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Abstract 

 

In this thesis, the framework for a proper name recognition system is studied. We attempt to 
combine the information in both the spelling and the pronunciation of a proper name and find 
ways to let both sources of information improve the recognition accuracies of that name from the 
accuracies obtained by performing the spelling recognition and pronunciation recognition tasks 
separately. 
 
A set of “morph” sub-units is introduced. These syllable-sized units capture both orthographic 
and phonemic information of the names they represent. Our morphs are arbitrarily categorized 
into six groups: prefix, onset, rhyme, uroot, dsuf and isuf.  Certain combinations of these morph 
categories, defined by a specific word decomposition rule, are used to represent proper names. 
 
For each proper name, the name-spelling utterance is recognized by a letter recognizer. Then, the 
proposed letter sequences are parsed by the TINA parser into possible sequences of morphs. 
These sequences of morphs are used to provide additional constraints for the morph recognizer, 
which is responsible for proposing morph sequences from the corresponding pronounced 
utterance. Since both orthographic and phonemic information is encoded in morphs, the letter and 
phone recognition accuracies can be calculated from the proposed morph sequence. Various 
methods of providing the morph recognizer with the spelling knowledge using two types of 
morph representation are explored. 
 
The results are promising. In most of the cases, the spelling information helps improve the phone 
recognition accuracy of the overall system. There is significant reduction in phone recognition 
error rate when the system is provided with the correct letter sequences. However, there is no 
promising sign that the pronunciation knowledge could help the letter recognition task in most 
cases. 
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Title: Principal Research Scientist  
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Chapter 1  

 

Introduction 

 

1.1 Problem Definition 

 

The universe of proper names is a large set of words, many of which have very rare usage. 

Computer conversational system will benefit greatly if machines can understand proper names. 

For example, an automatic flight reservation system would be more practical if the machine can 

understand all proper names that are absent from its name lexicon, including the names of place 

of origin and destination, as well as the person it is conversing with, correctly. Two important 

capabilities that would help a computer to achieve a goal of universal name recognition are (1) 

given a sequence of letters in a proper name, the machine should be able to know how that letter 

sequence is pronounced, and (2) given the pronunciation of a proper name, it should be able to 

propose plausible spellings for that name.  

 

The problem of automatic speech recognition of proper nouns is different from the one of 

common words in several ways. Proper nouns have a different structure from common words. 

Specifically, common words can be decomposed into substructure such as prefix, stressed-root, 

unstressed-root, suffix, etc. In proper nouns, it is possible to do such subword decomposition, but 

the rules and the units used should be different. In other words, the decomposition rules that work 

well with most of the common words are not appropriate for proper nouns. Furthermore, 

recognition of foreign proper names, which can be spelled using the English alphabet, can be 

hard. For example, a Japanese name like “Takayama” does not have an obvious stressed root. 

Some letter sequences rarely occur, if at all, in English common words but appear quite 

prevalently in popular names. For example,  “-ohn”, in the name “John”, is rarely, if ever, used in 

common words. This problem is even more pronounced in foreign names, such the “vl” in 

“Vladimir”. 
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When a human hears the pronunciation of proper names that he/she has never encountered before, 

he/she might not be able to recognize those names perfectly and is likely to try to get more 

information about them. One of the additional pieces of information one often seeks to have is the 

spelling of those names. On the other hand, when one comes across a sequence of letters that one 

is unfamiliar with, the pronunciation of that letter sequence often yields understanding. So, it 

should be reasonable to apply the situations above to computer recognition of proper nouns. 

Specifically, the machine should be able to utilize mutually supportive information between the 

pronunciation and spelling of a proper noun in the general proper noun recognition task. 

 

1.2 Subword modeling 

 

It is very inefficient, if possible, to let a machine know all of the proper names by making it 

memorize each proper name as a whole word, due to the large number of possible names. In order 

to handle this problem, the idea of teaching the machine to understand unknown words by 

learning from some relevant information obtained from known words needs to be deployed. One 

way of doing this is to break known words into sequences of smaller units and then reassemble 

these units to represent the desired unknown words. Sequences of phonemes are one of the 

possible alternatives for representing words. Given that we have all possible phonemes in our 

inventory of subword units, we can represent any words by sequences of our phonemes. 

However, without any intermediate layers between word and phonemes, the order of phonemes in 

a word can be quite arbitrary. Learning the sequences from a given set of words does not provide 

strong enough constraints for a machine to propose the phoneme sequences for unknown words. 

Replacing phoneme sequences with syllable sequences yields stronger constraints with a larger 

inventory size. Yet, in this representation, there is still the lack of a positional property. More 

specifically, given a specific syllable, we do not know where it would most possibly occur in the 

sequence of syllables for a word. To gain still more constraints, one can explore the idea of 

marked syllables, in which each syllable is attached with positional marker. This method makes 

the order of subword units for representing words less arbitrary. For example, if a syllable is 

marked “prefix”, this syllable can be used to represent a word only when it can be put at the very 

front of the sequence. One can use statistical methods to distinguish the properties of a syllable in 

this prefix position from those of other syllables. 
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Lau [2] and Parmar [1] used a set of subword units called “morphs” to represent common words. 

In this thesis we will adopt the idea of morphs as well. We expect this morph notation will work 

with the proper name decomposition task as well as it did for the common word case in Lau’s and 

Parmar’s research. 

 

Parmar used the probabilistic framework called “ANGIE” [5] to decompose common words into 

their corresponding morph sequences. For each common word, a parse tree, with word as its root, 

letters as its leaves and morphs as an intermediate layer helping constrain the parse tree, was 

constructed. In this thesis, we will explore the possibility of utilizing another probabilistic 

framework called TINA [4], instead of ANGIE, to provide the decompositions of proper names. 

Although TINA was originally designed to parse a sentence into its corresponding word 

sequences, we believe that TINA can be adapted to accomplish the proper name decomposition 

task as well, by looking at the proper names as if it were a sentence with the individual letters 

substituting for terminal nodes. 

 

The details of TINA and our morph representation will be discussed in Chapter 2. 

 

1.3 Research Goals 

 

The primary goal of this thesis is to propose a framework for recognition of proper names, 

especially people’s names. The class of names we are interested in is not restricted to only 

English or American names but also includes any names that can be spelled using the English 

alphabet. The motivation behind this thesis is that, when someone would like to tell his name to 

other people, if the name is not a very common proper name, such as “John” or “Bill” for 

example, it usually helps others to recognize the name more easily if the speaker spells his name 

for them.  This shows that people use the information residing in the spelling to help understand 

more about the name they hear.  Conversely, even though a spoken spelling of a word might not 

sound clear enough to a listener, they usually figure out what that spelling is once the word is 

pronounced. In this thesis, we study ways to use such mutual information in the spelling and 

pronunciation to improve the recognition performance of both the recognition of the spelling 

alone and the recognition of the pronunciation alone. 
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We will use “morphs”, defined as a particular spelling convention representing the syllables of 

words, as the medium to convey information between the pronounced utterances and the name-

spelling utterances. The spelling knowledge from the name-spelling utterances is encoded in the 

morph representation. Also the information about pronunciation is encoded in the same 

representation. Then, the recognition results for both phonemics and spelling can be derived 

directly from morphs. The details of the morph representation will be discussed in later chapters. 

 

One of the tasks embedded in our primary goal is to study how different sets of morphs and word 

decomposition rules affect the overall recognition results. To be more specific, we would like to 

see the difference between the performance of the system using different sets of morphs and ways 

to decompose words. We would also like to find out whether the sets of morphs derived from a 

limited corpus of data can be reasonably used to represent a different body of proper nouns and 

yield plausible performance for the overall system. 

 

In the rest of this thesis, we will use the word “name-spelling utterance” to refer to the utterance 

that contains the spelling of the name, such as “ d a v i d ”. And we will refer to the utterance that 

contains the spoken name as “pronounced utterance”. 

 

Conducting experiments on the framework of joint recognition between spelled and pronounced 

names, we can extend our study to cover the studying of the letter-to-sound and the sound-to-

letter problem. Since we have name-spelling utterances and pronounced utterances as inputs to 

our integrated system, and can process the recognition results in order to get resulting phone and 

letter sequences, this integrated system can be viewed as another alternative method for letter-to-

sound and sound-to-letter generation. 

 

1.4 Research Plan  

 

The primary goal of this research is to develop a framework for recognition of proper names by 

using mutual information in both pronounced and spelled utterances. In order to evaluate the 

recognition performance of the developed framework, we need to have the baseline 

performances. These numbers are the performances of the letter recognizer and morph recognizer, 

which are also the recognizers to be used in the block called integrated system in Figure 1-3. 
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According to Figure 1-3, instead of performing the recognition on each piece of information 

separately, both name-spelling utterances and pronounced utterances are fed into the integrated 

system, and the system proposes the final recognition result. The letter recognition accuracy 

obtained in this case is compared with the letter recognition accuracy obtained from running the 

letter recognizer in Figure 1-1 alone, while the phone recognition accuracy is compared with the 

phone recognition accuracy obtained from the recognizer in Figure 1-2. 

 

 

 

Figure 1-1: Block diagram of the letter recognition task 

 

 

 

 

 

Figure 1-2: Block diagram of the morph recognition task 

 

 

 

 

 

 

 

 

 

Figure 1-3: Block diagram of the integrated system performing both the spelling and 

pronunciation recognition 
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In the block called integrated system in Figure 1-3, name-spelling utterances are fed to the same 

letter recognizer in Figure 1-1, while pronounced utterances are fed to the morph recognizer in 

Figure 1-2. Then the proposed letter sequences from the letter recognizer are parsed by TINA, a 

natural language system that is capable of proposing candidate morph representations of the input 

letter sequences. Then these sets of morph representations are used as additional constraints for 

the morph recognizer for recognizing the corresponding pronounced utterance.  To gain more 

knowledge about how suitable different sets of morphs and word decomposition rules are for 

representing the proper nouns, the system in Figure 1-3 is elaborated into the block diagram in 

Figure 1-4 below. Each block is the same as the block called integrated system in Figure 1-3 but 

with different inventories of morphs and different rules for decomposing proper nouns into 

sequences of morphs. In this thesis, two types of morph representations are used. These two sets 

of morphs were developed along the way as we observed the training data and built the two 

recognizers. 

 

- Experiments done on “morph representation type I” are discussed in Chapter 7. 

- Experiments done on “morph representation type II” are discussed in Chapter 8. 

 

Furthermore, in addition to the information on spelling obtained from the proposed letter 

sequences from the letter recognizer, experiments are also conducted by giving the morph 

recognizer perfect knowledge of each name’s spelling. This perfect knowledge of the spelling is 

obtained by providing TINA with the correct letter sequences for each name instead of the noisy 

letter sequences from the letter recognizer. The performance of the system in this case should 

provide insight into how well the system performs on the letter-to-sound task augmented with a 

spoken pronunciation. 

 

In summary, the series of experiments conducted are grouped according to the morph inventories 

used. In each group, the varied parameters are the language model for the morph recognizer. The 

baseline morph recognizer has language models which are the bigram and trigram constructed 

from the lexicon of training data. Then, by composing this baseline language model with various 

sources of spelling information, we can generate different language models. The sources of 

spelling knowledge are the following: 
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- Spelling knowledge obtained from the ten letter sequences most preferred by the 

letter recognizers. 

- Spelling knowledge obtained from the top choice of the proposed le tter sequences 

from the letter recognizers. 

- Spelling knowledge obtained from the correct letter sequence. 

 

After we have the results from various experiments, we can compare the letter and phone 

accuracy with the ones from the baseline recognizer. Then the analysis and comparisons are done 

to identify the most suitable scenarios for the proper name recognition task. 

 

 

Figure 1-4: Block diagram of the experiments conducted in this thesis 
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1.5 Chapter Summary 

 

Enabling computers to understand proper names can be very beneficial to conversational systems. 

Proper names are distinctly different from common words in terms of their pronunciations and 

spellings. In this thesis we are trying to study how we could combine the information in both the 

spellings and pronunciations of proper names and use the combined information to fully 

recognize those proper names, assuming they are absent from the lexicon. One of the key ideas in 

this system is the proper name decomposition, in which a proper name was parsed into its sub-

word unit representation. “Morphs”, syllable -sized sub-word units, were used to represent proper 

names. This work is to some degree an extension of a previous study of the procedure for 

representing words using these morphs as basic units. It was shown, in the common nouns case, 

that a morph representation can provided substantial coverage for common English words, along 

with reasonable accuracy in terms of pronunciations [1]. 

 

The primary goal of this thesis was to propose a framework for recognition of proper names. This 

framework incorporates knowledge about the spelling of a proper name with knowledge of its 

pronunciation in order to improve the recognition performance. Our experiments varied along 

several dimensions, including the type of morphs and word decomposition rules used. 

 

Baseline recognizers, both for letters and morphs, were built. Their recognition results were kept 

in order to be compared with the corresponding recognition accuracies of the integrated system. 

An overview of the experiments conducted is described in Section 1.4. Various language models 

for the pronunciation recognizer in the integrated system were used in the experiments, and their 

resulting accuracies were compared with the corresponding accuracies in the baseline case. Each 

language model to be used was composed of two parts. The first part was common for all names, 

while the other part was derived specifically for each name from its corresponding spelling 

information obtained in various ways, including the letter recognition results from the letter 

recognizer and the correct letter sequences. Furthermore, two types of morph representation and 

their corresponding word decomposition rules were used in the experiments. 



 25

 

1.6 Thesis Outline 

 

In this chapter, we talked about the motivation of this thesis. Some of the background about the 

components used in building the system was discussed. Other background material, not discussed 

in this chapter, will be covered in later chapters. 

 

In Chapter 2, we will look at the TINA natural language system [4], which allows us to perform 

the word decomposition task, along with the details concerning the morph representation and the 

word decomposition procedure.  

 

The background used in building speech recognizers, another important component of the 

framework, will be discussed in Chapter 3. The system that is the basis of the recognizers built in 

this thesis is called the SUMMIT recognition system [9], [10]. The details about using this system 

in building two types of specific recognizers will be discussed later in Chapter 6. 

 

Another important part of these experiments is data. In Chapter 4, we will provide the 

information about the data we used throughout this research. The information includes the types 

of data we need, their sources, how we divide them into groups according to the purpose we want 

to use each group of data for, and some details about their contents. 

 

After describing the basis of the required components, we will introduce the integration of 

various components together. The broad picture of the overall system will be provided, and some 

issues about their interconnection will be discussed. 

 

In Chapter 6, we will describe how we build the recognizers we used to obtain the baseline 

performances. There are two recognition systems, the letter recognizer and the morph recognizer. 

Two of each type of recognizer were used in this research. The baseline accuracies of these 

recognizers will be shown.  

 

Chapter 7 and Chapter 8 are devoted to the actual experiment conducted in this research. The 

experiments in the two chapters differ by the morph representations and word decomposition 
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rules used. The goal of each experiment will be described along with the corresponding 

procedures. The results will be shown and analyzed.  

 

Finally, in Chapter 9, we will conclude our research and propose some possible work that can be 

done on the results we obtained. Also we will suggest some possible future experiments that 

cannot be done in this thesis due to time constraints. 
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Chapter 2  

 

Morph Representations and TINA 

 

2.1 Motivation 

 

In order to let the components involved in our framework share information, we use a syllable -

sized subword unit that we call “morphs” to represent proper names. In this chapter, we will 

introduce these morphs and discuss the method we used to decompose a proper name into the 

corresponding sequence of morphs. These morphs were used as the common unit for both the 

phone recognizers and the letter recognizers. Different sets of morphs and their corresponding 

word decomposition rules were used in the system in order to study the differences that various 

methods provide in term of recognition performance. 

 

One of the questions we are addressing in this thesis is whether TINA, a probabilistic  natural 

language framework intended to parse sentences into linguistic substructure, can be adapted to the 

task of parsing words into morphological substructure. The earlier part of the TINA discussion 

will provide the overview of the system and the basic  operations TINA performs on 

understanding sentences, namely parsing sentences into the syntactic and semantic constituents 

defined in its grammars. Also, TINA can take an N-best list and turn it into a cross-pollinated 

graph to be parsed in a single search to yield M-best parse trees. The later part of the TINA 

discussion concerns how we can create TINA grammars to be used in the task of parsing a proper 

noun into a sequence of morphs. In other words, we look at the proper nouns in this case as the 

whole sentences and treat letters as words, which are terminal elements of the parse tree. 
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2.2 Word formation of proper names 

 

Since the universe of proper names is a large set of words, it is impractical to provide all of them 

to the vocabulary of a recognition system in order to understand all of the proper names. One 

approach, which is also adopted in the common word case, is to find methods to represent this 

whole universe of words with sequences of smaller units, which, hopefully, are far fewer in 

number.  In English, one might use syllabification for dividing a word into its corresponding 

sequence of smaller units, which are then syllables. We feel that syllable -sized units provide a 

reasonable sized inventory with coverage over the majority of unseen names. However, due to the 

lack of a positional property of the syllable, we believe that it overgeneralizes the characteristics 

of its pattern. Thus, it sacrifices some potential constraints. For example, we believe that the 

occurrence of a syllable that appears at the front of a proper noun has a dramatically different 

probability distribution from the case when that syllable appears at the end, or any other location. 

Thus, we adopt the idea of syllable -sized units but incorporate some positional constraints into 

our subword unit, which is expected to provide us considerably stronger constraints for the proper 

noun recognition task. These units are called “morphs1”. In order to discriminate the probability 

spaces among the morphs in different positions, our morphs are somewhat arbitrarily divided into 

five categories. The five categories and their definitions are shown in Table 2-1. In the 

probabilistic training of our parser, the counting of the occurrences of letter sequences takes the 

morph categories into account. Thus, for example, we can distinguish between the probability of 

the letter “o” followed by the letter “n” in the prefix “on-” from the probability of the same letter 

sequence in the dsuf “-on”.  

 

Morph categories Definition 

Prefix an unstressed syllable preceding the first stressed syllable  

Sroot a stressed syllable  

Uroot an unstressed syllable immediately following a stressed syllable  

Dsuf a default unstressed syllable not falling in any of the other categories 

Isuf a terminal unstressed syllable characteristic of proper nouns 

 

Table 2-1:Our morph categories and their definitions 

                                                 
1 “Morphs” are arbitary subword units defined to represent words in our research. They are unrelated to 
“morphemes” in the classical linguistic theory. 
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In order to make these sub-word units more general, sroot is further divided into smaller units 

called onset expressing all initial consonants, and rhyme, containing the stressed vowel and all 

subsequent consonants. 

 

word

prefix sroot srooturoot dsuf isuf isuf

onset onsetrhyme rhyme  

 

Figure 2-1: Our decomposition of a proper name’s structure2 

 

 

There are some heuristic context-free rules governing the decomposition of a proper noun. Such 

rules were deployed to keep the decomposition meaningful and consistent. The rules were 

developed according to the definition of each morph category. The entire space of proper noun 

decomposition according to the rules we used in this thesis is shown in the network in Figures 2-2 

and 2-3. 

                                                 
2 The pattern repeats for words with multiple stressed syllables. 
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Figure 2-2: Network structure of a proper name 

 

 

 

 

 

Figure 2-3: Network structure of an sroot 
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2.3 Morph notations 

 

As mentioned above, we used “morphs” as the common units for conveying information between 

a spelled utterance and a pronounced utterance. Morphs are defined as syllable -sized units of a 

word, with both a phonemic and orthographic representation. Each morph belongs to one of the 

six sub-word unit categories, prefix, onset, rhyme, uroot, dsuf and isuf. Also, each morph consists 

of letters, upper and/or lower case, and a sub-word category marker. Sub-word category markers 

are the symbols, including “-”, “=”, “+”, used to denote different sub-word categories. How these 

marked morphs relate to the six categories is shown in Table 2-2 below. 

 

Category Marker Example morphs 

prefix “morph-” mc-, pro-, for- 

onset “morph=” j=,  J=, bh=, str= 

rhyme “=morph+” =ince+, =at+, =Ar+ 

uroot “morph” a, al , i 

dsuf “-morph” -y, -ie, -ger, -gia 

isuf “=morph” =s, =son, =sen 

 

 

Table 2-2: Morph categories 

 

Word decomposition into the sequence of morphs was designed in such a way that, if we discard 

all the markers appearing in each morph and convert all of the upper-case letters to lower-case, 

we can restore the way the original word was spelled. Apart from the spelling information that is 

encoded in the morphs, morphs also contain pronunciation information. Each morph has one or 

more pronunciations depending on how we design the morph system. 

 

In this thesis, we used two systems of morph representations in separate experiments, in order to 

study how we can design a suitable morph representation for proper names. The main distinction 

between the two is the issue of how to deal with spelling sequences that produce exactly the same 

morph except with different pronunciations. In the first system, each morph has a unique 

pronunciation. In this system we exploit upper-case letters in order to construct morphs with 
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different pronunciations but the same orthographies. An example of such a case is shown in Table 

2-3 below. 

 

decompositions morphs’ pronunciation 

diane : d= =i+ =ane+  
diaz   : d= =I+ =az+ 

=i+ : ay 

=I+ : iy 

jon    : j= =on+ 

jose   : J= =o+ s= =E+ 

j=  : jh 

J=  : hh 

 

Table 2-3: Examples of proper name decomposition using morph representation Type I 

 

The other system we used in this thesis does not use upper-case letters, but, instead, each morph 

is allowed to have multiple pronunciations. So, the number of morphs in this system is less than 

in the first system but, in return, we face more confusion about the pronunciation of each morph. 

The names “diane” and “diaz” in Table 2-4 can be decomposed using the same “=i+”, while the 

pronunciations of “=i+” can be either “ay” or “iy”. And the names “jon” and “jose” can be 

decomposed using the same “j=”, where the pronunciations of “j=” can be either “jh” or “hh” 

 

2.4 TINA: A Natural language system for spoken language applications 

 

2.4.1 Overview 

 

TINA is a natural language system developed by the Spoken Language Systems group, 

Laboratory for Computer Science, at MIT, for applications involving spoken language tasks. 

TINA produces a highly constraining hierarchical probabilistic language model to improve 

recognition performance. TINA has the ability to convert the input sentence into a parse tree 

corresponding to the sentence according to the given rules. TINA’s grammar rules are written 

such that they describe syntactic structures at high levels of a parse tree and semantic structures at 

the low levels. All of the meaning-carrying content of the sentence is completely encoded in the 

names of the categories of the parse tree. The context free rules are automatically converted to a 
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shared network structure, and probability assignments are derived automatically from a set of 

parsed sentences. In the next section, we will discuss the detailed description of TINA’s 

grammars and the probabilistic models. 

 

2.4.2 TINA’s grammars 

 

TINA’s context free grammars are the rules that let TINA know all the possible structures of the 

sentences of interest. For example, if we wish to parse a noun phrases (NP), one could provide the 

rules as in Figure 2-4 below to TINA. 

 

Sentence = NP 

NP  = Article [Adjective] [Adjective] Noun 

 

Figure 2-4: An example of TINA’s rules 

 

Each word is the name of a category or node in the parse tree, i.e. Sentence, NP, Article, 

Adjective and Noun, where the brackets signify optional nodes in the structure. This grammar can 

be used to parse the set of phrases shown on the left of Figure 2-5, each of which corresponds to 

the parsing result shown on the right. 

 

“a boy”    NP = Article Noun 

“the bottle”   NP = Article Noun 

“a beautiful town”  NP = Article Adjective Noun 

“the blue box”   NP = Article Adjective Noun 

“a cute young girl”  NP = Article Adjective Adjective Noun 

“the white tall building” NP = Article Adjective Adjective Noun 

 

Figure 2-5: Parsing of noun phrases according to the  rules given in Figure 2-4 

 

The grammar is converted to a network structure by merging common elements on the right-hand 

side of all rules sharing the same left-hand side category. Each left-hand side category becomes 
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associated with a parent node whose children are the collections of unique categories appearing in 

the right-hand sides of all the rules in the common set. Each parent node establishes a two 

dimensional array of permissible links among its children, based on the rules. Each child can link 

forward to all of the children that appear adjacent to that child in any of the shared rule set. 

Probabilities are determined for pairs of siblings though frequency counts on rules generated by 

parsing the training sentences. The parsing process achieves efficiency through structure-sharing 

among rules, resembling in this respect a top-down chart processor. 

 

 

 

 

Figure 2-6: Illustration of Noun Phrase parse tree 

 

2.4.3 Training of probabilities  

 

The grammar is built from a set of training sentences. TINA is exposed to this set of sentences 

and the probabilities of every arc between siblings is computed. More specifically, a record is 

kept of the relative counts of each subsequent sibling, with respect to each permissible child of 

the parent node as they occurred in an entire set of parsed training sentence. For example, in the 

noun phrase case above, suppose we end up with the probabilities as trained from the “corpus” in 

Figure 2-5 as in Figure 2-7. We can see that [Adjective] is followed four time by [Noun] and 

twice by [Adjective], so the network shows a probability of 1/3 for the self loop and 2/3 for the 

advance to [Noun]. 

Start

Noun Phrase

Article EndNounAdjective
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Figure 2-7: An example of a probabilistic network for Noun Phrase in the example 

 

In Figure 2-7, we can see that there is one self-loop in the network. The network with a self-loop 

is generalized to include any number of elements whose nodes contain the loop to themselves in a 

row. So, in our example, the rule is now capable of including any number of adjectives in a row. 

A phrase like “a thin tall Chinese guy” can be handled by the rule “NP = Article Adjective 

Adjective Adjective Noun”. Furthermore, there is a significant amount of sharing of individual 

sibling pairs among different rules. This sharing causes the so-called “cross-pollination effect”. 

An example of this effect is shown below. 

 

Suppose we have the following rules: 

 

Parent = Child_1 Child_2 Child_2 

Parent = Child_1 Child_2 Child_3 

Parent = Child_2 Child_4 

Parent = Child_1 Child_3 Child_4 

 

We can obtain the probabilistic network as in Figure 2-8 below. 

Start Article Adjective Noun End

11

2/3

1/3

1/32/3
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Figure 2-8: Probabilistic network derived from given rules 

 

 

From the network in Figure 2-8, we can see that the [Parent] that has structure like: 

 

Parent = Child_1 Child_2 Child_3 Child_4 

Parent = Child_1 Child_3 

 

can be parsed perfectly even though we did not specify this pattern explicitly in the rules. 

 

2.4.4 Parsing N-best lists 

 

The input passed to TINA is usually the recognition result from a speech recognizer. Thus, apart from 

taking one sentence and parsing it into a series of parse trees, TINA is also capable of taking in an N-best 

list of sentences, which can come from a speech recognizer’s output, as an input for building the resulting 

parse trees. By first turning the input N-best list into a cross-pollinated graph, in which the same words 

appearing in any of the N-best list items are treated as the same node in the graph, TINA searches for M 

best resulting parse trees according to the graph and its trained grammars. This mechanism of constructing 

an interconnected graph allows an expansion of the solution space, which might permit the recovery of the 

correct answer omitted in the original list due to the recognition error. An example of an N-best list and its 

corresponding interconnected graph are illustrated in Figure 2-9 below. 

 

Start Child_1 Child_2 Child_3 Child_4 End
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NBEST 

 

Word_1 Word_2 Word_3 Word_4 

Word_5 Word_3 Word_4 

Word_1 Word_5 

Word_1 Word_2 Word_3 

Word_6 Word_4 

 

(a) 

 

word_1 word_2 word_3 word_4 endstart

word_5

word_6

 

 

(b) 

 

Figure 2-9: (a) An example of an N-best list of sentences (b) its corresponding cross-pollinated 

graph 

 

In the next section we will look at how we can decompose words like proper names into sub-

word units and then discuss how we define the word decomposition rules for TINA to construct a 

parse tree of a proper name. 
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2.5 Using TINA at the sub-word level 

 

We have mentioned how TINA can parse sentences into a series of words. Here, we are going to 

look at the sentence level as only one word, more specifically, one proper name. TINA’s task is to 

decompose the proper name into a series of appropriate morphs according to the given rules. In 

order to obtain the probabilistic network as in Figures 2-2 and 2-3, the following rules are 

provided to TINA. 

 

sentence = [ prefix ] sroot [ dsuf ] sroot uroot [ dsuf ] [ isuf ] 

sentence = [ prefix ] sroot uroot [ dsuf ] sroot [ dsuf ] [ isuf ]  

sentence = [ prefix ] sroot uroot [ dsuf ] sroot [ dsuf ] isuf 

sentence = sroot isuf sroot [ uroot ] [ dsuf ] [ isuf ] 

sentence = sroot isuf sroot sroot [ uroot ] [ dsuf ] [ isuf ] 

sentence = sroot [ dsuf ] [ isuf ] 

sentence = prefix sroot 

sroot   = [ onset ] rhyme 

 

According to this set of rules, the network looks like the one in Figures 2.2 and 2.3. The 

probabilities of the arcs are trained by providing TINA a name training lexicon. In this lexicon, 

the names in the training set are listed and provided with the corresponding morph 

representations. By counting the frequency of each pair of sub-word categories and normalizing, 

the probabilities are added to the appropriate arcs. An example showing the results of word 

decomposition according to this set of rules is shown in Figure 2-10. 
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sentence

word

srootprefix

onset rhyme

dsuf isuf

slli pp hd e i

=l1+=l2+=i3+ -p2p2= h1=d2- e2- -i2 =s1

 

 

 

Figure 2-10: TINA’s parse tree of the name “dephillips” (de- ph= =ill+ -ip =s) 

 

The root of the parse tree is the sentence layer, which acts as the parent of the word layer. 

Directly below the word layer is the morph category layer, in which the names of morph 

categories appear. The word layer sprouts nodes on the morph layer according to the word 

decomposition rules given to TINA. The pre-terminal layer is the morph layer. Morphs presented 

in this layer of a TINA parse tree are not encoded as whole morphs. Here each morph is 

represented by a sequence of pre-terminal units, which are derived from the corresponding morph 

by separating each letter in that morph into a separate pre-terminal unit. Then, each pre-terminal 

unit is attached with the order of the letter in the original morph, counted from right to left. For 

example, the first letter in a three-letter morph is marked with number three following that letter. 

The second is marked with number two and the last letter is marked with number one. In order to 

identify the morph category, the morph category markers are preserved in each pre-terminal unit. 

For example, the pre-terminal unit representation of the morph “=Ind+” is “=I3+ =n2+ =d1+”. 

Each pre-terminal node has one child which is the letter used in that node. Thus, the terminal 

layer of the parse tree in the sub-word case contains the letters used to spell the original proper 

names. The reason why we marked the pre-terminal nodes with their order is to prevent some 

cross-pollination effects that will bring an over-generalization problem in the morph level. If we 
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omit the numbers in the nodes in the pre-terminal layer, TINA is allowed to create undesired 

morphs by cross-pollination, because those nodes are considered the same node in the 

probabilistic network. An example of such a case is when we have the morph “=ine+” and 

“=er+”, without the order notation in the pre-terminal layer, TINA might come up with a morph 

like “=iner+”, which is not allowed, at least, for its multi-syllable property. And, since the pre-

terminal nodes, in the same morph category, labeled with the same letter but different number are 

considered different nodes in the probabilistic network, the creation of undesired morphs is 

reduced, if not eliminated. According to the previous example, the pre-terminal unit “=e1+” in 

“=ine+” is different from the pre-terminal layer node “=e2+” in the other morph. This also yields 

a significantly more specific probability model, encoding sequence information at both the morph 

and the letter level. 

 

Another interesting issue about TINA’s rules we implemented in this thesis is the division of 

morph categories. We should note that no matter how we divide any morph categories in Figure 

2-2, the probabilistic network will still hold. In this thesis, we suspect that the probability 

distribution of uroots starting with vowels is different from the probability distribution of uroots 

starting with consonants. Thus, we categorize all uroots according to whether they start with a 

vowel or consonant. Similarly, we separate dsufs starting with vowels and dsufs starting with 

consonants into different groups. 

 

2.6 Chapter Summary 

 

In this chapter, we introduced the method we used to decompose proper nouns into subword units 

we call “morphs”. The idea of this method is the blending of syllabification and morphology, 

which are two of many possible technique people might exploit in decomposing English words. 

Each morph is syllable-sized and does not necessarily have meaning, while it is categorized as 

one of the six morph categories, which are prefix, onset, rhyme, uroot, dsuf and isuf. Proper name 

decomposition into morph sequences requires specific rules, which define allowed transitions 

between morph categories in the level directly below the word level. Each morph is marked with 

a special marker according to its category. There are two types of morph representation used in 

this thesis. In one type, each morph has a unique pronunciation, while in the other type, the 

orthography, excluding case information, of a morph is unique. 
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TINA is a system originally designed for parsing a sentence into the corresponding parse tree 

according to a set of grammar rules and trained probabilities. In this thesis, we tried to adapt 

TINA to a subword grammar in order for TINA to be able to work at the subword level. By 

utilizing a subword grammar, TINA can be used in the proper name decomposition task. 

Specifically, TINA can propose parse trees from the input letter sequence of a proper name. The 

parse trees are constructed by a top-down algorithm. They are constrained by word 

decomposition rules, the inventories of morphs used, and the input letter sequences at the parse 

tree terminal. 
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Chapter 3  

 

The SUMMIT Speech Recognizer 

 

3.1 Motivation 

 

In this chapter, we will describe the recognition system that we used to build the recognizers used 

in this thesis. This system is called the “SUMMIT” recognition system [9], [10]. The purpose of 

this chapter is to provide the basic idea about this recognition system. The background in this 

chapter should be useful in understanding the building of recognizers, to be described in    

Chapter 6.  

 

3.2 Speech recognition in SUMMIT 

 

The SUMMIT recognition system is a segment-based speech recognition engine developed in the 

Spoken Language System group at MIT. This system is used in the group to build speech 

recognizers, based on a probabilistic framework. The function of this system is to find the word 

sequence, which is probabilistically closest to the input acoustic information contained in the 

audio waveform. 

 

Speech recognizers typically represent the acoustic information as a frame-based sequence of 

observations. They convert the input acoustic information into a series of vectors. Each vector 

captures information about the speech signal during a short window in the input speech 

waveform. Such windows are usually called “frames”. The observation frames are usually equally 

spaced and slightly overlapping in time. The full set of frame-based observations is represented 

as: 
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O = { o1, o2, …, oNf} 

 

 

where O   : set of observations 

  on  : a frame-based observation vector. 

  Nf : total number of frames throughout the waveform. 

 

Usually, the observation vectors are some representations of the spectral information of the 

waveform presented in the corresponding frames. The spectral representation that is widely used 

is Mel frequency scale cepstral coefficients (MFCC’s). In frame-based approaches, such as 

Hidden Markov Models (HMM’s), recognition uses the frame-based observations directly in the 

probabilistic framework used for scoring and search. The problem of speech recognition in these 

approaches is basically the problem of finding a hypothesized string of words, W’, which is most 

likely given O, to maximize the probability that that string really occurs given the observations. 

This is represented as: 

 

 

In SUMMIT, which is a segment-based system, the set of observation vectors, O, is first 

transformed into a network of segment-based feature vectors, V. And the recognition is 

performed using the segment network instead of the sequence of frames. Thus, the generic 

probabilistic expression used to describe the recognition process by SUMMIT is represented as: 

 

 

In SUMMIT, it is presumed that each segmental unit contains one phonetic unit. Thus, SUMMIT 

models a word as a sequence of phones, each of which occupies one segment in the segment 

network. Segment networks created by SUMMIT are shown in Figure 3-1. On the top is the time 

waveform of the utterance “mark”. Directly below the time waveform is the corresponding 

spectrogram. Shown below the spectrogram is the segment network, where the blocks with darker 

shade are corresponding to the chosen phonetic string, which is shown below the segment 

network. In this case, the recognized phonetic string is “m aa –r kcl k”. And the word (morph in 
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this case) string chosen is “m= =arc+”. The correct phonetic string, correct word string and the 

original transcription for this utterance are shown at the bottom of the figure.  

 

During the search for the best word sequence, W’, SUMMIT chooses the single best path through 

the segment network. Also, the search process finds the single best path of segments S’ through 

the segment network and the single best sequence of phonetic units P’. With these additions, the 

probabilistic expression describing the recognition problem becomes: 

 

 

By Bayes’ Rules, we have: 

 

 

And, since p(V) is constant over all W, P and S, the recognizer’s decoding expression can be 

written as: 

 

We can see that the argument we want to maximize is the product of four probabilities, which are 

p(V|S,W,P), p(S|W,P), p(P|W) and p(W). According to their meaning, these four probabilities 

are referred to as “the acoustic model”, “the duration model”, “the pronunciation model” and “the 

language model” respectively. Each model will be discussed in the following separate sections 

except the duration model. Although the SUMMIT recognition system has the capability to 

incorporate a duration model, we will not use one in our work since features related to duration 

are already included in the segment feature vectors used in V. 
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Figure 3-1: An example of word recognition results for the name “Mark”. 

Note: -r is a special symbol reserved for postvocalic ‘r’ 

and kcl stands for the closure interval of the ‘k’ consonant 
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In addition to p(V|S,P,W), we can then add context dependency into our acoustic model by 

augmenting the series of landmarks, Z, into the calculation of probability. The series of acoustic 

landmarks represents the potential segment boundaries separating the segment elements in V. 

Acoustic measurements can be made around these landmarks in both the forward and backward 

directions. The acoustic information at these landmarks is called “diphone” models since it 

captures acoustic information of both the phones preceding and succeeding the phone boundaries. 

The general expression for the acoustic model when both segment and diphone models are used is 

p(V,Z|S,P,W). We assume independence between V and Z. Then p(V,Z|S,P,W) is the product of 

p(V|S,P,W) and p(Z|S,P,W). To calculate the acoustic model, we estimate the probability density 

function to be mixtures of diagonal Gaussians. These models are trained using the standard K-

means and EM algorithms. The number of mixture components in each model is allowed to vary 

depending on the size of the measurement vector and the number of available training vectors. 

 

The pronunciation model is represented with the expression p(P|W), the probability that the given 

word W has the phonetic string P. In order to calculate this probability, first, each word in the 

vocabulary of the recognizer must be given a phonetic baseform pronunciation as well as its 

possible pronunciations. Then, the baseform pronunciations are expanded to cover all the possible 

alternatives, which might occur due to general phonological variations. Some phonological rules, 

which define potential variations, are provided. All of the possible pronunciations for each word 

are presented in a phonetic network, in which each arc has its corresponding probability of 

traversing that arc. These probabilities are then used to calculate the pronunciation score. 

 

The language model is represented by p(W), the probability that a word W occurs. Generally, a 

form of language models called “N-gram” is used as SUMMIT’s language model, where N is a 

number. In an N-gram language model, occurrences of each particular group of N words are 

counted and then normalized in order to obtain the probabilities. The most common N-grams 

used with the SUMMIT recognizer are bigram and trigram, in which probabilities of the 

occurrences of particular sequences of two and three words are calculated. 

 

In this thesis, this language model is the part leading to most of the experiments for studying the 

framework of our integrated recognizers. The details of how we vary the types of language 

models used will be discussed in Chapter 7 and Chapter 8.     
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In SUMMIT, the representations of the acoustic model, the pronunciation model and the language 

model are in the form of a Finite State Transducer (FST), whose structure will be discussed in 

Section 3.3. The acoustic model is represented by the FST mapping acoustic features to phonetic 

units. The pronunciation model is represented by the FST mapping phonetic units to word 

sequences, and the language model is represented by the FST describing the probability of 

occurrence of each word sequence. 

 

3.3 Finite State Transducers (FSTs) 

 

Most of the components and constraints in a speech recognition system, for example, language 

models, phonological rules and recognition paths, are finite state. Thus, the same representation 

should be utilized for consistency and flexibility. In SUMMIT, the Finite State Transducers 

(FSTs) are used for the representation of these components. In this section, we will introduce the 

Finite State Acceptor (FSA), which is the simpler version of the FST and then move forward to 

the FST and the composition operation of the FSTs that we will use as our key operation to 

construct the language models used in our experiments. 

 

3.3.1 FSA, FST and weighted FST 

 

A Finite State Acceptor (FSA) is a graph consisting of a finite number of states and transitions 

among the states. The graph begins in a particular state and change states when specific 

conditions occur. At any point in its operation, the next state can be determined by knowing the 

current state and the conditions which can cause the transitions. The graph ends at one or more 

final states. In our notation, each circle represents a node in the graph and each arc shows the 

transition between two nodes. Attached with each arc is the condition in which the transition 

corresponding to that arc occurs. A double circle represents an end node. An example of an FSA 

is shown in Figure 3-2. 
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A Finite State Transducer (FST) is defined in the same way as an FSA except that, each transition 

in an FST is allowed to have output. Each arc in an FST is labeled by the form “input:output”. 

With the conditions and outputs attached to FST arcs, it can be used to relate the input sequences 

to the output sequences. Furthermore, a number can also be attached to each arc in order to 

determine the weight of the corresponding transition. An example of a weighted FST is shown in 

Figure 3-3. This way of mapping the input sequence to the output sequence is used to represent 

various components, including the acoustic model, the pronunciation model and the language 

model, in a SUMMIT recognizer. The input sequence of the FST representing the acoustic model 

is the sequence of segment-based feature vectors, and the output sequence is the sequence of 

phones. For the pronunciation model, the input sequence of the FST is the phone sequence and 

the output sequence is the word sequence. Both the input and the output sequences of the FST 

representing the language model are typically word sequences, but in our case are morph 

sequences. The weights along the path in each FST represent the probability of the occurrence of 

the corresponding transitions. As the graph is traversed, the weights along the path passed are 

accumulated. The accumulated weight when an end node is reached is the score for the mapping 

between the corresponding input and output sequences.  
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Figure 3-2: An example of an FSA 
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Figure 3-3: An example of a weighted FST 

 

3.3.2 Composite FST 

 

In building a series of cascaded FSTs, the composition approach is utilized. The output sequence 

of an FST is fed to the input of the next FST. This approach is used to cascade the acoustic model 

FST, the pronunciation model FST and the language model FST together in order to obtain the 

FST that maps the input segment-based feature vectors to the output word sequence. For example, 

if we have the mapping FSTs called FSTa and FSTb shown in Figure 3-4(a) and 3-4(b), the 

composite FST (FSTa ο FSTb) will be as in Figure 3-4(c). This example is adapted from Dr. 

Hetherington’s example of the FST composition in his talk given in a discussion group in the 

Spoken Language System group. State (a,b) in the composite FST is associated with state a from 

FSTa and state b from FSTb. The final state occurs only if both associated states from FSTa and 

FSTb are final. The transition with label x:y occurs only if  FSTa has x:i  and FSTb has i:y 

transition. “ε” means the transition takes no input. The weights are calculated by multiplication of 

the weights of the associated transitions. Suppose the input sequence is “A”, the mapping works 

as follows: 

 

(FSTa ο FSTb)(A) =  FSTb ( FSTa(A)) 

   = FSTb (ab) 

   = xz with score 0.125 or xyz with score 0.125 
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Figure 3-4: (a) FSTa in the example (b) FSTb in the example (c) (FSTa ο FSTb) 

(adapted from Dr. Hetherington’s example given in a discussion group session in the SLS group) 
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3.4 Composite language model of our pronunciation recognizers 

 

As suggested in the preceding section, the basic units the pronunciation recognizer used in our 

integrated system are morphs instead of words. Thus the mapping becomes the mapping from 

segment-based feature vectors to phonetic sequences to morph sequences. And then the language 

model specifies the probability of the occurrence of each morph sequence. In different 

experiments, we use different language models. One part of the language model is the baseline 

FST obtained from the training name lexicon. These FSTs are applied to every pronunciation 

utterance. The other parts of the language model are the FSTs derived from the spelling 

knowledge, treated in different methods. All of the language model FSTs can be considered the 

mapping from input morph sequences to themselves, but with different scores in the different 

FSTs. Thus, composing the baseline FST with each FST, obtained from the spelling knowledge, 

creates different language model to be experimented with. More details about where each FST 

obtained from the spelling knowledge comes from will be shown in Chapters 7 and 8. 

 

3.5 Chapter summary 

 

In this chapter, we discussed the basis of the SUMMIT recognition system, in which various 

probabilities are calculated in order to perform the speech recognition task. The input waveform 

is represented in the form of a segment network which is walked, and scores are calculated based 

on this network. There are three models or scores, apart from the duration model that is not 

currently used, involved in recognizing the input waveform. They are the acoustic model, which 

also includes context-dependency through the boundary model, the pronunciation model and the 

language model. The acoustic model is the probability of occurrence of the segment-based feature 

vectors, derived from the input waveform, given sequences of words, segments and phonetic 

units. The pronunciation model is the probability of occurrence of sequences of phonetic units 

given specific words. And the language model is the probability of occurrence of each word given 

its linguistic context. Also, the FST representation, which is used to represent the models in the 

SUMMIT recognizer, is discussed along with examples of composition among various FSTs. 



 53

Chapter 4  

 

Data 

 

4.1 Motivation 

 

Since data play a crucial part in our research, we dedicate this chapter to describing the data and 

how we prepare and use them.  Apart from the data in the form of audio files, we also made use 

of a list of proper names gathered from various places as the source used to obtain statistical 

models of letter sequences for names. The separation of the data into sets and the broad 

characteristics of each set will also be discussed.    

 

4.2 Type of data needed 

 

The data we used throughout this research can be divided into two main categories. First are the 

audio waveforms. These data required somebody to say or spell the names while being recorded. 

These audio files are then categorized into two groups according to their contents. The audio files 

whose contents contain spelled proper names are called “name-spelling utterances”. In the other 

group, the contents of the audio files contain pronunciations of proper names.  These audio files 

are called “pronouncing utterances”. 

 

The other type of data needed is a lot simpler but as important. These data are the list of proper 

names that provide us with examples of letter patterns in proper names. These data are collected 

in the form of plain text. We would like to collect as many proper names as possible in order for 

them to represent the universe of the spelling of proper names. We should note that, by using the 
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word proper names, we really are interested in people’s names, as opposed to, for example, place 

names. 

 

4.3 Data Sources 

 

The sources of data can be divided according to the type of data, i.e. name lists and audio files. 

 

4.3.1 Name lists 

 

This type of data was easier to collect and required less work to prepare since they are in plain 

text form. We gathered the names from various sources, especially from the World Wide Web. 

Such websites where we gathered names were, for example, websites providing telephone 

directories, websites dedicated to baby naming and websites containing census information. 

Another portion of our name list came from publications containing people’s names, such as, 

names of US senators and names of MIT’s personnel. Apart from those sources mentioned, we 

also obtained some names from transcribing the audio files. The sources of these audio files will 

be discussed in the next section. 

 

The total number of names gathered was 104,356 names. The spellings of the names in this name 

list were used to train the language model for the “general” letter recognizer, to be discussed in 

Chapter 6.  

 

4.3.2 Audio files 

  

Throughout the period of this research, we obtained the audio files we need from two sources. 

The first source is the OGI corpus [12], [13], which is the spelled and spoken word telephone 

corpus created by the Oregon Graduate Institute (OGI).     This corpus consists of speech 

recordings from over 3650 telephone calls, each made by a different speaker, to an automated 

prompting/recording system. Speakers were asked to say their name, where they were calling 

from, and where they grew up. Also, they were asked to spell their first and last names. However, 
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the data we used were the waveform files whose contents contained the saying and the spelling of 

the first and last names only. Each response to a prompt was stored as a separate waveform file, 

tp make it easier to use the data in our experiments. Also the text transcription of each utterance 

was already provided. 

 

The other source of audio files is the Jupiter [11] system built by the Spoken Language Systems 

group, Laboratory for Computer Science at Massachusetts Institute of Technology. The Jupiter 

system is the system where people can call via a toll-free number and ask about the weather 

forecast and some other weather related questions. Our data were collected over a period of 

several months in 1999.  Each caller was asked to say and spell a name of a person he or she 

knew, at the very beginning of their dialogue. The response to this prompt was recorded as one 

waveform file. Thus, in order to use the audio files recorded from the Jupiter system, the files 

needed to be properly cut into pieces. Each piece contained either the spelling or the pronouncing 

information only. 

 

Though both sources provide telephone-quality audio files, we prefer to have more of the data 

from the Jupiter domain since these data better represent the real data in the system we are going 

to deal with in the future at the Spoken Language System group. However, due to time constraints 

and the amount of data we need, we found it necessary to fully utilize the OGI corpus together 

with the data form the Jupiter system. 

 

4.4 Jupiter data preparation 

 

Since the naturalness of the speech is concerned, we have asked each caller to say and spell a 

person’s name in one turn and we did not restrict how the callers formulate their expressions.  

Thus, we cannot expect consistent structure for each utterance. Also, the quality of utterances 

varied from call to call due to the fact that the calls were made through the phone line. Due to 

these variations, collecting the audio data to be used in the research was selective, and the 

extraction of the name-spelling utterances and the pronunciation utterances from the original 

waveforms was done manually, with the help of a forced recognition technique. 
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Some examples of the utterances from which we can extract the name-spelling utterances and/or 

the pronounced utterance are in the following forms. 

 

“Bob” ‘b o b’ 

‘b r i t t a n y’ “Brittany” 

The name of someone I know is “Michelle” 

“Jim” “Glass” ‘j i m’ “Jim” ‘g l a s s’ “Glass” 

Uh “Mary” ‘m a r y’ 

‘j a s o n’ jas- [ incomplete ] 

“John” j o [ incomplete ] 

[ incomplete ] –ohn ‘j o h n’ 

[ incomplete ] u s a n “Susan” 

“Stephen” 

‘j o e’ 

 

Double quotes indicate that the word enclosed by them can then be extracted as the usable 

pronounced utterance and single quotes indicate that the word enclosed can be the name-spelling 

utterance. 

 

There are some utterances that we discard since they contain no usable information. The types of 

utterances we did not use are, for example, the utterances in which both saying and spelling of the 

names are incomplete, the utterances which are too noisy or unintelligible, and the utterances that 

contain neither the saying nor the spelling of proper names. 

 

The first step in preparing the audio files was to transcribe all of the utterances collected.  Then 

we listed all the vocabularies used along with their pronunciation. All of the utterances were 

forced recognized in order to create the time-aligned phonetic path for each utterance. By looking 

at the time-aligned phonetic paths, we could then tell the location of the desired part of the 

waveform with respect to time. Consequently, we extracted the waveform in the time interval we 

want and suitably stored it as the name-spelling utterance or the pronounced utterance. 

 

Apart from the preparation of the audio files, we also need a name lexicon which provides a 

pronunciation in the form of morphs in both Type I and Type II formats. The names were given 

the pronunciation by manually decomposing each name. During the process of building the name 
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lexicon, the morph lexicon in which the pronunciation of each morph was defined was created 

from the list of morphs used in the name lexicon. 

 

4.5 The training set and the test set 

 

We divided our data into two sets, namely, a training set and a test set. The data in the training set 

were used in various tasks throughout the research. The tasks we used the training set for were as 

follows: 

 

- The names in the training set were  studied in order to define the inventories of morphs for 

both Type I and Type II. In other words, both morphs Type I and Type II were defined to 

cover all the names in the training set. 

- The spellings of the names in the training set were used to build the bigram and trigram 

language models for the “training-set oriented” letter recognizer, to be discussed in Chapter 6. 

- The morph decompositions of the names in the training set were used to train the probabilities 

of TINA’s grammars for both Type I and Type II. 

- The morph decompositions of the names in the training set were used to build the bigram and 

trigram language models for the baseline morph recognizer 

- In the experiments, to be discussed in Chapter 7 and Chapter 8, we adjusted the parameters of 

the integrated system to optimize the performance of each case based on the training set. 

 

The data in the test set were used for testing the performances of the pronunciation and letter 

recognizers. Also they were used to test various frameworks of the integrated system defined in 

Chapter 7 and Chapter 8. 

 

Some of the names in the training set came from the OGI corpus and the others come from the 

data collected earlier in the Jupiter system. The names in the test set came form the data collected 

from the Jupiter system after the training set was defined.  The details about the two sets are 

shown in Tables 4-1 and 4-2. 
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The training set 

Sources OGI corpus / Jupiter system 

OGI 1299 Number of pronounced utterances 

Jupiter 3126 

OGI 1169 Number of name-spelling utterances 

Jupiter 3572 

OGI 574 Number of unique names 

Jupiter 1887 

Total number of pronounced utterances 4425 

Total number of name-spelling utterances 4741 

Total number of utterances 9266 

Total number of unique names 2248 

 

Table 4-1: Details of the training set 

 

 

 

 

The test set 

Sources Jupiter system 

Number of pronounced utterances 1383 

Number of name-spelling utterances 1275 

Number of unique names 475 

Total number of utterances 2658 

 

Table 4-2: Details of the test set 
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We provided the name lexicon and morph lexicon of both types for each of the sets.  There were 

1266 Type I morphs and 1087 Type II morphs used in the name lexicon of the training set and 

451 Type I morphs and 412 Type II morphs used in the name lexicon of the test set. The sizes of 

the overlap were 390 morphs for Type I and 377 for Type II. Note that, in building the morph 

recognizer and defining TINA’s rules, only the morphs appearing in the training set were used. 

And, since 91.5% of Type II morphs used in the test set are also used in the training set, while it 

is 86.4% for Type I morphs, Type II morphs should have better generalizing properties than Type 

I morphs. Among the 475 names in the name lexicon of the test set, there are 275 names that are 

also present in the training set.  

 

Figures 4-1 and 4-2 below illustrate the sizes of the various name and morph lexicons along with 

their overlaps. 

 

 

 

 

 

 

Figure 4-1: Sizes of the name lexicons of the training set and the test set 

 

 

 

 

training set : 2248 names

te st s et :  4
75 nam

es

275

200

1973



 60

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

 

 

Figure 4-2: Sizes of the morph lexicons of the training set and the test set 
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4.6 Chapter summary 

 

There were two types of data used throughout this research. They were lists of names and audio 

files containing either pronunciations or spellings of proper names. The list of names used was 

gathered from various sources including transcription of the audio files. Some audio files were 

obtained by recording the utterances from phone calls to the Jupiter weather information system. 

Other audio files were taken from the OGI corpus, which contained telephone-quality utterances 

of people spelling or saying names. Data were grouped into two sets, the training set and the test 

set. The details of each set as well as their corresponding morphs, both Type I and Type II, as 

well as their sizes and overlapped portions were discussed in the chapter. 
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Chapter 5  

 

The Integration of Components 

 

5.1 Motivation 

 

In Chapter 2, we talked about TINA, which is the natural language component used to propose 

pronunciations from the given letter sequences. In this chapter we will describe how we 

combined TINA and other components together in order to perform the letter and pronunciation 

task we desired. The other two components apart from TINA are the two recognizers performing 

two different tasks, which are (1) recognizing the letter sequences from the name-spelling 

utterances, and (2) recognizing the morph sequences from the pronounced utterances. How the 

functions of the two recognizers are related in the system with the assistance of TINA will be 

discussed. The details in building the two recognizers will be discussed later in Chapters 6 and 7.  

 

5.2 Overview 

 

The goal of our system is to gather the information contained in both the name-spelling utterances 

and the pronounced utterances and use the information from the two sources together to propose 

the recognition result of both types of utterances. The hope is that the recognition results of this 

integrated system will provide better accuracy in terms of both the letter recognition accuracy and 

the phone recognition accuracy than running the spelling recognition task and the pronunciation 

recognition task individually.  

 

In order to accomplish this, we need at least three basic functions in this system. First, we need a 

component that is able to deal with the name-spelling utterances and propose the possible letter 
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sequences for those utterances. Next, we need a component that is able to recognize the input 

pronounced utterances. The morph sequences corresponding to the input pronunciation utterances 

are expected from this component. Finally, we need a way for the two components to share 

information where appropriate. And the morph unit is chosen as a means for the two recognizers 

to share information. 

 

Clearly, the first two components are the letter recognizer and the morph recognizer. Our 

expectation is that the letter recognition task should be easier and yield more accurate recognition 

results than the morph recognition task. Therefore, we designed the system so that the preliminary 

letter recognition task does not use any information contained in the pronounced utterances but 

pays attention to the name-spelling utterance alone. Then, the morph recognition task exploits the 

information in the proposed letter sequences from the letter recognizer along with the information 

in the input pronounced utterances. Thus, we need a component that allows parsing from the 

letter sequences into the form that the morph recognizer can use. This is where TINA comes into 

play.  TINA, operating at a sub-word level, is responsible for turning the input letter sequences 

into the appropriate morph sequences for each name. These morph sequences are used as 

additional constraints for the morph recognition task. 

 

The proposed morph sequences, derived from the name-spelling utterances via the letter 

recognizer and TINA, are the recognition results of the integrated system. From these proposed 

morph sequences, we can determine the pronunciation and the spelling recognition performance 

of the system, due to the fact that both the pronunciation and the spelling information are encoded 

in each morph already. 

 

5.3 Details of integration 

 

A block diagram of the interconnection between the components in our system is shown in Figure 

5-1 below. 
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Figure 5-1: The integration of the components 

 

At the output of the letter recognizer, the 10-best list of the proposed letter sequences is 

presented. This list contains the ten letter sequences with the highest total score from the letter 

recognizer. The letter sequences were listed in a certain format, in which the 10-best list letter 

sequences corresponding to each name-spelling utterance is grouped together. Some examples of 

letter sequences sent to TINA are shown in Figure 5-2. 

 

TINA has a mechanism to construct an interconnected graph from an n-best list, which provides 

an expanded solution space due to cross-pollination, as mentioned earlier in Chapter 2. We felt 

that this mechanism might permit the recovery of a correct letter sequence that was absent from 

the original list. For example, if we look at the last 10-best list in Figure 5-2, we can see that if we 

do the cross-pollination between the letter sequences in the third choice and the ninth choice, we 

can recover the letter sequence “ c h a d ”, which is the correct letter sequence. TINA needs a 

trained grammar in order to be able to parse the graphs of the letter sequences into the possible 

morph decompositions. TINA was trained on the name lexicon of the training set in the 

experiment conducted with the morph representation Type I in Chapter 8, while, in the 

experiment conducted with the morph representation Type II in Chapter 9, TINA was trained on 

the same set of names but with different (Type II based) transcribed morph representations. 
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NBEST 
 
a p p o l l a h 
a b d u l l a h 
d o l l a h 
a p t o l l a h 
a b d o l l a h 
d u l l a h 
a d o l l a h 
p o l l a h 
b o l l a h 
a n d o l l a h 
 
h u 
a p u 
a p a u 
a u 
a b a u 
a b u 
a t u 
h e u 
h a u 
s p a u 
 
c a m 
c a n 
j a m 
g a n 
c a s 
c a r 
j a n 
k a m 
g a m 
g a r 
 
h a 
h a n 
h a d 
h a e 
s h a 
h a n d 
j a 
h a t 
c h a 
s h a n 
 

 

Figure 5-2: Examples of the 10-best output letter sequences 

for the inputs “abdullah”, “abu”, “adam” and “chad” 



 67

TINA presented the proposed morph sequences with their corresponding scores in the form of 

Finite State Transducers (FSTs). An example of such a network is shown in Figures 5-3 and 5-4.  

The concatenation of the morph specified along each path between the start node and the end 

node is one of the morph decomposition hypotheses according to the input letter sequences in the 

n-best file. The number shown along with the morphs is the score along that arc. TINA was set, 

as a default in this thesis, to propose up to ten morph decomposition hypotheses for each name-

spelling utterance. In general, TINA would create the FSTs with ten paths between the start node 

and the end node. However, if TINA could not come up with ten hypotheses for a given search 

depth, it was perfectly legal for the FSTs to have fewer than ten paths.  

 

On the pronunciation front, the language model of the morph recognizer was pre-trained with the 

name lexicon of the training set. This trained language model was then converted into the FST 

form and combined with the FST of the morph representation from TINA in order to recognize 

the pronounced utterance whose content was the same proper name as the one spelled in the 

name-spelling utterance. So, for each pronounced utterance, the language model of the morph 

recognizer was the combination of the baseline FST, common to all of the names, and the FST 

from the corresponding name-spelling utterance. 

 

The FSTs created from TINA were associated with adjustable weights to optimally compose the 

two independent language models. In the composing process, the score on each arc is computed 

by multiplying the scores on the corresponding parallel paths and summing up the scores on the 

corresponding serial paths. The paths that do not have corresponding paths in the other FST are 

pruned away in the resulting FST. 

 

With the language model being dynamically updated according to the names contained in the 

content of the pronounced utterances, the morph recognizer then proposed the recognized morph 

sequences from the information on both the name-spelling utterances and the pronounced 

utterances. The morph sequences proposed at the last state can be converted to phone sequences 

by looking up the morph pronunciations in the morph lexicon. Also, the letter sequences can be 

obtained from the morph sequences by discarding all of the markers tagged with the morphs. 

Then we can compare the pronunciations and the spellings of the proper names with the baseline 

systems running separately.  
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Figure 5-3: An example of the FSTs of the morph sequences from TINA, for the spelled word 

“Lisa” 

 

 

 

 

 

 

 

Figure 5-4: Another example of the FSTs of the morph sequences from TINA, for the spelled 

word “Bob” 
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5.4 Chapter summary 

 

In this chapter, we talked about how the three components, the letter recognizer, the morph 

recognizer and TINA, share information and provide assistance to the common goal. The letter 

recognition process, considered to be the task given the more reliable result, was operated on the 

name-spelling utterances without the help of the other components. From the 10-best letter 

sequences, TINA proposed the possible morph representations in the form of a Finite State 

Transducer (FST). The FST of the morph sequences was composed with the baseline language 

model, common to all of the utterances, of the morph recognizer in order to recognize the 

corresponding pronounced utterances. The morph recognizer then proposed the possible morph 

recognition results of the pronounced utterances with the assistance of the spelling knowledge 

conveyed through the letter recognizer and TINA. Both the pronunciation and the spelling 

information have already been encoded in the morph notations. Thus, from the proposed morph 

sequences of the morph recognizer, we could examine the pronunciation and the spelling 

recognition results. 
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Chapter 6  

 

The recognizers 

 

6.1 Motivation 

 

In the last chapter, we described the interconnection of the components required in the framework 

designed to use both the spelling and pronunciation knowledge in recognizing proper names. The 

natural language component, which is used to propose the possible pronunciations from the letter 

sequences, and the morph notations used in the system are described in Chapter 2. In this chapter 

we will focus on the letter recognizers and the morph recognizers used in the integrated system 

mentioned in Chapter 5. The first letter recognizer to be mentioned is the letter recognizer whose 

language models were trained on a large name list. The other letter recognizer is the letter 

recognizer whose language models were trained on the letter sequences in the training set defined 

in Chapter 4. There are also two morph recognizers involved in this thesis. The first one uses the 

morph inventory of Type I while the other uses the morph inventory of Type II. The recognition 

accuracies of both the letter recognizers and the morph recognizers are reported in this chapter. 

 

6.2 The “general” letter recognizer 

 

6.2.1 General information 

 

The general letter recognizer was built from MIT’s SUMMIT recognition system mentioned in 

Chapter 3. The purpose of this letter recognizer was to perform the spelling recognition task on 

the name-spelling utterances. The proposed letter sequences were expected from the recognizer 
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when operating on the name-spelling utterances. The letter recognition accuracy of this letter 

recognizer would then be used to benchmark the integrated system in which this recognizer was 

also used to provide the letter sequences to TINA. The ten hypotheses of the letter sequences 

which had the highest recognition scores were listed. The hypothesis with the best scores was at 

the top while the others were listed below, ranked according to their recognition scores. 

 

Since the basic units of the letter recognizer are the English alphabet, specifically lower-case a to 

z, the entire vocabulary required to perform this letter recognition task is just these 26 words. For 

this thesis, in order to simplify the problem, we concentrated on just recognizing these letters, and 

thus we set aside any utterances containing other artifacts, such as special symbols like “hyphen”, 

the word “capital”, the word “double” and other fill words like “um”. 

 

The language models of the “general” letter recognizer were n-gram language models, where n 

equal to 2 and 3 were used. These letter bigrams and trigrams were trained on the letter sequences 

appearing in the large name list mentioned in Section 4.3.1. Although, to come up with the 10-

best letter sequences as the recognition results of the letter recognizer, the trigram language 

model was used, we also did the recognition using the bigram language model, which was 

normally used when only the one-best hypothesis was concerned. The recognition accuracies in 

the bigram case will be used as another baseline performance to be compared with the 

performance of the integrated system. 

 

The system used pre-existing acoustic models trained from a collection of utterances obtained 

from the Jupiter and Pegasus domains. One could expect that these models would be suboptimal 

for this letter recognition task, since the models were not trained on the pronunciation of letters 

directly. However, as long as our research’s major interest was in providing a framework for the 

whole system and these same models are used for benchmark systems as well, these acoustic 

models should be acceptable. 

 

6.2.2 Performance 

 

The results of letter recognition on the training set and the test set are shown in Table 6-1 below. 
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The “general” letter recognizer 

Language model: bigram 

set Letter sentence 

recognition accuracy (%) 

Letter 

recognition accuracy (%) 

training set 33.6 76.1 

test set 34.7 73.5 

Language model: trigram 

training set 48.1 81.4 

test set 49.7 79.2 

 

Table 6-1: The performance of the “general” letter recognizer 

 

6.3 The “training-set oriented” letter recognizer 

 

6.3.1 General information 

 

The “training-set oriented” letter recognizer was built in the same fashion as the “general” letter 

recognizer except for the difference in training the language models. The language models used 

in both letter recognizers are the letter bigram and the letter trigram. However, the language 

models of the two letter recognizers were trained on different sets of letter sequences. As 

mentioned earlier, the language models of the “general” letter recognizer were trained on the 

letter sequences of all of the names we had, of which the size is 104,356 names. On the other 

hand, the language models of the “training-set oriented” letter recognizer were specifically 

trained on the letter sequences of the names contained in the training set. Thus, this letter 

recognizer was biased to the data in the training set more than the “general” letter recognizer.  
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Other factors related to building the “training-set oriented” letter recognizer, such as the 

vocabularies and the acoustic models, were the same as the ones used in building the “general” 

letter recognizer. 

 

6.3.2 Performance 

 

The results of letter recognition on the training set and the test set are shown in Table 6-2 below. 

 

The “training-set oriented” letter recognizer 

Language model: bigram 

Set Letter sentence 

recognition accuracy 

Letter 

recognition accuracy 

training set 39.9 79.4 

test set 30.4 69.6 

Language model: trigram 

training set 54.1 84.2 

test set 41.4 74.0 

 

Table 6-2: The performance of the “training-set oriented” letter recognizer 

 

6.4 Letter recognition result analysis and comparison 

 

If we compare the letter recognition results of the two letter recognizers in Tables 6-1 and 6-2, we 

can see that both the sentence recognition accuracy and the letter recognition accuracy of the 

“general” letter recognizer operating on the training set are lower than the ones of the “training-

set oriented” letter recognizer.  In the bigram case, the letter recognition error rate is 23.9% for 

the “general” letter recognizer, while it is 20.6% for the “training-set oriented” letter recognizer. 

In the trigram case, the letter recognition error rate is 18.6% for the “general” letter recognizer, 

while it is 15.8% for the “training-set oriented” letter recognizer. We can see that, by training the 

language models directly on the training set, the error rates for the training set recognition are 



 75

reduced by 13.8% and 15.1% in the bigram and trigram cases respectively. This result turned out 

as we expected since the language models of the “general” letter recognizer trained on the much 

larger set of letter sequences, were more generalized. However, being very specific to the names 

in the training set has a drawback on the recognition accuracies of names that are not in the 

training set. In the bigram case, the letter recognition error rate on the test set recognition is 

26.5% for the “general” letter recognizer, while it is 30.4% for the “training-set oriented” letter 

recognizer. In the trigram case, the letter recognition error rate is 20.8% for the “general” letter 

recognizer, while it is 26.0% for the “training-set oriented” letter recognizer. We can see that 

being more generalized improves the test set recognition error rates by 12.8% and 20.0% in 

bigram and trigram cases respectively.   

 

In the experiments conducted in this thesis, we took advantage of the different letter recognition 

accuracies of the two letter recognizers in studying how the performance of the letter recognizer 

affects the integrated system. 

 

6.5 The morph recognizer using the morph representation Type I 

 

6.5.1 General information 

 

The morph recognizer was also built from MIT’s SUMMIT recognition system, as for the letter 

recognizer. The function of the morph recognizer was to propose the possible morph 

representations of the input pronounced utterances. From these proposed morph sequences, the 

phone sequences can be obtained through morph-to-phone mapping. The morph recognition 

accuracy and the mapped phone accuracy would be used as the baseline accuracy to be compared 

with the morph recognition accuracy and the phone recognition accuracy obtained from the 

integrated system in which this morph recognizer was used. The 10-best lists of the morph 

sequences were expected from the morph recognizer. 

 

The basic units of this morph recognizer were the 1266 morphs defined from the names in the 

training data using Type I notation.  Note that the morphs used to represent the names in the test 

set were not restricted to be the morphs appearing in the training set. At the time of the 
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recognition of the test set, we were interested to see how well this inventory of the training set 

morphs could generalize to represent the names that never occurred in the training set. The 

language models of this morph recognizer were the morph bigram and the morph trigram trained 

on the name lexicon of the training set, where the morph representation Type I was used. As in 

the letter recognizers, to come up with the 10-best letter sequences as the recognition results of 

the letter recognizer, the trigram language model was used. However, we also did the recognition 

using the morph bigram language model.      

 

The system used the same pre-existing acoustic models trained from a collection of utterances 

collected from the Jupiter and Pegasus domains as in the letter recognizers. Again, these models 

would not be the optimal acoustic models for the morph recognizers since we did not train them 

according to the pronunciation of the proper names. 

 

6.5.2 Performance 

 

The results of morph recognition on the training set and the test set are shown in Tables 6-3 and 

6-4 below. 

 

The morph recognizer using the morph representation Type I 

Language model: bigram 

Set Morph sentence 

recognition accuracy 

Morph 

recognition accuracy 

training set 27.2 41.3 

test set 22.4 36.0 

Language model: trigram 

training set 37.3 47.9 

test set 29.2 40.0 

 

 

Table 6-3: The morph recognition accuracy of the morph recognizer  

using morph representation Type I 
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The morph recognizer using the morph representation Type I 

Language model: bigram 

Set Phone sentence 

recognition accuracy 

Phone 

recognition accuracy 

training set 33.5 51.1 

test set 31.0 47.9 

Language model: trigram 

training set 42.4 56.2 

test set 35.9 50.8 

 

Table 6-4: The phone recognition accuracy of the morph recognizer  

using morph representation Type I 

 

From the proposed morph sequences, we were also interested to see how our morphs worked in 

the letter-to-sound aspect. Thus we mapped the morph sequences proposed from the morph 

recognizer into the letter sequences and calculated the performance. The letter accuracy of the 

mapped letter sequences is shown in Table 6-5 below. 

 

The morph recognizer using the morph representation Type I 

Language model: bigram 

Set Letter sentence 

recognition accuracy 

Letter 

recognition accuracy 

training set 27.7 57.9 

test set 22.8 50.4 

Language model: trigram 

training set 37.6 62.2 

test set 29.4 52.8 

 

Table 6-5: The letter recognition accuracy of the morph recognizer  

using morph representation Type I 

This can be viewed as a sound-to-letter task. 
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6.6 The morph recognizer using the morph representation Type II 

 

6.6.1 General information 

 

This morph recognizer was created in the same fashion as when the morph representation Type I 

was utilized. But the vocabulary used contained the 1087 morphs appearing in a different name 

lexicon of the training set from the one used in Section 6.4. This name lexicon provided the 

morph representations of all of the names in the training set according to the Type II notation. 

The morph bigram and the morph trigram language models were trained as well on this Type II 

name lexicon of the training set. 

 

6.6.2 Performance 

 

The results of morph recognition on the training set and the test set are shown in Tables 6-6 and 

6-7 below. 

 

The morph recognizer using the morph representation Type II 

Language model: bigram 

Set Morph sentence 

recognition accuracy 

Morph 

recognition accuracy 

training set 26.9 41.5 

test set 24.8 38.6 

Language model: trigram 

training set 36.3 48.5 

test set 29.6 43.3 

 

Table 6-6: The morph recognition accuracy of the morph recognizer 

using morph representation Type II 
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The morph recognizer using the morph representation Type II 

Language model: bigram 

Set Phone sentence 

recognition accuracy 

Phone 

recognition accuracy 

training set 31.7 60.8 

test set 33.0 57.4 

Language model: trigram 

training set 41.4 64.9 

test set 38.8 60.5 

 

Table 6-7: The phone recognition accuracy of the morph recognizer 

using morph representation Type II 

 

Also the letter accuracy of the mapped letter sequences is calculated.  

 

The morph recognizer using the morph representation Type II 

Language model: bigram 

Set Letter sentence 

recognition accuracy 

Letter 

recognition accuracy 

training set 27.3 57.4 

test set 24.9 51.3 

Language model: trigram 

training set 36.5 62.0 

test set 29.8 54.2 

 

Table 6-8: The letter recognition accuracy of the morph recognizer 

using morph representation Type II 

This can be viewed as a sound-to-letter task.
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6.7 Morph recognition results’ analysis and comparison 

 

Before discussing the performances of the two morph recognizers, we should note some issues 

about the differences between them. The two morph recognizers were built by the same 

procedures. The differences between them were the inventories of morphs used as basic units and 

the name lexicon used to train their language models. The first recognizer was built using morphs 

of Type I.  Each Type I morph has a unique pronunciation. Thus, in the calculation of phone 

recognition accuracies, we can utilize a one-to-one mapping from each morph in the proposed 

morph sequence to its corresponding phone sequence.  However, each Type II morph, which was 

used in the other morph recognizer, was allowed to have more than one possible pronunciations.  

Thus, we could not apply one-to-one mapping in this case.  To calculate the phone recognition 

accuracy in this case, we defined what it means to be a correct “phone”. Each phone was said to 

be a correct phone when that phone was in the set of allowed phones for the corresponding 

morph.  For example, if the reference morph was “=a+”, which was allowed to be pronounced 

either “ey” or “aa”, and whichever phones between  “ey” and “aa” was present, it was said to be a 

correct phone. Because of this notation of correct “phones” in Type II morphs, the morph 

recognizer with Type II basic units had some advantages in phone recognition accuracies 

compared to the other morph recognizer. Still, this definition of a correct phone should be 

acceptable, since, as we have discussed in Chapter 2, this multiple pronunciation case can also 

happen in actual English words (e.g. “either”).  Another factor that might contribute to the 

performance of the two morph recognizers, apart from the morphs themselves, was the 

consistency of the transcribed morph representation for each name in the lexicons used to train 

their language models.  However, it was hard to compare the qualities of the transcriptions. 

 

The comparisons between various accuracies of the two morph recognizers are summarized in 

Table 6-9 below. 
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recognition error (%)  language 

models 

set 

Type I Type II 

reduction in 

error rate (%) 

training set 58.7 58.5 0.34 bigram 

test set 64.0 61.4 4.06 

training set 52.1 51.5 1.94 

morph 

trigram 

test set 60.0 56.7 5.50 

training set 48.9 39.2 19.83 bigram 

test set 52.1 42.6 18.23 

training set 43.8 35.1 19.86 

phone 

trigram 

test set 49.2 39.5 19.71 

training set 42.1 42.6 -1.19 bigram 

test set 49.6 48.7 1.81 

training set 37.8 38.0 -0.53 

letter 

trigram 

test set 47.2 45.8 2.97 

 

 

Table 6-9: Comparisons between various accuracies of morph recognizers using morph 

representation Type I and Type II 

% reduction in error rate = (recognition error in Type I – recognition error in Type II) / recognition error in Type I 

 

 

From the comparisons in Table 6-9, we can see that, for morph and phone recognition accuracies, 

Type II morphs yielded better accuracies than Type I morphs. Using Type II morphs reduced 

morph error rates more in the test set than in the training set. This might be because of the size of 

the overlap between morphs present in the training set and in the test set. For Type II, the overlap 

size was 91.5%, while it was 86.5% for Type I. The bigger, the size of the overlapping morphs, 

the better the chance that the morph recognizer can provide correct answers. The phone 

recognition accuracies improved more than the morph recognition accuracies because of our 

definition of a correct phone, as mentioned earlier. However, from the letter recognition 

accuracies point of view, it was not consistent whether Type I or Type II morphs would provide 
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better letter recognition accuracies. As we can see from the comparisons, the letter recognition 

accuracies of the training set dropped a little when switching to Type II morphs, while it acted in 

the opposite way with the test set. Still, in terms of how Type II morphs affected each set of data, 

the letter recognition accuracies tended to perform the same way as the morph recognition 

accuracies, i.e. they worked better on the test set than on the training set. 

 

6.8 Chapter summary 

 

There were two types of recognizers involved in this thesis. They were the letter recognizers and 

the morph recognizers. The letter recognizers were used to handle the spelling input and propose 

the 10-best lists of the letter sequences, to be passed to TINA. Two letter recognizers were used 

in the experiments. Both letter recognizers were created with the same acoustic models, which 

were obtained from the Jupiter and Pegasus domains. Although, both recognizers utilized the 

letter bigram and the letter trigram language models, these language models were trained on 

different sets of proper names. The first letter recognizer’s language models were trained on a 

more general and bigger set of proper names. The other letter recognizer’s language models were 

trained on only the proper names appearing in the training set. Thus, the latter was more custom-

made to the data in the training set. The morph recognizers were used to propose the morph 

sequences from the pronunciations of the proper names. There were two morph recognizers used 

in this thesis. Both of them were created with the same procedure, but with different basic units. 

Type I morphs were used as the basic units of one morph recognizer while the other used Type II 

morphs as its units, as discussed in Chapter 2. The performances of the four recognizers in term 

of the morph recognition accuracy, the phone recognition accuracy and the letter recognition 

accuracy, whichever applied, were reported and discussed in the chapter. 
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Chapter 7  

 

Experiments using the morph representation Type I 

 

7.1 Motivation 

 

In earlier chapters, we described how we build various components, including the letter 

recognizer, the morph recognizer and TINA, the natural language component, and combine them 

together to form the system where we expect that information in the spelling and pronunciation 

will help each other. In this chapter we will describe the experiments conducted on the overall 

system using the morph representation Type I, in which each morph has a unique pronunciation 

and case sensitivity is utilized. The goal and the procedures are described in the next two sections, 

and then the results will be presented and analyzed.  

 

7.2 Goals 

 

There are four main objectives in the experiments in this chapter. 

1) To see whether and how much the spelling information helps the morph/phone recognition 

accuracy compared to the recognition accuracy when the morph recognizer is running alone. 

2) To see whether and how much the pronunciation information helps the letter recognition 

accuracy compared to the recognition accuracy when the letter recognizer is running alone. 

3) To determine a practical way to utilize the spelling information as an additional constraint to 

the morph recognizer. 

4) To see how crucial the letter recognition accuracy of the letter recognizer is to the overall 

performance of the whole system. 
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In order to fulfill these objectives, there are three main performance computations involved. They 

are: 

- morph recognition accuracy : the percentage of the correctly recognized morphs compared to 

all of the morphs proposed. 

- phone recognition accuracy : the percentage of the correctly recognized phones compared to 

all of the phones proposed. 

- letter recognition accuracy : the percentage of the correctly recognized letters compared to all 

of the letters proposed. 

 

7.3 Procedure 

 

7.3.1 Overview 

 

All of the experiments conducted are based on the integrated system discussed in Chapter 5. 

Basically, at one end of the system, the name-spelling utterances are fed through the letter 

recognizer. The letter recognizer proposes a 10-best list of letter sequences, the ten letter 

sequences most preferred by the letter recognizer. These letter sequences are used as the input to 

TINA, which is used to probabilistically propose the morph sequence that is best matched to the 

input letter sequences. The morph inventories and TINA’s grammars used in this chapter are 

Type I. The ways TINA utilizes these letter sequences are different among the different 

experiments. In the experiments in Section 7.3.3, TINA uses all the information in the ten letter 

sequences to come up with the corresponding sequences of morphs according to TINA’s trained  

grammars. In the experiment in Section 7.3.4, TINA uses only the spelling information from the 

letter sequence with the best score. The purpose of using these two different ways to obtain letter 

information is that we would like to see whether the additional nine letter sequences with lower 

scores help or degrade the spelling knowledge. 

 

In this system, the number of morph sequences proposed by TINA is ten. And these morph 

sequences are presented in the form of a finite state transducer (FST). Being in the FST form, 

these morph sequences can be combined with the language model of the baseline morph 

recognizer. The language model of the baseline recognizer is also in the form of a finite state 

transducer, but is created from the lexicon of the training data. This combined FST is then used as 
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the language model for the morph recognizer to recognize the pronunciation utterance 

corresponding to the name-spelling utterance from which TINA’s FST is created. So, for each 

utterance, the language model is the combination of the common FST from the lexicon of the 

training data and the FST specific to the name spelled in the name-spelling utterance. 

 

From the output of the morph recognizer in the integrated system, the morph recognition 

accuracy is reported. By mapping each morph to its corresponding pronunciation in term of 

phones, we then have sequences of phones and are able to calculate the phone recognition 

accuracy. As mentioned in an earlier chapter, the letter information is already encoded in the 

morphs, so we can extract the letters from the resulting morph sequences. More specifically, we 

can discard all of the markers, including “=”, “+”, and “-”, and convert all the upper case letters 

into lower-case to obtain the letter sequences. Consequently, we can also calculate the letter 

recognition accuracy. 

 

In the experiment in Section 7.3.2, instead of feeding the 10-best list of the proposed letter 

sequences from the letter recognizer into TINA, we use the correct letter sequence for each name. 

This lets TINA choose to propose morph decompositions for each name uncorrupted by the letter 

recognition errors from the letter recognizer. This scenario emulates the situation where we have 

an ideal letter recognizer, which always has perfect letter recognition accuracy. This experiment 

partly fulfills the fourth objective in Section 7.2. 

 

Apart from emulating the ideal letter recognizer scenario, in the experiments in Section 7.3.3 and 

Section 7.3.4, we conduct the experiments with the two letter recognizers described in Chapter 6. 

The two recognizers have different performances. The first one yields inferior letter recognition 

accuracy on the training set but superior accuracy on the test set. We conduct the experiments 

with two letter recognizers in order to see how the letter recognition accuracy influences the 

overall performance of the integrated system. 

 

In each experiment for the morph recognizer, we tried to conduct experiments with different 

language models but using the same acoustic models in every experiment. Due to the differences 

in the qualities of different language models, we had to decide how much weight to give to the 

acoustic and language model in each case. The method we have used is to vary the weight of the 

acoustic model compared to the language model, and to choose the weight that maximizes the 
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performance of the whole system for each case. Our criterion is that the system with the best 

phone recognition accuracy has the best performance. 

 

The details of each experiment are elaborated in the following sections. 

7.3.2 Providing the correct spelling knowledge 

 

In this experiment, we set aside the usage of the letter recognizer but provided the correct letter 

sequence for each name-spelling utterance. The procedure is illustrated in Figure 7-1 below. 

 

 

 

 

 

Figure 7-1: Block diagram of the experiment in which the correct letter sequences are provided 

 

The details are as follows: 

 

1) Prepare the list of names in the training set and feed this list of correct answers to TINA. For 

each name, TINA proposes ten possible morph decompositions. The finite state transducer 

for each name’s proposed morph decompositions is created and stored in order to be 
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combined with the finite state transducer of the baseline language model of the morph 

recognizer.  

2) For each pronunciation utterance, combine the finite state transducer of the baseline language 

model of the morph recognizer with the finite state transducer of the corresponding morph 

sequences proposed by TINA in step (1). Perform the morph recognition task using the 

combined language model. 

3) Calculate the morph recognition accuracy form the results of the morph recognizer. Map each 

proposed morph to its phone representation and calculate the phone recognition accuracy. 

Finally, calculate the letter recognition accuracy of the whole system by converting the 

proposed morph sequences to the sequences of letters. 

4) Repeat steps (1) to (3) with the test set. 

 

The results of the experiments in this section are shown in Table 7-9 and Table 7-10 in Section 

7.4. 

 

In the experiments in Section 7.3.3 and Section 7.3.4, we extracted the spelling knowledge by 

using the letter recognizer, but with a different method for constructing the morph 

decompositions. In both sections, we used the two recognizers introduced in Chapter 6, as 

mentioned above. For ease of referring to each letter recognizer, we will call the letter recognizer 

in Section 6.2 the “general” letter recognizer. And we will call the other one, in Section 6.3, the 

“training-set oriented” letter recognizer. 



 88

7.3.3 Utilizing the spelling information from the proposed n-best list from 

the letter recognizer 

 

The procedure of the experiments in this section is illustrated in Figure 7-2 below. 

 

 

 

 

Figure 7-2: Block diagram of the experiment in which the combined FSTs built from the 

proposed 10-best letter sequences form the letter recognizer  
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The details are as follows: 

 

1) For each pronunciation utterance in the training set, randomly pick a name-spelling utterance 

of the same name in the pronounced one. 

2) Use one of the letter recognizers to recognize the selected name-spelling utterance. The 

results of the letter recognition in this step are the 10-best list of the proposed letter 

sequences. 

3) Use TINA to create the finite state representation of this name’s morph representation based 

on the 10-best list of the letter sequences proposed in step (2). 

4) Combine the finite state transducer of the morph sequences from TINA with the finite state 

transducer of the baseline language model of the morph recognizer and use this combined 

finite state transducer as the language model for recognizing the corresponding pronunciation 

utterance. 

5) Calculate the morph recognition accuracy form the results of the morph recognizer. Map each 

proposed morph to its phone representation and calculate the phone recognition accuracy. 

Finally, calculate the letter recognition accuracy of the whole system by converting the 

proposed morph sequences to the corresponding sequences of letters. 

6) Repeat steps (1) to (5) but use the 10-best list of letter sequences from the other letter 

recognizer. 

7) Repeat steps (1) to (7) with the test set.  

 

The result of the experiments in this section are shown in Tables 7-11 to 7-16 in Section 7.4. 
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7.3.4 Utilizing the spelling information from the most preferred letter 

sequence from the letter recognizer 

 

The procedure of the experiments in this section is illustrated in Figure 7-3. 

 

The details are as follows: 

 

1) For each pronunciation utterance in the training set, randomly pick a name-spelling utterance 

of the same name in the pronounced one. 

2) Use one of the letter recognizers to recognize the selected name-spelling utterance. The 

results of the letter recognition in this step are the 10-best list of the proposed letter 

sequences. Feed only the top choice, the letter sequence with the best score, to TINA. 

3) Use TINA to create the finite state representation of this name’s morph representation based 

on the top choice of the 10-best list of the letter sequences proposed in step (2). 

4) Combine the finite state transducer of the morph sequences from TINA with the finite state 

transducer of the baseline language model of the morph recognizer, and use this combined 

finite state transducer as the language model for recognizing the corresponding pronunciation 

utterance. 

5) Calculate the morph recognition accuracy form the results of the morph recognizer. Map each 

proposed morph to its phone representation and calculate the phone recognition accuracy. 

Finally, calculate the letter recognition accuracy of the whole system by converting the 

proposed morph sequences to the sequences of letters. 

6) Repeat steps (1) to (5), but use the 10-best list of letter sequences from the other letter 

recognizer. 

7) Repeat steps (1) to (7) with the test set.  

 

The results of the experiments in this section are shown in Tables 7-17 to 7-22 in Section 7.4. 
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Figure 7-3: Block diagram of the experiment in which the combined FSTs built from the top 

choice of the proposed 10-best letter sequences form the letter recognizer  
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7.4 Results and analysis 

 

In this section we will show the results and compare the performances among the different 

language models for the morph recognizer, including bigram and trigram language models of the 

baseline version of the morph recognizer in Chapter 5. Tables 7-1 to 7-6 show the performance of 

the baseline morph recognizers with bigram and trigram language models. And Tables 7-7 and 7-

8 show the performance of the two letter recognizers. 

 

Language model: bigram morph 

Set morph sentence recognition 

accuracy (%) 

Morph recognition 

Accuracy (%) 

Training set 27.2 41.3 

Test set 22.4 36.0 

 

Table 7-1: Morph recognition accuracy of the morph recognizer with bigram language model 

(Type I) 

 

Language model: bigram phone 

Set phone sentence recognition 

accuracy (%) 

Phone recognition 

Accuracy (%) 

Training set 33.5 51.1 

Test set 31.0 47.9 

 

Table 7-2: Phone recognition accuracy of the morph recognizer with bigram language model 

(Type I) 
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Language model: bigram Letter 

Set letter sentence recognition 

accuracy (%) 

Letter recognition 

accuracy (%) 

Training set 27.7 57.9 

Test set 22.8 50.4 

 

Table 7-3: Letter recognition accuracy of the morph recognizer with bigram language model 

(Type I) 

 

 

Language model: trigram morph 

Set morph sentence recognition 

accuracy (%) 

morph recognition 

accuracy (%) 

Training set 37.3 47.9 

Test set 29.2 40.0 

 

Table 7-4: Morph recognition accuracy of the morph recognizer with trigram language model 

(Type I) 

 

 

Language model: trigram phone 

Set phone sentence recognition 

accuracy (%) 

Phone recognition 

Accuracy (%) 

Training set 42.4 56.2 

Test set 35.9 50.8 

 

Table 7-5: Phone recognition accuracy of the morph recognizer with trigram language model 

(Type I) 

 



 94

 

Language model: trigram Letter 

Set letter sentence recognition 

accuracy (%) 

Letter recognition 

Accuracy (%) 

Training set 37.6 62.2 

Test set 29.4 52.8 

 

Table 7-6: Letter recognition accuracy of the morph recognizer with trigram language model 

(Type I) 

 

 

“general” letter recognizer 

language model: trigram 

Letter 

Set Letter sentence recognition 

accuracy (%) 

letter recognition 

accuracy (%) 

Training set 48.1 81.4 

Test set 49.7 79.2 

 

Table 7-7: Letter recognition accuracy of the “general” letter recognizer with trigram language 

model   (Type I) 

 

 

“training-set oriented” letter recognizer 

language model: trigram 

Letter 

Set letter sentence recognition 

accuracy (%) 

letter recognition 

accuracy (%) 

Training set 54.1 84.2 

Test set 41.4 74.0 

 

Table 7-8: Letter recognition accuracy of the “training-set oriented” letter recognizer with trigram 

language model (Type I) 
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From the results of the baseline recognizer, in every case the phone recognition accuracy is higher 

than the morph recognition accuracy due to the redundancy in morph pronunciation, as mentioned 

earlier. The trigram language model gives better accuracy than the bigram language model. So, 

we will use the accuracy obtained from the morph recognizer with trigram language model as the 

baseline accuracy, which will be compared with the accuracy of the morph recognizers with other 

language models. When we combine the morph recognizer with perfect knowledge of the 

spellings, we get huge improvements in the morph and phone recognition accuracy as anticipated. 

The details of the results are shown in Tables 7-9 and 7-10 below. 

 

 

Language model: baseline FST + FST from correct answer morph 

Set morph sentence recognition 

accuracy (%) 

morph recognition 

accuracy (%) 

Training set 65.2 73.1 

Test set 69.0 72.8 

 

Table 7-9: Morph recognition accuracy of the system when the combined FSTs between the 

baseline FST and the FSTs built from the correct letter sequences are used as the language model 

(Type I) 

 

 

Language model: baseline FST + FST from correct answer phone 

Set phone sentence recognition 

accuracy (%) 

phone recognition 

accuracy (%) 

Training set 67.5 81.9 

Test set 70.3 82.1 

 

Table 7-10: Phone recognition accuracy of the system when the combined FSTs between the 

baseline FST and the FSTs built from the correct letter sequences are used as the language model 

(Type I) 
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After being provided with perfect letter knowledge, the morph recognizer yields better accuracy 

in terms of both morph and phone recognition accuracy. On the training set, the morph 

recognition accuracy in this case is 25.2% (73.1%-47.9%) better than the one in the trigram case. 

On the test set, it is 32.8% (72.8%-40.0%) better than the one in the trigram case. Speaking in 

terms of reduction in morph recognition error rate, we have 48.4% reduction in morph 

recognition error rate on the training set and 54.2% on the test set. Looking at the phone 

recognition accuracy, we have found that the absolute improvements are 25.7% (81.9%-56.2%) 

on the training set and 31.3% (82.1%-50.8%) on the test set. The corresponding rates of reduction 

in phone recognition error are 58.7% and 63.6% on the training set and the test set respectively. 

The results turned out as we expected. One of the interesting points is that, if we look at the 

improvements on the training set and the test set, the incorporation of perfect letter knowledge did 

improve both the morph and phone recognition accuracy more on the test set than on the training 

set. The trigram was built upon the names in the training set, so it is expected that the recognition 

accuracy is higher on the training set. However, when we change the language model from 

trigram to FST, composed from the FST from the lexicon of the training set and the FST 

constructed from the correct letter sequence by TINA, the system seems to perform equally well 

on both data sets. And the phone recognition accuracy is even better on the test set.  Even though 

the baseline FST was constructed from the data in the test set, as we can see from the recognition 

results, the FSTs of the morph representation proposed by TINA based on the correct letter 

sequences seems to have an impact on the baseline FST at some amount. So the whole system 

does not favor the data in the training set as much as the morph recognizer running alone. The 

differences of the morph and phone recognition accuracy between the two sets are only 0.3% in 

both cases.   

 

Next, we used TINA to propose the FSTs of the morph representation of the 10-best list of the 

letter sequences from two letter recognizers and combined the proposed FSTs with the baseline 

FST. The results are shown in Tables 7-11 to 7-16 below. 
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Language model: baseline FST + FST from 10-best list of letter seq. 

Letter recognizer: “general” 

Morph 

Set Morph sentence recognition 

accuracy (%) 

morph recognition 

accuracy (%) 

Training set 24.8 38.5 

Test set 20.0 33.7 

 

Table 7-11: Morph recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the 10-best letter sequences, proposed by the “general” 

letter recognizer, are used as the language model (Type I) 

 

Language model: baseline FST + FST from 10-best list of letter seq. 

Letter recognizer: “general” 

phone 

Set phone sentence recognition 

accuracy (%) 

phone recognition 

accuracy (%) 

Training set 28.0 55.0 

Test set 23.4 48.8 

 

Table 7-12: Phone recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the 10-best letter sequences, proposed by the “general” 

letter recognizer, are used as the language model (Type I) 

 

Language model: baseline FST + FST from 10-best list of letter seq. 

Letter recognizer: “general” 

letter 

Set letter sentence recognition 

accuracy (%) 

letter recognition 

accuracy (%) 

Training set 39.3 80.0 

Test set 33.8 74.8 

 

Table 7-13: Letter recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the 10-best letter sequences, proposed by the “general” 

letter recognizer, are used as the language model (Type I) 
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Language model: baseline FST + FST from 10-best list of letter seq. 

Letter recognizer: “training-set oriented” 

morph 

Set morph sentence recognition 

accuracy (%) 

morph recognition 

accuracy (%) 

Training set 27.2 44.7 

Test set 19.0 35.5 

 

Table 7-14: Morph recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the 10-best letter sequences, proposed by the “training-set 

oriented” letter recognizer, are used as the language model (Type I) 

 

Language model: baseline FST + FST from 10-best list of letter seq. 

Letter recognizer: “training-set oriented” 

phone 

Set phone sentence recognition 

accuracy (%) 

phone recognition 

accuracy (%) 

Training set 31.4 58.9 

Test set 23.2 48.6 

 

Table 7-15: Phone recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the 10-best letter sequences, proposed by the “training-set 

oriented” letter recognizer, are used as the language model (Type I) 

 

Language model: baseline FST + FST from 10-best list of letter seq. 

Letter recognizer: “training-set oriented” 

letter 

Set letter sentence recognition 

accuracy (%) 

Letter recognition 

accuracy (%) 

Training set 46.0 83.2 

Test set 33.0 71.6 

 

Table 7-16: Letter recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the 10-best letter sequences, proposed by the “training-set 

oriented” letter recognizer, are used as the language model (Type I) 
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From Tables 7-11 and 7-12, we see that both the morph recognition accuracy and the phone 

recognition accuracy are worse in these cases than the recognition accuracy of the baseline morph 

recognizer with a trigram language model. Both cases made use of the “general” letter recognizer, 

which has letter sentence recognition accuracy and letter recognition accuracy of 48.1% and 

81.4% respectively on the training set. On the test set, the letter sentence recognition accuracy is 

41.4% and the letter recognition accuracy is 79.2%. From the degradation of the accuracy after 

utilizing the spelling knowledge through the “general” letter recognizer, we can infer that, with 

these levels of accuracy, the spelling knowledge hurts the performance of the overall system. In 

other words, we can say that this letter information is too noisy to be useful for the morph 

recognizer. 

 

By using the “training-set oriented” letter recognizer, which has better letter recognition accuracy 

on the training set than the one of the “general” letter recognizer, the phone recognition accuracy 

of the training set increases. Although the morph recognition accuracy is still worse, the phone 

recognition accuracy becomes 2.7% (58.9%-56.2%) higher than the one of the baseline morph 

recognizer. However, the morph and phone recognition accuracy of the test set are still worse, 

since the recognized letter sequences from the letter recognizer performed on the test set are still 

too noisy to be useful to the morph recognizer. The detailed numbers mentioned in this paragraph 

are shown in Tables 7-14 and 7-15. 

  

 

Language model: baseline FST + FST from top choice letter seq. 

Letter recognizer: “general” 

morph 

Set morph sentence recognition 

accuracy (%) 

Morph recognition 

Accuracy (%) 

Training set 35.3 45.3 

Test set 35.6 43.8 

 

Table 7-17: Morph recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by 

the “general” letter recognizer, are used as the language model (Type I) 
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Language model: baseline FST + FST from top choice letter seq. 

Letter recognizer: “general” 

phone 

Set phone sentence recognition 

accuracy (%) 

Phone recognition 

Accuracy (%) 

Training set 38.3 59.7 

Test set 37.1 55.8 

 

Table 7-18: Phone recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by 

the “general” letter recognizer, are used as the language model (Type I) 

 

Language model: baseline FST + FST from top choice letter seq. 

Letter recognizer: “general” 

Letter 

Set letter sentence recognition 

accuracy (%) 

letter recognition 

accuracy (%) 

Training set 49.3 82.0 

Test set 49.0 79.3 

 

Table 7-19: Letter recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by 

the “general” letter recognizer, are used as the language model (Type I) 

 

 

Language model: baseline FST + FST from top choice letter seq. 

Letter recognizer: “training-set oriented” 

morph 

Set morph sentence recognition 

accuracy (%) 

morph recognition 

accuracy (%) 

Training set 32.3 44.8 

Test set 30.6 40.0 

 

Table 7-20: Morph recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by 

the “training-set oriented” letter recognizer, are used as the language model (Type I) 
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Language model: baseline FST + FST from top choice letter seq. 

Letter recognizer: “training-set oriented” 

phone 

Set phone sentence recognition 

accuracy (%) 

phone recognition 

accuracy (%) 

Training set 35.9 60.4 

Test set 33.0 53.7 

 

Table 7-21: Phone recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by 

the “training-set oriented” letter recognizer, are used as the language model (Type I) 

 

Language model: baseline FST + FST from top choice letter seq. 

Letter recognizer: “training-set oriented” 

Letter 

Set letter sentence recognition 

accuracy (%) 

letter recognition 

accuracy (%) 

Training set 55.0 83.4 

Test set 44.8 74.6 

 

Table 7-22: Letter recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by 

the “training-set oriented” letter recognizer, are used as the language model (Type I) 

 

 

Tables 7-17, 7-18, 7-20 and 7-21 show the results when we took only the letter sequence with the 

best score to be used as TINA’s input instead of using all of the 10-best choices. The results are 

promising in terms of phone recognition accuracy. By utilizing the “general” letter recognizer and 

this way of creating the FSTs, the phone recognition accuracy increases by 3.5% (59.7%-56.2%) 

on the training set and 5.0% (55.8%-50.8%) on the test set. The corresponding rates of reduction 

in phone recognition accuracy are 8.0% and 10.2% on the training set and the test set 

respectively. And by using the “training-set oriented” letter recognizer, the phone recognition 

accuracy increases by 4.2% (60.4%-56.2%) on the training set and 2.9% (53.7%-50.8%) on the 
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test set. The corresponding rates of reduction in phone recognition accuracy are 9.6% and 5.9% 

on the training set and the test set respectively. 

 

From the results we have, we can see, as expected, that the higher the letter recognition accuracy, 

the more the spelling knowledge can help the performance of the phone recognition task. With 

low quality letter information, the spelling knowledge even degrades the performance of the 

whole system. However, at acceptable letter recognition accuracy, the information about the 

spelling yields better phone recognition accuracy. 

 

Comparing the letter recognition accuracy in various experiments, we have found that in most 

cases the knowledge of the pronunciation does not help the letter recognition accuracy, except for 

one case where the incorporation of the pronunciation knowledge improves the letter recognition 

accuracy a little on both the training set and the test set. It is the case when the FST, combined 

with the baseline language model, comes from the top choice of the 10-best letter sequences from 

the “general” letter recognizer. The results for this case are shown in Table 7-19. On the training 

set the letter recognition accuracy is 0.6% (82.0-81.4%) better than the accuracy of the “general” 

letter recognizer and 0.1% (79.3%-79.2%) on the test set. The corresponding rates of reduction in 

letter recognition accuracy are 3.2% and 0.5% on the training set and the test set respectively. 

 

7.5 Chapter Summary 

 

This chapter describes the goal, procedure and results of the experiments conducted using the 

morph representation Type I.  The goals of this set of experiments were to find out how the 

spelling and pronunciation knowledge can help each other in recognizing both the name-spelling 

and the pronounced utterances, to study the ways to combine them together and to see how 

crucia l the quality of the letter recognizer is to the overall recognition accuracy.  The experiments 

were done by varying the language models of the morph recognizer. The language models used 

were bigram, trigram and the combined FSTs. The combined FSTs were created by combining 

the baseline FST, which was created from the lexicon of the training data, with three types of 

FSTs. The first one was the FST proposed from TINA when provided with the correct letter 

sequence for each name. The next was the FST proposed from TINA when provided with the 10-

best letter sequences from the letter recognizer. And the last one was the FST proposed form 
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TINA when provided with the top choice of the 10-best letter sequences form the letter 

recognizer. Two letter recognizers were used. One gave higher accuracy on the training set than 

the other, while, on the other hand, the other gave higher accuracy on the test set. The result 

shows that the letter knowledge can help the phone recognition task, especially when the correct 

letter sequences were provided. With both letter recognizers, using the top choice of the 10-best 

letter sequences was found to be more useful to the phone recognition task than using all of the 

10-best letter sequences. However, the pronunciation knowledge did not help the letter 

recognition task in most cases. 
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Chapter 8  

 

Experiments using the morph representation Type II 

 

8.1 Motivation 

 

In Chapter 7, we described the experiments done based on the morph representation Type I, in 

which each morph has a unique pronunciation. In this chapter, we will describe the context whose 

outline is similar to the one in Chapter 7, but the morph representation Type II has been 

exploited.3 

 

8.2 Goals 

 

The objective of this set of experiments is to study how alternative sets of morphs affect the 

performance of our integrated system. We would like to see whether using the morph 

representation Type II will improve or degrade the recognition accuracy. The criteria used in the 

experiments in this chapter are similar to the ones in the experiments in Chapter 7, which are 

morph recognition accuracy, phone recognition accuracy and letter recognition accuracy. 

 

8.3 Procedure 

 

The procedures of the experiments in this chapter are similar to those in Chapter 7. All of the 

experiments conducted are based on the same integrated system. The name-spelling utterances 

are fed through the letter recognizer. The letter recognizer proposes 10-best lists of letter 

                                                 
3 See Chapter 2 for definitions of Type I and Type II morph representations 
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sequences, the ten letter sequences most preferred by the letter recognizer. These letter sequences 

are used as the input of TINA, which is used to probabilistically propose the morph sequence that 

is best matched to the input letter sequences. The difference between the experiments in this 

chapter and the ones in Chapter 7 is that, in Chapter 7 the morph inventories and TINA’s 

grammars are Type I, but the morph inventories and TINA’s grammars of Type II were used in 

the experiments in this chapter. 

 

As in Chapter 7, there are two ways for TINA to use the letter sequences proposed by the letter 

recognizer. In the first one, TINA uses all of the information provided in all of the 10-best letter 

sequences proposed. In the other, TINA discards the letter information in the nine proposed letter 

sequences with inferior scores and only makes use of the top choice of the 10-best letter 

sequences. Also, instead of extracting the letter knowledge from the name-spelling utterances, we 

provide the correct letter sequences for all of the pronunciation utterances and decompose them 

into the sequences of morphs according to the morph inventories and TINA’s grammars for Type 

II.   

 

The morph recognition accuracy, the phone recognition accuracy and the letter recognition 

accuracy were calculated and compared with those of the baseline recognizers, which used a 

bigram and trigram as their language models. However, the morph recognizer used in this chapter 

is different from the morph recognizer used in Chapter 7, since we have changed the morph 

inventories. The morph recognizer in this chapter was trained on the data in the same training set. 

The lexicon of the training set is different in the aspect of decomposing the names into their 

corresponding morph representation, due to the different morph inventories. 

 

The details of the results and also the new baseline performance are shown in the next section. 

 

8.4 Results and analysis 

 

The performances of the baseline morph recognizer based on morph representation Type II are 

shown in Tables 8-1 to 8-6 below. And, for ease of comparing, the letter recognition accuracy of 

the two letter recognizers, the “general” letter recognizer and the “training-set oriented” letter 

recognizer, are repeated again in Tables 8-7 and 8-8.  
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Language model: bigram morph 

Set morph sentence recognition 

accuracy (%) 

Morph recognition 

Accuracy (%) 

Training set 26.9 41.5 

Test set 24.8 38.6 

 

Table 8-1: Morph recognition accuracy of the morph recognizer  with bigram language model 

(Type II) 

 

 

Language model: bigram phone 

Set phone sentence recognition 

accuracy (%) 

Phone recognition 

Accuracy (%) 

Training set 31.7 60.8 

Test set 33.0 57.4 

 

Table 8-2: Phone recognition accuracy of the morph recognizer with bigram language model 

(Type II) 

 

 

Language model: bigram letter 

Set Letter sentence recognition 

accuracy (%) 

letter recognition 

accuracy (%) 

Training set 27.3 57.4 

Test set 24.9 51.3 

 

Table 8-3: Letter recognition accuracy of the morph recognizer with bigram language model 

(Type II) 
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Language model: trigram morph 

Set Morph sentence recognition 

accuracy (%) 

Morph recognition 

Accuracy (%) 

Training set 36.3 48.5 

Test set 29.6 43.3 

 

Table 8-4: Morph recognition accuracy of the morph recognizer  with trigram language model 

(Type II) 

 

 

Language model: trigram phone 

Set Phone sentence recognition 

accuracy (%) 

Phone recognition 

Accuracy (%) 

Training set 41.4 64.9 

Test set 38.8 60.5 

 

Table 8-5: Phone recognition accuracy of the morph recognizer with trigram language model 

(Type II) 

 

 

Language model: trigram letter 

Set letter sentence recognition 

accuracy (%) 

letter recognition 

accuracy (%) 

Training set 36.5 62.0 

Test set 29.8 54.2 

 

Table 8-6: Letter recognition accuracy of the morph recognizer with trigram language model 

(Type II) 
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“general” letter recognizer 

language model: trigram 

Letter 

Set letter sentence recognition 

accuracy (%) 

letter recognition 

accuracy (%) 

Training set 48.1 81.4 

Test set 49.7 79.2 

 

Table 8-7: Letter recognition accuracy of the “general” letter recognizer with trigram language 

model 

 

 

“training-set oriented” letter recognizer 

language model: trigram 

Letter 

Set Letter sentence recognition 

accuracy (%) 

letter recognition 

accuracy (%) 

Training set 54.1 84.2 

Test set 41.4 74.0 

 

Table 8-8: Letter recognition accuracy of the “training-set oriented” letter recognizer with trigram 

language model 

 

As before, we will use the accuracy obtained from the morph recognizer and the letter recognizer 

with trigram language model as the baseline accuracy, which will be compared with the accuracy 

of the integrated system with other language models. When we combined the morph recognizer 

with perfect knowledge of the spellings, we got huge improvements in the morph and phone 

recognition accuracy. The details of the results are shown in Tables 8-9 and 8-10 below. 
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Language model: baseline FST + FST from correct answer morph 

Set Morph sentence recognition 

Accuracy (%) 

Morph recognition 

Accuracy (%) 

Training set 92.0 93.7 

Test set 85.5 87.6 

 

Table 8-9: Morph recognition accuracy of the system when the combined FSTs between the 

baseline FST and the FSTs built from the correct letter sequences are used as the language model 

(Type II) 

 

Language model: baseline FST + FST from correct answer Phone 

Set Phone sentence recognition 

accuracy (%) 

Phone recognition 

Accuracy (%) 

Training set 92.8 97.3 

Test set 89.5 94.8 

 

Table 8-10: Phone recognition accuracy of the system when the combined FSTs between the 

baseline FST and the FSTs built from the correct letter sequences are used as the language model 

(Type II) 

 

After being provided with perfect letter knowledge, the morph recognizer yields plausible 

accuracy in term of both morph and phone recognition accuracy, especially the latter which is 

over ninety percent. On the training set, the morph recognition accuracy in this case is 45.2% 

(93.7%-48.5%) better than the one in the trigram case. On the test set, it is 44.3% (87.6%-43.3%) 

better than the one in the trigram case. The corresponding rates of reduction in morph recognition 

accuracy are 87.8% on the training set and 78.1% on the test set. Looking at the phone 

recognition accuracy, we have found that the improvements are 32.4% (97.3%-64.9%) on the 

training set and 34.3% (94.8%-60.5%) on the test set. The corresponding rates of reduction in 

phone recognition accuracy are 92.3% and 86.8% on the training and the test set respectively. The 

results turned out as we expected and the morph recognition accuracy and the phone recognition 

accuracy are better than the ones using morph representation Type I on both the training set and 

the test set. On the training set, the morph recognition accuracy is 20.6% (93.7%-73.1%) higher 

and the phone recognition accuracy is 15.4% (97.3%-81.9%) higher than the ones using the other 
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type of morph representation. And, on the test set, the morph recognition accuracy is 14.8% 

(87.6%-72.8%) higher and the phone recognition accuracy is 12.7% (94.8%-82.1%) higher than 

the ones using the morph representation Type I.  In terms of the reduction in error rate, using 

Type II morphs instead of Type I provides 76.6% and 54.4% reduction in morph recognition 

errors on the training set and the test set respectively, while it also provides 85.1% and 70.9% 

reduction in phone recognition errors on the training set and the test set respectively. 

 

Next, we used TINA to propose the FSTs of the morph representation of the 10-best list of the 

letter sequences from two letter recognizers and combined the proposed FSTs with the baseline 

FST. The results are shown in Tables 8-11 to 8-16 below. 

 

Language model: baseline FST + FST from 10-best list of letter seq. 

Letter recognizer: “general” 

morph 

Set Morph sentence recognition 

accuracy (%) 

Morph recognition 

Accuracy (%) 

Training set 46.4 54.1 

Test set 37.0 48.0 

 

Table 8-11: Morph recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the 10-best letter sequences, proposed by the “general” 

letter recognizer, are used as the language model (Type II) 

 

 

Language model: baseline FST + FST from 10-best list of letter seq. 

Letter recognizer: “general” 

phone 

Set Phone sentence recognition 

Accuracy (%) 

Phone recognition 

Accuracy (%) 

Training set 49.3 72.5 

Test set 41.7 67.1 

 

Table 8-12: Phone recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the 10-best letter sequences, proposed by the “general” 

letter recognizer, are used as the language model (Type II) 
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Language model: baseline FST + FST from 10-best list of letter seq. 

Letter recognizer: “general” 

letter 

Set letter sentence recognition 

accuracy (%) 

Letter recognition 

Accuracy (%) 

Training set 49.9 81.4 

Test set 40.8 75.5 

 

Table 8-13: Letter recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the 10-best letter sequences, proposed by the “general” 

letter recognizer, are used as the language model (Type II) 

 

 

Language model: baseline FST + FST from 10-best list of letter seq. 

Letter recognizer: “training-set oriented” 

morph 

Set morph sentence recognition 

accuracy (%) 

Morph recognition 

Accuracy (%) 

Training set 44.2 54.7 

Test set 30.7 45.5 

 

Table 8-14: Morph recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the 10-best letter sequences, proposed by the “training-set 

oriented” letter recognizer, are used as the language model (Type II) 

 

 

Language model: baseline FST + FST from 10-best list of letter seq. 

Letter recognizer: “training-set oriented” 

phone 

Set phone sentence recognition 

accuracy (%) 

Phone recognition 

Accuracy (%) 

Training set 47.1 72.8 

Test set 37.3 63.8 

 

Table 8-15: Phone recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the 10-best letter sequences, proposed by the “training-set 

oriented” letter recognizer, are used as the language model (Type II) 
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Language model: baseline FST + FST from 10-best list of letter seq. 

Letter recognizer: “training-set oriented” 

letter 

Set letter sentence recognition 

accuracy (%) 

Letter recognition 

Accuracy (%) 

Training set 48.2 82.1 

Test set 32.8 71.3 

 

Table 8-16: Letter recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the 10-best letter sequences, proposed by the “training-set 

oriented” letter recognizer, are used as the language model (Type II) 

 

 

From Tables 8-11 and 8-12, we can see that all of the morph recognition and phone recognition 

accuracies have improved from their corresponding accuracies in the baseline recognition cases. 

On the training set, the morph recognition accuracy is 5.6% (54.1%-48.5%) higher and the phone 

recognition accuracy is 7.6% (72.5%-64.9%) higher than the morph and phone recognition 

accuracy of the baseline morph recognizer with trigram language model. The corresponding rates 

of reduction in morph recognition errors and phone recognition errors are 10.9% and 21.7% 

respectively. Also, on the test set, the phone recognition accuracy and the morph recognition 

accuracy are 4.7% (48.0%-43.3%) and 6.6% (67.1%-60.5%) higher than the ones of the baseline 

morph recognizer respectively. The corresponding rates of reduction in morph recognition errors 

and phone recognition errors are 8.3% and 16.7% respectively. 

 

By using the “training-set oriented” letter recognizer instead of the “general” letter recognizer, the 

phone recognition accuracy of the training set increases. In Tables 8-14 and 8-15, all of the morph 

recognition accuracies and the phone recognition accuracies shown are better than the ones of the 

baseline recognizer in their corresponding cases. On the training set, the morph recognition 

accuracy is 6.2% (54.7%-48.5%) higher and the phone recognition accuracy is 7.9% (72.8%-

64.9%) higher than the morph and phone recognition accuracy of the baseline morph recognizer 

with the trigram language model. The corresponding rates of reduction in morph recognition 

errors and phone recognition errors are 12.0% and 22.5% respectively. Also, on the test set, the 

phone recognition accuracy and the morph recognition accuracy are 2.2% (45.5%-43.3%) and 

3.3% (63.8%-60.5%) higher than the ones of the baseline morph recognizer respectively. The 
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corresponding rates of reduction in morph recognition errors and phone recognition errors are 

3.9% and 8.4% respectively. 

 

Up to this point, we can compare the improvement in the morph recognition accuracy and the 

phone recognition accuracy gained by switching the type of morph representation and TINA’s 

grammars from Type I to Type II.  However, it is not perfectly right to say that the morph 

representation Type II is a better means to convey the information from the spelling knowledge to 

help the pronunciation recognition task. There are other variables apart from morph inventories 

that are different between the experiments in Chapter 7 and Chapter 8. These variables are 

TINA’s grammars and how we train them. However, it is reasonable to say that the overall 

method we used in the experiments in this chapter appears to be more usable than the one in 

Chapter 7. Supporting this statement are the data shown in Tables 8-11 to 8-12 and Tables 8-14 to 

8-15. In all of these cases, the letter knowledge helps improving the morph and phone recognition 

accuracy when using morph representation Type II. While using morph representation Type I, we 

can see the improvement in only one case, as mentioned in Chapter 7. Furthermore, the 

percentage of improvement of the recognition accuracy in this one case is lower than the one 

when morph representation Type II is used in the similar case. 

 

 Next, we stepped from utilizing all of the spelling knowledge from the 10-best letter sequences 

to utilizing only the spelling knowledge from the top choice of the 10-best letter sequences. The 

results are shown in Tables 8-17 to 8-22 below. 

 

Language model: baseline FST + FST from top choice letter seq. 

Letter recognizer: “general” 

morph 

Set Morph sentence recognit ion 

Accuracy (%) 

Morph recognition 

Accuracy (%) 

Training set 47.7 56.0 

Test set 44.8 54.3 

 

Table 8-17: Morph recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by 

the “general” letter recognizer, are used as the language model (Type II) 
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Language model: baseline FST + FST from top choice letter seq. 

Letter recognizer: “general” 

phone 

Set phone sentence recognition 

accuracy (%) 

Phone recognition 

Accuracy (%) 

Training set 49.1 73.4 

Test set 40.5 71.6 

 

Table 8-18: Phone recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by 

the “general” letter recognizer, are used as the language model (Type II) 

 

 

Language model: baseline FST + FST from top choice letter seq. 

Letter recognizer: “general” 

Letter 

Set letter sentence recognition 

accuracy (%) 

Letter recognition 

Accuracy (%) 

Training set 51.0 82.5 

Test set 51.3 80.4 

 

Table 8-19: Letter recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by 

the “general” letter recognizer, are used as the language model (Type II) 

 

 

Language model: baseline FST + FST from top choice letter seq. 

Letter recognizer: “training-set oriented” 

morph 

Set Morph sentence recognition 

accuracy (%) 

Morph recognition 

Accuracy (%) 

Training set 54.2 64.0 

Test set 42.3 52.8 

 

Table 8-20: Morph recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by 

the “training-set oriented” letter recognizer, are used as the language model (Type II) 
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Language model: baseline FST + FST from top choice letter seq. 

Letter recognizer: “training-set oriented” 

phone 

Set phone sentence recognition 

accuracy (%) 

Phone recognition 

Accuracy (%) 

Training set 55.3 77.6 

Test set 44.5 68.1 

 

Table 8-21: Phone recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by 

the “training-set oriented” letter recognizer, are used as the language model (Type II) 

 

 

Language model: baseline FST + FST from top choice letter seq. 

Letter recognizer: “training-set oriented” 

Letter 

Set letter sentence recognition 

accuracy (%) 

Letter recognition 

Accuracy (%) 

Training set 57.8 85.4 

Test set 46.5 76.7 

 

Table 8-22: Letter recognition accuracy of the system when the combined FSTs between the 

baseline FSTs and the FSTs built from the top choice of the 10-best letter sequences, proposed by 

the “training-set oriented” letter recognizer, are used as the language model (Type II) 

 

 

Since using the top choice in creating the FST to be combined with the baseline FST had been 

found, in the morph representation Type I case, to be more useful to the pronunciation 

recognition task than using all of the 10-best letter sequences, we expected the same consequence 

for the morph representation Type II. From Tables 8-17, 8-18, 8-20 and 8-21, we can see that the 

result turned out to be as we expected. All of the morph recognition accuracies and the phone 

recognition accuracies are better than the 10-best case. By utilizing the “general” letter recognizer 

and creating the FSTs from the top choice of the 10-best letter sequences, the morph and phone 

recognition accuracy increase from the baseline accuracy by 7.5% (56.0%-48.5%) and 8.5% 
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(73.4%-64.9%) on the training set and 11.0% (54.3%-43.3%) and 11.1%  (71.6%-60.5%) on the 

test set. The corresponding rates of reduction in morph and phone recognition errors are 14.5% 

and 24.2% on the training set and 19.4% and 28.1% on the test set. By using the “training-set 

oriented” letter recognizer, the morph and phone recognition accuracy increases from the baseline 

accuracy by 15.5% (64.0%-48.5%) and 12.7% (77.6%-64.9%) on the training set and 9.5% 

(52.8%-43.3%) and 7.6% (68.1%-60.5%) on the test set. The corresponding rates of reduction in 

morph and phone recognition errors are 30.1% and 36.2% on the training set and 16.8% and 

19.2% on the test set. 

 

The results we have found here are consistent with the results in Chapter 7 that the higher the 

letter recognition accuracy, the more the spelling knowledge can help the performance of the 

phone recognition task. However, in this system, the overall improvement, gained from 

incorporating the spelling knowledge from the name-spelling utterances, is greater than the 

improvement gained in the morph representation Type I case. At a letter recognition accuracy of 

the letter recognizer that is too low for the morph recognizer of the system in Chapter 7 to gain 

any advantages from the name-spelling utterance, there is improvement in the morph and phone 

recognition accuracy here. So, this system is more robust to the noise contaminating the quality of 

the proposed letter sequences.  

 

Converting every resulting morph sequence to the corresponding letter sequences by discarding 

all of the markers, “-”, “+” and “=”, we can then calculate the letter recognition accuracy of the 

integrated system and compare with the letter recognition accuracy of the baseline letter 

recognizer. From the results in Tables 8-19 and 8-22, we have found that the letter sequences 

obtained from the morph sequences proposed by the system, using the top choice of 10-best letter 

sequences to create the combined FSTs, had better accuracy than the letter sequences proposed 

from the baseline letter recognizer with trigram language models alone. By using the “general” 

letter recognizer, the improvements are 0.7% (82.1%-81.4%) in the training set and 1.2% (80.4%-

79.2%) in the test set. The corresponding rates of reduction in letter recognition errors are 3.8% 

and 5.8% on the training set and the test set respectively. And by using the “training-set oriented” 

letter recognizer, the improvements are 1.2% (85.4%-84.2%) in the training set and 2.7% (76.7%-

74.0%) in the test set. The corresponding rates of reduction in letter recognition errors are 7.6% 

and 10.4% on the training set and the test set respectively. 
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8.5 Chapter Summary 

 

The goal of the experiments done in this chapter was to find out how the spelling and 

pronunciation knowledge can help each other in recognizing both the name-spelling and the 

pronounced utterances by using a different inventory of morphs and TINA’s grammar from the 

ones we used in Chapter 7. The experiments were done by varying the language models of the 

morph recognizer in the same fashion as conducted in Chapter 7 but under the notation of morph 

representation Type II. Since we made use of a different morph inventory, the baseline morph 

recognizer was different from the one in Chapter 7. This baseline morph recognizer’s language 

models were created from the lexicon of the training data using the morph representation Type II. 

The same two letter recognizers as in Chapter 7 were also used in this chapter. The result shows 

that the letter knowledge can help the morph and phone recognition task, especially when the 

correct letter sequences were provided. With both letter recognizers, using the top choice of the 

10-best letter sequences was found to be more useful to the phone recognition task than using all 

of the 10-best letter sequences. Still, both methods did improve the baseline morph and phone 

accuracy more than they did in the morph representation Type I case. Unlike the case of Type I, 

the letter knowledge from the name-spelling utterances in this case increased the letter 

recognition accuracy when the combined FSTs were created from the top choice of the 10-best 

letter sequences proposed from the baseline letter recognizer.   
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Chapter 9  

 

Summary and Future Work 

 

 

9.1 Thesis summary 

 

In this thesis, we worked on designing the framework for a proper noun recognition system, in 

which both the information in the spelling and the information in the pronunciation were used to 

assist the system to come up with the resulting letter and phone sequence of the input name. The 

idea of subword modeling was utilized in the framework. The motivation behind our joint 

recognition framework is that we try to imitate a human’s process of understanding proper names, 

especially unfamiliar ones. Utilizing mutually supportive information between the spelling and 

pronunciation of an unfamiliar name helps a person to gain more understanding about that name.  

Thus the goal of our thesis was to determine methods that practically allow both pieces of 

information to be incorporated in both the spelling and the pronunciation recognition tasks. 

 

We define a set of “morph” sub-units to represent proper names. These syllable -sized units 

capture both orthographic and phonemic information of the names they represent. Our morphs are 

categorized into six groups: prefix, onset, rhyme, uroot, dsuf and isuf. Certain combinations of 

these morph categories are used to represent proper names. Such combinations are defined by a 

specific word decomposition rule designed for proper names. Each morph consists of a series of 

characters and special markers, which are attached to the characters in order to determine its 

category. Two types of morph representation, called Type I and Type II were used in this thesis. 

In Type I morph representation, each morph has only one possible pronunciation and capital 

letters are used to distinguish between the morphs that represent the same spellings but are 

pronounced differently. The other type of morphs does not utilize upper-case letter. 

Consequently, each Type II morph is allowed to have more than one possible pronunciation. 
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TINA, a probabilistic natural language framework, was deployed to perform the task of subword 

modeling of proper names in this thesis. Although, this framework was originally designed to 

parse a sentence into a sequence of words, we would like to determine how well it could be 

adapted to perform such a task at the subword level. TINA’s grammar rules were written to 

define the allowed transitions among morph categories. The score, or probability, of each allowed 

transition was calculated during the training session by countings the occurrences of each 

transition in the training data’s parse trees, constrained by the names appearing in the training 

name lexicon and their corresponding morph representations. In the parse mode, TINA was 

expected to propose sequences of morphs according to each name at its input, according to the 

trained probability and word decomposition rules. 

 

MIT’s SUMMIT recognition system was utilized in building all of the speech recognizers 

involved in this thesis. The SUMMIT recognition system is a segment-base speech recognition 

engine, in which the input waveform is converted into a network of segment-based feature 

vectors. In order to find the recognition result, the system walks the segment network. Each path 

through the network is given three types of scores, namely the acoustic model, the pronunciation 

model and the language model. The acoustic model is the probability of occurrence of the 

segment-based feature vectors given sequences of words, segments and phonetic units. The 

pronunciation model is the probability of occurrence of sequences of phonetic units given specific 

words. And the language model is the probability of occurrence of each word given its linguistic 

context. The total score for each path is calculated by summing the three corresponding scores. 

And the path with best total score is selected as the recognition result. 

 

There were two types of data used throughout this research. They were lists of names and audio 

files containing either pronunciations or spellings of proper names. The list of names used was 

gathered from various sources including transcription of the audio files. Some audio files were 

obtained by recording the utterances from phone calls to the Jupiter weather information system. 

Other audio files were taken from the OGI corpus, which contained telephone-quality utterances 

of people spelling or saying names. Data were grouped into two sets, the training set and the test 

set. The training set is larger than the test set in terms of the number of names. Around 58% of the 

names appearing in the test set also appear in the training set. The name lexicons, in which the 

names in each set are transcribed into their morph representations of both types, have been 

created. The size of the overlapping parts between morphs used in the name lexicons of the 
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training set and the test set is larger for Type II morphs than Type I morphs. This shows that Type 

II morphs have better generalizing properties. 

 

There are three main components in our framework. They are the letter recognizer, the morph 

recognizer and the TINA parser. The letter recognizer is responsible for proposing letter 

sequences from the input name-spelling utterances. The function of TINA is to take the letter 

sequences proposed by the morph recognizer and propose morph representations of those letter 

sequences to be composed with the baseline language model of the morph recognizer. Thus, the 

morph recognizer is responsible for proposing morph sequences from the input pronounced 

utterances according to the composed language model. These resulting morph sequences are then 

mapped to the corresponding letter and phone sequences, which we need in order to fulfill our 

recognition tasks of the spelling and the pronunciation. 

 

Two letter recognizers were built and utilized. Both recognizers have a similar building process, 

but their bigram and trigram language models were trained on different name lexicons. The first 

one is called the “general” letter recognizer, since its language models were trained on the letter 

sequences of the names appearing in a large lexicon (>100,000 names), while the language 

models of the other letter recognizer, the “training-set oriented” letter recognizer, were trained 

specifically on the letter sequences of only the names appearing in the training name lexicon. The 

letter recognition results of these two recognizers were used as the baseline recognition 

accuracies for comparing with the letter recognition accuracies of our integrated system. The 

difference in the letter recognition accuracies of the two letter recognizers allowed us to 

determine the effect of the quality of the letter recognizer on the whole system. Also, there are 

two morph recognizers, which were built based on different inventories of morphs, i.e. the Type I 

and Type II morphs. The performances of these two morph recognizers were also used as 

baselines for evaluating our integrated system. 

 

Two sets of experiments were conducted. Each was based on using different types of morphs. 

The parameter varied across various experiments was the language model of the morph 

recognizers. In the baseline recognition, bigram and trigram language models were used. The 

combined language models, which result from the composition between the baseline language 

model of the morph recognizers and another language model obtained form the spelling 

information through TINA and the letter recognizers, were used in the integrated system.  The 

first combined language model was the composition of the baseline language model and the 
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language model obtained from the correct letter sequence for the input name. The other two 

combined language models were the composition of the baseline language model and the spelling 

knowledge obtained from the recognition results of the letter recognizers. In one case, all of the 

10-best letter sequences proposed from the letter recognizers were used to pass the spelling 

knowledge to the morph recognizer. In the other case, only the letter sequence with best 

recognition score was used. 

 

When Type I morphs were used, it was found that the letter knowledge could help the 

pronunciation recognition task, especially when the correct letter sequences were provided.  And 

it was also found that using the top choice of the 10-best letter sequences was more useful to the 

phone recognition task than using all of the 10-best letter sequences.  Furthermore, as expected, 

the letter recognition accuracies of the baseline letter recognizers were found to have an effect on 

the performance of the overall system. However, there was no sign that pronunciation knowledge 

could help the letter recognition task in most cases. 

 

Using Type II morphs was more promising than using Type I morphs. The result showed that the 

letter knowledge could help the pronunciation recognition even more than using Type I morphs.  

And, as in the Type I case, using the top choice of the 10-best letter sequences was more useful to 

the phone recognition task than using all of the 10-best letter sequences. Still, both methods did 

improve the baseline pronunciation recognition accuracies more than they did in the Type I case. 

Finally, unlike the Type I case, the letter knowledge from the name-spelling utterances in this 

case increased the letter recognition accuracy when the combined language models were created 

from the top choice of the 10-best letter sequences proposed from the baseline letter recognizer. 

Although, in general, the recognition result was better when Type II morphs were used, it is not 

perfectly correct to say that they are a more suitable morph representation, since there might be 

some differences in the quality of the name lexicon prepared in Type I and Type II. However, we 

feel that Type II morphs should be chosen as the subword units in developing this system in the 

future. 

 

In the rest of this chapter, we will suggest some work that can be conducted in the future based on 

the framework developed in this thesis. Some of it could have been done under the scope of this 

thesis, if time had allowed. 

 



 123

 

9.2 Training TINA on a larger set of names 

 

As part of the data collection attempt in this thesis, we have built a list of names, which was 

collected from various sources. The size of this list of names is around 100,000 names, which 

were not restricted to be English names but any names that can be spelled using the 26 letters of 

the English alphabets. It is interesting to ask whether this list of names would improve or degrade 

the quality of proper name decomposition task if we are able to use these 100,000 names to train 

TINA’s word decomposition grammars. Although the size makes it interesting, it is considered a 

very exhaustive task to transcribe all of the names into their corresponding morph representations. 

A semi-automatic technique has provided an initial morph decomposition, but it requires 

extensive manual editing to correct for errors. 

 

One possible way to handle this problem is to try to let TINA itself help in the transcription task. 

TINA is capable of producing a name-to-morph lexicon based on the trained grammars. Thus, we 

need a name lexicon for TINA to produce another name lexicon. Our approach is to let TINA 

parse the 100,000 names and propose an output name lexicon containing those names from the 

current trained grammar. It is likely that the output name lexicon provides inappropriate morph 

representation for many of the words, due to sparse data problems. Some names need new 

morphs in order for them to be represented appropriately. However, an expert can look at this 

name lexicon and edit the transcription proposed by TINA. Prominent errors should be fixed 

while too detailed errors can be ignored. Then we can retrain TINA’s grammar on the edited 

lexicon and expect more accurate decompositions from the parsing. This process will be repeated 

until we have a reasonably high quality lexicon of 100,000 names. By implementing it in this 

way, it is easier in that an expert does not have to fix the morph representations of every single 

word. Manual correction on some words might generalize iteratively to other related words. 

 

In order to simplify the name decomposition task, we should reduce the confusion that lies in the 

morphs used to represent names. In this thesis, Type I morphs have unique pronunciations: while 

some morphs can be spelled with the same letters, they are distinguished by the usage of capital 

letters. Type II morphs can have multiple pronunciations, by eliminating the distinction based on 

capital letters. Thus, using Type II morphs can be less confusing in the name decomposition task. 
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We propose avoiding the usage of capital letters in order for TINA to create a more consistent 

name-to-morph lexicon, since the task of identifying the correct “allomorph” in each word in a 

large lexicon is daunting. 

 

9.3 Experiment with alternative ways of passing spelling knowledge 

 

In the experiments conducted in this thesis, the knowledge of the spellings is incorporated into the 

system through letter recognizers. Then the proposed letter sequences from the letter recognizers 

are presented to the morph recognizer in the form of networks of morph sequences proposed by 

TINA. Examples of networks containing information about the proposed morph sequences for 

proper names were shown in Figures 5-3 and 5-4 in Chapter 5. In each figure, each path between 

the start node and the end node makes an allowed morph sequence proposed as a resulting morph 

sequence form the morph recognizer. Thus, the number of different morph sequences proposed 

by the system is ten if the network in Figure 5-3 is used as part of the morph recognizer’s 

language model, while it is two if the network in Figure 5-4 is used. 

 

However, if we allow all of the paths between the start node and the end node to cross-pollinate 

with each other, the number of different possible resulting morph sequences will increase. And 

the correct morph sequence, which does not necessarily appear in the original network for that 

name, might be reconstructed by the cross-pollination effect. However, this could result in 

additional errors due to inappropriate cross-pollination. 

 

9.4 Improvements to speech recognizers 

 

As we can see from the recognition results of our system, the better the letter recognizer, in terms 

of its letter recognition accuracy, the higher the performance of the overall system. All of the 

morph recognition accuracy, phone recognition accuracy and letter recognition accuracy, 

calculated form the resulting morph sequences, increase as the letter recognition accuracy of the 

preliminary letter recognizer, on the corresponding data set, improves. Furthermore, in the case 

where we emulate an ideal letter recognizer, in which the preliminary letter recognizer always 

provides the correct letter sequences, the recognition accuracies of the overall system are quite 
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good. The morph and phone recognition errors are less than 10% when Type II morphs are 

utilized. Thus, it is clear to us that one possible way to improve the overall system’s recognition 

accuracy is to raise the letter recognition accuracy of the letter recognizer used in the system. 

However, we did not try to maximize our letter recognizer performance in this thesis since the 

main goal is the framework in which components interact with each other. 

 

 Although there are only twenty-six lexical entries used in the letter recognizer, the recognition of 

a spelled proper name is more difficult than the recognition of an English sentence in a limited 

domain, since there is less constraint on how the vocabulary is organized. Despite training the 

language model on a lexicon of spelled names, there will always be some rare letter sequences, 

compared to the letter sequences in the training lexicon, used for spelling proper names. 

 

One possible way to improve the letter recognition accuracy of the letter recognizer used in this 

thesis is to train new acoustic models. As mentioned in Chapter 6, the acoustic models used for 

every letter recognizer are the existing acoustic models trained on sentences collected from the 

Jupiter system. Thus, if we train an acoustic model directly on letters, the new letter recognizer 

should provide better performance on letter recognition. It is likely, for example, that vowels in 

letters are more carefully enunciated than in words. 

 

Another possible method for improving the letter recognizer lies in the language models. The 

language models we used for the letter recognizer in this thesis are letter N-grams. However, we 

could make use of class N-gram language models, in which the probabilities of letter sequences 

are trained according to its class. The classes possibly chosen in this case are the morph 

categories. TINA has the ability to take in the name lexicon and train the probabilities of letter 

sequences based on the chosen class. Finally, the FSTs of class N-gram created by TINA can be 

used as the new language models for the letter recognizer. We suspect that training the letter 

sequences assisted with the class knowledge should provide stronger constraints to the letter 

recognition task.  For example, the letter sequence “s o n” is much more likely to occur in an isuf 

than in a prefix. 
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9.5 Automatic extraction of spelled and pronounced waveforms 

 

The amount of data available plays a crucial role in speech research. Although, in this thesis, we 

feel that we have a sufficient amount of data available for developing and testing the system, we 

also are confident that more data will raise the accuracies we obtained from the system. As 

mentioned, there are two types of data needed. They are the name lists and the audio files. In data 

preparation, we spent a great deal of time transcribing the audio files recorded in the Jupiter 

system and manually extracting usable information into separate waveforms. Although the former 

is unavoidable, the latter might be done automatically or at least semi-automatically in the future. 

 

The waveforms from which we extracted the name-spelling utterances and pronounced utterances 

are speech of the Jupiter system’s callers when they were asked to say and spell the name of a 

person they know. Even though the answers responding to this query are not restricted to be any 

definite forms, some forms are used by different callers many times. Examples of these forms 

were shown in Section 4.4 in Chapter 4. By utilizing these repetitive forms as well as trying to 

find features that distinguish between the spellings and the sayings of names, we should be able 

to automatically extract the portion we want. As a consequence, the time used for data 

preparation will be reduced, and we can thus process more data. 
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