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Abstract

In addition to the vast amount of text-based information available on the World
Wide Web, an increasing amount of video and audio based information is becoming
available to users as a result of emerging multimedia computing technologies. The
addition of these multimedia sources of information have presented us with new re-
search challenges. Mature information retrieval (IR) methods have been developed
for the problem of �nding relevant items from a large collection of text-based mate-
rials given a query from a user. Only recently has there been any work on similarly
indexing the content of multimedia sources of information.

In this work, we focus on general audio data (GAD) as a new source of data for
information retrieval systems. The main goal of this research is to understand the
issues posed in describing the content of GAD. We are interested in understanding
the general nature of GAD, both lexically and acoustically, and in discovering how
our �ndings may impact an automatic indexing system. Speci�cally, three research
issues are addressed. First, what are the lexical characteristics of GAD, and how do
they impact an automatic recognition system? Second, what general sound classes
exist in GAD, and how well can they be distinguished automatically? And third, how
can we best utilize the training data to develop a GAD transcription system?

In our attempt to answer these questions, we �rst developed an extensive GAD
corpus for study in this work. We collected and transcribed over 100 hours of data
for lexical analysis. Ten hours were additionally transcribed for acoustic analysis
and recognition experiments. Next, we studied the properties of the GAD vocabu-
lary. This analysis discovered some potential problems for a general large vocabulary
continuous speech recognition approach to the transcription of GAD. We found that
even for large training set sizes and vocabularies, new words were still regularly en-
countered. With a training set of nearly one million words (resulting in over 30,000
unique vocabulary words), the out of vocabulary rate was just over 2%. A part-of-
speech analysis suggested that the new words were predominately proper nouns and
nouns, which would be very important to recognize if we were describing the content
of this data. We found that this problem was magni�ed when we investigated the
more realistic scenario of constructing a training set from an out-of-domain source.
We then examined the acoustic characteristics of GAD and developed a sound recog-
nition system to segment the audio into its salient sound classes. We subjectively



identi�ed seven acoustically distinct classes based on visual and aural examination of
the data. We achieved a 79.4% recognition accuracy for these seven classes on unseen
data, using relatively straightforward acoustic measurements and pattern recognition
and smoothing techniques. A speech/non-speech recognizer achieved an accuracy of
over 92.4%. Next, based on the results of our lexical analysis, we proposed a subword
approach to the lexical transcription of GAD. Speci�cally, we developed a phonetic
recognizer for GAD and investigated the use of environment-speci�c models. Overall,
we found that a multiple recognizer system achieved performance similar to a single
recognizer, trained in a multi-style fashion. Upon closer inspection of the results, we
found that the multi-style system primarily bene�tted from the increased amount of
data available for training.

Thesis Supervisor: Victor W. Zue
Title: Senior Research Scientist
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Chapter 1

Introduction

The last few years have been an exciting time in the \information age." We have seen

an enormous growth in the amount of information available electronically to users, and

as the popularity of the World Wide Web continues to grow, we will continue to see

further increases. Until recently, the vast majority of this information has been text-

based, from sources such as quarterly reports, text-based web pages, catalogs, theses,

conference proceedings, weather reports, etc. Recently, in addition to the increase

in the amount of information available to users, we have also seen an increase in the

type of information available. In addition to text-based data, images, video and audio

data from sources such as television, movies, radio and meeting recordings are fast

becoming available. Access to these multimedia sources of information would allow

us to ful�ll such requests as \Play me the speech in which President Kennedy said

`Ich bin ein Berliner'," \Show me the footage from the last presidential debate," or

\Excerpt Victor's conclusions from the last sta� meeting."

These multimedia sources of information have presented us with new research

challenges. Much research has been done on the problem of selecting relevant docu-

ments from a large collection of text-based materials [38, 66, 68]. Traditionally, key

words present in the text documents are used to index and describe the content of the

documents, and information retrieval techniques have been developed to eÆciently

search through large collections of such data. Only recently has there been work ad-

dressing the retrieval of information from other media such as images, audio, video or
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speech [17, 21, 39, 47, 62]. Unlike text-based data, however, multimedia data sources

do not have such a direct way to index or describe their content. In particular, au-

dio materials from sources such as recorded speech messages, radio broadcasts and

television broadcasts have traditionally been very diÆcult to index and browse [71].

However, these audio materials are becoming a large portion of the available data to

users. Therefore, it is critical to the success of future information systems to have an

ability to automatically index and describe the content of this information.

In this chapter, we �rst provide background into the area of information retrieval.

Next, we describe some of the challenges presented by the inclusion of audio as a

data source. We then review areas of related research, and describe the goals and

contributions of this thesis. Finally, we give a chapter by chapter overview of the

thesis.

1.1 Introduction to Information Retrieval

The goal of an information retrieval (IR) system is to retrieve relevant documents

from a stored database in response to a user's request. The user is not looking for

a speci�c fact but is interested in a general topic or subject area and wants to �nd

out more about it. For example, a user may be interested in receiving articles about

\the 1992 presidential debates" from a collection of newspaper articles. The goal of

the IR system is to inform the user of the existence of documents in the stored data

collection that are relevant to his or her request.

Figure 1-1 illustrates the three major components of a typical IR system, enclosed

in the dashed box. First, all of the documents in the database must be compactly

represented. This representation must capture all of the important information con-

tained in the document, in a form that is compatible with the retrieval process. This

is the indexing process. Similarly, the user's request must undergo a transformation

that extracts the important information present in the request and converts it to a

form that is compatible with the retrieval system. This is the query formation pro-

cess. Finally, the retrieval system compares the query with the indexed information
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Figure 1-1: Illustration of the major components of an information retrieval system.

documents and retrieves those that are found to be relevant.

While the vast majority of documents used by current information retrieval sys-

tems are text in nature, in theory, there is no restriction on the type of documents

that can be handled. However, traditional IR models are not well suited to other

media sources. Traditional IR models [68] represent the documents and queries as

vectors, where each vector component is an indexing term. For text-based docu-

ments, the terms are typically the words present in the document. Each term has an

associated weight based on the term's occurrence statistics both within and across

documents. The weight re
ects the relative discrimination capability of that term.

A similarity measure between document and query vectors is then computed. Using

this similarity measure, documents can then be ranked by relevance and returned to

the user. Powerful IR techniques have been developed to accomplish this task [68].

Unlike text-based data, however, other types of media such as images or audio do not

have such a direct way to describe their content. Methods to automatically derive

indexing terms from non-text documents are required to facilitate their inclusion into

IR systems.

1.2 Describing the Content of General Audio Data

In this work, we focus on general audio data (GAD) as a new source of data for

information retrieval systems. Given that the amount of GAD as an information
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source continues to grow, the development of methods to index the content of this data

will become more important. A manual approach to this problem seems intractable,

due to its tedious and time-consuming nature. Therefore, automatic methods of

producing indices are desirable. In addition to providing a mechanism to include

GAD documents into an IR system, the generation of indices for GAD will facilitate

access to this data in rich new ways. By nature, audio is diÆcult to browse and search.

Traditionally, to browse audio, one is restricted to real time, sequential listening.

Indices to important acoustic cues in the audio would allow users to listen to just

those portions of a long discussion which involve a given subset of speakers, or to

instantly skip ahead to the next speaker.

General audio data from sources such as radio, television, movies, meeting record-

ings, etc., can be characterized by a variety of acoustic and linguistic conditions. The

data may be of high-quality, full-bandwidth, or it may have been transmitted over

a telephone channel. The speech material may be interspersed with music or other

interfering sounds. The speech is produced by a wide variety of speakers, such as news

anchors and talk show hosts, reporters in remote locations, interviews with politicians

and common people, unknown speakers, or non-native speakers. The linguistic style

ranges from prepared, read speech to spontaneous speech that may contain incom-

plete or mispronounced words. GAD may also contain non-speech segments, such

as music. To fully describe the content of GAD, a complete audio description must

be created in addition to transcribing the speech material. This description should

indicate regions of speech and non-speech, identify segments spoken by particular

speakers, indicate the speaking environment, etc.

Figure 1-2 illustrates this multi-level description of GAD. In this example, two

speakers (spkr1 and spkr2 in the �gure) present the local news after an introductory

musical segment. The second speaker is speaking over background music. A third

speaker (spkr3 in the �gure) then presents the weather report. In addition to provid-

ing a transcription of the words spoken (e.g., \Good morning, today in Boston..."), a

complete description of this simple example should indicate major acoustic changes

with appropriate labels (e.g., music segments, speci�c speaker segments, speaking
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Figure 1-2: Describing the content of GAD.

environment, etc.) and the story topics and boundaries (e.g., local news, weather,

etc.).

Therefore, to fully describe the content of GAD, an audio indexing system requires

two major components. A lexical transcription component is required to generate the

linguistic description of the speech data present in the audio. A second transcription

component is required to generate the complete acoustic description of the audio

data. These components and their subsystems are shown in Figure 1-3. Sections 1.2.1

and 1.2.2 describe these components in more detail.

1.2.1 Transcription of Linguistic Content

The prevailing approach that has been taken in the task of spoken document retrieval

is to transform the audio data into text using a large vocabulary speech recognizer

and then use a conventional full-text retrieval system [39, 48, 83]. In this approach,

the main research challenge is on improving the speech recognition system so it can

operate accurately under very diverse acoustic conditions. Although this has been the

dominant approach in recent National Institute of Standards and Technology (NIST)

sponsored Text REtrieval Conferences (TREC) [26, 27], it has several drawbacks.

First, as we illustrate in Chapter 3, the vocabulary generated from GAD is large,

diverse, and continually growing [75], while current recognizer technology has prac-

tical limits on the size of the recognizer vocabulary. Second, the recognition system

must be able to gracefully handle the introduction of new words. As we will show,

new vocabulary words are commonly proper nouns, which are important for content
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Figure 1-3: Illustration of the major components of an audio indexing system.

description and information retrieval purposes. Finally, recognition systems typically

rely on domain-speci�c data for training the large vocabulary models. Data may

not be readily available for this purpose. As illustrated as a subsystem of the lexical

transcription component in Figure 1-3, a thorough lexical analysis must be completed

to determine what recognition units should be used in a GAD transcription task. In

Chapter 3, we perform this analysis to determine whether or not a large vocabulary

speech recognition approach is the most appropriate for this task.

In addition to determining what recognition units should be used in a GAD tran-

scription system, we must also explore how the training and testing data can best be

utilized in the automatic speech recognition (ASR) subsystem of the lexical transcrip-

tion component. Preliminary analysis of GAD has shown that it contains a number of

diverse speaking conditions, and that recognizers do not perform equally well in each

of these conditions [63, 76]. Segmenting GAD into acoustically homogeneous blocks

and using appropriate models for each segment has been shown to improve overall

recognition accuracies [76]. Improved recognition results have also been obtained in a

word-based approach by clustering the segments and applying adaptation techniques

on the resulting homogeneous clusters [10, 51, 73, 81, 85]. In Chapter 5, we explore
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di�erent training and testing methods to determine how we can best utilize the GAD

data.

1.2.2 Description of General Acoustic Content

While an automatic speech recognition system can provide us with the linguistic

content of GAD, the collection of possible audio signals is much wider than speech

alone. Considering the range of sounds that people might want access to (e.g., dif-

ferent musical genres, sound e�ects, animal cries, synthesizer samples), it is clear

that purely speech-based methods alone are inadequate to fully describe the content

of GAD [21]. An indexing system for GAD requires an additional component that

is capable of indexing the variety of acoustic events that occur in the data. When

examining GAD we quickly see that there are many di�erent levels of segmentation

that can be constructed. We can visualize a very coarse segmentation that indicates

boundaries between speech and non-speech sounds, another that indicates boundaries

between di�erent background acoustic environments, another that indicates bound-

aries between di�erent speakers, etc. Each of these possible segmentations is use-

ful for di�erent reasons and should be included in any representation of GAD. As

shown in Figure 1-3, a number of subsystems would be required to construct this full

acoustic description. For example, an acoustic change detector is required to mark

instances of signi�cant acoustic di�erences between neighboring segments. A speaker

identi�cation system is required to label segments spoken by particular speakers. A

sound classi�cation system is required to label segments with speci�c sound tags (e.g.,

music, speech over the telephone, silence, etc.). In addition to providing valuable in-

formation to the acoustic description system, this sound classi�cation system could

also provide useful information to the speech transcription system. As we mentioned

in the previous section, ASR systems can bene�t from knowledge of the speaking

environment.

Providing a complete multi-level representation of GAD is beyond the scope of this

work. Here, we concentrate on segmenting the data into a single-level representation,

based on general acoustic classes. This is explored in Chapter 4. In addition to
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contributing to the general acoustic description of GAD, this segmentation may also

be useful for the automatic speech recognition system. This topic is explored in

Chapter 5.

1.3 Related Research

Although the topic of describing the content of GAD is relatively new, there has

been some work in this area recently. In this section, we review approaches that have

been taken in the automatic speech recognition of GAD, speaker segmentation and

identi�cation, music and audio analysis, and audio interfaces.

1.3.1 Automatic Speech Recognition of GAD

A number of research sites have begun to address the problem of transcribing GAD.

The Defense Advanced Research Projects Agency (DARPA) sponsored Hub-4 [61]

task was developed in 1995 with the purpose of encouraging research in the ability

of ASR systems to adapt to varying conditions of input, whether in acoustic charac-

teristics or content. Hub-4 was also designed to focus on the problems of processing

speech materials which have not been created speci�cally for the purpose of speech

system development or evaluation, such as television or radio. The corpus developed

for this transcription task consists of a collection of audio �les from a number of

television and radio news shows such as ABC Nightline News, CNN Headline News,

and National Public Radio Marketplace. Each of these shows contain a wide vari-

ety of speaking styles (e.g., news texts read by anchors or other studio announcers,

more casual speech from correspondents and interviewees), and dialects (both regional

and foreign-accented English). In addition, the speech material sometimes contains

background noise and other channel e�ects (such as reduced bandwidth speech). A

number of research sites have been involved with the Hub-4 transcription task since

its inception in 1995, with varying results. All sites have found that word recogni-

tion error rates vary widely across di�erent speaking conditions, from 9.9% for clean,

wideband read speech to 29.9% for spontaneous, accented speech in the presence of
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background noise [61]. These systems typically use a very large vocabulary (on the or-

der of 64,000 words) speech recognition system, and multiple passes with successively

more powerful language models.

We have argued that the transcription of GAD would bene�t from a preprocessing

step that �rst segmented the signal into acoustically homogeneous chunks [75, 76],

because such preprocessing would enable the transcription system to utilize the ap-

propriate acoustic models and perhaps even to limit its active vocabulary. Some

participating Hub-4 sites have used some type of segmentation and clustering of the

test utterance to improve their recognition results. Following is a brief description of

a few of the data segmenting approaches taken for the Hub-4 task.

The BBN Byblos system [51] �rst segments the monolithic broadcast news in-

put using a context-independent 2-gender phone decoder. The chopped segments are

then clustered automatically to pool data from each speaker for a following adapta-

tion step. Gender-dependent, speaker-independent (SI) models are then re�ned by

Speaker Adapted Training (SAT) [2, 59]. The goal of SAT is to model the speaker-

speci�c variation separately from the other phonetically relevant variation of the

speech signal. This produces acoustic models with reduced variance relative to the

original general models. They found that the SAT-adapted system achieved an overall

relative recognition accuracy gain of 10% over their previous SI system.

Woodland et al., using HTK, takes a more supervised approach to their segmenta-

tion step [85]. First, the audio data is classi�ed into three broad categories: wide-band

speech, narrow-band speech and music. After rejecting the music, a gender-dependent

phone recognizer is used to locate silence portions and gender change points, and

after applying a number of smoothing rules, the �nal segment boundaries are de-

termined. After the initial classi�cation of the data, maximum likelihood linear re-

gression (MLLR) [56] adaptation transforms are computed for each class. The MLLR

approach translates, rotates and scales the mean vectors of the density functions used

by the general acoustic models, so that there is a better match between the models

and the class data. After computing the MLLR transforms, the decoding is repeated

using the adapted models. This approach is able to discard 70% of the non-speech
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material, while only erroneously discarding 0.2% of the speech. Speech segments

are then clustered separately for each gender and bandwidth combination for use

with MLLR adaptation of SI acoustic models. They found that this segmentation

and adaptation approach achieved recognition results at least as good as data-type

speci�c models.

The CMU Sphinx-3 system [73] takes an approach similar to that taken by HTK.

Before recognition, the unannotated broadcast news audio is automatically segmented

at acoustic boundaries. Each segment is classi�ed as either full-bandwidth or narrow-

bandwidth in order that the correct acoustic models may be applied. Segments are

then clustered together into acoustically-similar groups, for use in a following MLLR

adaptation step.

While many of the Hub-4 sites found that some sort of segmentation was useful

as a preprocessing step for a subsequent speech recognition system, they weren't

necessarily concerned with the absolute performance of the segmentation system.

For example, while the HTK system [85] cited improved recognition results with the

use of their segmentation step, it has a limitation in that it only proposes speaker

change boundaries when a change in gender is encountered. This would obviously be

a problem if an accurate acoustic description of the data was desired in addition to

the lexical transcription.

1.3.2 Speaker Segmentation and Identi�cation

Much research has been done in the area of speaker segmentation and speaker identi�-

cation (speaker ID). This research is applicable in the acoustic description component

of a GAD indexing system. Following is a brief description of a few approaches to

this task.

Xerox Palo Alto Research Center (PARC) has developed a system to segment and

analyze recorded meetings by speaker [49, 82]. A time-line display was developed

to show when particular speakers were talking during the meeting, as well as ran-

dom access to play back a desired portion of the recording. In addition, non-speech

segments such as silence and applause were located, providing important cues for a
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more general segmentation system. To accomplish this, they created a hidden Markov

model (HMM) for each speaker or acoustic class (e.g., music, applause, silence). The

HMM for each class was trained using a maximum likelihood estimation procedure.

Each class HMM was then combined into a larger network, and the Viterbi algo-

rithm [79] was used to determine the maximum likelihood state sequence through the

network to determine the �nal segmentation of the audio data. They found this sys-

tem worked very well (error rate of under 1%) when it was used on a formal recorded

panel discussion. Results were degraded to a segmentation error of 14%, however,

when the system was used on a more informal recorded meeting. The characteristics

of the informal meeting were quite di�erent from those of the panel discussion. The

panel discussion had speakers speaking in turn (i.e., no interruptions) with average

utterance lengths of 20 seconds. In contrast, the recorded meeting had one third of

its utterances interrupted, resulting in average utterance lengths of only 3 seconds.

In addition, the speakers in the panel discussion were individually miked, while the

recorded meeting simply had two microphones placed on the meeting table. This is

a potential limitation to their approach, because many GAD sources are likely to be

of this more informal nature.

Segmenting audio data based on speaker change can also help multimedia segmen-

tation applications. The detection of speaker changes in the soundtrack of a video

or multimedia source may indicate a scene or camera change. Wyse and Smoliar

investigate the use of a \novelty measure" based on the cepstral di�erence between a

short and long analysis window [86]. Di�erences are only computed in similar regions

of the feature space to prevent intra-speaker variation. When this di�erence exceeds

a threshold, a speaker change is detected. Chen et al. [11] also used a completely

data-driven approach for the segmentation problem. They modeled the input audio

stream as a Gaussian process in the cepstral space. A maximum likelihood approach

was used to detect turns in this Gaussian process based on the Bayesian informa-

tion criterion [72]. They analyzed their data in terms of insertions and deletions of

boundaries. They achieved a very low insertion rate (4.1%), and a 33.4% deletion

rate. The majority of their deletions occurred when a segment was less than 2 sec-
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onds in length. These most likely occurred because there wasn't suÆcient data to

adequately develop the Gaussian model for these segments. However, we have found

this to be a potentially serious limitation of this approach. In our analysis of GAD,

we found that while the average segment length is over 4.8 seconds, nearly 20% of

the segments are less than 2 seconds in length.

1.3.3 Music and Audio Analysis

A very general problem in audio analysis is to detect regions of non-speech. This

has a direct implication for speech recognition systems, as non-speech data can be

eliminated from computation by the ASR system. Saunders [69] uses a straightfor-

ward approach to the discrimination of speech and music. A simple multivariate

Gaussian system is trained using features that were determined to discriminate be-

tween music and speech. He found that using statistics computed from the zero

crossing rate, he could achieve a classi�cation accuracy averaging 90%. By including

additional information about the energy contour, he improved his accuracy to 98%.

Scheirer and Slaney [70] report similar results on their speech/music discriminator.

The discriminator was based on various combinations of 13 features such as 4-Hz

modulation energy, zero crossing rate, and spectral centroid. They investigated a

number of classi�cation strategies, such as Gaussian mixture models and K-nearest-

neighbor classi�ers. When looking at long-term windows (2.4 seconds), they achieved

an error rate of 1.4%. In Chapter 4, we develop a more extensive sound classi�cation

system which classi�es audio into one of seven basic sound classes. Using a maximum

a posteriori approach on mel-frequency cepstral coeÆcients, we were able to achieve

a classi�cation accuracy of over 85%. In addition, we develop a speech/non-speech

classi�er that achieves an accuracy of over 95%.

1.3.4 Audio Interfaces

A number of research sites have developed complete audio information retrieval sys-

tems. The Informedia Digital Library Project [40] at Carnegie Mellon University is
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creating a large digital library of text, images, videos and audio data, and are at-

tempting to integrate technologies from the �elds of natural language understanding,

image processing, speech recognition and video compression to allow a user to perform

full content retrieval on multimedia data. An automatic speech recognition system is

used on audio data to create time-aligned transcripts of the data. Traditional text-

based information retrieval techniques are then used to locate segments of interest.

They have found that automatic speech recognition even at high error rates is useful.

However, they have also found that a segmentation step that �rst identi�es regions

of speech and non-speech would be helpful.

Muscle Fish [60] has developed a retrieval by similarity system for audio �les.

Their approach analyzed sound �les for a set of psychoacoustic features. Attributes

computed from the sound �les included pitch, loudness, bandwidth, and harmonic-

ity [84]. A covariance-weighted Euclidean distance is then used to measure similarity

between audio �les. For retrieval, the distance is computed between the given sound

sample and all other sound samples. Sounds are then ranked by distance, with the

closer ones being most similar.

Foote [22] has developed a similar retrieval system, using a di�erent approach.

He computes distance measures between histograms derived from a discriminatively

trained vector quantizer. Mel-frequency cepstral coeÆcients are �rst computed from

the audio data. A learning algorithm then constructs a quantization tree that at-

tempts to put samples from di�erent training classes into di�erent bins. A histogram

of an audio �le is made by looking at the relative frequencies of samples in each

quantization bin. Histograms from di�erent audio samples are then used as the fea-

ture vectors for a simple Euclidean measure computation to determine the similarity

between them. This approach has also been used by Foote for speaker identi�ca-

tion [23, 24], and music and audio retrieval [22].
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1.4 Goals and Contributions

As reviewed in the previous section, strides have been made in a number of the

components that are required to describe the content of GAD. The Hub-4 task has

encouraged speech recognition researchers to tackle the diÆcult problem of general

audio, rather than just clean speech, as has been the case with the majority of past

speech recognition research. Audio information retrieval is also now a sub-task of

TREC, encouraging those in the text-retrieval community to consider audio as well.

Speaker identi�cation and segmentation systems have been successfully used to pro-

vide indices into meeting recordings, allowing for easier browsing of the audio, and

more general sound segmentation systems have been developed to allow for even more

detailed indexing. While the success in each of these subsystems is encouraging, the

analysis and transcription of general audio data is still a very new topic. The main

goal of this research is to understand the issues posed in describing the content of

GAD. We are interested in understanding the general nature of GAD, both lexi-

cally and acoustically, and in discovering how our �ndings may impact an automatic

indexing system. Speci�cally, three research issues are addressed:

1. What are the lexical characteristics of GAD, and how do they impact an auto-

matic speech recognition system?

2. What general sound classes exist in GAD, and how well can they be distin-

guished automatically?

3. How can we best utilize the training data to develop a GAD transcription

system?

In our attempt to answer these questions, we �rst develop an extensive GAD

corpus for study in this work. We collect and transcribe over 100 hours of data

for lexical analysis. Ten hours are additionally transcribed for acoustic analysis and

recognition experiments. Next, we study the properties of the GAD vocabulary.

We are interested in determining the size of the vocabulary and in observing how the

vocabulary grows as additional data is encountered. We then look more closely at the
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out-of-vocabulary occurrence rate under two conditions. First, we study the best-case

scenario, that is, building a vocabulary using task-speci�c training data. Second, we

determine how the out-of-vocabulary rate is a�ected when we use training data from

a similar corpus. A part of speech analysis is then performed to further understand

the lexical properties of this data. Shifting to the acoustic description of GAD, we

investigate its general acoustic properties to determine what salient sound classes

exist in the data. We then study their general characteristics and distributions.

Next, we determine how well we can automatically segment the sound stream into

these acoustic classes. After we develop a recognition system to accomplish this task,

we evaluate the results to determine if our subjectively de�ned acoustic classes need

further re�nement. Next, based on the results of our lexical analysis, we propose

a subword approach to the lexical transcription of GAD. Speci�cally, we develop a

phonetic recognizer for GAD. Our acoustic analysis revealed that GAD contains a

number of di�erent acoustic speaking environments. Since the performance of ASR

systems can vary a great deal depending on speaker, microphone, recording conditions

and transmission channel, we investigate the use of environment-speci�c models for

the phonetic recognition of GAD.

In this thesis, we make the following contributions to research in the area of GAD

analysis and transcription:

� Development of GAD Corpus: To complete this work, over 100 hours of

data were collected and orthographically transcribed for lexical analysis. Ten

hours were additionally transcribed for acoustic analysis and recognition exper-

iments. This corpus will be valuable to others working on research issues in

GAD.

� Lexical Analysis of GAD:We performed a lexical analysis to understand the

general lexical characteristics of GAD. This analysis discovered some potential

problems for a general LVCSR approach to the transcription of GAD. We found

that even for large training set sizes and vocabularies, new words are still regu-

larly encountered, and that these words are primarily high content words (i.e.,
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proper nouns) and therefore would need to be correctly recognized to describe

the linguistic content of GAD. We proposed a subword based approach to the

recognition of GAD.

� Acoustic Analysis and Development of Sound Recognition System:

We performed an acoustic analysis to determine what sound classes exist in

GAD, and discovered the characteristics of the classes. A sound recognition

system was developed which would bene�t both an acoustic description system,

and a recognition system.

� Discovery of Optimal Recognition Strategies for GAD:We investigated

a number of di�erent training and testing strategies for the phonetic recognition

of GAD. We found that knowledge of the speaking environment is useful for

phonetic recognition.

1.5 Overview

The remainder of this thesis is organized in �ve chapters. Chapter 2 describes the

background for the experimental work presented in this thesis. This includes informa-

tion about the NPR-ME corpus that was developed for this work, information about

the TIMIT corpus, and a description of the SUMMIT speech recognition system used

in Chapter 5. Chapter 3 describes the lexical analysis completed in our study of

GAD. We begin with an analysis of the general orthographic properties of the corpus.

Next, we thoroughly examine the behavior of the vocabulary of our GAD corpus,

and determine how it compares with similar corpora. Finally, we determine how this

behavior may a�ect the development of an ASR system. Chapter 4 describes the

development of our sound recognition system. We begin the chapter with an acoustic

analysis of GAD which subjectively determines what sound classes are present in the

data. Next, we present the development and results of the sound recognition system.

Chapter 5 describes the experiments we conducted in the phonetic recognition of

GAD. Speci�cally, we explore a variety of training and testing methods to determine
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how to best utilize our training data, and how to best process test data in a phonetic

recognition task. Finally, Chapter 6 summarizes the work, draws some conclusions,

and mentions directions for future work.
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Chapter 2

Experimental Background

This chapter contains background information for the work presented in the remainder

of this thesis. This includes information about the corpora used in the experiments

and a description of the SUMMIT speech recognition system.

2.1 NPR-ME Corpus

We have chosen to investigate the nature of GAD by focusing on the National Public

Radio (NPR) broadcast of the Morning Edition (ME) news program. NPR-ME is

broadcast on weekdays from 6 to 9 a.m. in the US, and it consists of news reports from

national and local studio anchors as well as reporters from the �eld, special interest

editorials and musical segments. We chose NPR-ME after listening to a selection of

radio shows, noting that NPR-ME had the most diverse collection of speakers and

acoustic conditions and would therefore be the most interesting for study.

The following sections describe the data collection and processing procedures that

were followed to develop the NPR-ME corpus, and a description of the data sets that

were created for use in the analysis and experiments presented in this thesis.
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2.1.1 NPR-ME Data Collection and Processing

The NPR-ME data was recorded from an FM tuner onto digital audio tape at 48

kHz. Since some of the news segments are repeated hourly, we chose to record ap-

proximately 60 minutes of the program on a given day. A copy of the original record-

ings was given to a transcription agency in Cambridge, Massachusetts, who produced

orthographic transcriptions of the broadcasts in electronic form. In addition to the

words spoken, the transcripts also include side information about speaker identity,

story boundaries, and acoustic environment. The convention for the transcription

follows those established by NIST for the spoken language research community. The

details of the transcription convention can be found in Appendix A.

Table 2.1 shows an example segment of a transcribed show. This example starts

with an introduction by speaker \A", speaking over background music, which is in-

dicated with the [music/] tag. This introduction is followed by a segment of music

(e.g., [musical interlude]), then speaker \A" continues with the introduction, again

speaking over background music. The full introduction is marked with start and end

story tags. Following the introduction, a second speaker begins another story. Words

that are unclear in the broadcast are indicated in the transcription with surrounding

double parentheses (e.g., ((Hausman))). Words whose proper spelling is unknown

are indicated with a preceding \@" symbol (e.g., @Cassell). These words are later

manually reviewed and a common spelling is adopted for all of the broadcasts.

An additional �le containing speci�c information about the speakers found in

the show was also generated by the transcription agency. For each speaker, their

name, role (e.g., NPR-ME anchor, BBC reporter, traÆc reporter, etc.), gender and

age (adult or child) was speci�ed. If the speaker's name was not provided in the

broadcast, it was indicated as \unknown".

Shows were further processed for use in our acoustic analysis and sound recog-

nition system development presented in Chapter 4, and speech recognition system

development presented in Chapter 5. First, the hour long shows were downsampled

to 16 kHz and transferred to computer disk. A DAT-Link+ [77] digital audio interface
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<broadcast id="morning edition.121396">

<story id=1 topic="Upcoming Headlines on Morning Edition">
A: [music/] President Clinton is expected to �ll more cabinet positions at a news
conference later today. Attorney General Janet Reno is said to be staying on
board. It's Friday, the Thirteenth of December. This is Morning Edition. [/music]

[musical interlude]

A: [music/] This hour on Morning Edition, world trade talks between one hundred
twenty eight nations underway in Singapore produce lower prices for computers.
The European Union bickers over what its money should look like. And new
evidence suggests babies learn language much earlier than believed. Cloudy today.
Some drizzle possible this morning. Rain this afternoon. In the forties today. At
ninety point nine, this is W B U R. [/music]
</story>

<story id=2 topic="Hostage Stand-O� in Paris">
B: From National Public Radio News in Washington, I'm Carl @Cassell. A hostage
stand-o� is underway in Paris. French police say a gunman has taken about thirty-
�ve people hostage at an oÆce building in the French capital. He reportedly has
shot and wounded two people. A police spokesman says the man took the group
hostage on the third 
oor of a building on Boulevard ((Hausman)). Police say
the man is �fty-�ve years old and had a grievance against his former employer, a
security delivery �rm.
</story>

Table 2.1: Example segment of a transcribed NPR-ME program.

was used to downsample and transfer the data. Since our analysis and recognition

tools were unable to accommodate �les of such length, each of the hour-long data

�les were automatically segmented into manageable sized waveform �les at silence

breaks. Boundaries between non-silence and silence were proposed at locations where

the value of the average energy, computed every 5 ms using a 5 ms window, exceeded

a threshold. The threshold was determined manually by examining the resulting

waveform �les of a sample show.
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Set # Unique Speakers # Hours

Train 286 8
Test 83 2

Table 2.2: Number of speakers and hours of data in the NPR-ME training and test
sets used for analysis and system training and testing.

2.1.2 NPR-ME Data Sets

A total of 102 hours of NPR-ME was recorded and transcribed between July, 1995

and July, 1998. All 102 recorded and transcribed shows were used for the lexical

analysis presented in Chapter 3. Ten of the shows were transferred to computer

disk and segmented into waveform �les as described in Section 2.1.1. This data was

divided into two sets: one for training and tuning the sound classi�cation and speech

recognition systems, and another for use as test data. The test set was comprised of

two shows chosen at random from the collection of ten shows. The training set was

comprised of the remaining eight shows. Table 2.2 indicates the number of unique

speakers and the number of hours of data in the NPR-ME training and test sets.

Because the NPR-ME data consists of di�erent broadcasts of the same radio show,

there will be some recurring speakers, such as the studio announcers, from one show

to another. As a result, there will be a number of speakers that appear in both

the training and test set. This may give rise to improved speech recognition results

for those utterances in the test set spoken by speakers found in the training set.

Therefore, for speech recognition purposes, we can not consider the NPR-ME test

data to be speaker independent. Rather, the data should be considered as multi-

speaker.

2.2 TIMIT Corpus

To facilitate comparison of the NPR-ME recognition results with other phonetic

recognition results, experiments were performed on the commonly used TIMIT cor-

pus [20, 25, 54]. The following sections describe the sets used in training and testing
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Set # Speakers # Utterances # Hours

Train 462 3,696 3.14
Core Test 24 192 0.16

Table 2.3: Number of speakers, utterances, and hours of speech in the TIMIT training
and core test sets.

and the phones used in the TIMIT transcriptions.

2.2.1 TIMIT Data Sets

The TIMIT acoustic-phonetic continuous speech corpus contains speech from 630

speakers representing eight major dialects of American English, each speaking ten

phonetically-rich sentences. There are 438 male speakers and 192 female speakers.

Each speaker read ten utterances, which included two dialect sentences (SA) designed

to reveal the dialectical di�erences among the speakers, �ve phonetically compact

sentences (SX) designed to cover all phoneme pairs, and three phonetically diverse

sentences (SI) selected from existing text sources.

NIST has divided the SX and SI data into independent training and test sets

that do not overlap either by speaker or by sentence [20, 25, 54]. The core test set

contains 192 SX and SI utterances read by 24 speakers (two male speakers and one

female speaker from each of the eight dialects). All TIMIT experiments in this thesis

report error rate on this set.

The NIST \complete" test set contains 1344 SX and SI utterances read by the

168 speakers who read any of the core test sentences. The training set consists of the

462 speakers which are not included in either the core or the complete test set. There

is no overlap between the utterances read by the training and testing speakers.

Table 2.3 summarizes the number of speakers, the number of utterances, and the

number of hours of speech in the TIMIT data sets used in this thesis.
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2.2.2 TIMIT Phones

TIMIT was phonetically transcribed using a set of 61 phones [54]. Table 2.4 shows

these phones with their corresponding IPA and ARPAbet symbols, followed by an

example sound. This phone set was also used to phonetically transcribe the NPR-

ME data.

2.3 Speech Recognition System

The SUMMIT speech recognition system, developed by the MIT Laboratory for Com-

puter Science's Spoken Language Systems Group [32], was used to complete the

recognition experiments presented in Chapter 5. The system uses a probabilistic

segment-based approach that di�ers from conventional frame-based hidden Markov

model approaches [65]. In frame-based approaches, speech is represented as a tempo-

ral sequence of feature vectors. The feature vectors are typically computed at a �xed

rate, such as every 10 ms. In segment-based approaches, speech is represented as a

temporal graph of variable-length segments. Acoustic features extracted from these

segmental units have the potential to capture more of the acoustic-phonetic informa-

tion encoded in the speech signal, especially those that are correlated across time.

To extract these acoustic measurements, explicit segmental start and end times are

needed. The SUMMIT system uses a segmentation algorithm [31] to produce the seg-

mentation hypotheses. First, a spectral representation of the signal is computed every

5 ms using a 21 ms analysis window. Major segment boundaries are hypothesized

at locations where the spectral change between neighboring measurements exceeds

a pre-de�ned global threshold. Then, minor boundaries are hypothesized between

the major boundaries based again on spectral change, but this time using a local

threshold that is computed from the signal between the major boundaries. Finally,

all boundaries between the major boundaries are fully interconnected to form a net-

work of possible segmentations on which the recognition search is performed. The

size of this network is determined by the pre-de�ned global threshold.

Traditional frame-based approaches compute measurements every frame from the
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IPA ARPAbet Example IPA ARPAbet Example

[�] aa bob [+] ix debit

[�] ae bat [iy] iy beet

[�] ah but [��] jh joke

[=] ao bought [k] k key

[�w] aw bout [k ] kcl k closure

[�] ax about [l] l lay

[�h] ax-h potato [m] m mom

[�] axr butter [n] n noon

[�y] ay bite [8] ng sing

[b] b bee [D~] nx winner

[b ] bcl b closure [ow] ow boat

[�c] ch choke [oy] oy boy

[d] d day [p] p pea

[d ] dcl d closure [ ] pau pause

[�] dh then [p ] pcl p closure

[D ] dx muddy [b] q glottal stop

[�] eh bet [r] r ray

[lj] el bottle [s] s sea

[mj] em bottom [�s] sh she

[nj] en button [t] t tea

[8j] eng Washington [t ] tcl t closure

[ ] epi epenthetic silence [S] th thin

[� ] er bird [V] uh book

[ey] ey bait [uw] uw boot

[f] f f in [�u] ux toot

[g] g gay [v] v van

[g ] gcl g closure [w] w way

[h] hh hay [y] y yacht

[$] hv ahead [z] z zone

[*] ih bit [�z] zh azure

- h# utterance initial and �nal silence

Table 2.4: IPA and ARPAbet symbols for phones in the TIMIT corpus with example

occurrences
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speech signal, which results in a sequence of observations. Since there is no overlap

in the observations, every path through the network accounts for all observations.

However, segment-based measurements computed from a segment network lead to a

network of observations. For every path through the network, some segments are

on the path, and some are o� the path. To maintain probabilistic integrity when

comparing di�erent paths it is necessary for the scoring computation to account for

all observations by including both on-path and o�-path segments in the calculation.

This is accomplished using a single non-lexical acoustic model, referred to as the

\not" model, or the \antiphone," to account for all o�-path segments [32].

The recognizer uses context-independent segment and context-dependent bound-

ary (segment transition) acoustic models. The feature vector used in the segment

models has 77 measurements consisting of three sets of 14 Mel-frequency cepstral

coeÆcient (MFCC) and energy averages computed over segment thirds, two sets of

MFCC and energy derivatives computed over a time window of 40 ms centered at

the segment beginning and end, log duration, and a count of the number of internal

boundaries proposed in the segment. The boundary model feature vector has 112 di-

mensions and is made up of eight sets of MFCC averages computed over time windows

of 10, 20, and 40 ms at various o�sets (�5;�15; and �35 ms) around the segment

boundary. Cepstral mean normalization [1] and principle components analysis [78]

are performed on the acoustic feature vectors.

The distribution of the feature vectors is modeled using mixture distributions

composed of multivariate Gaussian probability density functions (pdf) [64]. In the

experiments presented in this work, the covariance matrix of the Gaussian pdf was

restricted to be diagonal. In comparison with full covariance models, the use of

diagonal models allows the use of more mixture components because there are many

fewer parameters to train per component. The number of mixture components is

determined automatically based on the number of training tokens available.

The Gaussian mixtures were trained by a two-step process. In the �rst step,

the K-means algorithm [19] was used to produce an initial clustering of the model

feature vectors. In the second step, the results of the K-means algorithm were used
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to initialize the Expectation-Maximization (EM) algorithm [16, 19] which iteratively

maximizes the likelihood of the training data and estimates the parameters of the

mixture distribution. The EM algorithm converges to a local maximum, with no

guarantee of achieving the global optimum. Therefore, the EM algorithm is highly

dependent on the initial conditions obtained from the K-means algorithm. In order

to improve the robustness of the mixture models, a technique called aggregation [41]

was used. Speci�cally, �ve separate acoustic models were trained using di�erent

initializations, and these models were then combined into a single, larger model using

a simple linear combination with equal weights for each model.

To determine the �nal hypothesis string, a forward Viterbi search [79] with a sta-

tistical bigram language model was used to determine the �nal recognition hypothesis.

2.3.1 Performance Evaluation

Speech recognition performance is typically measured in terms of the error rate (in

percent) resulting from the comparison of the recognition hypotheses with the refer-

ence transcriptions. All phonetic error rates are computed using the NIST alignment

program [20]. This program �nds the minimum cost alignment, where the cost of a

substitution is 1.0, and the cost of a deletion or an insertion is 0.75. The total recog-

nition error rate is computed from the sum of the substitution, deletion and insertion

errors that occur. Following convention, recognition results are reported in terms of

error rate in this thesis. In accordance with common practice [55], we collapsed the

61 TIMIT labels into 39 labels before computing error rates. This mapping is shown

in Table 2.5.

2.4 Summary

In this chapter we have presented background information for the work presented in

the remainder of this thesis. To investigate the nature of GAD, we developed a cor-

pus from the National Public Radio broadcast of the Morning Edition news program.

Over 100 hours of data was recorded and orthographically transcribed. Ten of the
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1 iy 20 n en nx
2 ih ix 21 ng eng
3 eh 22 v
4 ae 23 f
5 ax ah ax-h 24 dh
6 uw ux 25 th
7 uh 26 z
8 ao aa 27 s
9 ey 28 zh sh
10 ay 29 jh
11 oy 30 ch
12 aw 31 b
13 ow 32 p
14 er axr 33 d
15 l el 34 dx
16 r 35 t
17 w 36 g
18 y 37 k
19 m em 38 hh hv

39 bcl pcl dcl tcl gcl kcl q epi pau h# not

Table 2.5: Mapping from 61 classes to 39 classes for scoring of results, after Lee[55].

shows were further processed for use in the acoustic study and sound recognition ex-

periments presented in Chapter 4 and the phonetic recognition experiments presented

in Chapter 5.

In addition to describing the details of the NPR-ME corpus, we also described the

TIMIT corpus, which will be used for comparison in our phonetic recognition work.

Finally, the details of the SUMMIT speech recognition system were presented.
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Chapter 3

Lexical Analysis

One objective of this thesis is to understand the nature of general audio data. Two

aspects of GAD that we are particularly interested in are its lexical and acoustic

properties. In this chapter, we will present a study of the nature of the lexical

properties of GAD, while the acoustic properties will be studied in Chapter 4.

First, we study the general characteristics of GAD to gain a better understanding

of the data, and to see how this data compares with that typically used in the ASR

community. Next, we study the properties of the GAD vocabulary. We are interested

in determining the size of the NPR-ME vocabulary and in observing how the vocab-

ulary grows with time. The vocabulary growth characteristics will indicate if it is

likely that new words will be encountered as more data is accumulated. We then look

more closely at the out of vocabulary occurrence rate under two conditions. First, we

study the best-case scenario, that is, building a vocabulary using task-speci�c train-

ing data (i.e., training data collected from NPR-ME). Second, we determine how the

out of vocabulary rate is a�ected when we use training data from a similar corpus

(i.e., training data collected from news broadcasts other than NPR-ME). Finally, we

look more carefully at the cumulative, common and out of vocabulary vocabularies

to determine their part of speech characteristics. We are interested in determining

if these vocabularies contain common words that could be obtained from a standard

lexicon, or if they contain very task-speci�c words that would require a vast amount

of task-speci�c data to construct a vocabulary for this corpus.
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In addition to providing us with a greater understanding of the lexical properties

of GAD, the results of this analysis are important for the development of a large

vocabulary speech recognition system (LVCSR). As we outlined in Chapter 1, a tran-

scription component is required to generate a linguistic description of the speech data

present in GAD. The prevailing approach for this task is the use of a LVCSR system

to convert the speech data to text. In the development of a recognition system one

important consideration is the system's vocabulary. Speci�cally, it is important to

understand the lexical properties of the data to be transcribed. We must determine

the size of the vocabulary to verify that it is within the capabilities of current speech

recognition technology. In addition, we must determine how the recognizer vocabu-

lary should be constructed. Can we use a standard lexicon to develop the vocabulary,

or is a large amount of task-speci�c data required to fully cover the range of words

encountered in GAD? Are new words likely? Would they be diÆcult to obtain from

standard sources? The results of the analysis presented in this chapter will attempt

to answer these questions.

3.1 Other Corpora

In addition to the NPR-ME corpus described in Chapter 2, we examined the ortho-

graphic transcriptions of three other corpora in the experiments presented in this

chapter. The additional corpora, which are similar in nature to the NPR-ME cor-

pus, were included to facilitate comparisons with the NPR-ME data, and to study

cross-corpus e�ects. Speci�cally, one additional speech-based corpus (Hub4) and two

text-based corpora (WSJ and LA-Times) were used. The Hub4 corpus is similar

to NPR-ME, consisting of utterances from 97 hours of recordings from radio and

television news broadcasts, gathered between June 1997 and February 1998, from

sources such as ABC World News Tonight, CNN Headline News, PRI The World,

etc. This data contains both prepared and spontaneous speech, as does the NPR-

ME data. This data was provided by the Linguistic Data Consortium (LDC) [57] to

supplement the 1996 Broadcast News Speech collection. While both the NPR-ME
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and Hub4 corpora were collected as speech, only the orthographic transcriptions were

used in the experiments in this chapter.

The WSJ [18] and LA-Times corpora consist of text from the Wall Street Jour-

nal and Los Angeles Times newspapers, respectively. The text for WSJ was made

available by the ACL Data Collection Initiative [4] and represents three years (1987-

1989) of newspaper text. The LA-Times data was used in the text retrieval task in

TREC-6 [38], and represents two years (1989-1990) of newspaper text.

3.2 Data Preparation and Vocabulary Creation

The orthographic transcriptions from the NPR-ME and Hub4 corpora, and the text

from the WSJ and LA-Times corpora required processing with regard to capitaliza-

tion, punctuation, numbers and compound words. Since case speci�cation in speech

recognition is meaningless (i.e., Bill and bill are acoustically indistinguishable to an

ASR system), all words were converted to lower case. All punctuation was removed,

except for the apostrophe, which was left alone. Therefore, words like \couldn't" and

\Robert's" remained as they were transcribed. Spoken numbers, such as \�fty-three"

were broken into their component words (e.g., \�fty" and \three"), to prevent the

arti�cial creation of a large number of words. However, compound words created from

a string of letters (e.g., U.S.A., F.B.I., etc.) were left as is since they are commonly

used words.

With such large corpora, there are bound to be spelling errors, and we generally

did not attempt to correct them. The exception to this was the tagged words in the

NPR-ME corpus. Recall that the transcribers tagged a word with an unknown spelling

with a preceding \@" symbol. All of the NPR-ME transcriptions were modi�ed to

generate a common spelling for each of the \@" words. For example, the words

\@Karl" and \@Carl" were changed to the common spelling \Carl" to prevent the

arti�cial creation of additional words due to spelling di�erences.

Since two of the topics under investigation are the behavior of vocabularies and

out of vocabulary occurrences, it is important to understand how words are de�ned,
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and how vocabularies are created. After the previously mentioned processing, a word

is de�ned to be a string of characters deliminated by spaces. Vocabularies were

determined automatically by processing a collection of text (the training set), and

placing all words that occur at least n times in the vocabulary list. For all of our

experiments, n = 1, meaning that our vocabulary consisted of all unique words in the

training set.

3.3 General Analysis

In this section we are interested in discovering the general characteristics of GAD

and comparing them with data typically used in the ASR community. To accomplish

this, we studied the transcriptions for the 102 NPR-ME shows. As we described in

Chapter 2, in addition to the words spoken, the transcribers also noted musical seg-

ments, speakers and story boundaries. To compute the timing information presented

here, we also utilized results from the acoustic analysis presented in Chapter 4.

Table 3.1 shows the general characteristics of an NPR-ME show. The number of

music segments, speakers, stories and turns were computed from the transcriptions

of each show. There are an average of 5.5 musical segments, which we found usually

occur at story boundaries. The number of speakers for an hour-long show ranges from

21 to 65, with an average of more than 43 per show. Since there are about 28 stories

in a show, each story typically involves 2-3 speakers. In this analysis, we de�ne a

turn to be a continuous segment of speech spoken by a given speaker. We found that

there are over 150 such turns in an average NPR-ME hour-long show.

Figure 3-1 shows the distribution of speech and non-speech (music, silence, etc.)

in the NPR-ME data. We found that the fraction of a typical show containing speech

was approximately 89%, or just over 53 minutes. This suggests that each turn (i.e.,

a contiguous segment of speech spoken by a given speaker) is just over 21 seconds.

The speaking rate, inferred from the number of word tokens (nearly 10,000) and the

fraction of the show containing speech, is about 180 words per minute.

The characteristics of the NPR-ME corpus (and the similar Hub4 corpus described
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Average
(ave � std)

# music segs 5.5 � 3.5
# speakers 43.4 � 6.1
# stories 27.5 � 5.3
# turns 151.0 � 19.3
# words spoken 9706.9 � 590.7
# vocab words 2605.1 � 227.9

Table 3.1: Summary of general characteristics of the NPR-ME corpus, averaged over
102 shows. The table indicates the average value and standard deviation for each
entry.

89%

11%

speech

non−speech

Figure 3-1: Distribution of speech and non-speech in the NPR-ME data.

in Section 3.1) are very di�erent than those of other corpora collected by the speech

recognition community. Three general types of data have typically been used in

speech recognition research. First, data has been collected for core recognition devel-

opment. The TIMIT corpus, described in Chapter 2, is an example of this type of

data. This data is recorded over controlled acoustic conditions, using a high-quality,

noise canceling microphone. Single utterances are read by each speaker, and there

are no spontaneous speech e�ects or non-speech events. The average utterance dura-

tion is 3.0 seconds. Second, data has been collected for human/computer interactive

problem solving development. The JUPITER corpus, developed at the MIT Labo-
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Recording Channel Non Type of Presentation

Corpus Method Conditions Speech Speech Style

TIMIT known high quality no read one-sided
JUPITER unknown telephone yes spont one-sided
SWITCHBOARD known telephone no spont dialog (2 speakers)
Hub4 unknown mix yes mix dialog (many speakers)
NPR-ME unknown mix yes mix dialog (many speakers)

Table 3.2: Summary of the characteristics of corpora collected for use in speech
recognition system development. Characteristics considered are: recording method
(i.e., do we know a priori how the data was recorded - known or unknown), channel
conditions (high quality, telephone, background noise, or mix of conditions), presence
of non-speech events (yes or no), type of speech (read, spontaneous, or mix), and
presentation style (one-sided or multiple speakers).

ratory of Computer Science Spoken Language Systems Group, is an example of this

type of data [33, 87]. JUPITER is a telephone-based weather information system,

which allows a user to access and receive on-line weather information over the phone.

The data collected for the development of this system contains spontaneously spoken

utterances from both novice and expert users. Non-speech events are occasionally en-

countered in this data, and the average utterance length is 3.3 seconds. Third, data

has been collected to study human/human dialogs. The SWITCHBOARD corpus is

an example of this type of data. It consists of spontaneous human/human dialogs

collected by Texas Instruments [34]. The data was collected under known acoustic

conditions (telephone), and contains spontaneous speech between two speakers en-

gaged in dialog. Table 3.2 summarizes the characteristics of the corpora described

here.

Unlike the TIMIT, JUPITER, and SWITCHBOARD corpora described above, our

analysis of GAD suggests that it contains a broad collection of speaking conditions,

both speech and non-speech segments, and multiple speakers speaking in turn. Like

the SWITCHBOARD corpus, the speakers are not directly interacting with a speech

recognition system. These characteristics make GAD a more challenging data set

from a speech recognition stand-point.

There are a few speakers that appear regularly in the NPR-ME corpus, such as

the national and local hosts. While no single speaker dominates the broadcast, the
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Figure 3-2: The percentage of words spoken in the NPR-ME corpus as a function of
the percentage of speakers encountered. Speakers were added in order of amount of
speech material (based on word count), starting with the most proli�c speakers.

national and local hosts typically comprise 20% of the speech data. The local host's

speech typically comprises 15% of the speech data in an entire show, while the na-

tional host typically comprises 5% of the speech data. Regularly appearing reporters

typically provide anywhere from 2-5% of the total speech in a show. Figure 3-2 il-

lustrates the behavior of the percentage of words spoken as speakers are encountered

in a typical NPR-ME broadcast. Speakers were added in order of amount of speech

material (based on word count), starting with the most proli�c speakers. We see that

nearly 90% of all the words spoken are provided by 50% of the speakers.

On average, over 76% of the speakers in a given show have not appeared in previous

shows. Even if we restrict our analysis to the most prominent speakers in a given

show (those whose speech comprises over 5% of the speech data in the entire show),

only 56% of these speakers are found in other shows. This result suggests that we
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could not take a completely speaker-dependent (SD) approach when transcribing this

data using an ASR system. Speaker-dependent approaches generally yield increased

performance over speaker-independent approaches. However, a collection of training

data is required to develop the SD acoustic models [64]. Our analysis shows that

we could only generate training data for 24% of the speakers in a given show. Even

among the most prominent speakers in a show, training data could only be collected

for just over half of them.

3.4 Vocabulary Analysis

In this section, we investigate the characteristics of the GAD vocabulary. We speci�-

cally are interested in the behavior of the vocabulary over time, the out of vocabulary

rate as a function of training set and vocabulary size, the part-of-speech character-

istics of the vocabulary, and the e�ects on the out of vocabulary rate if task-speci�c

training data is not available. In addition to providing us with an understanding

of the lexical characteristics of GAD, each of these dimensions are important when

developing a vocabulary for an ASR system. The vocabulary growth analysis will

determine the potential size of an ASR system's vocabulary and will indicate if out

of vocabulary words are likely. If the vocabulary size tends to level o� after enough

training data has been processed, we can assume that out of vocabulary words will

not occur very frequently. If the size does not level o� in time, then we are likely to

encounter out of vocabulary words. The out of vocabulary rate analysis will speci�-

cally indicate how often new words are encountered, as a function of training set and

vocabulary size.

3.4.1 Vocabulary Growth

In Section 3.3, we found the working vocabulary of a typical NPR-ME hour-long show

was just over 2600 words. The frequency of usage of these words is highly skewed. As

illustrated in Figure 3-3, the most frequently occurring 20% of the vocabulary words

account for over 90% of the words spoken. However, as we will show in Section 3.5, the
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Figure 3-3: The percentage of words spoken in the NPR-ME corpus as a function of
the percentage of vocabulary words considered.

least frequently occurring vocabulary words are potentially the most important for

understanding the content of the utterances (e.g., names, cities, etc.), and therefore

would be most important to recognize in an automatic transcription system.

A vocabulary size of 2600 words is quite manageable for current speech recognition

systems. However, closer examination of the data reveals otherwise. Figure 3-4

plots the relationship between the number of distinct words encountered (i.e., the

recognizer's vocabulary) versus the size of the training set as the training set size is

increased. The training set is increased by adding in NPR-ME shows incrementally, in

chronological order, until all 102 hours of data has been added.1 We are interested in

observing the behavior of the vocabulary as a function of training set size (rather than

as a function of the number of shows included) for two reasons. First, this allows us

1We have found that the trends revealed in this �gure are independent of the order in which the
shows are added.
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Figure 3-4: The number of distinct words as a function of the number of words
encountered in the NPR-ME corpus.

to directly compare these results with the behavior of other corpora. Second, it allows

us to understand the quantity of training data that would be required to construct

vocabularies of given sizes.

The upper curve of Figure 3-4 shows the cumulative sum of all the distinct words,

and therefore represents the potential vocabulary of the recognizer. While the actual

size of the vocabulary after 102 shows (over 30,000 words) is within the capabilities

of current-day ASR systems, it is quite alarming that the growth of the vocabulary

shows no sign of abating. If this trend were to continue, then the vocabulary that an

ASR system must contend with will reach 100,000 words if a whole year's worth of

just this one show is to be transcribed and indexed.

We found that this trend is similar to those of the other large vocabulary corpora.

Figure 3-5 shows the vocabulary size as a function of training words encountered for
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Figure 3-5: The number of distinct words as a function of the number of words
encountered in the NPR-ME, Hub4, LA-Times, and WSJ data sets.

the NPR-ME, Hub4, LA-Times, and WSJ data sets. This �gure illustrates that the

two speech-based broadcast news corpora, NPR-ME and Hub4, have very similar vo-

cabulary growth characteristics, while the text-based corpora, LA-Times and WSJ,

have similar characteristics. The speech-based corpora have a slightly smaller vocab-

ulary for a given training set size, but otherwise, the behavior of the two types of data

are quite similar. Even after a substantial amount of data has been collected (over 33

million words after one year of LA-Times data), new vocabulary words continue to

be encountered, and the vocabulary size grows to over 250,000 words after two years

of LA-Times data is collected. Since the NPR-ME and Hub4 curves display a simi-

lar growth trend, we can assume that their vocabularies will grow to a similar size.

This poses two problems for speech recognition systems. First, a vocabulary size of

250,000 words is well beyond the capabilities of current state-of-the-art ASR systems.
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Second, it is alarming that new words are still being encountered (as indicated by the

continued growth of the vocabulary), despite the use of massive amounts of training

data and vocabulary size.

As more shows are included, the size of the common vocabulary across the shows

will presumably decrease, as news topics change as time passes. This is illustrated by

the lower curve in Figure 3-4, which indicates that less than 200 words occur in all

of the 102 shows, most of them being function words and generic corpus-dependent

words such as \news," \traÆc," and \forecast." Although there are relatively few

of these common words (they comprise less than 0.5% of the complete vocabulary),

they account for over 47% of the total words spoken in the corpus.

3.4.2 Out of Vocabulary Rate

While Figure 3-4 indicates how fast the NPR-ME vocabulary grows as more training

data is added, it doesn't directly reveal how well its vocabulary covers unseen data. In

other words, it doesn't reveal the likelihood of encountering out of vocabulary words,

or the out of vocabulary rate. In another experiment, we measured the coverage of

cumulatively constructed vocabularies on a set of unseen data (one held out NPR-

ME show). To generate Figure 3-6, we measured the vocabulary coverage of the

NPR-ME test show as we built up a vocabulary incrementally by adding in NPR-

ME training shows.2 Figure 3-6 shows the probability of encountering an out of

vocabulary word in the NPR-ME corpus for a given training set size. We estimated

this probability by measuring the fraction of words in the test set that were not

covered by the constructed vocabularies. Figure 3-6 illustrates that as more training

data is accumulated, the out of vocabulary rate falls from a maximum value of over

22% (with a training set size of just over 10,000 words), to a minimum value of 1.9%

(with a training set size of nearly 1,000,000 words).

We are often interested in understanding the relationship between the out of

vocabulary rate and vocabulary size rather than training set size, since the size of

2We have found that the trends revealed in this �gure are independent of the order in which the
shows are added.
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Figure 3-6: NPR-ME out of vocabulary rate as a function of the quantity of NPR-ME
training data.

the vocabulary is an important parameter in an ASR system. Figure 3-7 shows the

out of vocabulary rate versus vocabulary size instead of amount of training data,

as in Figure 3-6. In this �gure, two methods of determining vocabulary size were

used. For the top curve, labeled by adding shows, the vocabulary size was determined

by incrementally adding in new training shows. For the bottom curve, labeled by

frequency count, we assume that we have the entire training set available to us at the

outset, and we build a vocabulary of a given size (v) by computing word frequencies

over all of the training set and adding the v most frequent words to the vocabulary.

Since we are using word-frequency information to determine the vocabulary for the

latter case, we would expect this curve to yield lower out of vocabulary rates. Figure 3-

7 does con�rm our hypothesis, showing that the out of vocabulary rate for a particular

vocabulary size v is lower when word frequencies are accounted for when building the
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Figure 3-7: NPR-ME out of vocabulary rate for di�erent methods of determining
vocabulary size. For the top plot, we varied the training set size and set the vocabulary
to include all unique words. For the bottom plot, we use the entire training set to
compute word frequencies and varied the vocabulary size v by setting the vocabulary
to include only the most frequent v words.

vocabulary. This is especially true when v is relatively small. The two curves converge

as v approaches its maximum size.

Regardless of what method we use to compute the out of vocabulary rate curves,

we see that a large training set (nearly 1,000,000 words, which results in a vocabulary

size of over 30,000 words), still leaves us with nearly 2% of out of vocabulary words

for the NPR-ME data. This is a potentially serious problem for two reasons. First, as

we will see in Section 3.5, it is these words that are most important to recognize if we

are interested in transcribing the data for an information retrieval system. Second,

the misrecognition of new words has a ripple e�ect in a speech recognition system,

causing other in-vocabulary words to be misrecognized. Hetherington [42] showed
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that 1.5 word errors are encountered per every new word, some of which occur in

neighboring in-vocabulary words. Therefore, not only are the new words missed by

an ASR system, but neighboring words, which may also be high content words, may

be a�ected.

We found that the out of vocabulary rate analysis results on NPR-ME were sim-

ilar to analysis performed on the Hub4 task. Jain et al. [46] computed the out of

vocabulary rate on the 1996 Hub4 development test set as a function of vocabulary

size. They found that as the vocabulary size was increased, the out of vocabulary

rate decreased, reaching a minimum of 1.1% with a vocabulary size of 60,000 words.

A vocabulary size of 30,000 words yielded an out of vocabulary rate of 1.9%, similar

to the results found on the NPR-ME corpus.

3.5 Part of Speech Analysis

In this section, we further investigate the properties of the cumulative, common, and

new word vocabularies compiled from our NPR-ME corpus. We are interested in

understanding the distribution of the words in each vocabulary to determine if the

words could be obtained from common dictionary sources, or if a large collection of

task-speci�c training data is required. In addition, we are interested in determining

the characteristics of the out of vocabulary word list. We suspect that these words

are high content words (i.e., proper nouns), that would be important to recognize for

an information retrieval task.

For our analysis, we examine the syntactic part-of-speech tags for each vocabulary.

We suspect that each vocabulary will have a very di�erent part-of-speech distribution.

The cumulative vocabulary should be similar to that of the general English language,

while the new word vocabulary should contain a majority of proper nouns. We also

suspect that the common vocabulary will be similar to the most common words in the

English language, with the possible addition of a few common corpus-speci�c words.

For this analysis, we used Brill's part-of-speech tagger [6], and collapsed the large

set of 48 tags [12] down to eleven: proper nouns, nouns, adjectives, adverbs, verbs,
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A F L C I O Jehovah Rembrandt
Beardstown July Rossner
Belmonte Kosovos Serino
Bonne Latvia Shane
Brubeck Laureen Sienook
Clayton Lynnhurst Stewicky
Cuno Marshaun T R G I
Degas Mcgaw Tritch
Doyle Michelle Vaughn
Dracut Noradom Venetian
Enos O F C E Vermeers
Fillipe Oaklandvale Verve
Fitzpatrick Paci�c Vidrine
Flexon Pearl Vulgova
Foxx Presioso W A V E
Gilbart Primakov Yipgeni
Givadi Prior Yuvanovich
Greenwich Q U A N T I C
I R S Ranured

Table 3.3: Proper nouns not found in the NPR-ME vocabulary.

found that, as we had expected, a large percentage of out of vocabulary words are

proper nouns, which make up over 45% of the out of vocabulary list. This indicates

that it will be very diÆcult to collect these words when trying to construct a vo-

cabulary for an NPR-ME recognition task. However, it is these words that are most

important in a content description task. Table 3.3 lists the proper nouns found in

the out of vocabulary list. Among others, we see that \Degas" (mentioned in a story

about stolen museum paintings), \Primakov", \Vulgova" and \Yuvanovich" (Russian

foreign minister, Kosovo Albanian leader, and Yugoslav foreign minister, respectively,

mentioned in a story about the con
ict in Kosovo), were not found in the NPR-ME

vocabulary. Therefore, we would not be able to properly index the stories these words

appear in since we will would not be able to recognize these words when automatically

transcribing the data.3

We found that the out of vocabulary word list contained a large percentage of

verbs (18%). Upon closer examination, we found that over 56% of these words were

3A complete list of the out of vocabulary words can be found in Appendix B.
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noun (31%)

adjective (4.4%)

verb (8.9%)

number (22.2%)

preposition (2.2%)

Figure 3-9: Summary of the part of speech distribution for the NPR-ME common
vocabulary not found in the 200 most frequent words in the Brown Corpus.

forms of verbs that exist in the cumulative vocabulary. For example, \combing" and

\squawking" were found in the new word vocabulary, while \comb" and \squawk"

exist in the cumulative vocabulary. While methods to automatically generate all

forms of a given verb could be developed, these previously unseen verb forms are

indeed new words and would have to be included in a recognizer's vocabulary.

We further investigated the components of the common vocabulary to see if they

were similar to the most common words of English. To accomplish this, we compared

the NPR-ME common vocabulary to the most frequent 200 words found in the Brown

Corpus [52]. The Brown Corpus consists of over one million words of running text

from 500 selections of about 2000 words each. We found that just over 73% (123 of

the 168 common vocabulary words) of the NPR-ME common vocabulary was present

in the top 200 Brown Corpus vocabulary. A part-of-speech breakdown of the words

not found in the top 200 Brown Corpus is illustrated in Figure 3-9. We found that the

majority of these words were proper nouns, nouns and numbers. The proper nouns

not found in the top 200 Brown Corpus are listed in Table 3.4. We can see that these
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Bob
Boston
Edition
Massachusetts
Morning
N P R
National
News
President
Radio
U S
University
W B U R
Washington

Table 3.4: Proper nouns in NPR-ME common vocabulary not found in the 200 most
frequent words in the Brown Corpus.

words are very task-dependent, such as Boston, WBUR, Massachusetts, etc.4

3.6 Cross Corpus E�ects

In Section 3.4.2, we investigated the out of vocabulary rate on an NPR-ME test show

using NPR-ME training data to build the working vocabulary. This would constitute

a best case scenario, since task-speci�c data are used to build the vocabulary for an

ASR system. In this section, we evaluate the out of vocabulary problem when a dif-

ferent corpus is used to develop the working vocabulary. This scenario may very well

be a more realistic evaluation of the out of vocabulary problem, as it is often diÆcult

and time consuming to gather a large collection of domain-speci�c data. However,

we often have access to a collection of similar data to use for system development. In

these experiments, we used the Hub4 data to construct the vocabularies. The NPR-

ME and Hub4 tasks are very similar, as they are both broadcast news, speech-based

data. We also found that the vocabulary characteristics of these corpora were very

4A complete list of the common words not found in the top 200 Brown Corpus can be found in
Appendix B.
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similar, so the Hub4 data seems to be a good choice to use for development of an

NPR-ME transcription system.

Figure 3-10 shows the e�ect of using an out-of-domain training set to construct

the system vocabulary on the out of vocabulary rate problem. Because we assumed

we would have all of the material for the training set ahead of time, we built the

vocabularies in decreasing order of word frequency, as we discussed in Section 3.4.2.

The NPR-ME out of vocabulary rate curve is also shown for comparison. We can

see that the use of training data from a di�erent corpus, even though very similar in

content, exacerbates the out of vocabulary rate problem. For small vocabulary sizes

(fewer than 1000 words), the Hub4 and NPR-ME curves are very similar. This makes

intuitive sense because of the way the curves were generated. Vocabularies of that

size primarily consist of high frequency words (e.g., \the," \of," etc.), which would

presumably be task-independent. As the size of the vocabulary grows, however, the

curves separate substantially. With a vocabulary size of over 25,000 words, the use of

out-of-domain data yields an out of vocabulary rate of over 4%. If we compare this

with the NPR-ME results, we �nd that for a similar vocabulary size, the in-domain

data yields an out of vocabulary rate of just over 2%.

Others have addressed the out of vocabulary rate problem for GAD by construct-

ing very large vocabularies consisting of both in-domain and out-of-domain data.

BBN [51] constructed a 45,000 word vocabulary using both broadcast news and

newspaper sources, which yielded an out of vocabulary rate of 0.9% on the 1996

Hub4 evaluation set. Other sites [13, 28, 73, 81, 85] constructed a 65,000 word vocab-

ulary using broadcast news training texts, newswire texts, and additional names that

frequently appeared in the broadcast news data, which yielded an out of vocabulary

rate of 0.7% on the 1996 Hub4 evaluation set.

While the combination of in-domain and out-of-domain data can reduce the out

of vocabulary rate to just under 1% on the Hub4 data set used in the analysis cited

above, this does not guarantee that the rate will remain at that level for all future

collections of broadcast news data. As new topics and names appear in the news, the

out of vocabulary rate will in all likelihood increase.
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Figure 3-10: Out of vocabulary rate as a function of training data. Vocabularies are
built by observing the entire training set and adding words in decreasing order of
frequency. The top curve, labeled Hub4, illustrates the out of vocabulary rate as a
function of out-of-domain data. The bottom curve, labeled NPR-ME, illustrates the
out of vocabulary rate as a function of in-domain data.

3.7 Summary

In this chapter we have examined the lexical aspects of GAD. Our analysis of the

transcriptions of the NPR-ME corpus revealed some interesting general characteris-

tics. It contains many speakers and stories, with numerous turn takings. We also

discovered that no single speaker dominates the speech data, and that the majority

of speakers have never been seen previously.

Our vocabulary analysis found that the vocabulary of a single NPR-ME show

was modest (approximately 2600 words). However, we also found that even with a

large training set (nearly 1 million words), new words are still encountered. Using

task-speci�c training data with a vocabulary of over 30,000 words, we found that
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the out of vocabulary rate was just over 2%. For a strict transcription task, this

rate may be acceptable, since new words are typically very low-frequency words.

Therefore, the overall word error rate in a transcription task may not be a�ected too

adversely. However, for an information retrieval task, a 2% error rate may not be

acceptable because these words are typically important for conveying content. Our

part-of-speech analysis found that new words were predominately proper nouns and

nouns, which would be very important to recognize if we were describing the content

of this data. This problem was magni�ed when we investigated the more realistic

scenario of constructing a training set from a out-of-domain source. In this case, we

found that the out of vocabulary rate nearly doubled to 4%.

The analysis completed in this chapter uncovered some potentially serious prob-

lems for a word-based approach for the transcription of GAD. An alternative to a

large vocabulary continuous speech recognition approach is to use a subword unit

representation. The bene�t of a subword unit approach is that the vocabulary of the

recognizer is constrained while it provides full coverage of the corpus lexicon. There-

fore, we are able to overcome the large vocabulary and out of vocabulary problems

that we discovered in our analysis of GAD.

Ng [62] recently investigated the feasibility of using subword unit representations

for spoken document retrieval. He examined a range of subword units of varying com-

plexity derived from phonetic transcriptions. He found that subword units achieved

comparable performance to text-based word units if the underlying phonetic units

were recognized correctly. In Chapter 5 we will explore di�erent training and testing

methods for the phonetic recognition of GAD.
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Chapter 4

Sound Recognition

To fully describe the content of general audio data, we have argued that a complete

acoustic description must be created, in addition to transcribing the speech material.

This description would indicate regions of speech and non-speech, identify segments

spoken by particular speakers, indicate the speaking environment, etc. While devel-

oping a complete acoustic description system is beyond the scope of this work, we

have chosen to concentrate on the development of a sound recognition system that

segments GAD into general sound classes. Not only would such a system contribute

to the description of the acoustic content, but it may also be a useful preprocessing

step for a speech recognition system. First, segments of audio containing non-speech

can be detected, so the speech recognition system's resources won't be wasted on

segments of music, silence, or other non-speech audio. Second, segmenting the audio

into acoustically homogeneous blocks and using appropriate models for each segment

may improve overall speech recognition results, a topic explored in Chapter 5.

In this chapter we asked the following three questions.

1. How many meaningful classes exist in GAD?

2. What are their general acoustic characteristics?

3. Can they be reliably determined using an automatic recognition system?

To answer these question, we �rst divide the data into several categories through
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preliminary investigation, and examine their general characteristics and distributions.

Second, we determine how well we can automatically segment the sound stream into

these acoustic categories. After we develop a recognition system to accomplish this

task, we evaluate the results to determine if our subjectively de�ned acoustic classes

need further re�nement.

4.1 Acoustic Analysis

In this section we are interested in discovering the acoustic characteristics of GAD.

Speci�cally, we will determine what general sound classes exist in the data, and how

they di�er from one another.

4.1.1 Sound Classes

We began our analysis by thoroughly examining two hours of NPR-ME shows. In

addition to carefully listening to each show, we also viewed spectrograms of the data.

We found that there are a number of categories of speakers in the data, each with

varying sets of di�erent general acoustic conditions. First, there are clearly main

hosts of the show. Their speech is typically prepared (i.e., apparently read from a

prepared script) and is either acoustically very clean, or appears over background

theme music. Second, there are a number of reporters that call in their news reports

from the �eld. This speech is often spontaneous, and spectrograms of this data reveal

that it is clearly of telephone bandwidth. Third, there are reporters recorded on-

location present in the data. This speech is similar to the telephone reporters in that

it is spontaneous, but the spectrograms revealed that this data is not bandlimited.

This speech contains a variety of background noise, ranging from gun�re, to street

noise.

In addition to the above speech conditions, we found a number of non-speech

conditions in the NPR-ME data. First, there are a number of music segments. These

segments are typically found not only at the beginning and end of the broadcast, but

also between news stories. Long stretches of silence were also identi�ed in the data.
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These silence segments typically occur at speaker boundaries and between major news

stories. Finally, there are some segments of noise, such as sounds of gun�re within a

story about warring nations.

From this analysis, we reached the preliminary conclusion that there are seven

logical categories into which the NPR-ME data may be classi�ed. We identi�ed four

unique speech categories: clean speech, music speech, noisy speech and �eld speech.

Three non-speech categories were identi�ed: music, silence, and miscellaneous. The

seven categories are described below.

� Clean Speech (c s): The clean speech class consists of wideband (up to 8

kHz1) speech from anchors and reporters. The speech is typically prepared

(i.e., read from a script rather than spontaneously generated), and is recorded

with high quality acoustic conditions (a high quality microphone is presumably

used, potentially sophisticated digital signal processing techniques are used to

enhance the vocal appeal of the speakers [15], and there is no audible background

noise).

� Music Speech (m s): The music speech class consists of wideband speech in

the presence of background music. This is typically found both before and after

the theme music which leads the show, and it is also found separating major

stories. Music speech also often exists in stories about a particular musical

group or music genre.

� Noisy Speech (n s): The noisy speech class consists of wideband speech in

the presence of background noise. This type of speech is typically generated

from reporters on location. The background noise ranges from oÆce noise, to

traÆc noise, to cross-talk from other speakers (e.g., a translator speaking over

the native speaker).

1The data may actually contain energy at higher frequencies. However, as explained in Chapter 2,
the data was downsampled to 16 kHz upon transfer to computer disk, and is therefore limited to an
upper frequency of 8 kHz.
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� Field Speech (f s): The �eld speech class consists of bandlimited (4 kHz)

speech, collected over the telephone. This type of speech is typically generated

from reporters calling in from the �eld, so the overall quality is generally quite

poor. Higher quality telephone speech is seen occasionally from individuals

calling into the show. For example, the local host might be talking to an

\expert" on the current topic over the telephone.

� Music (m): In addition to the opening NPR-ME theme music, selections of

music are found scattered throughout the program separating major stories. In

addition, there are often stories about musical topics which contain selections

of music.

� Silence (sil): Segments of silence longer than 250 ms were identi�ed as a

separate class. Anything shorter than 250 ms could be confused with the closure

portion of stop consonants, or the short, natural pauses that occur between

words or utterances.

� Miscellaneous (misc): The miscellaneous class captures anything that didn't

fall into one of the other six classes. Typically, these segments are used for e�ect

in a story (e.g., sounds of gun�re in a story about a military action).

Figures 4-1, 4-2, and 4-3 illustrate some of the spectral di�erences among the

seven identi�ed sound classes. A spectrogram of a segment of music followed by

a segment of speech superimposed on the background music (i.e., music speech) is

shown in Figure 4-1. We can clearly see the �ne harmonic structure in the music

segment, indicated by the evenly-spaced horizontal lines in the spectrogram. We can

also see that the harmonics carry through to the music speech segment. Figure 4-2 is

a spectrogram of a segment of clean speech, followed by �eld speech2. Here, we see

the bandlimited nature of the �eld speech. While the clean speech segment contains

energy through 8 kHz, the �eld speech segment contains no energy at frequencies

2This spectrogram was manually created for illustration purposes by splicing together a segment
of clean speech, followed by a segment of �eld speech. The edit point can be seen between the two
segments.

70



Figure 4-1: Spectrogram of a segment of music followed by speech superimposed on
the background music. Note the harmonics in the music segment. The harmonics,
indicated by evenly spaced horizontal lines in the spectrogram, also carry through
into the music speech segment.

over 4 kHz. A spectrogram of a sample of noisy speech is shown in Figure 4-3.

If we compare this spectrogram with the clean speech portion of Figure 4-2 (the

initial portion of the �gure), we can clearly see the e�ect of the background noise.

The individual speech sounds are much less distinct in the noisy speech sample,

making it very diÆcult to identify the formants in the speech. Although we do not

explicitly extract these characteristic frequencies (seen as dark bands of energy in

the spectrograms) from the speech signal, they are important characteristics that

are known to carry important linguistic information. Noisy speech poses a number

of challenges to our speech recognition system, SUMMIT. First, as we described in

Chapter 2, SUMMIT proposes phonetic segment boundaries at locations of spectral

change. The presence of background noise makes these boundaries much less distinct.

Second, the formant information is implicitly captured by the MFCC representation

of the speech signal. The presence of background noise makes the di�erences among

the speech sounds (seen clearly in the clean speech portion of Figure 4-2) much less

distinct. This would presumably make noisy speech more diÆcult for an automatic

speech recognition system to transcribe.

4.1.2 Corpus Preparation

In order to complete further acoustic analysis on the NPR-ME data, we had to label

the data with the seven acoustic classes de�ned in the previous section. As described
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Figure 4-2: Spectrogram of a segment of clean speech followed by �eld speech. Note
the bandlimited nature of the �eld speech segment, as compared to the segment of
clean speech, which contains energy through 8 kHz.

Figure 4-3: Spectrogram of a segment of noisy speech. When comparing this spec-
trogram to the clean speech portion of Figure 4-2, we can clearly see the background
noise throughout the frequency range.

in Chapter 2, ten hours of NPR-ME data was segmented into manageable sized wave-

form �les at silence breaks. The data was then manually labeled with one of the seven

acoustic labels once every 10 ms. The labeling was done through visual examination

of spectrograms and through critical listening of the data. Eight hours of the tagged

data was used for the analyses presented in Section 4.1.3 and for system training in

Section 4.2, and the remaining two hours of data was used for system test. Table 4.1

summarizes the amount of training and testing data (in minutes) available in each

sound class.

Throughout our investigations in this chapter, we made heavy use of the Transcrip-

tion View facility in SAPPHIRE [43], which can simultaneously display the waveform,

spectrogram and transcription for each �le. In addition to using SAPPHIRE as a dis-

play tool, we also took advantage of its editing capabilities to manually label the data

with the sound class labels.
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Sound Class Training Data Testing Data

Clean Speech 244.1 53.7
Field Speech 72.4 28.6
Music Speech 59.4 14.5
Noisy Speech 66.9 11.9

Music 21.7 5.4
Silence 25.7 5.3

Miscellaneous 5.3 2.3

Table 4.1: Amount of training and testing data available (in minutes) for each sound
environment.

4.1.3 Characteristics of Sound Classes

Many acoustic di�erences were apparent while viewing the spectrograms of the NPR-

ME data. In this section, we study the characteristics of the seven sound classes more

closely.

For each waveform in the NPR-ME training set, the discrete Fourier transform

(DFT) was computed every 10 ms using a 40 ms analysis window. The magnitude

of the DFT was computed, and the average value was then computed for each sound

class. Figure 4-4 is a plot of the average spectra for each of the seven sound classes.

We see a number of di�erences in the average spectra for the sound classes. Silence

and �eld speech are visually distinct from other classes both in terms of energy and

spectral shape. We see the minimal energy across the entire frequency range in the

silence spectrum, while the �eld speech spectrum drops o� substantially at frequencies

over 4 kHz. Music di�ers from speech in its �ne harmonic structure, which is seen

by the ripples in the spectrum. These quasi-periodic ripples can also be seen in the

music speech spectrum. We also see that the miscellaneous class has a signi�cant

decrease in spectral energy at frequencies above 6 kHz. Di�erences in the average

spectra of the clean, noisy, and music speech categories are more subtle, suggesting

that confusions may result if these sounds were to be classi�ed using purely spectral

features.

Figure 4-5 shows the distribution of sound classes in the NPR-ME training data.

The distribution was computed based on the total amount of data in minutes in each
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Figure 4-4: Average power spectrum (in dB) for each of the seven sound classes found
in GAD.

class. High quality studio speech constitutes only about half of the entire corpus.

Another 26% of the data contains speech superimposed with other sounds. Nearly

15% of the data is of telephone bandwidth, and the remaining 10% of the data is non-

speech. Among the non-speech classes, we see that there is substantially more silence

and music data than miscellaneous data. Closer examination of the data revealed that

silences occurred not only between speakers and stories, but also within sentences at

natural, syntactic boundaries.

We computed the average segment length to determine if di�erences existed among

the classes. The results are shown in Table 4.2. Values for speech and non-speech

were also computed. The speech sound class contains all clean, �eld, music and noisy

speech segments. The non-speech class contains all music, silence, and miscellaneous
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Figure 4-5: Distribution of sound classes in the NPR-ME training data, computed
with respect to total time in each class.

segments. We see that speech segments are substantially longer than non-speech seg-

ments (4.8 seconds vs. 0.7 seconds). Within the speech classes, �eld and music speech

segments are slightly longer than the clean and noisy speech classes. These results

indicate that segment duration may be a useful feature in an automatic segmentation

system.

4.2 Automatic Recognition of Sounds

Based on the analysis presented in the previous section, it would seem that GAD can

be acoustically characterized by seven general sound classes. We are now interested

in determining if these classes can be reliably extracted from the audio signal. Our

goal is to segment GAD into homogeneous regions so that regions of di�erent nature

can be handled di�erently. For example, regions of music and noise can be eliminated

from future processing by an automatic speech recognition system. Also, di�erent

models can be developed for the recognition of each speech environment. The e�ect

of such segmentation on a speech recognition system will be explored in Chapter 5.

The following section describes approaches that have been taken by others for this
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Sound Average Segment
Class Length

Clean Speech 4.7
Field Speech 5.2
Music Speech 5.0
Noisy Speech 4.4

Music 4.2
Silence 0.4

Miscellaneous 1.8

Speech 4.8
Non-Speech 0.7

Table 4.2: Average segment length (in seconds) for each sound class. The speech
sound class is comprised of all clean, �eld, music and noisy speech segments. The
non-speech class is comprised of all music, silence, and miscellaneous segments.

task. We then describe the approach that we have chosen to take in this work, and

present our results. Analysis of the results led us to re�ne our subjectively determined

sound classes.

4.2.1 Related Work

In this section, we review some related work on approaches for segmenting audio data.

Three general segmentation algorithms have been proposed in the literature. First, a

model-based segmentation approach [69, 70, 80] builds di�erent models for a �xed set

of acoustic classes from a training set, and frames of the incoming audio stream are

classi�ed with a maximum likelihood approach. Segment boundaries are proposed at

locations where there is a change in the assigned acoustic class. Second, a decoder-

guided segmentation approach [36, 50] decodes the input audio stream with a speech

recognition system trained with a collection of class-dependent models. For example,

a gender-dependent phonetic recognizer may be used for this task. During the decod-

ing process, in addition to producing the recognized output string, class assignments

are also generated. Segment boundaries are then proposed at locations where there is

a change in the class label. Third, a metric-based segmentation approach [11, 30, 74]

proposes boundaries at maxima of distances between neighboring windows placed at

every sample along the audio stream. Distances such as the Kullback-Leibler dis-
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tance [14] and the generalized likelihood ratio distance [3] have been used. In this

approach, class labels are not generated for the resulting segments. Examples of each

of these approaches are described below.

A number of research sites have been involved with the DARPA sponsored Hub4 [61]

task, which has encouraged researchers to focus on the problems of processing speech

materials which have not been created speci�cally for the purpose of speech system

development, such as broadcast news. Participating Hub4 sites have used segmen-

tation and classi�cation of the test utterances to improve their recognition results.

Dragon Systems took a model-based approach in their 1996 Hub4 recognition sys-

tem [80]. They segmented the testing data into four classes: non-speech, which

consisted of pure music, noise or silence, and three speech channel conditions: full-

bandwidth, narrow-bandwidth, or speech with music. First, the data is segmented

into manageable pieces based on the overall energy. Second, the resulting segments

are reprocessed to exclude pure music or noise, based on a measure of \harmonic-

ity" [45]. Third, channel analysis is performed to classify the data into one of the

speech channel conditions. A model of each channel is trained from a small selection

of training data. Each model is a single probability distribution, which consists of

a mixture of 256 diagonal covariance Gaussians. Each second of the original data

stream is classi�ed as one of the three de�ned classes. The channel changes that are

detected from this analysis are used to re�ne the segmentation obtained in the �rst

two steps. To analyze the performance of their segmenter and channel classi�cation

system, they compared the amount of data (in seconds) automatically classi�ed as one

of the four classes (non-speech, full-bandwidth, narrow-bandwidth and speech with

music) to the true data labels. This system achieved an overall classi�cation accuracy

of 82.2% on the Hub4 1996 evaluation test set. They found that the majority of their

classi�cation errors resulted from noisy, full-bandwidth data being misclassi�ed as

speech with music.

The 1998 HTK Hub4 system [36] used a combination of model-based and decoder-

guided approaches to segment the audio stream into homogeneous chunks. The �rst

pass labels each audio frame according to bandwidth and discards the non-speech
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segments using a mixture of diagonal Gaussian models and a conventional Viterbi

decoder. The second pass uses a phone recognizer that outputs a sequence of phones

with male, female or silence tags. Segment boundaries are determined when there is a

switch in either bandwidth or gender, or when a silence segment is found. They report

a segmentation frame accuracy up to 95%, and after further processing increased their

accuracy to 99%.

IBM [11] took a metric-based approach to the Hub4 segmentation problem. They

modeled the input audio stream as a Gaussian process in the cepstral space. A

maximum likelihood approach was used to detect turns in this Gaussian process

based on the Bayesian information criterion [72]. They analyzed their data in terms

of insertions and deletions of boundaries. They achieved a very low insertion rate

(4.1%), and a 33.4% deletion rate. The majority of their deletions occurred when a

segment was less than 2 seconds in length. These most likely occurred because there

wasn't suÆcient data to adequately develop the Gaussian model for these segments.

There has been research completed in the area of speech/music classi�cation in

addition to the Hub4 task. Saunders [69] uses a straightforward model-based approach

to the discrimination of speech and music. A simple multivariate Gaussian system

is trained using features that were determined to discriminate between music and

speech. He found that using statistics computed from the zero crossing rate, he

could achieve a classi�cation performance averaging 90%. By including additional

information about the energy contour, he improved his accuracy on the training set to

98%. Performance on an independent test set ranged from 95% to 96%. Scheirer and

Slaney [70] report similar results on their model-based speech/music discriminator.

The discriminator was based on various combinations of 13 features such as 4-Hz

modulation energy, zero crossing rate, and spectral centroid. They investigated a

number of classi�cation strategies, such as Gaussian mixture models and K-nearest-

neighbor classi�ers. When looking at long-term windows (2.4 seconds), they achieved

a classi�cation rate of 98.6% on FM radio broadcasts.
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4.2.2 System Development

We chose to develop a model-based approach to segment GAD into its salient classes.

In this approach, we build models for each of the seven sound classes found in GAD

from a training set. Our test data is then recognized, frame by frame, by a maximum

likelihood process, and the segmentation boundaries are found at locations where

there is a change in acoustic class.

The maximum a-posteriori probability (MAP) approach [64] was used to recognize

each frame as one of the seven sound categories determined in Section 4.1.1. The

details of this approach are reviewed here.

In the MAP approach to recognition, we assume a probabilistic model where

the sequence of units to be recognized (i.e., the frame-based sequence of sound class

labels), C, produces a sequence of acoustic observations, Y , with probability P (C; Y ).

The goal is to then determine the most probable sound class sequence, Ĉ, based on

the acoustic observations, so that the hypothesized sequence has the maximum a-

posteriori probability:

Ĉ 3 P (Ĉ j Y ) = max
C

P (C j Y ) (4.1)

Using Bayes' Rule, P (C j Y ) can be written as:

P (C j Y ) =
P (Y j C)P (C)

P (Y )
(4.2)

Since P (Y ) is independent of C, it can be eliminated from the computation, and

the MAP decoding rule of Equation 4.1 is:

Ĉ = argmax
C

P (Y j C)P (C) (4.3)

The �rst term in Equation 4.3 is the acoustic model, which estimates the prob-

ability of a sequence of acoustic observations given the sound class sequence. After

performing principle components analysis on the feature vectors Y , the acoustic mod-

els P (Y j C) were represented by mixtures of diagonal Gaussian distributions. The
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second term in Equation 4.3 is the language model, which estimates the probability of

the hypothesized sequence. In initial experiments, a unigram language model (which

simply estimates the a-priori sound class probabilities) was used to estimate P (C).

The unigram probabilities were estimated from the frequency of occurance of sound

classes found in the training set. In subsequent experiments, a bigram language model

was developed to better model the sequential constraints of the sound classes. The

bigram was trained from the frame-based sound class transcriptions.

For acoustic modeling, fourteen Mel-frequency cepstral coeÆcients (MFCC) were

computed every 10 ms using a 20 ms Hamming window. To capture the longer-term

spectral characteristics of each class, the feature vector for each frame was formed by

averaging the MFCCs of adjacent frames centered around the frame of interest. This

is illustrated in Figure 4-6. Experiments were performed to determine the optimal

segment size. The number of frames included in the analysis segment was varied from

15 (7 frames on each side) to 81 (40 on each side). Two hours were selected from the

training set for these experiments. One hour was used for system training and the

second hour was used for development. In these initial experiments, a simple unigram

language model was used.

As shown in Figure 4-7, the recognition accuracy on the development set increased

steadily as more context was included in the analysis segment, eventually reaching a

peak value of 76.5% (for an analysis segment of 51 frames). The accuracy then began

to level o� and decrease slightly, as the analysis segment began to include too much

data from neighboring classes. Therefore, an analysis segment length of 510 ms (51

frames) was used for all subsequent experiments.

4.2.3 Feature Re�nement

Examination of the results from the development set led to further re�nement of the

feature sets. First, many of the misrecognized frames were found to contain small

portions of neighboring classes in their analysis segments. To potentially alleviate

this problem, MFCC averages and derivatives across the �rst and last thirds of the

analysis segment were added to the feature vector. Second, examination of the aver-
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Figure 4-6: Illustration of the measurement window used in the sound recognition
system.

age spectra for each sound class indicated that the average spectral energy in a frame

may be a distinguishing feature for the music speech, noisy speech and clean speech

sound classes. Referring back to Figure 4-4, we can see that music speech has the

largest average spectral energy, followed by noisy speech and clean speech, respec-

tively. Adding these measurements into the feature vector increased the development

set recognition accuracy to 80.0%. Finally, a bigram language model was added to

model the sequential constraints of the sound classes. Adding the bigram language

model into the recognition system resulted in a development set recognition accuracy

of 82.5%.

The recognition algorithm we have developed was evaluated on the test set (two

hours of previously unseen data) after training on the full training set (eight hours of

data). Using the optimal analysis segment size and measurement vector previously

determined, the system achieved a recognition accuracy of 78.6%.

Details of the results of this experiment are shown numerically in Table 4.3 in

the form of a confusion matrix, and are illustrated graphically in the bubble plot

of Figure 4-8. The rows of Figure 4-8 are the reference classes, and the columns

are the hypothesized classes. The radius of the bubbles in each entry are directly

proportional to the likelihood that the reference class is recognized as the hypothesis

class. If perfect recognition were achieved (i.e., recognition accuracy of 100%), this

plot would display large, equal-sized bubbles along the diagonal and no o�-diagonal

entries.
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Figure 4-7: Recognition accuracy as a function of the analysis segment size.

We found that the primary confusion in the recognition system was noisy speech

with music speech. Since both of these classes consist of wideband speech superim-

posed on other sounds, this confusion makes intuitive sense. This indicates that the

music speech and noisy speech classes are diÆcult to distinguish. The use of more

discriminating features may have to be explored to improve the results on these two

classes.

The miscellaneous class is also commonly misrecognized, with most of the misclas-

si�ed frames being labeled as music. One reason for this may be due to an insuÆcient

amount of training data for this class. In Table 4.1, we see that there is just over 5

minutes of miscellaneous class data available for training. This may not be enough

data to adequately train the mean vectors and covariance matrices of the Gaussian

models. Since the majority of the misclassi�ed frames are labeled as other non-speech

classes, and since there is very little testing data for this class (2.3 minutes), we are
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Hypothesis

Reference Clean Field Music Noisy Music Silence Misc

Speech Speech Speech Speech

Clean Speech 87.8 0.6 0.9 7.4 0.0 3.1 0.0

Field Speech 1.9 85.7 1.9 0.9 1.1 8.1 0.4

Music Speech 4.9 0.9 79.5 6.9 6.9 0.6 0.3

Noisy Speech 10.4 3.0 50.1 24.3 6.8 1.9 3.5

Music 0.3 0.1 6.2 2.5 85.4 2.4 2.9

Silence 2.6 3.7 0.0 0.8 0.1 92.1 0.7

Misc 0.3 10.7 15.0 2.6 39.2 11.7 20.6

Table 4.3: Confusion matrix for seven class sound recognition system. The overall
recognition accuracy for this experiment was 78.6%

not very surprised with this result.

4.2.4 Speech / Non-Speech Recognition

Given the fact that the non-speech sounds are all signi�cantly di�erent from speech

sounds, we decided to perform an additional experiment to determine the separability

of speech and non-speech frames. The speech class was formed from the union of the

clean speech, �eld speech, music speech and noisy speech classes. The non-speech

class consisted of the union of the music, silence and miscellaneous classes. Each

frame in the corpus was labeled with the proper speech or non-speech tag, and a new

recognition system was developed. Using the measurements that achieved the best

recognition performance in the seven class system, a recognition accuracy of 92.9%

was achieved on the test set. The confusion matrix for this experiment is shown in

Table 4.4. We see that speech (with a recognition accuracy of 92%) is slightly easier

to recognize than non-speech (with a recognition accuracy of 89.2%).

Table 4.5 shows the details of the speech / non-speech recognition experiment,

broken down by original sound class. Closer inspection of the results revealed that

many short segments of silence within a speech utterance are being recognized as

non-speech. Since the original transcriptions required a silence segment to be greater

than 250 ms for its constituent frames to be labeled as silence, these shorter silence

segments were originally transcribed as one of the speech classes. This indicates that
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Figure 4-8: Confusion matrix for sound recognition experiment. The radius of the
bubbles in each entry are directly proportional to the likelihood that the reference
class is recognized as the hypothesis class. The overall recognition accuracy for this
experiment was 78.6%.
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Hypothesis
Reference Speech Non-Speech

Speech 92.0 8.0
Non-Speech 10.8 89.2

Table 4.4: Confusion matrix for speech / non-speech recognition system. The overall
recognition accuracy for this experiment was 91.7%

Hypothesis
Reference Speech Non-Speech

Clean Speech 97.4 2.6
Field Speech 88.3 11.7
Music Speech 85.7 14.3
Noisy Speech 82.0 18.0

Music 5.0 95.0
Silence 7.5 92.5

Miscellaneous 24.0 76.0

Table 4.5: Confusion matrix for speech / non-speech recognition system, broken
down by original sound class. The overall recognition accuracy for this experiment
was 91.7%.

some of the speech / non-speech distinctions are diÆcult, if not arbitrary, which

makes it hard to be de�nitive about proper class assignment.

4.2.5 Smoothing Experiments

While we have developed a frame-based recognition system, we have to remember

that the overall goal of the system is to generate acoustically homogeneous segments.

Segment boundaries will be proposed at locations where there is a change in the

assigned acoustic class. Therefore, single-frame misrecognition errors will adversely

e�ect the generation of these segments (i.e., many short segments will be erroneously

proposed). For example, if the recognizer outputs a hypothesis string such as:

m m m m m m m_s m m m m m

three segments would be generated (a music segment, consisting of the �rst six

frames, a music speech segment, consisting of one frame, and another music segment,

consisting of the remaining four frames). However, it is likely that the single music
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Figure 4-9: Illustration of the median �lter used to smooth the output of the recog-
nition system. The evaluation frame (m s) is changed to the majority class (c s).

speech frame (labeled m s) should actually be labeled as music (m), since it is sur-

rounded by a number of music frames. This hypothesis string would generate a single,

music segment. In this section, we investigated the use of smoothing techniques to

correct these singleton errors.

To accomplish this, a median �lter is applied to the output of the recognition

system. For each frame, the majority class is computed from a window centered

on the evaluation frame. The evaluation frame is then reclassi�ed as this majority

value. Figure 4-9 illustrates the performance of the median �lter. In this example,

the evaluation frame (m s) is reclassi�ed as the majority value (c s).

Experiments were performed to determine the optimal median �lter size. The

number of frames included in the �lter was varied from 3 (1 frame on each side) to

49 (24 frames on each side). As shown in Figure 4-10, the recognition accuracy on

the development set increases slightly as the �lter size increases. After reaching a

peak value of 74% (for an analysis segment size of 27 frames), the accuracy began to

decrease as the �lter began to expand past a true segment boundary.

The optimal �lter was used to process the recognition output on the test set for

both the seven class and speech / non-speech systems. The use of the �lter on the

seven class system yielded an increase in recognition accuracy from 78.6% to 79.4%.

This slight increase may indicate that there are not many singleton errors in the

seven class system. The speech / non-speech system bene�tted a bit more from the

smoothing process, which increased in accuracy from 92.9% to 94.2%.
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Figure 4-10: Recognition accuracy as a function of the median �lter size.

4.3 Clustering Experiments

One of the goals of this chapter is to understand the acoustic nature of GAD. The

acoustic classes that we have been experimenting with up to this point were deter-

mined subjectively. In this section, we investigate the use of clustering methods to

provide us with insight into the similarities among the classes.

The classes were clustered according to the confusion matrix produced by the

seven class recognition experiment developed in Section 4.2. The confusion matrix is

shown in Table 4.3. Each row in the matrix can be viewed as a probability density.

Speci�cally, the entry in position (a; b) of the matrix represents the probability that

a frame will be recognized as b when the correct class label is a. The symmetric

Kullback Leibler distance [14] was calculated for each pair of classes as shown below:
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d(a; b) =
X

x2X

p(xja) log
p(xja)

p(xjb)
+
X

x2X

p(xjb) log
p(xjb)

p(xja)
(4.4)

where,

p(xja) : the probability of confusing class x with class a.

p(xjb) : the probability of confusing class x with class b.

This distance metric provides a measure of the divergence between the conditional

probability distributions of the classes. The new symmetric matrix of between-class

\distances" was then used for bottom-up clustering [19] of the classes, resulting in

the tree shown in Figure 4-11. The vertical axis is a measure of the distance between

classes or clusters.

The clustering experiment produced some interesting results. We see that the �rst

classes to be clustered are the music speech and noisy speech classes. These classes

are acoustically very similar in that they both contain wideband speech superimposed

on interference sounds. We then see that the wideband speech forms its own cluster,

as the music and noisy speech cluster merges with the clean speech class. Wideband

non-speech also forms its own cluster, as the music and miscellaneous classes merge.

Next, these two wideband clusters merge higher in the tree. The bandlimited speech

and silence classes also form a single cluster, presumably due to their low overall

energy levels as compared to the wideband classes. Finally, very high in the tree, all

of the clusters merge into a single class.

The results of the clustering experiment explain some of the confusions found in

our sound recognition experiments. We found that the noisy speech class was most

often confused with the music speech class. The results of the clustering experiment

show that these two classes merge very low in the tree, and are therefore acoustically

very similar. Also, we found that the miscellaneous class was often confused with the

music class. These two classes also merge fairly early in the clustering tree.
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Figure 4-11: Clustering tree based on Kullback-Leibler distance computed from the

confusion matrix of Table 4.3.
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4.4 Modi�ed Acoustic Classes

Since both the sound recognition system and clustering experiment results indicated

that the music speech and noisy speech classes were acoustically very similar, we

decided to collapse them into a single class, called interference speech (i s). Each

music speech or noisy speech frame in the NPR-ME corpus was relabeled with the

new interference speech tag, and a new recognition system was developed using the

resulting six classes. Using the measurements that achieved the best recognition

performance in the seven-class system and a bigram trained on the relabeled data, a

recognition accuracy of 85.9% was achieved on the test set. The use of the median

�lter developed in Section 4.2.5 increased the overall accuracy to 86.6%.

Details of the results of this experiment are shown numerically in Table 4.6 in

the form of a confusion matrix, and are illustrated graphically in the bubble plot of

Figure 4-12. As in Figure 4-8, the radius of the bubbles in each entry are directly

proportional to the likelihood that the reference class is recognized as the hypothesis

class. While the miscellaneous class is still commonly misrecognized, the majority of

the classes are recognized correctly, illustrated by the large bubbles lying along the

diagonal. However, we see that a small percentage of the interference speech frames

are being misrecognized as clean speech. One possible reason for this confusion is

that some of the frames labeled as interference speech actually contain very low

levels of background music or noise. While those frames may have been erroneously

recognized, such a mistake may not be very detrimental to the goal of providing a

segmentation for a subsequent ASR system. First, many of these frames were diÆcult

for the human transcriber to initially label, so perhaps they should have been labeled

as clean speech. Second, very low level acoustic disturbances may not a�ect a speech

recognizer's performance signi�cantly. This will be investigated further in Chapter 5,

when we study the use of our sound recognition system as a preprocessing step for

phonetic recognition.
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Hypothesis

Reference Clean Field Interference Music Silence Misc

Speech Speech Speech

Clean Speech 92.8 0.8 4.1 0.0 2.3 0.0

Field Speech 2.0 88.0 1.6 0.8 7.1 0.6

Interference Speech 9.6 2.3 77.0 5.8 1.3 4.2

Music 0.3 0.1 5.6 87.7 2.2 4.1

Silence 4.9 5.5 0.7 0.5 88.0 0.4

Misc 0.8 10.8 16.3 20.9 10.9 40.2

Table 4.6: Confusion matrix for sound recognition system with modi�ed acoustic
classes. The overall recognition accuracy for this experiment was 86.6%

4.5 Summary

In this chapter we have examined the acoustic characteristics of GAD, and have

developed a sound recognition system to segment the audio into its salient sound

classes. For the NPR-ME corpus, we subjectively identi�ed seven acoustically distinct

classes based on visual and aural examination of the data. We found that these classes

di�ered in their spectral characteristics, statistical pro�le, and segment duration.

Speci�cally, we found that high quality, prepared speech constitutes only half of the

entire corpus, another 25% of the data contains speech superimposed on other sounds,

nearly 15% of the data was of telephone bandwidth, and the remaining 10% of the

data was non-speech. We also found that while pure music segments are similar in

length to speech segments, other non-speech segments are substantially shorter in

length.

We were able to achieve a recognition accuracy of 79.4% for these seven classes

on unseen data, using relatively straightforward acoustic measurements and pattern

recognition and smoothing techniques. The results of our seven class recognition

system and clustering experiments revealed that the noisy speech and music speech

classes were acoustically very similar, and perhaps should be combined into a single

class. A six class system was developed to investigate the consequences of merging

these two classes. The resulting six class system achieved a recognition accuracy of

nearly 87%. A speech / non-speech recognizer achieved an accuracy of 94.2%. These
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Figure 4-12: Confusion matrix for sound recognition experiment with the music

speech and noisy speech classes collapsed to a single, interference speech (i s) class.

The radius of the bubbles in each entry are directly proportional to the likelihood

that the reference class is classi�ed as the hypothesis class. The overall recognition

accuracy for this experiment was 86.6%.

results are diÆcult to compare with others found in the literature since di�erent

corpora and sound classes were used. However, our results may indicate that the

�ner distinctions in the sound class de�nitions are helpful for the recognition of this

data since the results of our six-class system were signi�cantly better than the results

of the four-class system described by Dragon Systems [80]. Our speech / non-speech
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recognition results are slightly worse than the results presented by Saunders [69] (95-

96%) and Scheirer and Slaney [70] (98.6%). However, again, it is diÆcult to make a

direct comparison since di�erent corpora were used.

The level of performance needed for a sound recognizer is clearly related to the

ways in which it will serve as an intelligent front-end to a speech recognition system.

We will investigate this in the following chapter, where we use our seven class system

to classify test data in a phonetic recognition task. We will also evaluate how the

merging of the noisy and music speech classes impacts the speech recognition system.
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Chapter 5

Phonetic Recognition

The lexical analysis completed in Chapter 3 revealed some potential problems with

a large vocabulary, continuous speech recognition approach to the transcription of

GAD. We found that the NPR-ME corpus, which consists of 102 hours of data, has

a vocabulary of over 30,000 words. While this is within the current capabilities of

automatic speech recognition systems, the growth of the vocabulary shows no sign

of abating as more data is accumulated. Analysis of similar corpora (WSJ and LA-

Times), indicates that the vocabulary of NPR-ME could grow to over 100,000 words

if a whole year's worth of just this one show was collected. In addition, we found that

the majority of new words that are encountered are high content words (i.e., proper

nouns), which could not be found in any standard dictionary. However, these words

would be very important to recognize if we were describing the content of this data

for an information retrieval system.

An alternative approach that has the potential to deal with the above problems

is the use of a subword unit for the recognition of GAD. The use of subword units in

the recognizer constrains the size of the vocabulary needed and reduces the amount

of data required for training. Word-based approaches to the transcription of GAD

traditionally use vocabularies on the order of 64,000 words, and hundreds of millions of

words from text documents for language model training. Conversely, subword-based

approaches have much smaller vocabularies, and therefore require much less data for

language model training. For example, a subword phonetic recognizer has a closed
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vocabulary of 61 phones and only requires hundreds of thousands of phone occurrences

for training the language models. However, the constraining power of phonetic units is

much less than that of word units. Larger subword units will presumably be required

for acceptable performance.

Ng [62] recently investigated the feasibility of using subword unit representations

for spoken document retrieval. He examined a range of subword units of varying

complexity derived from phonetic transcriptions. The performance of a spoken doc-

ument retrieval system was compared when the underlying phonetic transcriptions

were perfect and when they contained phonetic recognition errors. He found that

some subword units achieved comparable performance to text-based word units if

the underlying phonetic units were recognized correctly, and that the information

retrieval performance was directly correlated with the phonetic recognition perfor-

mance. Therefore, it is important to recognize the phonetic units correctly. In this

chapter we determine how well phonetic units can be extracted from the speech signal

for a subword representation.

In Chapter 4 we found that GAD contained a number of di�erent acoustic speaking

environments. Since the performance of ASR systems can vary a great deal depend-

ing on speaker, microphone, recording conditions and transmission channel, we have

proposed that the transcription of GAD would bene�t from a preprocessing step that

�rst segments the signal into acoustically homogeneous blocks so that appropriate

models could be used during test. We explore this hypothesis in this chapter and try

to determine the best training and testing approach for the phonetic recognition of

GAD.

5.1 Corpus Preparation

The experiments presented in this chapter required additional processing of the NPR-

ME corpus. As described in Chapter 2, ten hours of NPR-ME data was segmented

into manageable sized waveform �les at silence breaks. Each 10 ms frame was then

manually labeled with one of the seven sound classes de�ned in Chapter 4. If any
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of the waveform �les contained multiple acoustic classes (e.g., a segment of music

followed by a segment of clean speech) they were manually split at these boundaries.

Therefore, each �le was homogeneous with respect to general sound class.

To complete phonetic recognition experiments, we must be able to train acoustic

models for each phone to be recognized. This requires phonetically aligned data.

Files that contained speech materials required further processing to generate these

alignments. First, word-based orthographies were manually generated for each wave-

form �le from the complete show transcript. This was done by listening to each

waveform �le and tagging the show transcript to indicate the word strings spoken in

each individual �le. Second, a word-based lexicon was developed for each show. The

con�guration of SUMMIT that was used in this work typically operates with vocabu-

lary sizes on the order of 3,000 words. Therefore, the development of the lexicon was

done on a show by show basis, rather than on the entire NPR-ME corpus as a whole

(which has a vocabulary size of over 30,000 words). The function of the lexicon is

to list the unique words present in the NPR-ME data and to represent their alter-

nate pronunciations. The lexicon was �rst created by generating a unique vocabulary

list for each show. For each word in the vocabulary a baseform pronunciation was

then speci�ed. For example, the baseform for \Boston" might be /b ao s t ax n/.

The baseform pronunciations were initially generated from the Carnegie Mellon Pro-

nouncing Dictionary [7]. Any pronunciation that was not found in the dictionary was

generated manually. Pronunciation rules were then applied to generate alternative

pronunciations within and across words.

SUMMIT was used with a forced Viterbi search to generate the phonetic align-

ments. The Viterbi search matches the constraints provided by: 1) the word or-

thographies, which speci�es what words are spoken in each waveform �le, 2) the

lexicon, which speci�es allowable sequences of phones corresponding to the word pro-

nunciations, and 3) the acoustic phonetic network, which generates likely phonetic

segments and the scores of each segment. Given these constraints, the search �nds

the best scoring pronunciations and phonetic alignments for each waveform �le. This

was completed with an iterative process. First, acoustic models trained with the
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Environment Training Data Testing Data

Clean Speech 59.2% 56.4%
Music Speech 11.6% 4.9%
Noisy Speech 13.8% 9.2%
Field Speech 15.4% 29.6%

Table 5.1: Distribution of training and testing data for each speaking environment.

TIMIT corpus (described in Chapter 2) were used to generate initial alignments for

the NPR-ME clean speech data. The acoustic models were then retrained using

the newly aligned clean speech data. This alignment and retraining procedure was

repeated until the phonetic recognition performance on this data reached a local min-

imum. The resulting models were then used to generate phonetic alignments for the

remainder of the NPR-ME speech data.

From this collection of data, eight shows were used for system training, contain-

ing 6.5 hours of speech data. The remaining two shows were used for system test,

containing a total of 1.5 hours of speech data. Table 5.1 summarizes the distribution

of training and testing data in each speaking environment.

5.2 Experimental Set-up

The phonetic recognition system used in this work is based on the SUMMIT recognizer

described in Chapter 2. Some of the details of the system are reviewed here. Our

implementation of SUMMIT uses 61 context-independent segment acoustic models

corresponding to the TIMIT phone labels (a list of the 61 phones in the TIMIT

corpus with their IPA symbols, TIMIT labels, and example occurrences is shown in

Table 2.4). The feature vector used in the segment models has 77 measurements

consisting of three sets of 14 Mel-frequency cepstral coeÆcient (MFCC) and energy

averages computed over segment thirds, two sets of MFCC and energy derivatives

computed over a time window of 40 ms centered at the segment beginning and end,

log duration, and a count of the number of internal boundaries proposed in the
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segment. Context-dependent boundary models, which try to model the transitions

between two adjacent segments, are used in conjunction with the segment models.

The boundary model feature vector has 112 dimensions and is made up of eight sets of

MFCC averages computed over time windows of 10, 20, and 40 ms at various o�sets

(�5;�15; and �35 ms) around the segment boundary. For the 6.5 hours of acoustic

training data in the NPR-ME corpus, there is a total of 3160 unique transitions.

Since many of these transitions occur infrequently, models are not trained for all 3160

transitions found in the training data. Transitions that occur fewer than 50 times are

combined with acoustically similar transitions. Boundary models are then trained for

the resulting 790 boundary classes. Cepstral mean normalization [1] and principle

components analysis [78] are performed on the acoustic feature vectors.

Since the EM algorithm [16] used to train the acoustic models makes use of random

initializations of the parameter values and only converges to a local optimum, di�erent

sets of models can result from di�erent training runs using the same training data.

It has been shown that combining the di�erent models into a single, larger model

results in better performance than using just the set of models that yield the best

performance on a development set [41]. We used this approach and combined �ve

separate acoustic models trained using di�erent random initializations. The models

are combined using a simple linear combination with equal weights for each model.

In initial experiments, we veri�ed that this approach did improve our baseline results,

by up to 5% in some cases.

A statistical bigram language model was used to constrain the forward Viterbi

search during decoding. The bigram model was trained using the phonetic transcrip-

tions of the complete training set, which consisted of approximately 340,000 phone

occurrences.

Results, expressed as phonetic recognition error rates, are collapsed down to the

39 labels typically used by others to report recognition results [9, 32, 37, 55]. The

mapping between the 61 phones used for acoustic modeling and the 39 classes used

for computation of results is shown in Table 2.5.

All of the experiments completed in this chapter use only those segments that con-
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Figure 5-1: Road map of the phonetic recognition experiments presented in this
chapter.

tain speech material. All non-speech segments (e.g., music, silence and miscellaneous)

were not considered for the work described in this chapter.

A number of recognition systems and experiments are presented in this chapter.

Figure 5-1 illustrates how they are related to one another and presents a road map

for the remainder of the chapter. In Section 5.3 we investigate the use of a single

recognizer system for the phonetic recognition of GAD. Two training methods are

explored, namely, a multi-style approach, and a clean speech approach. To compare

these two methods fairly, the multi-style approach is developed with two di�erent

amounts of training data (labeled full set and limited set in the �gure). Section 5.4

investigates the use of a multiple recognizer system for the phonetic recognition of

GAD. First, baseline performance is determined. Next, the sound recognition system

developed in Chapter 4 is used to automatically select the models used in the multiple

recognizer system (labeled as auto selection in the �gure). Next, a bandlimited system

is developed to determine if we could improve the performance on the �eld speech

data. We then re�ne our sound classes and determine how they a�ect the phonetic

recognition results. Finally, in Sections 5.6 and 5.7, we examine robustness issues and

compare our results with those found in the literature on the TIMIT corpus.
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5.3 Single Recognizer System

One approach to the design of a recognition system is to use a single recognizer for

all testing conditions. If a single recognizer is to be used for all four di�erent types of

speech material present in the NPR-ME corpus, we can utilize the training data in two

di�erent ways. First, we can use a large quantity of mixed quality data. This would

attempt to capture all of the acoustic di�erences that exist among the four speaking

environments in a single model, while utilizing all of the training data available.

Second, we can use a smaller amount of acoustically clean data. This would allow

us to model only the speech units themselves, without any possible corruption from

background noise. In this section, we explore both approaches, and try to determine

the trade-o�s between them.

5.3.1 Multi-Style Training

Multi-style training [58] was originally used to train a speech recognition system on

multiple speaking styles in order to increase robustness to mismatched conditions.

The system was trained on normal speaking styles and tested on abnormal speaking

styles, such as speaking under stress. In general, these experiments showed that in-

corporating a variety of styles in training improves performance under di�erent styles

in testing, thereby reducing the potential mismatch between training and testing con-

ditions. In addition to having a more diverse training set, this approach enables us

to utilize a large amount of data to train our acoustic models, which may also make

them more robust. To accomplish this, acoustic models were trained using all of the

available training data in all four speaking environments (clean speech, music speech,

noisy speech, and �eld speech). This amounted to a total of 6.5 hours of speech

training data for the multi-style system.

The �rst row of Table 5.2, labeled multi-style1, shows the phonetic recognition

error rates for each speaking environment in the test set. We see that the performance

on the test set varied widely across speaking environments, with the lowest error rate

arising from clean speech (28.3%) and the highest error rate arising from �eld speech
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(48.3%). The phonetic recognition error rate on the entire test set was 35.8%.

5.3.2 Clean Speech Training

Although multi-style training reduces the mismatch between the training and testing

data, this approach may produce models that are too general for some of the testing

environments. To model the wide range of acoustic conditions present in the training

data, the multi-style models may have a larger variance than required by some of

the individual testing environments. An alternative is to train models using only the

clean, wideband speech material found in the training set. This amounted to a total

of 3.9 hours of training data. The second row of Table 5.2 shows the results of this

experiment. Again, we found that the phonetic recognition performance on the test

set varied across speaking environments. The overall phonetic recognition error rate

was 37.9% for this experiment.

While the clean speech recognizer produced results on the clean speech test data

that were comparable to the multi-style approach, the results on the other speak-

ing environments were signi�cantly worse. However, one must keep in mind that

the multi-style approach utilized nearly 1.7 times the amount of data for training

the acoustic models. This additional data allows the multi-style models to be more

accurately trained. Also, the multi-style system has more modeling parameters. In

SUMMIT, the number of Gaussian mixtures is determined automatically based on the

amount of available training data. To perform a fair comparison between these two

approaches, we trained a multi-style system with an amount of training data equiv-

alent to that of the clean speech system, keeping the distribution of the speaking

environments equivalent to that of the entire training set. As shown in the third row

of Table 5.2, labeled multi-style2, we found this system degraded the full multi-style

results to an overall error rate of 36.7%, a relative increase in error rate of nearly

3%. When we compare these results to the clean speech system, we see that the

clean speech system performed signi�cantly better on the clean speech testing data.

However, for the remaining speaking environments, the limited multi-style system

outperformed the clean speech system. This indicates that the superior performance
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Testing Data
Training Clean Music Noisy Field Over
Data Speech Speech Speech Speech All

Multi-Style1 28.3 35.3 45.8 48.3 35.8
Clean Speech 28.2 44.8 50.5 53.2 37.9
Multi-Style2 29.4 36.9 46.8 48.8 36.7

Table 5.2: Summary of phonetic recognition error rates for the multi-style and clean
speech training systems. The multi-style1 system uses all of the available training
data, while the multi-style2 system uses an amount of training data comparable to
the clean speech system.

achieved by the multi-style system was not due to the increased amount of training

data or the increased number of modeling parameters, but because the models were

more robust to acoustic di�erences presented by the music, noisy and �eld speech

data.

5.4 Multiple Recognizer System

A second approach to the recognition of data with a variety of acoustic conditions is

to use multiple recognizers, each trained on one of the unique conditions. A multiple

recognizer system involves training separate models to match each speaking envi-

ronment present in the NPR-ME corpus. Like multi-style training, this approach

decreases the mismatch between training and testing conditions by incorporating dif-

ferent data in training. Unlike multi-style training, this approach provides a separate

model to directly match each condition rather than pooling the data and averaging

the model parameters over di�erent conditions. As a result, a multiple recognizer

system may be able to model and represent more diverse testing conditions.

An added complexity in the multiple recognizer system is that the appropriate

recognition system must be determined during testing. There are two approaches

to this problem. First, each test utterance is run through each recognizer, and the

highest scoring output is selected. This method has the advantage that a separate

environment classi�cation system is not required. However, each test utterance must
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be run through every recognizer, which may not be computationally eÆcient. The

second approach, and the one taken in this work, is to utilize a sound classi�ca-

tion system that determines the speaking environment of each test utterance. The

matching recognizer is then used to process the utterance.

In this section we explore the use of a multiple recognizer system for the phonetic

recognition of NPR-ME, one for each type of speech material. These results will be

compared to the single recognizer systems described in the previous section.

5.4.1 Environment Speci�c Baseline

The environment-speci�c approach involves training a separate set of models for each

speaking environment, and using the appropriate models for testing. In this section,

we establish baseline performance by using the manually assigned labels for training

and testing. This is equivalent to assuming that the environment classi�cation has

been done without error. Table 5.3 details the results in the form of a confusion

matrix. Each entry in the table indicates the phonetic recognition error rate for each

training and testing condition. The overall recognition error rate for the complete

test set is shown in the last column. The matched condition results are shown in

boldface type on the diagonal of the table.

In addition to seeing how well each matched condition performs, Table 5.3 illus-

trates the consequences of testing with a mismatched system. We can see that in the

clean, music and �eld speech testing cases, the matched condition yields signi�cantly

better results than any of the mismatched conditions. However, the matched noisy

speech condition performs only slightly better than the mismatched noisy/clean and

noisy/music speech conditions. This may indicate that the noisy speech class is not

signi�cantly di�erent than the music speech or clean speech classes. This result was

also found in Chapter 4, where we saw that noisy speech was often confused with

music speech. We will investigate the consequence of combining these two classes

into a single class on our phonetic recognition system later in this chapter.

The multiple recognizer system achieved an overall error rate of 36.7%, computed

from the weighted diagonal entries of the confusion matrix. This result represents a
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Testing Data
Training Clean Music Noisy Field Over
Data Speech Speech Speech Speech All

Clean Speech 28.2 44.8 50.5 53.2 37.9
Music Speech 45.3 33.5 50.7 57.8 48.7
Noisy Speech 39.2 48.1 50.0 55.4 45.1
Field Speech 55.6 55.7 57.9 49.3 54.1

Table 5.3: Summary of phonetic recognition error rates for the environment-speci�c
training system, in the form of a confusion matrix. The overall error rate for this
experiment, computed from the weighted diagonal entries, was 36.7%.

2.5% increase in error rate when compared to the multi-style training system. Ta-

ble 5.4 summarizes the results of the multi-style system for comparison with the

multiple recognizer system. If we look at the �rst row of Table 5.4, we see that for all

but the clean speech class, the multi-style system outperforms each of the matched

condition cases in the environment speci�c system. However, we again have to keep

in mind that the multi-style system utilizes signi�cantly more training data to de-

velop its acoustic models than any of the individual environment-speci�c systems.

Therefore, the improvement in error rate may be due simply to the increased amount

of training data, rather than the inclusion of a variety of speaking conditions. To

provide a fair comparison, we retrained the multi-style system for each test case to

match the amount of environment-speci�c training data for that case. For example,

the music speech class has 42.8 minutes of training data available. Therefore, to com-

pute multi-style results on the music speech test data, we retrained the multi-style

system using an equivalent amount of mixed class data. The distribution of classes

in the new multi-style training set was similar to the distribution of classes in the

entire training set. These results are shown in the second row of Table 5.4, labeled

multi-style3. We see that the results for all of the speaking environments are de-

graded, resulting in an overall error rate of 38.7%. This represents a relative increase

of 8.1% from the full multi-style system. If we compare the multi-style3 results with

the environment-speci�c system, we �nd that in all but the noisy speech case, the

environment-speci�c matched case outperforms the multi-style3 system. This indi-
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Testing Data
Training Clean Music Noisy Field Over
Data Speech Speech Speech Speech All

Multi-Style1 28.3 35.3 45.8 48.3 35.8
Multi-Style3 29.4 43.0 50.0 52.2 38.7

Table 5.4: Summary of phonetic recognition error rates for the multi-style train-
ing systems. The multi-style1 system uses all of the available training data while
multi-style3 uses an amount of training data comparable to each of the test speak-
ing environment systems (i.e., the multi-style3 system uses a comparable amount of
training data to the music speech system when the results on the music speech test
data are computed).

cates that the improvement in performance shown by the multi-style1 system was

primarily due to the increased amount of training data available.

When compared to the clean speech single recognizer system, the multiple recog-

nizer system results achieve a relative decrease in phonetic error rate of 3.2%. We

can see that for every testing condition, the matched condition case in the multiple

recognizer system outperformed the clean speech system.

5.4.2 Integrated System

The experiments described thus far have assumed that test utterances have been

classi�ed perfectly. We now use the sound recognition system described in Chapter 4

as a preprocessor to classify each test utterance as one of the seven prede�ned sound

classes. This was accomplished by using the sound recognition system to label each

frame in the test utterance. The class containing the majority of frames was used

to label the test utterance. The environment-speci�c model chosen by the automatic

classi�er was then used to perform the phonetic recognition. We should point out

that this approach could not be directly applied in practice. Recall (cf. page 96)

that we performed a preprocessing step that segmented the NPR-ME test data into

acoustically homogeneous �les. While here we are using our sound recognition system

to determine the class label for each test utterance, in practice the sound recognition

system would have to be used to also segment the data, which would possibly degrade
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Auto Class Error Rate % of Tokens

Clean Speech 28.3 56.2
Music Speech 44.4 9.2
Noisy Speech 40.0 6.9
Field Speech 49.3 27.8

Table 5.5: Auto-class selection phonetic recognition results. The overall error rate for
this experiment, computed from the weighted entries, was 36.5%.

the results.

The results for this experiment are shown in Table 5.5. The �rst column in

Table 5.5 shows the phonetic error rate for each of the automatically chosen classes.

The second column shows the percent of tokens in each automatically chosen class.

The overall error rate for this experiment was 36.5%, which is slightly better than

the baseline environment-speci�c system.

When we compare these results in more detail, we see that the automatically

classi�ed noisy speech data performed signi�cantly better than the baseline system's

noisy speech data, while the music speech class performed worse. In addition, we see

that 9.2% of the test data was automatically classi�ed as music speech, while this

class actually makes up only 4.9% of the test data. We also see that only 6.9% of the

data is automatically classi�ed as noisy speech, while this class makes up 9.2% of the

test data. These misclassi�ed noisy speech utterances appear to have degraded the

overall music speech performance.

5.4.3 Bandlimited Field Speech Models

In all of the experiments conducted thus far, the full bandwidth range (upper limit of

8 kHz) has been used in developing our acoustic models. However, as we discovered

in Chapter 4, the �eld speech data is bandlimited to 4 kHz. The MFCCs used to

represent the speech signal are computed from Mel-scaled spectral coeÆcients (MF-

SCs), using a cosine transformation. Since the higher-order MFSCs (which represent

frequencies over 4 kHz) do not contain any energy for the �eld speech data, they
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Training Data
Bandwidth Clean Music Noisy Field Multi

Speech Speech Speech Speech Style

Full-Bandwidth (8 kHz) 53.2 57.8 55.4 49.3 48.3
Bandlimited (4 kHz) 48.4 55.1 51.4 48.9 46.0

Table 5.6: Summary of �eld speech phonetic recognition error rates on �eld speech
data for bandlimited training system.

do not contribute anything to this transformation. In essence, these coeÆcients are

being wasted in the �eld speech case. By bandlimiting the analysis to 4 kHz for the

�eld speech data, we are fully utilizing all of the spectral coeÆcients in the MFCC

computation. This may improve our recognition performance on the �eld speech

data. Table 5.6 shows the results of testing the �eld speech data on full-bandwidth

(8 kHz) and bandlimited (4 kHz) models for all training conditions. The �rst row of

the table shows the results for the full-bandwidth system, while the second row shows

the results for the bandlimited system.

We can see that for all training cases, the bandlimited models signi�cantly reduce

the error rate on the �eld speech test data. If bandlimited �eld speech models are

used in the environment-speci�c system, the overall error rate is slightly reduced to

36.3% (from 36.5%). The overall error rate of the multi-style system is also reduced

to 35.5% (from 35.8%) if bandlimited models are used to test the �eld speech data.

5.4.4 Re�nement of Sound Classes

We have found that the noisy speech class is often misrecognized as music speech,

and this misrecognition signi�cantly increases the error rate on the music speech test

data. In Chapter 4, we developed a recognition system that collapsed the music and

noisy speech classes into a single class. In this experiment, we investigate how this

would e�ect the environment-speci�c recognition system.

First, we establish baseline performance by using the manually assigned labels for

training and testing. The results of this baseline experiment are shown in Table 5.7,
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Testing Data
Training Clean Interference Field Over
Data Speech Speech Speech All

Clean Speech 28.2 48.6 53.2 37.9
Interference Speech 37.4 43.1 54.3 42.8

Field Speech 55.6 57.2 49.3 54.1

Table 5.7: Environment-speci�c training system phonetic recognition results, using
the collapsed class set. The overall error rate for this experiment, computed from the
weighted diagonal entries, was 36.6%

in the form of a confusion matrix. Each entry in the table indicates the phonetic

recognition error rate for each training and testing condition. The overall recognition

error rate for the complete test set is shown in the last column. The matched condition

results are shown in boldface type on the diagonal of the table.

We can see that the matched condition for the interference speech class performed

signi�cantly better than any of the mismatched conditions. The overall error rate for

this experiment, computed from the weighted diagonal entries of the confusion matrix,

was 36.6%, which is essentially equivalent to the full environment-speci�c results. If

we look at the interference speech results more closely, we �nd that the constituent

noisy speech data bene�tted from the new interference speech model, decreasing in

error rate from 50.0% to 47.3%. However, the music speech test data was degraded

by the interference speech model, increasing in error rate from 33.5% to 34.5%, which

e�ectively canceled the gains made on the noisy speech data.

We now use the modi�ed sound recognition system described in Chapter 4 as a

preprocessor to classify each test utterance as one of the six de�ned sound classes.

The environment-speci�c model chosen for each utterance by the automatic classi�er

was then used to perform the phonetic recognition. The results for this experiment

are shown in Table 5.8. The �rst column in Table 5.8 shows the phonetic error

rate for each of the automatically chosen classes. The second column shows the

percent of tokens in each automatically chosen class. The overall error rate for this

experiment was 35.9%, which represents a relative decrease of 2.2% from the original
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Auto Class Error Rate % of Total

Clean Speech 28.6 60.4
Interference Speech 42.2 11.9

Field Speech 49.2 27.7

Table 5.8: New auto-class selection phonetic recognition results. The overall error
rate for this experiment, computed from the weighted entries, was 35.9%.

environment-speci�c system results.

When we examine these results in more detail, we see that 60.4% of the test

data was automatically classi�ed as clean speech, while this class actually makes up

only 56.4% of the test data. We also see that only 11.9% of the data is classi�ed

as interference speech, while this class makes up 14.1% of the test data. These

misclassi�ed interference speech utterances appear to have only slightly degraded

the overall clean speech performance, while increasing the overall interference speech

performance. As we discussed in Chapter 4, we found that many of the noisy and

music speech utterances contained very low-levels of background music or noise. The

result found here indicates that these utterances may be better modeled with clean

speech.

5.5 Statistical Signi�cance

The results of the phonetic recognition experiments conducted in this chapter are

summarized in Figure 5-2. We found that if a single recognizer system is to be used,

training on all of the available data which contains a variety of speaking environ-

ments is more e�ective than using a smaller amount of homogeneous, clean data. We

also found that a multiple recognizer system achieved performance similar to a single

multi-style recognizer. However, when comparing the di�erences which exist between

the performance of di�erent systems, it is important to consider whether these dif-

ferences are statistically signi�cant. If the di�erence between the performance of two

systems is not statistically signi�cant then it is possible that a test result indicating
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Figure 5-2: Summary of phonetic error rate results for di�erent training methods.
The multi-style1 system uses all of the available training data, the multi-style2 sys-
tem uses an amount of training data comparable to the clean speech system and the
multi-style3 uses an amount of training data comparable to each of the test speak-
ing environment systems. Each of the environment-speci�c systems used the sound
recognition system as a preprocessor to select the appropriate models for testing. The
env-speci�c1 system uses the four original speaking classes, the env-speci�c2 system
collapses music and noisy speech into a single class, and the env-speci�c3 system adds
bandlimited models for the �eld speech data.
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clean multi- env- env- env- multi-
speech style2 speci�c1 speci�c2 speci�c3 style1

multi-style3 .001 .001 .001 .001 .001 .001
clean speech | .001 .001 .001 .001 .001
multi-style2 | | .001 .001 .001 .001
env-speci�c1 | | | .001 .001 .001
env-speci�c2 | | | | .131 .016
env-speci�c3 | | | | | .139

Table 5.9: Measure of statistical signi�cance of di�erences between di�erent phonetic
recognition systems. Signi�cant di�erences are shown in italics while insigni�cant
di�erences are shown in boldface. All results with a signi�cance level less than .001
are simply listed as having a signi�cance level of .001.

that one system outperforms another is simply the result of chance and not an indi-

cator of true superiority. To evaluate the signi�cance of the results presented in the

previous sections, the matched pairs sentence segment word error test is utilized [29].

This test measures the likelihood that the di�erences present during an evaluation

between two systems are a result of chance as opposed to genuine di�erences in the

performance of the systems.

Table 5.9 shows the signi�cance values for the comparison of di�erent pairs of

recognition systems presented in Sections 5.3 and 5.4. The di�erences are considered

signi�cant if the likelihood of the di�erences occurring due to chance is estimated

to be .05 or less. In other words, the results are considered signi�cant if there is a

95% chance or better that the di�erence in performance between the two systems is

a result of genuine di�erences in the recognition systems. In the table, signi�cant

di�erences are indicated with italics while insigni�cant di�erences are indicated with

boldface. Also, all results with a signi�cance level less than .001 are simply listed as

having a signi�cance level of .001 in the table.

The results shown in Table 5.9 indicate that there is a signi�cant di�erence be-

tween the performance of the majority of recognition systems presented in this chap-

ter. The environment-speci�c systems (listed as env-speci�c1, env-speci�c2 and env-

speci�c3 in the table) performed signi�cantly better than the clean speech and limited

multi-style systems (listed as multi-style2 and multi-style3 in the table). The table
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also indicates that the performance of the environment-speci�c system with bandlim-

ited �eld speech models is statistically equivalent to the full multi-style system (listed

as multi-style1 in the table).

5.6 Robustness Experiments

In this section we explore issues related to training set size. We found that much

of the gain achieved by the multi-style system over the environment-speci�c system

was due to the increased amount of training data available for the multi-style system

development. Here, we investigate the e�ect of training set size on the environment-

speci�c system. First, we attempt to determine the source of the large discrepancy

that exists among the environment-speci�c results. We found that the clean speech

data performed signi�cantly better under matched training and testing conditions

than any of the other speech classes. The discrepancy between the clean speech data

results and the music, noisy and �eld speech data results could be due to the increased

amount of training data available for the clean speech class. The discrepancy could

also be due to the more diÆcult acoustic conditions presented by the music, noisy

and �eld speech classes. Second, we will determine whether more training data could

potentially improve the clean speech system.

5.6.1 Comparison of Results Among NPR-ME Classes

In all of the environment-speci�c experiments presented in this chapter, we found

that the music, noisy and �eld speech data performed signi�cantly worse than the

clean speech data under matched training and testing conditions. There are two

possible explanations for this result. First, if we examine Table 5.1, we �nd that

the clean speech class has signi�cantly more data available to train the acoustic

models. Therefore, the clean speech models may simply be more accurately trained.

Second, the acoustic conditions presented by the music, noisy and �eld speech classes

may make this data more diÆcult to recognize. In an attempt to discern between

these two explanations, we trained the clean speech recognizer with amounts of data
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Figure 5-3: Illustration of the e�ects of limiting the amount of clean speech (c s)
data on phonetic error rate. The c s1 uses an amount of data equivalent to the music
speech (m s) system, c s2 uses an amount of data equivalent to the noisy speech (n s)
system, and c s3 uses an amount of data equivalent to the �eld speech (f s) system.

equivalent to each of the other speaking environment cases. We then computed the

phonetic error rate on the clean speech test data, and compared each result to the

corresponding speaking environment result. The results of these experiments are

shown in Figure 5-3.

While the clean speech system results are degraded slightly as the amount of

training data is reduced to match each of the music, noisy, and �eld speech conditions,

the error rates are still substantially better than the remaining speech conditions.

This indicates that the degraded results are primarily due to the diÆcult acoustic

conditions presented by the music, noisy and �eld speech classes.

In all of our recognition experiments we found that the noisy speech data per-

formed signi�cantly worse than the music speech data. This result was initially
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surprising since both classes consist of speech superimposed on interfering sounds.

However, upon closer examination of the music and noisy speech data we found that

these classes were very di�erent. The music speech data typically contained moderate

to low levels of background music, which made the speech very easy to distinguish.

However, much of the noisy speech data contained high levels of background noise,

which at times made the speech very diÆcult to understand. This could explain the

large discrepancy in phonetic recognition error rate that exists between the music and

noisy speech classes.

5.6.2 Training Set Size vs. Error Rate

We have determined that one of the reasons that the full multi-style system outper-

forms the environment-speci�c system is the increased amount of data available to

train its acoustic models. Here, we investigate the performance of the environment-

speci�c clean speech system, to study its behavior as the amount of training data is

varied. We are interested in determining if more training data would be helpful, and

if so, what gains in recognition performance can be expected with the inclusion of

more training data.

Figure 5-4 illustrates the performance of the environment-speci�c clean speech

system as a function of the amount of training data used (in minutes) to develop the

acoustic models. The top curve shows the performance on the clean speech test set.

The bottom curve shows the performance on the clean speech training set. We see

that with a small amount of training data (33 minutes), the phonetic error rate on

the training set is merely 11.6%, while the error rate on the test set is 38.1%. Here,

the system is able to accurately model the details of the training set, but is unable

to generalize to unseen data. As the amount of training data increases, we see that

the performance on the training set degrades, while the performance on the test set

improves. By the time that we have utilized all of the clean speech training data,

the test set curve seems to have leveled o�. It appears that more training data may

help to close the gap that remains between the training and testing curves as the

performance on the training set continues to degrade. However, more importantly, it
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Figure 5-4: Phonetic error rate of the NPR-ME environment-speci�c clean speech
system as a function of amount of training data (in minutes). The top curve illustrates
the performance of the test set. The bottom curve illustrates the performance of the
training set.

may take a substantial amount of additional data to get any signi�cant gains in error

rate on the test set.

5.7 Comparison with TIMIT

In all of the experiments presented in this chapter, we found that the phonetic recog-

nition error rates varied widely across the testing conditions, from 28.2% for clean,

wideband speech, to 49.3% for telephone bandwidth speech. However, we don't know

how these results compare with those for other corpora or other system designs. In

this section we compare the phonetic recognizer used in this work to other, state-

of-the-art systems. To facilitate a comparison with other systems, we developed a
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recognition system for the TIMIT corpus, which is typically used by the speech com-

munity for phonetic recognition experiments [8, 32, 35, 37, 53, 67]. We compare

the results on TIMIT with our current con�guration of SUMMIT (referred to as the

anti-phone system) with the current state-of-the-art systems described brie
y below.

� Anti-phone Modeling System: As described in Chapter 2, the anti-phone

system [32] uses an acoustic segmentation algorithm to generate segment graphs.

It then uses context-independent segment-based models and context-dependent

boundary models, and a phone bigram language model within an anti-phone

modeling framework. Both segment and boundary models use mixture of diag-

onal Gaussian distributions.

� HMM Modeling System: The HMM (Hidden Markov Model) system [53]

uses two gender-dependent recognizers. Each recognizer uses triphone context-

dependent acoustic models and a phone bigram language model within an HMM

framework. The HMMs have three states and use mixture of diagonal Gaussian

distributions. The higher scoring recognizer output is chosen for each utterance.

� Near-miss Modeling System: The near-miss modeling system [8] has two

passes. The �rst pass uses diphone context-dependent frame-based acoustic

models and a phone bigram language model within a frame-based framework

to generate accurate segment graphs. The second pass reuses both models

from the �rst pass and also adds context-independent segment-based acoustic

models within a near-miss modeling framework. Both frame and segment based

acoustic models use mixture of diagonal Gaussian distributions.

� RNN Modeling System: The RNN (Recursive Neural Network) system [67]

uses context-dependent frame-based acoustic models and a phone bigram lan-

guage model within an HMM framework. The HMMs have one state. The

acoustic models use recursive neural networks.

Table 5.10 shows the results on the TIMIT core test set over the commonly used

39 classes. The anti-phone system used in this work achieves an error rate of 30.2%.
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System Error (%)

Anti-phone [32] 30.2
HMM [53] 30.9
Near-miss [8] 25.5
RNN [67] 26.1

Table 5.10: Phonetic recognition error rates on TIMIT's core test set over 39 classes.
The anti-phone system was used in the experiments in this work.

This result does not represent the best SUMMIT system. Using the SUMMIT system

with heterogeneous measurements and multiple classi�ers, Halberstadt [37] achieved a

phonetic recognition error rate of 24.4% on the TIMIT core test set. While our TIMIT

results do not represent the overall state-of-the-art (achieved by Halberstadt [37]),

they do compare favorably with the current state-of-the-art HMM recognizer.

The error rate of 30.2% achieved on the TIMIT core test set is slightly worse than

the performance we obtained on the clean speech data (28.2%). However, the NPR-

ME corpus contains nearly 1.5 times the amount of clean speech training data, which

may account for the discrepancy. If we retrain the NPR-ME clean speech system

with an equivalent amount of data, we obtain an error rate of 29.0%. Even when we

account for training data size di�erences, the results on the NPR-ME clean speech

data are slightly better than the results on the TIMIT core test set. However, we can

not directly compare these results for a variety of reasons. First, the TIMIT corpus is

comprised of clean, studio-quality, phonetically balanced read speech, while the NPR-

ME clean speech data contains read and spontaneous speech. Second, the TIMIT task

was designed to be speaker-independent (i.e., there is no overlap between speakers

in the training and test sets), while the NPR-ME data is multi-speaker (i.e., individ-

ual speakers appear in both the training and test sets). Third, the TIMIT core test

set contains an even balance of the eight major dialects of American English, while

NPR-ME does not have such a balance of speaking styles. Finally, the phonetic align-

ments for the TIMIT data were generated manually, while the NPR-ME alignments

were generated automatically by the SUMMIT recognizer with an iterative procedure

that optimized the phonetic recognition performance on the training set. This could
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Figure 5-5: Road map of the phonetic recognition experiments presented in this
chapter, with recognition results where appropriate.

e�ectively bias the alignments toward overall better recognition performance.

While we can't directly compare the results of the NPR-ME phonetic recognition

performance to the TIMIT results, the experiments conducted in this section suggest

that the recognizer used in this work was comparable to those used by others, and

that the clean speech data performed similarly to the TIMIT data.

5.8 Summary

In this chapter, we described experiments that we have conducted concerning the

phonetic recognition of NPR-ME. We found that for all of the training techniques that

we investigated the phonetic error rates varied widely across the NPR-ME speaking

environments. By systematically exploring di�erent system designs (one recognizer

vs. multiple recognizers) and di�erent training techniques, we were able to discover

how each technique a�ected each environment.

We investigated the use of single and multiple recognizer systems, and di�erent

training techniques associated with each. The results of our experiments are sum-

marized in Figure 5-2. We also revisit our road map in Figure 5-5, appended with

results where appropriate, to review how all of our experiments are related.

If a single recognizer system is to be used, we found that training on all of the
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available data which contains a variety of speaking environments was more e�ective

than using a smaller amount of homogeneous, clean data. This result held true even

when we accounted for the discrepancy in the amount of training data available for

the two approaches.

While we originally felt that the transcription of GAD would bene�t from a pre-

processing step that �rst segments the data into acoustically homogeneous blocks so

that appropriate models could be used during test, overall, we found that such a

multiple recognizer system achieved performance similar to a single multi-style rec-

ognizer. However, upon closer inspection of the results we found that the multi-style

system primarily bene�tted from the increased amount of data available for training.

We may be able to utilize the strengths of both the multi-style and environment-

speci�c approaches by developing interpolated models. Interpolation of models refers

to the weighted averaging of the density functions of several models to produce

a single model. Model interpolation has been used successfully to combine well-

trained context-independent models with less well-trained but more detailed context-

dependent models [44]. By interpolating between the well-trained multi-style models

and the more detailed environment-speci�c models, we may be able to improve our

phonetic recognition results.

Bandlimiting the training data proved to be an e�ective method for signi�cantly

improving the recognition results for the �eld speech environment. We also found that

automatically selecting the environment-speci�c models did not degrade our results,

and in fact improved them slightly. This indicated that low-levels of background

noise or music may be better modeled with clean speech. However, we should again

mention that the experiments presented in this chapter assumed that segmentation

was performed without error. Our sound recognition system was only used to classify

the test utterances. In practice, the results may be degraded if segmentation errors

are present.

In this chapter we were primarily interested in the e�ect of speaking environment

on phonetic recognition results. We could have improved our overall results by using

more complex language modeling techniques. Ng [62] showed that the use of higher
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order n-gram language models improved phonetic recognition results on the NPR-ME

corpus by as much as 6%. In addition, more detailed segmentation of the data may

improve the recognition results. In this work, we segmented the speech data based

only on acoustic environment. It may be helpful to also segment the data based on

speaker identity, or gender, to prevent utterances from having a mix of speakers.
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Chapter 6

Summary and Future Work

6.1 Summary

General audio data (GAD) from sources such as television, radio, movies, meeting

recordings, etc., are fast becoming important sources of data for information retrieval

(IR) systems. To incorporate GAD into an IR system, the content of this data must

be described and indexed. The main goal of this research was to understand the

issues posed in describing the content of GAD. We were interested in understanding

the general nature of GAD, both lexically and acoustically, and in discovering how

our �ndings would impact an automatic indexing system. Speci�cally, three research

issues were addressed:

1. What are the lexical characteristics of GAD, and how do they impact an auto-

matic speech recognition system?

2. What general sound classes exist in GAD, and how well can they be distin-

guished automatically?

3. How can we best utilize the training data to develop a GAD transcription

system?

In this thesis, we made the following contributions to research in the area of GAD

analysis and transcription:
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� Development of GAD Corpus: To complete this work, over 100 hours of

data were collected and orthographically transcribed for lexical analysis. Ten

hours were additionally transcribed for acoustic analysis and recognition exper-

iments. This corpus will be valuable to others working on research issues in

GAD.

� Lexical Analysis of GAD:We performed a lexical analysis to understand the

general lexical characteristics of GAD. This analysis discovered some potential

problems for a general LVCSR approach to the transcription of GAD. We found

that even for large training set sizes and vocabularies, new words are still regu-

larly encountered, and that these words are primarily high content words (i.e.,

proper nouns) and therefore would need to be correctly recognized to describe

the linguistic content of GAD. We proposed a sub-word based approach to the

recognition of GAD.

� Acoustic Analysis and Development of Sound Recognition System:

We performed an acoustic analysis to determine what sound classes exist in

GAD, and discovered the characteristics of the classes. A sound recognition

system was developed which would bene�t both an acoustic description system,

and a recognition system.

� Discovery of Optimal Recognition Strategies for GAD:We investigated

a number of di�erent training and testing strategies for the phonetic recognition

of GAD. We found that knowledge of the speaking environment is useful for

phonetic recognition.

In the following sections, we give a brief summary of the main chapters in this

thesis and �nally close by mentioning some possible directions for future work.

6.1.1 Lexical Analysis

In Chapter 3 we examined the lexical aspects of GAD. Our analysis of the transcrip-

tions of the NPR-ME corpus revealed some interesting general characteristics. It
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contains many speakers and stories, with numerous turn takings. We also discovered

that no single speaker dominates the speech data, and that the majority of speakers

have never been seen previously. Our vocabulary analysis found that the vocabulary

of a single NPR-ME show was modest (approximately 2600 unique words out of over

9700 total words). However, we also discovered that new words are still encountered

even with a very large training set. With a training set of nearly one million words

(resulting in over 30,000 unique vocabulary words), the out of vocabulary rate was

just over 2%. Our part-of-speech analysis suggest that new words were predominately

proper nouns and nouns, which would be very important to recognize if we were de-

scribing the content of this data. This problem was magni�ed when we investigated

the more realistic scenario of constructing a training set from an out-of-domain source.

In this case, the out of vocabulary rate nearly doubled to 4%.

This analysis uncovered some potentially serious problems for a word-based ap-

proach for the transcription of GAD. An alternative to a large vocabulary continuous

speech recognition approach is to use a subword unit representation. This was ex-

plored in Chapter 5.

6.1.2 Sound Recognition

In Chapter 4 we examined the acoustic characteristics of GAD and developed a sound

recognition system to segment the audio into its salient sound classes. For the NPR-

ME corpus we subjectively identi�ed seven acoustically distinct classes based on visual

and aural examination of the data. We found that these classes di�ered in their

spectral characteristics, statistical pro�le, and segment duration. Speci�cally, we

found that high quality, prepared speech constitutes only half of the entire corpus.

Another 25% of the data contains speech superimposed on other sounds, nearly 15%

of the data was of telephone bandwidth, and the remaining 10% of the data was

non-speech. We also found that while pure music segments are similar in length to

speech segments, other non-speech segments are substantially shorter in length.

We were able to achieve a 79.4% recognition accuracy for these seven classes

on unseen data, using relatively straightforward acoustic measurements and pattern
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recognition and smoothing techniques. A speech / non-speech recognizer achieved an

accuracy of over 94.2%. These results compare favorably with similar systems found

in the literature. The results of our seven class recognition system and clustering

experiments revealed that the noisy speech and music speech classes were acoustically

very similar. A six class system was developed to investigate the consequences of

merging these two classes. The resulting six class system achieved a recognition

accuracy of nearly 87%. We used our seven class system to classify test data in the

phonetic recognition experiments completed in Chapter 5. We also evaluated how

the merging of the noisy and music speech classes impacted the speech recognition

system.

6.1.3 Phonetic Recognition

In Chapter 5 we conducted experiments concerning the phonetic recognition of NPR-

ME. We found that the phonetic error rates varied widely across the NPR-ME speak-

ing environments for all of the training techniques that we investigated. By systemat-

ically exploring di�erent system designs (one recognizer vs. multiple recognizers) and

di�erent training techniques, we were able to discover how each technique a�ected

each environment.

We investigated the use of single and multiple recognizer systems and di�erent

training techniques associated with each. If a single recognizer system is to be used,

we found that training on all of the available data which contains a variety of speaking

environments was more e�ective than using a smaller amount of homogeneous, clean

data. This result held true even when we accounted for the discrepancy in the amount

of training data available for the two approaches.

Overall, we found that a multiple recognizer system achieved performance similar

to the single multi-style recognizer. Upon closer inspection of the results, we found

that the multi-style system primarily bene�tted from the increased amount of data

available for training. Bandlimiting the training data proved to be an e�ective method

for signi�cantly improving the recognition results for the �eld speech environment.

We also found that automatically selecting the environment-speci�c models did not
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degrade our results, but rather improved them slightly.

6.2 Future Directions

The use of GAD as a data source for IR systems is a new and exciting area of

research, and there are a large number of areas for extension of this study of GAD.

In this section, we mention some of these possible directions for future work.

6.2.1 Lexical Analysis

In this work, we studied the general lexical characteristics of GAD. One potentially

interesting area of study is the investigation of the lexical characteristics of topic-

speci�c subsets of the NPR-ME corpus. This analysis may indicate that knowledge

of the particular nature of the speech material may help limit the active vocabulary.

For example, if we could determine that a portion of a news broadcast concerns

the traÆc report, we may be able to reduce the recognizer vocabulary to only those

words relevant to the subject matter, which may be substantially smaller than the

full vocabulary.

Our lexical analysis found that as additional data is added, new words are regularly

encountered. We do not know, however, if words are also \retired" with time. For

example, words associated with news topics that appeared months ago may not appear

in future broadcasts. An interesting area of study would be to understand the life-

cycle of the GAD vocabulary.

6.2.2 Sound Segmentation

In the development of our sound recognition system, we found that the music speech

and noisy speech classes were highly confusable. One area of future research that may

be useful for this task is the discovery of more discriminating features. For example,

features that capture the harmonic characteristics of music and music speech may be

helpful in discriminating between these classes and noisy speech.
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Another interesting area of research is the use of a graph-based approach to the

segmentation of GAD. Two general approaches have traditionally been used for the

segmentation of GAD. First, a model-based approach, such as we described in Chap-

ter 4 and that has been used by others [5, 36], builds di�erent models for a �xed

set of acoustic classes from a training corpus. Data to be processed is then classi�ed

by a maximum likelihood selection, and the segmentation boundaries are found at

locations where there is a change in acoustic class. Second, a purely data-driven ap-

proach proposes segment boundaries at maxima of the distances between neighboring

windows placed at samples along the incoming data stream [11].

There are limitations to each of these approaches. First, the model-based ap-

proach does not generalize to unseen acoustic conditions. Second, as we have shown,

there might not be suÆcient training data for some acoustic classes (e.g., individual

speakers) to build robust models. Purely data-driven approaches also have limita-

tions. First, many of these require thresholds, which are not very robust. Second,

these thresholds would have to be tuned to detect changes between very acousti-

cally di�erent sounds such as silence and music and between very acoustically similar

sounds such as speech from di�erent speakers of the same gender. Third, it has been

shown that shorter segments are diÆcult to detect due to the lack of data available to

develop the models for these segments [11]. In addition to the limitations described

above, the single, linear segmentation that is produced by these methods does not

capture all of the possible scales of segmentation that may be desired. For exam-

ple, we have shown that a segmentation that indicates boundaries between di�erent

speaking environments is useful for improving phonetic recognition accuracies. A

segmentation that indicates boundaries between speakers is also useful for describing

the non-linguistic content of GAD. A complete representation of GAD should indi-

cate both of these scales of segmentation. A graph-based representation that would

provide a multi-level acoustic description of GAD in a single framework would be

an interesting approach to this problem. A hierarchical clustering algorithm that

incorporates temporal constraints has been used successfully to describe speech at

a phonetic level [31]. Using such a representation to produce a multi-level acoustic
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description of GAD should be explored.

6.2.3 Phonetic Recognition

In Chapter 5 we were primarily interested in the e�ect of speaking environment on

phonetic recognition results, but much additional work can be done to improve the

overall recognition results. First, more training data can be used to improve model

robustness and more detailed and complex models can be used to try to capture more

information from the speech signal. Second, more complex language modeling tech-

niques can be used. Ng [62] showed that the use of higher order n-gram language

models improved phonetic recognition results on the NPR-ME corpus by as much

as 6%. Third, more detailed segmentation of the data may improve the recognition

results. In this work, we segmented the speech data based only on acoustic environ-

ment. It may be helpful to also segment the data based on speaker identity or gender

to prevent utterances from having a mix of speakers or genders. Finally, rather than

using separate models for each speaking condition, which requires a large amount

of training data for each condition, the use of general adaptation techniques could

be explored. The goal of adaptation is to adjust the density functions (i.e., mixture

Gaussians) used by general acoustic models to match the current speaking condition

(or speaker, if speaker segmentation has been performed) as closely as possible using

whatever adaptation data is available. A popular approach in the speech recognition

literature that could be explored here is the maximum likelihood linear regression

(MLLR) technique [56].

Finally, in the work presented in this thesis, a single phonetic hypothesis string

was proposed for each test utterance. However, this �nal hypothesis is only the most

probable decoding of the acoustic signal, out of a large number of hypotheses that are

considered during the recognition process. Including the complete list of hypotheses

in the form of an N-best list may be more useful to an information retrieval system.

This would o�er the hope of including terms that would otherwise be missed if only

the single best hypothesis were used. Ng [62] has shown that including the top �ve

phonetic recognition hypotheses slightly improves the performance of an information
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retrieval system.

130



Appendix A

NPR Transcription Conventions

A.1 General Comments

� Each tape will be marked with the NPR show title, the time of the broadcast,

and the air date. Each tape will contain two broadcasts - one full broadcast on

each side of the tape.

� NPR transcription �les will be named according to the following convention:

show idMMDDYY.txt

where the show id is ME for Morning Edition, FA for Fresh Air, and AC for All

Things Considered, and MMDDYY is the date of the broadcast.

� The basic transcription �le will be for an entire broadcast. Markers of internal

segments like \story" will be included in the transcription �le to facilitate later

break-outs for testing, etc.

� All number sequences should be spelled out and all letter sequences should be

rendered with capital letters with underbars between each letter. For example:

� C D C (acronym for the Centers for Disease Control in Atlanta)

� four hundred twenty three

� nineteen ninety four
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� thirty three percent

� If an acronym is not pronounced as a letter sequence but as a word (e.g., ARPA),

do not place underbars between letters.

� Each turn in the conversation should be preceded by a double-spaced line in the

transcription. Speech within one turn in the dialogue should be single-spaced.

A.2 Markings

1. Internal segment markers will be used to segment the transcribed speech and/or

specify attributes of the segments:

� \broadcast", delimiting a broadcast, including an i.d. and revision date,

e.g.:

<broadcast id=\morning-edition.072795" rev=\080195">

...

</broadcast>

� \story", delimiting stories, including an id, and topic label, e.g.:

<story id=1 topic=\headline news">

...

</story>

The id will be an integer number which indicates the order of the story in

the broadcast. Note that \credits" and self identi�cation by the anchor-

person should be excluded from adjoining stories. Self identi�cation by

correspondents or commentators should be included within their stories.

� \language", delimiting foreign language passages, e.g.:

<language Spanish>

...

</language>
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� \sung", delimiting sung lyrics, e.g.:

<sung>

...

</sung>

2. Each speaker within a broadcast �le will be identi�ed by letters A, B, C, ...,

AA, AB, ..., ZZ. When a transcriber is in doubt about whether a new speaker is

one they've heard before, they should assume the speaker is new, use the next

letter, and 
ag it with a comment for later veri�cation.

A separate �le will be created to hold speaker information for the broadcast.

The broadcast speaker information �le will have the same basename as the

transcription �le, but will have a \.spk" extension. Lines in this �le will give as

much information about each speaker as can be gleaned from the recording:

� name, e.g.:

speaker a name: John Smith

� sex (male, female, unknown), e.g.:

speaker a sex: male

� dialect (optional, default is native speaker of American English), e.g.:

speaker a dialect: Hispanic

� age (optional, default is adult [child, adult, elderly]), e.g.:

speaker a age: adult

� role (if known), e.g.:

speaker a role: high school teacher

3. Each speaker's turn in the broadcast will be pre�xed by the letter i.d. of the

speaker in uppercase, a colon, and a space, and transcription of turns will be

separated by a blank line, e.g.:

A: And now, here's a report from Madrid.

B: This is Michael Jones, reporting from...
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4. Musical segments and any other non-speech segments should be separately

noted as follows:

A: The time is 19 minutes past the hour.

[musical interlude]

A: Mexican rebels under heavy �re...

Use [musical interlude] to note musical segments, and descriptive phrases for

any other non-speech segments, e.g. [shelling gun�re].

5. Stretches of reduced audio quality of the broadcast, which typically occurs with

�eld reporters or telephone guests, will be tagged with a [�eld] marker. Indicate

the beginning, followed by a slash, in brackets [ ], and the end, preceded by a

slash, in brackets, e.g.:

A: We now have Ed Smith, a medical student who has been researching this

question for...

B: [�eld/] Even if you give to everybody... [/�eld]

A: Smith's father, Steven, a doctor and ten year member...

Field quality speech sounds a bit \mu�ed" - reporters in the �eld, sounds clips

from speeches or phone-in guests typically fall into category.

6. All transcriptions should be done in real-time verbatim, including �ller phrases,

(e.g., [um], [er]) and non-speech events (e.g., [sneeze], [phone-ring]). All ex-

traneous sounds should be typed within square brackets, to make it easier to

distinguish these from real speech. Please try to use items from the following

list for this:

� [er]

� [mm]

� [uh]
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� [um]

� [cough]

� [door slam]

� [phone ring]

� [grunt]

� [laughter]

� [throat clear]

� [sneeze]

Please try to be as consistent as possible in using these labels. If you wish to

add to the list, please make a note of the addition you made and let Michelle

know what it is.

7. Any word or phrase that is diÆcult to understand for any reason should be

surrounded by double parentheses, i.e., (()). If it's possible to hear what was

said, put the word or phrase inside the double parentheses. If not, leave one

blank space inside the double parentheses, i.e., (( )), to indicate that speech has

not been transcribed because it was unintelligible.

8. Continuous background noise should be noted using one of the tags listed below.

Note that you can always use [noise] to transcribe something that isn't described

by any of the other tags.

� [noise]

� [music]

� [phone ringing]

� [paper rustling]

Indicate the beginning, followed by a slash, in brackets [ ], and the end, preceded

by a slash, in brackets, e.g.:
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� A: [music/] This is the Morning Edition, I'm Bob Edwards. [/music] Here

is a report from David Welna on the uprising in Cristobal de las Casas.

� B: [noise/] Army planes �red rockets during two twenty minute raids on

areas south of the city. [/noise]

9. Simultaneous talking, where the speech of two speakers overlaps in time, should

be marked by tagging the beginning and ending of the overlapping sections with

a pound sign (#). The speech of both the talkers should be marked this way,

e.g.:

A: I never heard such nonsense, you know, # as I heard that #

B: # Yeah, I know. #

A: day when I went to the ...

10. If a word or words is clearly heard and understood, but the proper spelling

cannot be determined, an \@" should be prepended to the word or words in

question. This may occur frequently with proper names. ALL occurrences of

questioned words should contain this notation, not just the �rst, e.g.: \... Israeli

prime minister @Yitzhak @Rabin today and ...".
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Appendix B

Vocabulary Lists

B.1 NPR-ME Out of Vocabulary Words

Table B.1 lists the NPR-ME out of vocabulary words.

B.2 Common Words Not in Brown Corpus

Table B.2 lists the words found in the common NPR-ME vocabulary that were not

found in the 200 most frequent words of the Brown Corpus.
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A F L C I O disclaimer Marshaun seascape
absentia Doyle Mcgaw selfadministration
aggressor Dracut Michelle selfhealing
allot encompass militaries Serino
alluded Enos misinformation Shane
apprentice enthusiast misrepresented sickly
arranging esophogloscopy monologues Sienook
arti�cially Fillipe mum smutts
artworks �reproo�ng newtonbased sociological
aspire Fitzpatrick nonstops squawking
ass Flexon Noradom Stewicky
assesses fourparty O F C E substantiate
Beardstown Foxx Oaklandvale T R G I
Belmonte gaslight octet totaling
bilk Gilbart Paci�c trem
Bonne Givadi paintings Tritch
bronchoscopy grandmotherly parlayed underhanded
Brubeck Greenwich parliaments underperformed
cabling homage patented unhelpful
calculating I R S Pearl Vaughn
capitals il pilfered vehement
celebrities in
aming Presioso Venetian
Clayton innuendo Primakov Vermeers
combing inspects Prior Verve
comedians institution processed Vidrine
condolence internationalize pullers Vulgova
councilman Jehovah purposely W A V E
crayons July Q U A N T I C Yipgeni
Cuno Kosovos Ranured Yuvanovich
decontaminated Latvia rectify
Degas laughable Rembrandt
demeanor Laureen revelation

Table B.1: List of all NPR-ME out of vocabulary words.
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a m going nine today
Bob hour nineteen U S
Boston hundred ninety University
business listeners past W B U R
degrees making point Washington
dollar Massachusetts President week
dollars morning radio whether
edition N P R reports yesterday
eight national says
�fty news six
�ve next station

Table B.2: List of all common NPR-ME vocabulary words that were not found in the
200 most frequent words of the Brown Corpus.
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