentioned is the letter recognizer whose
language models were trained on a large name list. The other letter recognizer is the letter
recognizer whose language models were trained on the letter sequences in the training set defined
in Chapter 4. There are aso two morph recognizers involved in this thesis. The first one uses the
morph inventory of Type | while the other uses the morph inventory of Type II. The recognition
accuracies of both the letter recognizers and the morph recognizers are reported in this chapter.

6.2 The “generd” |etter recognizer

6.2.1 Generad information

The general letter recognizer was built from MIT's SUMMIT recognition system mentioned in
Chapter 3. The purpose of this letter recognizer was to perform the spelling recognition task on
the name-spelling utterances. The proposed letter sequences were expected from the recognizer

71



when operating on the name-spdling utterances. The letter recognition accuracy of this letter
recognizer would then be used to benchmark the integrated system in which this recognizer was
also used to provide the letter sequences to TINA. The ten hypotheses of the letter sequences
which had the highest recognition scores were listed. The hypothesis with the best scores was at
the top while the others were listed below, ranked according to their recognition scores.

Since the basic units of the letter recognizer are the English alphabet, specificaly lower-case ato
z, the entire vocabulary required to perform this letter recognition task is just these 26 words. For
this thesis, in order to smplify the problem, we concentrated on just recognizing these letters, and
thus we set aside any utterances containing other artifacts, such as specia symbols like “hyphen”,
the word “capita”, the word “double’ and other fill words like “um”.

The language models of the “general” letter recognizer were ngram language models, where n
equal to 2 and 3 were used. These |etter bigrams and trigrams were trained on the letter sequences
gppearing in the large name list mentioned in Section 4.3.1. Although, to come up with the 10-
best letter sequences as the recognition results of the letter recognizer, the trigram language
model was used, we aso did the recognition using the bigram language model, which was
normaly used when only the one-best hypothesis was concerned. The recognition accuracies in
the bigram case will be used as another baseline performance to be compared with the
performance of the integrated system.

The system used pre-existing acoustic models trained from a collection of utterances obtained
from the Jupiter and Pegasus domains. One could expect that these models would be suboptimal
for this letter recognition task, since the models were not trained on the pronunciation of |etters
directly. However, as long as our research’s major interest was in providing a framework for the
whole system and these same models are used for benchmark systems as well, these acoustic
models should be acceptable.

6.2.2 Performance

The results of letter recognition on the training set and the test set are shown in Table 6-1 below.
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The “genera” |etter recognizer

L anguage model: bigram

set L etter sentence Letter
recognition accuracy (%) recognition accuracy (%)

training set 33.6 76.1

test set 34.7 735

L anguage model: trigram

training set 48.1 814

test set 49.7 79.2

Table 6-1: The performance of the “genera” letter recognizer

6.3 The “training-set oriented” |etter recognizer

6.3.1 Generd information

The “training-set oriented” letter recognizer was built in the same fashion as the “genera” letter

recognizer except for the difference in training the language models. The language models used

in both letter recognizers are the letter bigram and the letter trigram. However, the language

models of the two letter recognizers were trained on different sets of letter sequences. As

mentioned earlier, the language models of the “genera” letter recognizer were trained on the
letter sequences of dl of the names we had, of which the size is 104,356 names. On the other
hand, the language models of the “training-set oriented” letter recognizer were specifically

trained on the letter sequences of the names contained in the training set. Thus, this letter

recognizer was biased to the data in the training set more than the “genera” |etter recognizer.
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Other factors related to building the “training-set oriented” letter recognizer, such as the
vocabularies and the acoustic models, were the same as the ones used in building the “genera”

letter recognizer.

6.3.2 Parformance

The results of letter recognition on the training set and the test set are shown in Table 6-2 below.

The “training-set oriented” |etter recognizer

L anguage model: bigram

Set L etter sentence L etter
recognition accuracy recognition accuracy

training set 39.9 79.4

test set 304 69.6

L anguage model: trigram

training set 54.1 84.2

test set 41.4 74.0

Table 6-2: The performance of the “training-set oriented” |etter recognizer

6.4 Letter recognition result analysis and comparison

If we compare the |etter recognition results of the two letter recognizersin Tables 6-1 and 6-2, we
can see that both the sentence recognition accuracy and the letter recognition accuracy of the
“generd” letter recognizer operating on the training set are lower than the ones of the “training-
set oriented” letter recognizer. In the bigram case, the letter recognition error rate is 23.9% for
the “genera” letter recognizer, while it is 20.6% for the “training-set oriented” letter recognizer.
In the trigram case, the letter recognition error rate is 18.6% for the “genera” letter recognizer,
while it is 15.8% for the “training-set oriented” letter recognizer. We can see that, by training the

language models directly on the training set, the error rates for the training set recognition are
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reduced by 13.8% and 15.1% in the bigram and trigram cases respectively. This result turned out
as we expected since the language models of the “genera” letter recognizer trained on the much
larger set of letter sequences, were more generalized. However, being very specific to the names
in the training set has a drawback on the recognition accuracies of names that are not in the
training set. In the bigram case, the letter recognition error rate on the test set recognition is
26.5% for the “genera” letter recognizer, while it is 30.4% for the “training-set oriented” letter
recognizer. In the trigram case, the letter recognition error rate is 20.8% for the “genera” letter
recognizer, while it is 26.0% for the “training-set oriented” letter recognizer. We can see that
being more generalized improves the test set recognition error rates by 12.8% and 20.0% in
bigram and trigram cases respectively.

In the experiments conducted in this thesis, we took advantage of the different letter recognition
accuracies of the two letter recognizers in studying how the performance of the letter recognizer
affects the integrated system.

6.5 The morph recognizer using the morph representation Type |

6.5.1 Generd information

The morph recognizer was aso built from MIT's SUMMIT recognition system, as for the letter
recognizer. The function of the morph recognizer was to propose the possible morph
representations of the input pronounced utterances. From these proposed morph sequences, the
phone sequences can be obtained through morph-to-phone mapping. The morph recognition
accuracy and the mapped phone accuracy would be used as the baseline accuracy to be compared
with the morph recognition accuracy and the phone recognition accuracy obtained from the
integrated system in which this morph recognizer was used. The 10-best lists of the morph

sequences were expected from the morph recognizer.
The basic units of this morph recognizer were the 1266 morphs defined from the names in the

training data using Type | notation. Note that the morphs used to represent the names in the test
st were not restricted to be the morphs appearing in the training set. At the time of the
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recognition of the test set, we were interested to see how well this inventory of the training set
morphs could generalize to represent the names that never occurred in the training set. The
language models of this morph recognizer were the morph bigram and the morph trigram trained
on the name lexicon of the training set, where the morph representation Type | was used. Asin
the letter recognizers, to come up with the 10-best letter sequences as the recognition results of
the letter recognizer, the trigram language model was used. However, we aso did the recognition

using the morph bigram language modd.

The system used the same pre-existing acoustic models trained from a collection of utterances
collected from the Jupiter and Pegasus domains as in the letter recognizers. Again, these models
would not be the optima acoustic models for the morph recognizers since we did not train them
according to the pronunciation of the proper names.

6.5.2 Parformance

The results of morph recognition on the training set and the test set are shown in Tables 6-3 and
6-4 below.

The morph recognizer using the morph representation Type |

L anguage model: bigram

Set Morph sentence Morph
recognition accuracy recognition accuracy

training set 27.2 41.3

test set 22.4 36.0

L anguage model: trigram

training set 37.3 479

test set 29.2 40.0

Table 6-3: The morph recognition accuracy of the morph recognizer

using morph representation Type |
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The morph recognizer using the morph representation Type |

L anguage model: bigram

Set Phone sentence Phone
recognition accuracy recognition accuracy

training set 335 511

test set 310 479

L anguage model: trigram

training set 42.4 56.2

test set 35.9 50.8

Table 6-4: The phone recognition accuracy of the morph recognizer

using morph representation Type |

From the proposed morph sequences, we were aso interested to see how our morphs worked in

the letter-to-sound aspect. Thus we mapped the morph sequences proposed from the morph

recognizer into the letter sequences and calculated the performance. The letter accuracy of the

mapped letter sequencesis shown in Table 6-5 below.

The morph recognizer using the morph representation Type |

L anguage model: bigram

Set L etter sentence L etter
recognition accuracy recognition accuracy

training set 27.7 57.9

test set 22.8 50.4

L anguage model: trigram

training set 37.6 62.2

test set 294 52.8

Table 6-5: The letter recognition accuracy of the morph recognizer

This can be viewed as a sound-to-|etter task.

using morph representation Type |
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6.6 The morph recognizer using the morph representation Type Il

6.6.1 Generd information

This morph recognizer was created in the same fashion as when the morph representation Type |
was utilized. But the vocabulary used contained the 1087 morphs appearing in a different name
lexicon of the training set from the one used in Section 6.4. This name lexicon provided the

morph representations of al of the names in the training set according to the Type Il notation.

The morph bigram and the morph trigram language models were trained as well on this Type |1

name lexicon of the training set.

6.6.2 Parformance

The results of morph recognition on the training set and the test set are shown in Tables 6-6 and

6-7 below.

The morph recognizer using the morph representation Type I

L anguage model: bigram

Set Morph sentence Morph
recognition accuracy recognition accuracy

training set 26.9 415

test set 24.8 38.6

L anguage model: trigram

training set 36.3 485

test set 29.6 433

Table 6-6: The morph recognition accuracy of the morph recognizer

using morph representation Type Il
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The morph recognizer using the morph representation Type I

L anguage model: bigram

Set Phone sentence Phone
recognition accuracy recognition accuracy

training set 317 60.8

test set 33.0 574

L anguage model: trigram

training set 414 64.9

test set 38.8 60.5

Table 6-7: The phone recognition accuracy of the morph recognizer

Also the letter accuracy of the mapped letter sequences is cal culated.

using morph representation Type 11

The morph recognizer using the morph representation Type I

L anguage model: bigram

Set L etter sentence L etter
recognition accuracy recognition accuracy

training set 27.3 574

test set 24.9 51.3

L anguage model: trigram

training set 36.5 62.0

test set 29.8 54.2

Table 6-8: The letter recognition accuracy of the morph recognizer

using morph representation Type |1
This can be viewed as a sound-to-letter task.
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6.7 Morph recognition results analysis and comparison

Before discussing the performances of the two morph recognizers, we should note some issues
about the differences between them. The two morph recognizers were built by the same
procedures. The differences between them were the inventories of morphs used as basic units and
the name lexicon used to train their language models. The first recognizer was built using morphs
of Type I. Each Type | morph hes a unique pronunciation. Thus, in the calculation of phone
recognition accuracies, we can utilize a one-to-one mapping from each morph in the proposed
morph sequence to its corresponding phone sequence. However, each Type Il morph, which was
used in the other morph recognizer, was allowed to have more than one possible pronunciations.
Thus, we could not gpply one-to-one mapping in this case. To caculate the phone recognition
accuracy in this case, we defined what it means to be a correct “phone”’. Each phone was said to
be a correct phone when that phone was in the set of alowed phones for the corresponding
morph. For example, if the reference morph was “=at”, which was alowed to be pronounced
either “ey” or “ad’, and whichever phones between “ey” and“aa’ was present, it wassaidto bea
correct phone. Because of this notation of correct “phones’ in Type Il morphs, the morph
recognizer with Type Il basic units had some advantages in phone recognition accuracies
compared to the other morph recognizer. Stll, this definition of a correct phone should be
acceptable, since, as we have discussed in Chapter 2, this multiple pronunciation case can aso
happen in actua English words (e.g. “either”). Another factor that might contribute to the
performance of the two morph recognizers, apart from the morphs themselves, was the
consistency of the transcribed morph representation for each name in the lexicons used to train

their language moddls. However, it was hard to compare the qualities of the transcriptions.

The comparisons between various accuracies of the two morph recognizers are summarized in
Table 6-9 below.
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language set recognition error (%) reductionin
modeds Typel Typell error rate (%)

morph | bigram training set 58.7 58.5 0.34
test set 64.0 61.4 4.06
trigram training set 52.1 515 194
test set 60.0 56.7 5.50
phone | bigram training set 48.9 39.2 19.83
test set 52.1 42.6 18.23
trigram | training set 43.8 35.1 19.86
test set 49.2 39.5 19.71
letter | bigram training set 42.1 42.6 -1.19
test set 49.6 48.7 181
trigram | training set 37.8 38.0 -0.53
test set 47.2 45.8 297

Table 6-9: Comparisons between various accuracies of morph recognizers using morph
representation Type | and Type |l

% reduction in error rate = (recognition error in Type | — recognition error in Type Il) / recognition error in Type |

From the comparisons in Table 6-9, we can see that, for morph and phone recognition accuracies,
Type Il morphs yielded better accuracies than Type | morphs. Using Type Il morphs reduced
morph error rates more in the test set than in the training set. This might be because of the size of
the overlap between morphs present in the training set and in the test set. For Type |1, the overlap
sze was 91.5%, while it was 86.5% for Type |. The bigger, the size of the overlapping morphs,
the better the chance that the morph recognizer can provide correct answers. The phone
recognition accuracies improved more than the morph recognition accuracies because of our
definition of a correct phone, as mentioned earlier. However, from the letter recognition

accuracies point of view, it was not consistent whether Type | or Type Il morphs would provide

81



better letter recognition accuracies. As we can see from the comparisons, the |etter recognition
accuracies of the training set dropped a little when switching to Type Il morphs, while it acted in
the opposite way with the test set. Still, in terms of how Type Il morphs affected each set of data,
the letter recognition accuracies tended to perform the same way as the morph recognition
accuracies, i.e. they worked better on the test set than on the training set.

6.8 Chapter summary

There were two types of recognizers involved in this thesis. They were the letter recognizers and
the morph recognizers. The letter recognizers were used to handle the spelling input and propose
the 10-best lists of the letter sequences, to be passed to TINA. Two letter recognizers were used
in the experiments. Both ktter recognizers were created with the same acoustic models, which
were obtained from the Jupiter and Pegasus domains. Although, both recognizers utilized the
letter bigram and the letter trigram language models, these language models were trained on
different sets of proper names. The first letter recognizer’s language models were trained on a
more general and bigger set of proper names. The other letter recognizer’ s language models were
trained on only the proper names appearing in the training set. Thus, the latter was more custom-
made to the data in the training set. The morph recognizers were used to propose the morph
sequences from the pronunciations of the proper names. There were two morph recognizers used
in this thesis. Both of them were created with the same procedure, but with different basic units.
Type | morphs were used as the basic units of one morph recognizer while the other used Type Il
morphs as its units, as discussed in Chapter 2. The performances of the four recognizers in term
of the morph recognition accuracy, the phone recognition accuracy and the letter recognition
accuracy, whichever applied, were reported and discussed in the chapter.
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Chapter 7

Experiments using the morph representation Type |

7.1 Motivation

In earlier chapters, we described how we build various components, including the letter
recognizer, the morph recognizer and TINA, the natural language component, and combine them
together to form the system where we expect that information in the spelling and pronunciation
will help each other. In this chapter we will describe the experiments conducted on the overal
system using the morph representation Type |, in which each morph has a unique pronunciation
and case sengitivity is utilized. The goal and the procedures are described in the next two sections,
and then the results will be presented and analyzed.

7.2 Gods

There are four main objectives in the experiments in this chapter.

1) To see whether and how much the spelling information helps the morph/phone recognition
accuracy compared to the recognition accuracy when the morph recognizer is running alone.

2) To see whether and how much the pronunciation information helps the letter recognition
accuracy compared to the recognition accuracy when the |etter recognizer is running alone.

3) To determine a practica way to utilize the spelling information as an additiona congtraint to
the morph recognizer.

4) To see how crucia the letter recognition accuracy of the letter recognizer is to the overal
performance of the whole system.
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In order to fulfill these objectives, there are three main performance computations involved. They

are:

- morph recognition accuracy : the percentage of the correctly recognized morphs compared to
al of the morphs proposed.

- phone recognition accuracy : the percentage of the correctly recognized phones compared to
al of the phones proposed.

- letter recognition accuracy :the percentage of the correctly recognized letters compared to al
of the letters proposed.

7.3 Procedure

7.3.1 Overview

All of the experiments conducted are based on the integrated system discussed in Chapter 5.
Basicaly, a one end of the system, the name-spelling utterances are fed through the letter
recognizer. The letter recognizer proposes a 10-best list of letter sequences, the ten letter
sequences most preferred by the letter recognizer. These letter sequences are used as the input to
TINA, which is used to probabilistically propose the morph sequence that is best matched to the
input letter sequences. The morph inventories and TINA’s grammars used in this chapter are
Type |. The ways TINA utilizes these letter sequences are different among the different
experiments. In the experiments in Section 7.3.3, TINA uses dl the information in the ten letter
seguences to come up with the corresponding sequences of morphs according to TINA’s trained
grammars. In the experiment in Section 7.3.4, TINA uses only the spdlling information from the
letter sequence with the best score. The purpose of using these two different ways to obtain letter
information is that we would like to see whether the additiona nine letter sequences with lower
scores help or degrade the spelling knowledge.

In this system, the number of morph sequences proposed by TINA is ten. And these morph
sequences are presented in the form of a finite state transducer (FST). Being in the FST form,
these morph sequences can be combined with the language modd of the baseline morph
recognizer. The language modd of the baseline recognizer is dso in the form of a finite state
transducer, kut is created from the lexicon of the training data. This combined FST is then used as
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the language mode for the morph recognizer to recognize the pronunciation utterance
corresponding to the name-spelling utterance from which TINA’s FST is created. So, for each
utterance, the language model is the combination of the common FST from the lexicon of the
training data and the FST specific to the name spelled in the name-spelling utterance.

From the output of the morph recognizer in the integrated system, the morph recognition
accuracy is reported. By mapping each morph to its corresponding pronunciation in term of
phones, we then have sequences of phones and are able to calculate the phone recognition
accuracy. As mentioned in an earlier chapter, the letter nformation is aready encoded in the
morphs, so we can extract the letters from the resulting morph sequences. More specificaly, we
can discard al of the markers, including “=", “+”, and “-”, and convert al the upper case letters
into lower-case to obtain the letter sequences. Consequently, we can aso calculate the letter

recognition accuracy.

In the experiment in Section 7.3.2, instead of feeding the 10-best list of the proposed letter
sequences from the letter recognizer into TINA, we use the correct | etter sequence for each name.
This lets TINA choose to propose morph decompositions for each name uncorrupted by the |etter
recognition errors from the letter recognizer. This scenario emulates the situation where we have
an ideal letter recognizer, which always has perfect letter recognition accuracy. This experiment
partly fulfills the fourth objective in Section 7.2.

Apart from emulating the ideal letter recognizer scenario, in the experiments in Section 7.3.3 and
Section 7.3.4, we conduct the experiments with the two letter recognizers described in Chapter 6.
The two recognizers have different performances. The first one yields inferior |etter recognition
accuracy on the training set but superior accuracy on the test set. We conduct the experiments
with two letter recognizers in order to see how the letter recognition accuracy influences the

overal performance of the integrated system.

In each experiment for the morph recognizer, we tried to conduct experiments with different
language models but using the same acoustic models in every experiment. Due to the differences
in the qualities of different language models, we had to decide how much weight to give to the
acoudtic and language modéd in each case. The method we have used is to vary the weight of the

acoustic model compared to the language model, and to choose the weight that maximizes the
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performance of the whole system for each case. Our criterion is that the system with the best
phone recognition accuracy has the best performance.

The details of each experiment are elaborated in the following sections.

7.3.2 Providing the correct spelling knowledge

In this experiment, we set aside the usage of the letter recognizer but provided the correct |etter
sequence for each name-spelling utterance. The procedureisillustrated in Figure 7-1 below.

correct
letter sequences TINA

FST

pronounced _ recognized
utterance | morphrecognizer " morphs

map map
to phones to letters
phone letter
sequences sequences

Figure 7-1: Block diagram of the experiment in which the correct letter sequences are provided

The details are as follows:
1) Prepare the list of names in the training set and feed thislist of correct answersto TINA. For

each name, TINA proposes ten possible morph decompositions. The finite state transducer
for each name's proposed morph decompositions is created and stored in order to be

86



2)

3

4)

combined with the finite state transducer of the basdline language mode of the morph
recognizer.

For each pronunciation utterance, combine the finite state transducer of the baseline language
model of the morph recognizer with the finite state transducer of the corresponding morph
sequences proposed by TINA in step (1). Perform the morph recognition task using the
combined language modd.

Calculate the morph recognition accuracy form the results of the morph recognizer. Map each
proposed morph to its phone representation and calculate the phone recognition accuracy.
Findly, caculate the letter recognition accuracy of the whole system by converting the
proposed morph sequences to the sequences of |etters.

Repeat steps (1) to (3) with the test set.

The results of the experiments in this section are shown in Table 79 and Table 710 in Section

7.4.

In the experiments in Section 7.3.3 and Section 7.3.4, we extracted the spelling knowledge by

usng the letter recognizer, but with a different method for constructing the morph

decompositions. In both sections, we used the two recognizers introduced in Chapter 6, as

mentioned above. For ease of referring to each letter recognizer, we will cal the letter recognizer

in Section 6.2 the “general” letter recognizer. And we will call the other one, in Section 6.3, the

“training-set oriented” letter recognizer.
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7.3.3 Utilizing the spelling information from the proposed n-best list from

the letter recognizer

The procedure of the experiments in this section isillustrated in Figure 7-2 below.

name-spelling
utterance
"general" "training-set
letter oriented" letter
recogni zer recognizer
10-best
|etter sequences TINA
FST
pronounced o -
utterance morph recognizer [~

nap
to phones

phone

sequences

recognized
morphs

map
to letters

| etter
sequences

Figure 7-2: Block diagram of the experiment in which the combined FSTs built from the

proposed 10-best letter sequences form the | etter recognizer
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The details are as follows:

1)

2

3

4)

6)

7)

For each pronunciation utterance in the training set, randomly pick a name-spelling utterance
of the same name in the pronounced one.

Use one of the letter recognizers to recognize the selected name-spelling utterance. The
results of the letter recognition in this step are the 10-best list of the proposed letter
sequences.

Use TINA to create the finite state representation of this name's morph representation based
on the 10-best list of the letter sequences proposed in step (2).

Combine the finite state transducer of the morph sequences from TINA with the finite state
transducer of the basdline language mode of the morph recognizer and use this combined
finite state transducer as the language model for recognizing the corresponding pronunciation
utterance.

Cdculate the morph recognition accuracy form the results of the morph recognizer. Map each
proposed morph to its phone representation and calculate the phone recognition accuracy.
Findly, caculate the letter recognition accuracy of the whole system by converting the
proposed morph sequences to the corresponding sequences of letters.

Repeat steps (1) to (5) but use the 10-best list of letter sequences from the other letter
recognizer.

Repeat steps (1) to (7) with the test set.

The result of the experiments in this section are shown in Tables 7-11 to 7-16 in Section 7.4.
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7.3.4 Utilizing the spdlling information from the most preferred letter
sequence from the letter recognizer

The procedure of the experiments in this section isillustrated in Figure 7-3.

The details are as follows;

1

2)

3

4)

5

6)

7)

For each pronunciation utterance in the training set, randomly pick a name-spelling utterance
of the same name in the pronounced one.

Use one of the letter recognizers to recognize the selected name-spelling utterance. The
results of the letter recognition in this step are the 10-best list of the proposed letter
sequences. Feed only the top choice, the letter sequence with the best score, to TINA.

Use TINA to create the finite state representation of this name’'s morph representation based
on the top choice of the 10-best list of the letter sequences proposed in step (2).

Combine the finite state transducer of the morph sequences from TINA with the finite state
transducer of the basdine language model of the morph recognizer, and use this combined
finite state transducer as the language model for recognizing the corresponding pronunciation
utterance.

Calculate the morph recognition accuracy form the results of the morph recognizer. Map each
proposed morph to its phone representation and calculate the phone recognition accuracy.
Findly, caculate the letter recognition accuracy of the whole system by converting the
proposed morph sequences to the sequences of |etters.

Repeat steps (1) to (5), but use the 10-best list of letter sequences from the other letter
recognizer.

Repeat steps (1) to (7) with the test set.

The results of the experiments in this section are shown in Tables 7-17 to 7-22 in Section 7.4.
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Figure 7-3: Block diagram of the experiment in which the combined FSTs built from the top
choice of the proposed 10-best letter sequences form the letter recognizer
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7.4 Results and analysis

In this section we will show the results and compare the performances among the different
language models for the morph recognizer, including bigram and trigram language models of the
baseline version of the morph recognizer in Chapter 5. Tables 7-1 to 7-6 show the performance of
the baseline morph recognizers with bigram and trigram language models. And Tables 7-7 and 7-

8 show the performance of the two letter recognizers.

Language model: bigram nor ph

Set morph sentence recognition Morph recognition
accuracy (%) Accuracy (%)

Training set 272 41.3

Test set 224 36.0

Table 7-1: Morph recognition accuracy of the morph recognizer with bigram language model

(Typel)
L anguage model: bigram phone
Set phone sentence recognition Phone recognition
accuracy (%) Accuracy (%)
Training set 335 511
Test set 31.0 47.9

Table 7-2: Phone recognition accuracy of the morph recognizer with bigram language model

(Typel)
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L anguage model: bigram Letter

Set letter sentence recognition L etter recognition
accuracy (%) accuracy (%)

Training set 217 57.9

Test set 228 504

Table 7-3: Letter recognition accuracy of the morph recognizer with bigram language model

(Typel)

L anguage model: trigram nor ph

Set morph sentence recognition morph recognition
accuracy (%) accuracy (%)

Training set 37.3 479

Test set 20.2 400

Table 7-4: Morph recognition accuracy of the morph recognizer with trigram language model

(Typel)

L anguage mode!: trigram phone

Set phone sentence recognition Phone recognition
accuracy (%) Accuracy (%)

Training set 24 56.2

Test set 359 50.8

Table 7-5: Phone recognition accuracy of the morph recognizer with trigram language model

(Typel)
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L anguage model: trigram Letter

Set letter sentence recognition L etter recognition
accuracy (%) Accuracy (%)

Training set 376 62.2

Test set 294 52.8

Table 7-6: Letter recognition accuracy of the morph recognizer with trigram language model

(Typel)

“general” letter recognizer

language moddl: trigram

Letter

Set L etter sentence recognition letter recognition
accuracy (%) accuracy (%)

Training set 481 814

Test set 497 79.2

Table 7-7: Letter recognition accuracy of the “generd” letter recognizer with trigram language
model (Typel)

“training-set oriented” letter recognizer

language moddl: trigram

Letter

Set letter sentence recognition letter recognition
accuracy (%) accuracy (%)

Training set %41 84.2

Test set 414 74.0

Table 7-8: Letter recognition accuracy of the “training-set oriented” |etter recognizer with trigram

language model (Typel)
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From the results of the baseline recognizer, in every case the phone recognition accuracy is higher
than the morph recognition accuracy due to the redundancy in morph pronunciation, as mentioned
earlier. The trigram language model gives better accuracy than the bigram language model. So,
we will use the accuracy obtained from the morph recognizer with trigram language model as the
basdline accuracy, which will be compared with the accuracy of the morph recognizers with other
language models. When we combine the morph recognizer with perfect knowledge of the
spellings, we get huge improvements in the morph and phone recognition accuracy as anticipated.
The details of the results are shown in Tables 7-9 and 7-10 below.

Language model: baseline FST + FST from correct answer nor ph

Set morph sentence recognition morph recognition

accuracy (%)

accuracy (%)

Training set

65.2

731

Test set

69.0

728

Table 7-9: Morph recognition accuracy of the system when the combined FSTs between the
baseline FST and the FSTs built from the correct letter sequences are used as the language model

(Typel)
Language mode: baseline FST + FST from correct answer phone
Set phone sentence recognition phone recognition
accuracy (%) accuracy (%)
Training set 67.5 819
Test set 70.3 821

Table 7-10: Phone recognition accuracy of the system when the combined FSTs between the
baseline FST and the FST's built from the correct letter sequences are used as the language model

(Typel)
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After being provided with perfect letter knowledge, the morph recognizer yields better accuracy
in terms of both morph and phone recognition accuracy. On the training set, the morph
recognition accuracy in this case is 25.2% (73.1%-47.9%) better than the one in the trigram case.
On the test s, it is 32.8% (72.8%-40.0%) better than the one in the trigram case. Speaking in
terms of reduction in morph recognition error rate, we have 48.4% reduction in morph
recognition error rate on the training set and 54.2% on the test set. Looking at the phone
recognition accuracy, we have found that the absolute improvements are 25.7% (81.9%-56.2%)
on the training set and 31.3% (82.1%-50.8%) on the test set. The corresponding rates of reduction
in phone recognition error are 58.7% and 63.6% on the training set and the test set respectively.
The results turned out as we expected. One of the interesting points is that, if we look at the
improvements on the training set and the test set, the incorporation of perfect letter knowledge did
improve both the morph and phone recognition accuracy more on the test set than on the training
set. The trigram was built upon the names in the training set, o it is expected that the recognition
accuracy is higher on the training set. However, when we change the language model from
trigram to FST, composed from the FST from the lexicon of the training set and the FST
constructed from the correct letter sequence by TINA, the system seems to perform equally well
on both data sets. And the phone recognition accuracy is even better on the test set. Even though
the baseline FST was constructed from the data in the test set, as we can see from the recognition
results, the FSTs of the morph representation proposed by TINA based on the correct letter
sequences seems to have an impact on the baseline FST at some amount. So the whole system
does not favor the data in the training set as much as the morph recognizer running aone. The
differences of the morph and phone recognition accuracy between the two sets are only 0.3% in
both cases.

Next, we used TINA to propose the FSTs of the morph representation of the 10-best list of the

letter sequences from two letter recognizers and combined the proposed FSTs with the basdine
FST. The results are shown in Tables 7-11 to 7-16 below.
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Language modd: baseline FST + FST from 10-best list of letter seq.

L etter recognizer: “general”

Mor ph

Set M orph sentence recognition morph recognition
accuracy (%) accuracy (%)

Training set 24.8 385

Test set 200 33.7

Table 7-11: Morph recognition accuracy of the system when the combined FSTs between the
basdline FSTs and the FSTs built from the 10-best |etter sequences, proposed by the “general”

letter recognizer, are used as the language model (Typel)

Language model: baseline FST + FST from 10-best list of |etter seq.

L etter recognizer: “general”

phone

Set phone sentence recognition phone recognition
accuracy (%) accuracy (%)

Training set 280 55.0

Test set 234 48.8

Table 7-12: Phone recognition accuracy of the system when the combined FSTs between the
basdline FSTs and the FSTs built from the 10-best |etter sequences, proposed by the “general”
letter recognizer, are used as the language model (Typel)

Language model: baseline FST + FST from 10-best list of letter seq.

L etter recognizer: “general”

letter

Set letter sentence recognition letter recognition
accuracy (%) accuracy (%)

Training set 393 80.0

Test set 338 74.8

Table 7-13: Letter recognition accuracy of the system when the combined FSTs between the
basdine FSTs and the FSTs built from the 10-best |etter sequences, proposed by the “general”
letter recognizer, are used as the language model (Typel)
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Language model: baseline FST + FST from 10-best list of letter seq. nor ph

L etter recognizer: “training-set oriented”

Set morph sentence recognition morph recognition
accuracy (%) accuracy (%)

Training set 272 4.7

Test set 190 355

Table 7-14: Morph recognition accuracy of the system when the combined FSTs between the
baseline FSTs and the FSTs built from the 10-best letter sequences, proposed by the “training-set
oriented” |etter recognizer, are used as the language mode (Type)

Language modd: baseline FST + FST from 10-best list of letter seq. phone

L etter recognizer: “training-set oriented”

Set phone sentence recognition phone recognition
accuracy (%) accuracy (%)

Training set 314 58.9

Test set 232 48.6

Table 7-15: Phone recognition accuracy of the system when the combined FSTs between the
basdline FSTs and the FSTs built from the 10-best letter sequences, proposed by the “training-set
oriented” letter recognizer, are used as the language model (Typel)

Language modd: baseline FST + FST from 10-best list of letter seg. letter

L etter recognizer: “training-set oriented”

Set letter sentence recognition L etter recognition
accuracy (%) accuracy (%)

Training set 46.0 83.2

Test set 330 716

Table 7-16: Letter recognition accuracy of the system when the combined FST's between the
basdline FSTs and the FSTs built from the 10-best letter sequences, proposed by the “training-set
oriented” letter recognizer, are used as the language model (Typel)
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From Tables 711 and 712, we see that both the morph recognition accuracy and the phone
recognition accuracy are worse in these cases than the recognition accuracy of the baseline morph
recognizer with atrigram language model. Both cases made use of the “generd” letter recognizer,
which has letter sentence recognition accuracy and letter recognition accuracy of 48.1% and
81.4% respectively on the training set. On the test set, the letter sentence recognition accuracy is
41.4% and the letter recognition accuracy is 79.2%. From the degradation of the accuracy after
utilizing the spelling knowledge through the “genera” letter recognizer, we can infer that, with
these levels of accuracy, the spelling knowledge hurts the performance of the overdl system. In
other words, we can say that this letter information is too noisy to be useful for the morph

recognizer.

By using the “training-set oriented” letter recognizer, which has better |etter recognition accuracy
on the training set than the one of the “genera” letter recognizer, the phone recognition accuracy
of the training set increases. Although the morph recognition accuracy is still worse, the phone
recognition accuracy becomes 2.7% (58.9%-56.2%) higher than the one of the basdine morph
recognizer. However, the morph and phone recognition accuracy of the test set are still worse,
since the recognized letter sequences from the letter recognizer performed on the test set are till
too noisy to be useful to the morph recognizer. The detailled numbers mentioned in this paragraph
are shown in Tables 7-14 and 7-15.

Language modd: baseline FST + FST from top choice letter seq. nor ph

L etter recognizer: “general”

Set morph sentence recognition Morph recognition
accuracy (%) Accuracy (%)

Training set 363 453

Test set 35.6 438

Table 7-17: Morph recognition accuracy of the system when the combined FSTs between the
basdaline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by
the “genera” letter recognizer, are used as the language model (Typel)
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L etter recognizer: “general”

Language model: baseline FST + FST from top choice letter seq. phone

Set phone sentence recognition Phone recognition
accuracy (%) Accuracy (%)

Training set 383 59.7

Test set 371 55.8

Table 7-18: Phone recognition accuracy of the system when the combined FSTs between the
basdline FSTs and the FST's built from the top choice of the 10-best letter sequences, proposed by

the “general” letter recognizer, are used as the language mode (Typel)

L etter recognizer: “general”

Language modd: baseline FST + FST from top choice letter seq. Letter

Set letter sentence recognition letter recognition
accuracy (%) accuracy (%)

Training set 49.3 82.0

Test set 49.0 79.3

Table 7-19: Letter recognition accuracy of the system when the combined FSTs between the
basdline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by

the “genera” letter recognizer, are used as the language model (Typel)

Language model: baseline FST + FST from top choice letter seq. mor ph

L etter recognizer: “training-set oriented”

Set morph sentence recognition morph recognition
accuracy (%) accuracy (%)

Training set 323 44.8

Test set 30.6 400

Table 7-20: Morph recognition accuracy of the system when the combined FSTs between the
basdline FSTs and the FSTs built from the top choice of the 10-best |etter sequences, proposed by
the “training-set oriented” letter recognizer, are used as the language model (Type)
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Language model: baseline FST + FST from top choice letter seq. phone

L etter recognizer: “training-set oriented”

Set phone sentence recognition phone recognition
accuracy (%) accuracy (%)

Training set 359 60.4

Test set 330 53.7

Table 7-21: Phone recognition accuracy of the system when the combined FSTs between the
baseline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by
the “training-set oriented” |etter recognizer, are used as the language model (Type l)

Language modd: baseline FST + FST from top choice letter seq. Letter

L etter recognizer: “training-set oriented”

Set letter sentence recognition letter recognition
accuracy (%) accuracy (%)

Training set 55.0 834

Test set 44.8 74.6

Table 7-22: Letter recognition accuracy of the system when the combined FSTs between the
basdline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by
the “training-set oriented” letter recognizer, are used as the language model (Typel)

Tables 7-17, 7-18, 7-20 and 7-21 show the results when we took only the letter sequence with the
best score to be used as TINA’s input instead of using al of the 10-best choices. The results are
promising in terms of phone recognition accuracy. By utilizing the “generd” letter recognizer and
this way of creating the FSTs, the phone recognition accuracy increases by 3.5% (59.7%-56.2%)
on the training set and 5.0% (55.8%-50.8%) on the test set. The corresponding rates of reduction
in phone recognition accuracy are 8.0% and 10.2% on the training set and the test set
respectively. And by using the “training-set oriented” letter recognizer, the phone recognition
accuracy increases by 4.2% (60.4%-56.2%) on the training set and 2.9% (53.7%-50.8%) on the
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test set. The corresponding rates of reduction in phone recognition accuracy are 9.6% and 5.9%
on the training set and the test set respectively.

From the results we have, we can see, as expected, that the higher the letter recognition accuracy,
the more the spelling knowledge can help the performance of the phone recognition task. With
low quality letter information, the spelling knowledge even degrades the performance of the
whole system. However, at acceptable |etter recognition accuracy, the information about the
spelling yields better phone recognition accuracy.

Comparing the letter recognition accuracy in various experiments, we have found that in most
cases the knowledge of the pronunciation does not help the letter recognition accuracy, except for
one case where the incorporation of the pronunciation knowledge improves the letter recognition
accuracy a little on both the training set and the test set. It is the case when the FST, combined
with the basdline language model, comes from the top choice of the 10-best letter sequences from
the “genera” letter recognizer. The results for this case are shown in Table 7-19. On the training
set the letter recognition accuracy is 0.6% (82.0-81.4%) better than the accuracy of the “ genera”
letter recognizer and 0.1% (79.3%-79.2%) on the test set. The corresponding rates of reduction in
letter recognition accuracy are 3.2% and 0.5% on the training set and the test set respectively.

7.5 Chapter Summary

This chapter describes the goal, procedure and results of the experiments conducted using the
morph representation Type |. The goals of this set of experiments were to find out how the
spelling and pronunciation knowledge can help each other in recognizing both the name-spdling
and the pronounced utterances, to study the ways to combine them together and to see how
crucial the qudity of the letter recognizer is to the overal recognition accuracy. The experiments
were done by varying the language models of the morph recognizer. The language models used
were bigram, trigram and the combined FSTs. The combined FSTs were created by combining
the basgline FST, which was created from the lexicon of the training data, with three types of
FSTs. The first one was the FST proposed from TINA when provided with the correct |etter
sequence for each name. The next was the FST proposed from TINA when provided with the 10-
best letter sequences from the letter recognizer. And the last one was the FST proposed form
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TINA when provided with the top choice of the 10-best letter sequences form the letter
recognizer. Two letter recognizers were used. One gave higher accuracy on the training set than
the other, while, on the other hand, the other gave higher accuracy on the test set. The result
shows that the letter knowledge can help the phone recognition task, especialy when the correct
letter sequences were provided. With both letter recognizers, using the top choice of the 10-best
letter sequences was found to be more useful to the phone recognition task than using al of the

10-best letter sequences. However, the pronunciation knowledge did not help the letter
recognition task in most cases.
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Chapter 8

Experiments using the mor ph representation Typell|

8.1 Motivation

In Chapter 7, we described the experiments done based on the morph representation Type I, in
which each morph has a unique pronunciation. In this chapter, we will describe the context whose
outline is similar to the one in Chapter 7, but the morph representation Type |l has been
exploited.®

8.2 Godls

The objective of this set of experiments is to study how aternative sets of morphs affect the
performance of our integrated system. We would like to see whether using the morph
representation Type Il will improve or degrade the recognition accuracy. The criteria used in the
experiments in this chapter are similar to the ones in the experiments in Chapter 7, which are

morph recognition accuracy, phone recognition accuracy and |etter recognition accuracy.

8.3 Procedure

The procedures of the experiments in this chapter are smilar to those in Chapter 7. All of the
experiments conducted ae based on the same integrated system. The name-spelling utterances
are fed through the letter recognizer. The letter recognizer proposes 10-best lists of letter

% See Chapter 2 for definitions of Type | and Type || morph representations

105



sequences, the ten letter sequences most preferred by the letter recognizer. These letter sequences
are used as the input of TINA, which is used to probabilistically propose the morph sequence that
is best matched to the input letter sequences. The difference between the experiments in this
chapter and the ones in Chapter 7 is that, in Chapter 7 tie morph inventories and TINA's
grammars are Type |, but the morph inventories and TINA’s grammars of Type Il were used in
the experiments in this chapter.

Asin Chapter 7, there are two ways for TINA to use the letter sequences proposed by the letter
recognizer. In the first one, TINA uses dl of the information provided in dl of the 10-best letter
sequences proposed. In the other, TINA discards the letter information in the nine proposed |etter
sequences with inferior scores and only makes use of the top choice of the 10-best letter
sequences. Also, instead of extracting the letter knowledge from the name-spelling utterances, we
provide the correct letter sequences for al of the pronunciation utterances and decompose them
into the sequences of morphs according to the morph inventories and TINA’s grammars for Type
1.

The morph recognition accuracy, the phone recognition accuracy and the letter recognition
accuracy were calculated and compared with those of the baseline recognizers, which used a
bigram and trigram as their language models. However, the morph recognizer used in this chapter
is different from the morph recognizer used in Chapter 7, since we have changed the morph
inventories. The morph recognizer in this chapter was trained on the data in the same training set.
The lexicon of the training set is different in the aspect of decomposing the names into their

corresponding morph representation, due to the different morph inventories.

The details of the results and also the new basdline performance are shown in the next section.

8.4 Results and anaysis

The performances of the baseline morph recognizer based on morph representation Type |l are
shown in Tables 81 to 86 below. And, for ease of comparing, the letter recognition accuracy of
the two letter recognizers, the “general” letter recognizer and the “training-set oriented” letter
recognizer, are repeated again in Tables 8-7 and 8-8.
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L anguage model: bigram nor ph

Set morph sentence recognition Morph recognition
accuracy (%) Accuracy (%)

Training set 26.9 415

Test set 248 386

Table 8-1: Morph recognition accuracy of the morph recognizer with bigram language model

(Typell)

L anguage model: bigram phone

Set phone sentence recognition Phone recognition
accuracy (%) Accuracy (%)

Training set 317 60.8

Test set 330 574

Table 8-2: Phone recognition accuracy of the morph recognizer with bigram language model

(Typell)

L anguage model: bigram letter

Set L etter sentence recognition letter recognition
accuracy (%) accuracy (%)

Training set 273 574

Test set 249 51.3

Table 8-3: Letter recognition accuracy of the morph recognizer with bigram language model

(Typell)
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L anguage model:

trigram

nor ph

Set

M orph sentence recognition

Morph recognition

accuracy (%) Accuracy (%)
Training set 36.3 485
Test set 206 433

Table 8-4: Morph recognition accuracy of the morph recognizer with trigram language model

(Typell)

L anguage model: trigram phone

Set Phone sentence recognition Phone recognition
accuracy (%) Accuracy (%)

Training set 414 64.9

Test set 388 60.5

Table 8-5: Phone recognition accuracy of the morph recognizer with trigram language model

(Typell)

L anguage model: trigram letter

Set letter sentence recognition letter recognition
accuracy (%) accuracy (%)

Training set 365 62.0

Test set 208 54.2

Table 8-6: Letter recognition accuracy of the morph recognizer with trigram language model

(Typell)
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“general” letter recognizer

language model: trigram

Letter

Set letter sentence recognition letter recognition
accuracy (%) accuracy (%)

Training set 481 814

Test set 49.7 79.2

Table 8-7: Letter recognition accuracy of the “generd” letter recognizer with trigram language

model

“training-set oriented” letter recognizer

language moddl: trigram

Letter

Set L etter sentence recognition letter recognition
accuracy (%) accuracy (%)

Training set 4.1 84.2

Test set 414 74.0

Table 8-8: Letter recognition accuracy of the “training-set oriented” letter recognizer with trigram
language model

As before, we will use the accuracy obtained from the morph recognizer and the Ietter recognizer
with trigram language model as the baseline accuracy, which will be compared with the accuracy
of the integrated system with other language models. When we combined the morph recognizer
with perfect knowledge of the spellings, we got huge improvements in the morph and phone
recognition accuracy. The details of the results are shown in Tables 8-9 and 8-10 below.
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Language model: baseline FST + FST from correct answer nor ph

Set M orph sentence recognition Morph recognition
Accuracy (%) Accuracy (%)

Training set 920 93.7

Test set 855 87.6

Table 8-9: Morph recognition accuracy of the system when the combined FSTs between the
baseline FST and the FSTs built from the correct letter sequences are used as the language model

(Typell)
Language mode: baseline FST + FST from correct answer Phone
Set Phone sentence recognition Phone recognition
accuracy (%) Accuracy (%)
Training set 92.8 97.3
Test set 895 94.8

Table 8-10: Phone recognition accuracy of the system when the combined FSTs between the
baseline FST and the FSTs built from the correct letter sequences are used as the language model

(Typell)

After being provided with perfect letter knowledge, the morph recognizer yields plausible
accuracy in term of both morph and phone recognition accuracy, especialy the latter which is
over ninety percent. On the training set, the morph recognition accuracy in this case is 45.2%
(93.7%-48.5%) better than the one in the trigram case. On the test set, it is 44.3% (87.6%-43.3%)
better than the one in the trigram case. The corresponding rates of reduction in morph recognition
accurecy are 87.8% on the training set and 78.1% on the test set. Looking at the phone
recognition accuracy, we have found that the improvements are 32.4% (97.3%-64.9%) on the
training set and 34.3% (94.8%-60.5%) on the test set. The corresponding rates of reduction in
phone recognition accuracy are 92.3% and 86.8% on the training and the test set respectively. The
results turned out as we expected and the morph recognition accuracy and the phone recognition
accuracy are better than the ones using morph representation Type | on both the training set and
the test set. On the training set, the morph recognition accuracy is 20.6% (93.7%-73.1%) higher
and the phone recognition accuracy is 15.4% (97.3%-81.9%) higher than the ones using the other
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type of morph representation. And, on the test set, the morph recognition accuracy is 14.8%
(87.6%-72.8%) higher and the phone recognition accuracy is 12.7% (94.8%-82.1%) higher than
the ones using the morph representation Type I. In terms of the reduction in error rate, using
Type 1l morphs instead of Type | provides 76.6% and 54.4% reduction in morph recognition
errors on the training set and the test set respectively, while it dso provides 85.1% and 70.9%
reduction in phone recognition errors on the training set and the test set respectively.

Next, we used TINA to propose the FSTs of the morph representation of the 10-best list of the
letter sequences from two letter recognizers and combined the proposed FSTs with the basdline
FST. Theresults are shown in Tables 8-11 to 8-16 below.

Language model: baseline FST + FST from 10-best list of |etter seq. nor ph
L etter recognizer: “general”

Set M orph sentence recognition Morph recognition
accuracy (%) Accuracy (%)

Training set 464 541

Test set 370 480

Table 8-11: Morph recognition accuracy of the system when the combined FSTs between the
basdline FSTs and the FSTs built from the 10-best |etter sequences, proposed by the “general”

letter recognizer, are used as the language model (Type I1)

Language modd: baseline FST + FST from 10-best list of |etter seq. phone

L etter recognizer: “general”

Set Phone sentence recognition Phone recognition
Accuracy (%) Accuracy (%)

Training set 493 725

Test set 417 67.1

Table 8-12: Phone recognition accuracy of the system when the combined FSTs between the
basdline FSTs and the FSTs built from the 10-best |etter sequences, proposed by the “general”

letter recognizer, are used as the language model (Type I1)
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Language modd: baseline FST + FST from 10-best list of letter seq. letter

L etter recognizer: “general”

Set letter sentence recognition L etter recognition
accuracy (%) Accuracy (%)

Training set 499 814

Test set 408 755

Table 8-13: Letter recognition accuracy of the system when the combined FST's between the
baseline FSTs and the FSTs built from the 10-best |etter sequences, proposed by the “general”
letter recognizer, are used as the language model (Type I1)

Language moddl: baseline FST + FST from 10-best list of letter seq. nor ph

L etter recognizer: “training-set oriented”

Set morph sentence recognition Morph recognition
accuracy (%) Accuracy (%)

Training set 44.2 54.7

Test set 30.7 455

Table 8-14: Morph recognition accuracy of the system when the combined FSTs between the
basdline FSTs and the FST's built from the 10-best letter sequences, proposed by the “training-set

oriented” letter recognizer, are used as the language model (Type )

Language modd: baseline FST + FST from 10-best list of letter seg. phone

L etter recognizer: “training-set oriented”

Set phone sentence recognition Phone recognition
accuracy (%) Accuracy (%)

Training set 47.1 72.8

Test set 373 63.8

Table 8-15: Phone recognition accuracy of the system when the combined FST's between the
basdline FSTs and the FSTs built from the 10-best letter sequences, proposed by the “training-set
oriented” letter recognizer, are used as the language model (Type )

112



Language model: baseline FST + FST from 10-best list of letter seq. letter

L etter recognizer: “training-set oriented”

Set letter sentence recognition L etter recognition
accuracy (%) Accuracy (%)

Training set 482 821

Test set 32.8 713

Table 8-16: Letter recognition accuracy of the system when the combined FSTs between the
basdline FSTs and the FSTs built from the 10-best |etter sequences, proposed by the “training-set
oriented” |etter recognizer, are used as the language model (Type 1)

From Tables 811 and 812, we can see that al of the morph recognition and phone recognition
accuracies have improved from their corresponding accuracies in the baseline recognition cases.
On the training set, the morph recognition accuracy is 5.6% (54.1%-48.5%) higher and the phone
recognition accuracy is 7.6% (72.5%-64.9%) higher than the morph and phone recognition
accuracy of the baseline morph recognizer with trigram language model. The corresponding rates
of reduction in morph recognition errors and phone recognition erors ae 10.9% and 21.7%
respectively. Also, on the test set, the phone recognition accuracy and the morph recognition
accuracy are 4.7% (48.0%-43.3%) and 6.6% (67.1%-60.5%) higher than the ones of the baseline
morph recognizer respectively. The corresponding rates of reduction in morph recognition errors
and phone recognition errors are 8.3% and 16.7% respectively.

By using the “training-set oriented” letter recognizer instead of the “genera” |etter recognizer, the
phone recognition accuracy of the training set increases. In Tables 8-14 and 8-15, dl of the morph
recognition accuracies and the phone recognition accuracies shown are better than the ones of the
basdline recognizer in their corresponding cases. On the training set, the morph recognition
accuracy b 6.2% (54.7%-48.5%) higher and the phone recognition accuracy is 7.9% (72.8%-
64.9%) higher than the morph and phone recognition accuracy of the basdline morph recognizer
with the trigram language moddl. The corresponding rates of reduction in morph recognition
errors and phone recognition errors are 12.0% and 22.5% respectively. Also, on the test set, the
phone recognition accuracy and the morph recognition accuracy are 2.2% (45.5%-43.3%) and
3.3% (63.8%-60.5%) higher than the ones of the baseline morph recognizer respectively. The

113



corresponding rates of reduction in morph recognition errors and phone recognition errors are
3.9% and 8.4% respectively.

Up to this point, we can compare the improvement in the morph recognition accuracy and the
phone recognition accuracy gained by switching the type of morph representation and TINA’s
grammars from Type | to Type Il. However, it is not perfectly right to say that the morph
representation Type | is a better means to convey the information from the spelling knowledgeto
help the pronunciation recognition task. There are other variables gpart from morph inventories
that are different between the experiments in Chapter 7 and Chapter 8. These variables are
TINA’s grammars and how we train them. However, it is reasonable to say that the overall
method we used in the experiments in this chapter appears to be more usable than the one in
Chapter 7. Supporting this statement are the data shown in Tables 8-11 to 8-12 and Tables 8-14 to
8-15. In al of these cases, the letter knowledge helps improving the morph and phone recognition
accuracy when using morph representation Type I1. While using morph representation Type |, we
can see the improvement in only one case, as mentioned in Chapter 7. Furthermore, the
percentage of mprovement of the recognition accuracy in this one case is lower than the one

when morph representation Type Il is used in the similar case.

Next, we stepped from utilizing al of the spelling knowledge from the 10-best |etter sequences
to utilizing only the spelling knowledge from the top choice of the 10-best letter sequences. The
results are shown in Tables 8-17 to 8-22 below.

Language model: baseline FST + FST from top choice letter seq. mor ph

L etter recognizer: “general”

Set Morph sentence recognition Morph recognition
Accuracy (%) Accuracy (%)

Training set 47.7 56.0

Test set 44.8 54.3

Table 8-17: Morph recognition accuracy of the system when the combined FSTs between the
baseline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by
the “genera” letter recognizer, are used as the language modd (Type Il)
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L etter recognizer: “general”

Language modd: baseline FST + FST from top choice letter seq. phone

Set phone sentence recognition Phone recognition
accuracy (%) Accuracy (%)

Training set 491 734

Test set 405 716

Table 8-18: Phone recognition accuracy of the system when the combined FSTs between the
basdline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by

the “general” letter recognizer, are used as the language model (Type Il)

Language moddl: baseline FST + FST from top choice letter seq.

L etter recognizer: “general”

Letter

Set letter sentence recognition L etter recognition
accuracy (%) Accuracy (%)

Training set 51.0 825

Test set 51.3 804

Table 8-19: Letter recognition accuracy of the system when the combined FSTs between the
basdline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by

the “genera” letter recognizer, are used as the language model (Type )

Language model: baseline FST + FST from top choice letter seq. mor ph

L etter recognizer: “training-set oriented”

Set Morph sentence recognition Morph recognition
accuracy (%) Accuracy (%)

Training set 54.2 64.0

Test set 42.3 52.8

Table 8-20: Morph recognition accuracy of the system when the combined FST's between the
basdline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by
the “training-set oriented” letter recognizer, are used as the language model (Type Il)
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Language model: baseline FST + FST from top choice |etter seq.
L etter recognizer: “training-set oriented”

phone

Set phone sentence recognition Phone recognition
accuracy (%) Accuracy (%)

Training set 553 776

Test set 445 68.1

Table 8-21: Phone recognition accuracy of the system when the combined FSTs between the
basdline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by
the “training-set oriented” letter recognizer, are used as the language model (Type I1)

Language modd: baseline FST + FST from top choice letter seq.

L etter recognizer: “training-set oriented”

Letter

Set letter sentence recognition L etter recognition
accuracy (%) Accuracy (%)

Training set 57.8 854

Test set 465 76.7

Table 8-22: Letter recognition accuracy of the system when the combined FSTs between the
basdine FSTs and the FST's built from the top choice of the 10-best letter sequences, proposed by

the “training-set oriented” |etter recognizer, are used as the language model (Type I1)

Since using the top choice in creating the FST to be combined with the baseline FST had been

found, in the morph representation Type | case, to be more useful to the pronunciation

recognition task than using al of the 10-best letter sequences, we expected the same consequence
for the morph representation Type Il. From Tables 8-17, 818, 8-20 and 8-21, we can see that the

result turned out to be as we expected. All of the morph recognition accuracies and the phone

recognition accuracies are better than the 10-best case. By utilizing the “general” |etter recognizer

and creating the FSTs from the top choice of the 10-best letter sequences, the morph and phone

recognition accuracy increase from the baseline accuracy by 7.5% (56.0%-48.5%) and 8.5%
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(73.4%-64.9%) on the training set and 11.0% (54.3%-43.3%) and 11.1% (71.6%-60.5%) on the
test set. The corresponding rates of reduction in morph and phone recognition errors are 14.5%
and 24.2% on the training set and 19.4% and 28.1% on the test set. By using the “training-set
oriented” |etter recognizer, the morph and phone recognition accuracy increases from the baseline
accuracy by 15.5% (64.0%-48.5%) and 12.7% (77.6%-64.9%) on the training set and 9.5%
(52.8%-43.3%) and 7.6% (68.1%-60.5%) on the test set. The corresponding rates of reduction in
morph and phone recognition errors are 30.1% and 36.2% on the training set and 16.8% and
19.2% on the test set.

The results we have found here are consistent with the results in Chapter 7 that the higher the
letter recognition accuracy, the more the spelling knowledge can help the performance of the
phone recognition task. However, in this system, the overal improvement, gained from
incorporating the spelling knowledge from the name-spelling utterances, is greater than the
improvement gained in the morph representation Type | case. At a letter recognition accuracy of
the letter recognizer that is too low for the morph recognizer of the system in Chapter 7 to gain
any advantages from the name-spelling utterance, there is improvement in the morph and phone
recognition accuracy here. So, this system is more robust to the noise contaminating the quality of
the proposed letter sequences.

Converting every resulting morph segquence to the corresponding letter sequences by discarding
al of the markers, “-”, “+" and “=", we can then calculate the letter recognition accuracy of the
integrated system and compare with the letter recognition accuracy of the baseline letter
recognizer. From the results in Tables 819 and 822, we have found that the letter sequences
obtained from the morph sequences proposed by the system, using the top choice of 10-best |etter
sequences to create the combined FSTs, had better accuracy than the letter sequences proposed
from the basdline letter recognizer with trigram language models aone. By using the “general”
letter recognizer, the improvements are 0.7% (82.1%-81.4%) in the training set and 1.2% (80.4%-
79.2%) in the test set. The corresponding rates of reduction in letter recognition errors are 3.8%
and 5.8% on the training set and the test set respectively. And by using the “training-set oriented”
letter recognizer, the improvements are 1.2% (85.4%-84.2%) in the training set and 2.7% (76.7%-
74.0%) in the test set. The corresponding rates of reduction in letter recognition errors are 7.6%
and 10.4% on the training set and the test set respectively.
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8.5 Chapter Summary

The goa of the experiments done in this chapter was to find out how the speling and
pronunciation knowledge can help each other in recognizing both the name-spelling and the
pronounced utterances by using a different inventory of morphs and TINA’s grammar from the
ones we used in Chapter 7. The experiments were done by varying the language models of the
morph recognizer in the same fashion as conducted in Chapter 7 but under the notation of morph
representation Type Il. Since we made use of a different morph inventory, the baseline morph
recognizer was different from the one in Chapter 7. This baseline morph recognizer’s language
models were created from the lexicon of the training data using the morph representation Type I1.
The same two letter recognizers as in Chapter 7 were also used in this chapter. The result shows
that the letter knowledge can help the morph and phone recognition task, especially when the
correct letter sequences were provided. With both letter recognizers, using the top choice of the
10-best letter sequences was found to be more useful to the phone recognition task than using all
of the 10-best letter sequences. Still, both methods did improve the baseline morph and phone
accuracy more than they did in the morph representation Type | case. Unlike the case of Typell,
the letter knowledge from the name-spelling utterances in this case increased the letter
recognition accuracy when the combined FSTs were created from the top choice of the 10-best
letter sequences proposed from the baseline | etter recognizer.
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Chapter 9

Summary and Future Work

9.1 Thess summary

In this thesis, we worked on designing the framework for a proper noun recognition system, in
which both the information in the spelling and the information in the pronunciation were used to
assist the system to come up with the resulting letter and phone sequence of the input name. The
idea of subword modeling was utilized in the framework. The motivation behind our joint
recognition framework is that we try to imitate a human’s process of understanding proper names,
especidly unfamiliar ones. Utilizing mutualy supportive information between the spelling and
pronunciation of an unfamiliar name helps a person to gain more understanding about that name.
Thus the goa of our thesis was to determine methods that practicaly alow both pieces of
information to be incorporated in both the spelling and the pronunciation recognition tasks.

We define a set of “morph” sub-units to represent proper names. These syllable-sized units
capture both orthographic and phonemic information of the names they represent. Our morphs are
categorized into six groups. prefix, onset, rhyme, uroot, dsuf and isuf. Certain combinations of
these morph categories are used to represent proper names. Such combinations are defined by a
specific word decomposition rule designed for proper names. Each morph consists of a series of
characters and specia markers, which are attached to the characters in order to determine its
category. Two types of morph representation, called Type | and Type Il were used in this thesis.
In Type I morph representation, each morph has only one possible pronunciation and capital
letters are used to distinguish between the morphs that represent the same spellings but are
pronounced differently. The other type of morphs does not utilize upper-case letter.

Consequently, each Type Il morph is dlowed to have more than one possible pronunciation.
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TINA, a probabilistic natural language framework, was deployed to perform the task of subword
modeling of proper names in this thesis. Although, this framework was originaly designed to
parse a sentence into a sequence of words, we would like to determine how well it could be
adapted to perform such a task at the subword level. TINA’s grammar rules were written to
define the allowed transitions among morph categories. The score, or probability, of each alowed
trangtion was cdculated during the training sesson by countings the occurrences of each
trangition in the training data's parse trees, constrained by the names appearing in the training
name lexicon and their corresponding morph representations. In the parse mode, TINA was
expected to propose sequences of morphs according to each name at its input, according to the
trained probability and word decomposition rules.

MIT's SUMMIT recognition system was utilized in building al of the speech recognizers
involved in this thesis. The SUMMIT recognition system is a segment-base speech recognition
engine, in which the input waveform is converted into a network of segment-based feature
vectors. In order to find the recognition result, the system walks the segment network. Each path
through the network is given three types of scores, namely the acoustic model, the pronunciation
model and the language model. The acoustic modd is the probability of occurrence of the
segment-based feature vectors given sequences of words, segments and phonetic units. The
pronunciation model is the probability of occurrence of sequences of phonetic units given specific
words. And the language modd is the probability of occurrence of each word given its linguistic
context. The total score for each path is calculated by summing the three corresponding scores.
And the path with best total score is selected as the recognition result.

There were two types of data used throughout this research. They were lists of names and audio
files containing either pronunciations or spellings of proper names. The list of names used was
gathered from various sources including transcription of the audio files. Some audio files were
obtained by recording the utterances from phone calls to the Jupiter weather information system.
Other audio files were taken from the OGI corpus, which contained telephone-quality utterances
of people spelling or saying names. Data were grouped into two sets, the training set and the test
set. Thetraining set is larger than the test set in terms of the number of names. Around 58% of the
names appearing in the test set aso gppear in the training set. The name lexicons, in which the
names in each set are transcribed into their morph representations of both types, have been

cregted. The size of the overlapping parts between morphs used in the name lexicons of the
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training set and the test set is larger for Type Il morphs than Type | morphs. This shows that Type
I morphs have better generdizing properties.

There are three main components in our framework. They are the letter recognizer, the morph
recognizer and the TINA parser. The letter recognizer is responsible for proposing letter
sequences from the input name-spelling utterances. The function of TINA is to take the letter
sequences proposed by the morph recognizer and propose morph representations of those letter
sequences to be composed with the basdline language model of the morph recognizer. Thus, the
morph recognizer is responsible for proposing morph sequences from the input pronounced
utterances according to the composed language model. These resulting morph sequences are then
mapped to the corresponding letter and phone sequences, which we need in order to fulfill our
recognition tasks of the spelling and the pronunciation.

Two letter recognizers were built and utilized. Both recognizers have a smilar building process,
but their bigram and trigram language models were trained on different name lexicons. The first
one is called the “general” letter recognizer, since its language models were trained on the letter
sequences of the names appearing in a large lexicon (>100,000 names), while the language
models of the other letter recognizer, the “training-set oriented” letter recognizer, were trained
specifically on the letter sequences of only the names appearing in the training name lexicon. The
letter recognition results of these two recognizers were used as the baseline recognition
accuracies for comparing with the letter recognition accuracies of our integrated system. The
difference in the letter recognition accuracies of the two letter recognizers alowed us to
determine the effect of the quality of the letter recognizer on the whole system. Also, there are
two morph recognizers, which were built based on different inventories of morphs, i.e. the Type
and Type Il morphs. The performances of these two morph recognizers were also used as
basdlines for evaluating our integrated system.

Two sets of experiments were conducted. Each was based on using different types of morphs.
The parameter varied across various experiments was the language model of the morph
recognizers. In the basdline recognition, bigram and trigram language models were used. The
combined language models, which result from the composition between the basdine language
model of the morph recognizers and another language model obtained form the spelling
information through TINA and the letter recognizers, were used in the integrated system. The
first combined language model was the composition of the basdline language model and the
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language model obtained from the correct letter sequence for the input name. The other two
combined language models were the composition of the baseline language modd and the spelling
knowledge obtained from the recognition results of the letter recognizers. In one case, al of the
10-best letter sequences proposed from the letter recognizers were used to pass the spelling
knowledge to the morph recognizer. In the other case, only the letter sequence with best
recognition score was used.

When Type | morphs were used, it was found that the letter knowledge could help the
pronunciation recognition task, especially when the correct letter sequences were provided. And
it was aso found that using the top choice of the 10-best letter sequences was more useful to the
phone recognition task than using al of the 10-best letter sequences. Furthermore, as expected,
the letter recognition accuracies of the baseline |etter recognizers were found to have an effect on
the performance of the overal system. However, there was no sign that pronunciation knowledge
could help the letter recognition task in most cases.

Using Type Il morphs was more promising than using Type | morphs. The result showed that the
letter knowledge could help the pronunciation recognition even more than using Type | morphs.
And, asin the Type | case, using the top choice of the 10-best |etter sequences was more useful to
the phone recognition task than using al of the 10-best letter sequences. Still, both methods did
improve the baseline pronunciation recognition accuracies more than they did in the Type | case.
Findly, unlike the Type | case, the letter knowledge from the name-spelling utterances in this
case increased the letter recognition accuracy when the combined language models were created
from the top choice of the 10-best letter sequences proposed from the baseline letter recognizer.
Although, in general, the recognition result was better when Type Il morphs were used, it is not
perfectly correct to say that they are a more suitable morph representation, since there might be
some differences in the quality of the name lexicon prepared in Type | and Type Il. However, we
feel that Type Il morphs should be chosen as the subword units in developing this system in the
future.

In the rest of this chapter, we will suggest some work that can be conducted in the future based on

the framework developed in this thesis. Some of it could have been done under the scope of this
thesis, if time had alowed.
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9.2 Training TINA on alarger set of names

As part of the data collection attempt in this thesis, we have built a list of names, which was
collected from various sources. The size of this list of names is around 100,000 names, which
were not restricted to be English names but any names that can be spelled using the 26 |etters of
the English dphabets. It is interesting to ask whether this list of names would improve or degrade
the quality of proper name decomposition task if we are able to use these 100,000 namesto train
TINA’s word decomposition grammars. Although the size makes it interesting, it is considered a
very exhaustive task to transcribe al of the names into their corresponding morph representations.
A semi-automatic technique has provided an initid morph decompogtion, but it requires
extensive manual editing to correct for errors.

One possible way to handle this problem is to try to let TINA itsalf help in the transcription task.
TINA is capable of producing a name-to-morph lexicon based on the trained grammars. Thus, we
need a name lexicon for TINA to produce another name lexicon. Our approach is to let TINA
parse the 100,000 names and propose an output name lexicon containing those names from the
current trained grammar. It is likely that the output name lexicon provides inappropriate morph
representation for many of the words, due to sparse data problems. Some names need new
morphs in order for them to be represented appropriately. However, an expert can look at this
name lexicon and edit the transcription proposed by TINA. Prominent errors should be fixed
while too detailed errors can be ignored. Then we can retrain TINA’s grammar on the edited
lexicon and expect more accurate decompositions from the parsing. This process will be repeated
until we have a reasonably high qudity lexicon of 100,000 names. By implementing it in this
way, it is easier in that an expert does not have to fix the morph representations of every single
word. Manua correction on some words might generaize iteratively to other related words.

In order to smplify the name decomposition task, we should reduce the confusion that lies in the
morphs used to represent names. In this thesis, Type | morphs have unique pronunciations. while
some morphs can be spelled with the same letters, they are distinguished by the usage of capita
letters. Type Il morphs can have multiple pronunciations, by eiminating the distinction based on
capital letters. Thus, using Type I morphs can be less confusing in the name decomposition task.
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We propose avoiding the usage of capital letters in order for TINA to create a more consi stent
name-to-morph lexicon, since the task of identifying the correct “allomorph” in each word in a

large lexicon is daunting.

9.3 Experiment with alternative ways of passing spelling knowledge

In the experiments conducted in this thesis, the knowledge of the spellings is incorporated into the
system through letter recognizers. Then the proposed letter sequences from the letter recognizers
are presented to the morph recognizer in the form of networks of morph sequences proposed by
TINA. Examples of networks containing information about the proposed morph sequences for
proper names were shown in Figures 5-3 and 5-4 in Chapter 5. In each figure, each path between
the start node and the end node makes an allowed morph sequence proposed as a resulting morph
sequence form the morph recognizer. Thus, the number of different morph sequences proposed
by the system is ten if the network in Figure 53 is used as part of the morph recognizer’s
language model, whileit is two if the network in Figure 54 is used.

However, if we alow all of the paths between the start node and the end node to cross-pollinate
with each other, the number of different possible resulting morph sequences will increase. And
the correct morph sequence, which does not necessarily appear in the origina network for that
name, might be reconstructed by the cross-pollination effect. However, this could result in

additional errors due to inappropriate cross-pollination.

9.4 Improvements to speech recognizers

As we can see from the recognition results of our system, the better the letter recognizer, in terms
of its letter recognition accuracy, the higher the performance of the overal system. All of the
morph recognition accuracy, phone recognition accuracy and letter recognition accuracy,
calculated form the resulting morph sequences, increase as the letter recognition accuracy of the
preliminary letter recognizer, on the corresponding data set, improves. Furthermore, in the case
where we emulate an ideal |etter recognizer, in which the preiminary letter recognizer dways
provides the correct letter sequences, the recognition accuracies of the overall system are quite
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good. The morph and phone recognition errors are less than 10% when Type Il morphs are
utilized. Thus, it is clear to us that one possible way to improve the overal system’s recognition
accuracy is to raise the letter recognition accuracy of the letter recognizer used in the system.
However, we did not try to maximize our letter recognizer performance in this thesis since the
main god is the framework in which components interact with each other.

Although there are only twenty-six lexical entries used in the letter recognizer, the recognition of

a spelled proper name is more difficult than the recognition of an English sentence in a limited
domain, since there is less constraint on how the vocabulary is organized. Despite training the
language model on a lexicon of spelled names, there will aways be some rare letter sequences,
compared to the letter sequences in the training lexicon, used for spelling proper names.

One possible way to improve the letter recognition accuracy of the letter recognizer used in this
thesis is to train new acoustic models. As mentioned in Chapter 6, the acoustic models used for
every letter recognizer are the existing acoustic models trained on sentences collected from the
Jupiter system. Thus, if we train an acoustic model directly on letters, the new letter recognizer
should provide better performance on letter recognition. It is likely, for example, that vowels in
letters are more carefully enunciated than in words.

Another possible method for improving the letter recognizer lies in the language models. The
language models we used for the letter recognizer in this thesis are letter N-grams. However, we
could make use of class N-gram language models, in which the probabilities of letter sequences
are trained according to its class. The classes possibly chosen in this case are the morph
categories. TINA has the ability to take in the name lexicon and train the probabilities of letter
sequences based on the chosen class. Finally, the FSTs of class N-gram created by TINA can be
used as the new language models for the letter recognizer. We suspect that training the letter
sequences assisted with the class knowledge should provide stronger constraints to the letter
recognition task. For example, the letter sequence “s o n” is much more likely to occur in an isuf
than in a prefix.
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9.5 Automatic extraction of spelled and pronounced waveforms

The amount of data available plays a crucia role in speech research. Although, in this thesis, we
feel that we have a sufficient amount of data available for developing and testing the system, we
also are confident that more data will raise the accuracies we obtained from the system. As
mentioned, there are two types of data needed. They are the name lists and the audio files. In data
preparation, we spent a great deal of time transcribing the audio files recorded in the Jupiter
system and manually extracting usable information into separate waveforms. Although the former
is unavoidable, the latter might be done automatically or at least semi-automaticaly in the future.

The waveforms from which we extracted the name-spelling utterances and pronounced utterances
are speech of the Jupiter system’s callers when they were asked to say and spell the name of a
person they know. Even though the answers responding to this query are not restricted to be any
definite forms, some forms are used by different calers many times. Examples of these forms
were shown in Section 4.4 in Chapter 4. By utilizing these repetitive forms as well as trying to
find features that distinguish between the spellings and the sayings of names, we should be able
to automatically extract the portion we want. As a consequence, the time used for data
preparation will be reduced, and we can thus process more data.
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