SpeechBuilder: Facilitating Spoken Dialogue
System Development
by
Eugene Weinstein
3.B., Massachusetts Institute of Technology (2000)

Submitted to the Department of
Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in
Electrical Engineering and Computer Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 23, 2001

(© Massachusetts Institute of Technology 2001. All rights reserved.

Department of

Electrical Engineering and Computer Science
May 23, 2001

James R. Glass
Principal Research Scientist
Thesis Supervisor

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

SpeechBuilder: Facilitating Spoken Dialogue System
Development
by

Eugene Weinstein

Submitted to the Department of
Electrical Engineering and Computer Science
on May 23, 2001, in partial fulfillment of the

requirements for the degree of
Master of Engineering in
Electrical Engineering and Computer Science

Abstract

SPEECHBUILDER is a suite of tools that helps facilitate the creation of mixed-initiative
spoken dialogue systems for both novice and experienced developers of human lan-
guage applications. SPEECHBUILDER employs intuitive methods of specification to
allow developers to create human language interfaces to structured information stored
in a relational database, or to control- and transaction-based applications. The goal
of this project has been both to robustly accommodate the various scenarios where
spoken dialogue systems may be needed, and to provide a stable and reliable infras-
tructure for design and deployment of applications. SpeechBuilder has been used in
various spoken language domains, including a directory of the people working at the
MIT Laboratory for Computer Science, an application to control the various physical
items in a typical office environment, and a system for real-time weather information
access.

Thesis Supervisor: James R. Glass
Title: Principal Research Scientist

Acknowledgments

First, I would like to sincerely thank my thesis advisor, Jim Glass, for inspiring this
project and working through it with me all the way to the completion to this thesis.
Without his guidance, perseverance, and patience, I would have never been able to
finish this work.

In addition, T would like to thank all of the staff, visiting scientists, and students
that have helped out in this work. Just about every person in the Spoken Language
Systems Group has contributed to creating SPEECHBUILDER, many of them making
quite a significant impact on the system. Of these people, I would like to specifically
thank Issam Bazzi, Scott Cyphers, Ed Filisko, TJ Hazen, Lee Hetherington, Mikio
Nakano, Joe Polifroni, Stephanie Seneff, Lynn Shen, Chao Wang, and Jon Yi. I would
also like to thank Jef Pearlman, who built SPEECHBUILDER’S predecessor system,
SLS-LITE, as part of his Master’s thesis research.

Finally, I would like to thank my family and friends. My father Alexander, mother
Alla, and sister Ellen have all given me the encouragement and care without which I
could not have made it through MIT. T am also very grateful to my friends for their
support and encouragement, especially in the home stretch of this thesis. Specifically,

I would like to thank my friend Jean Hsu for proofreading this paper.

This research was supported by DARPA under contract N66001-99-1-8904 monitored
through Naval Command, Control and Ocean Surveillance Center and under an in-

dustrial consortium supporting the MIT Oxygen Alliance.

Contents

Introduction
1.1 Motivationo
1.2 Goals.
1.3 Approach
1.4 Terminology
1.5 Outline.
Background
2.1 SLS-Lite e
2.2 VoiceXML oL
2.3 Tellme Studio
2.4 SpeechWorks and Nuance
25 Others e
Architecture
3.1 Technology Components
3.1.1 Components Used Both in Control and Info Models
3.1.2 Components used only in Info Model
3.1.3 Component Used only in Control Model — Back-end
3.2 Web Interface oo
321 Keysand Actions Lo
3.2.2 Vocabulary Editing
3.23 LogViewingo

13
13
14
15
16
17

19
19
20
21
22
23

4 Knowledge Representation

4.1 Linguistic Concept Representation.
4.1.1 Concept Keyso
4.1.2 Sentence-level Actions
4.1.3 Concept Hierarchy

4.2 Data Concept Representation

4.3 Response Generation,

5 Development Issues

5.1 Language Model Overgeneralization
5.1.1 Problem Formulation
5.1.2 Reducing Overgeneralization
5.2 Hub Programs
5.3 Creating Examples Based on Data
5.3.1 Sentence-level Actionso
5.3.2 Responses Lo
5.4 Pronunciation Generation
5.5 Registration oL
5.6 User Domain Access oo
5.6.1 Central Access Line
5.6.2 Local Audio Deployment
5.7 Echo Script
5.8 Parse Tree Display oo

6 Current Status

6.1 Fully-functional Domains
6.1.1 LCSInfo and SLSInfo
6.1.2 SSCPhone
6.1.3 Office
6.1.4 MACK
6.1.5 Weather

6.2 Trial Domainso 61
6.2.1 Schedule 61
6.2.2 Stocks 61
6.2.3 Flights o . 61

Conclusions 63

7.1 Dialogue Control 64

7.2 Communication Protocolo 64

7.3 Confidence Scoring 65

7.4 Unsupervised Training L. 65

7.5 Synthesis. 66

7.6 Multi-lingual SPEECHBUILDER 66
7.6.1 Japanese — JSPEECHBUILDER 66
7.6.2 Mandarin Chinese - CSPEECHBUILDER 67

7.7 Database Schema 67

List of Figures

3-1

3-2

3-3

3-4

3-5

3-6
3-7

3-8

4-1

4-2

4-3

Info model SPEECHBUILDER configuration utilizing full set of GALAXY
COmMponents L e e e e e e e
Control model SPEECHBUILDER configuration utilizing limited set of
GALAXY components Lo
Semantic frame for query “Wwhat is the weather in Boston Massa-
chusetts on Monday?”,
Semantic frame for query “Are there any flights leaving before
ten a m?” ...
TINA parse tree for query “Are there any flights leaving before
ten a m?” ...
E-form for “Wwhat is the phone number for Victor Zue?”
Web interface for SPEECHBUILDER. The screen shows editing example
sentences for the “list” action.
The SPEECHBUILDER vocabulary editing tool. The screen shows the
developer editing the pronunciations of two words.
Log viewing tool used by SPEECHBUILDER. The screen shows a de-

veloper examining two utterances spoken by the user.

Generalized sentence template from the example sentence “Turn on
the TV in the living room”
Semantic frame for query “Turn on the TV in the living room”
using generalized template shown in Figure 4-1.

Data for the “Info” domain as a CSV file.

26

27

29

29

30
31

36

37

38

41

4-4

o-1

5-2

5-3

SPEECHBUILDER response editing tool

Subset of a language parsing grammar that exhibits the overgeneral-
ization problem (dollar signs indicate grammar terminal nodes).
The grammar of Figure 5-1 rewritten so as to avoid the overgeneral-
ization problem (dollar signs indicate grammar terminal nodes).

The SPEECHBUILDER developer registration tool.

10

49

List of Tables

3.1

4.1
4.2
4.3
4.4

Sample utterances and their CGI encodings made by the generation

component. e 31
Examples of concept keys L oL 40
Examples of sentence-level actions 42
Examples of strict (==) and flattened (=) hierarchy. 43
Data from the “info” domain 43

11

12

Chapter 1

Introduction

The process of designing, implementing, and deploying a mixed-initiative spoken di-
alogue system is non-trivial. Creating a competent and robust system that affords
its users significant freedom in what they can say and when they can say it has al-
ways been a difficult task. Building these systems is time-consuming and tedious
for those who can be considered experts in this field, and essentially impossible for
those without any experience. SPEECHBUILDER, which has been developed as part
of this thesis research, is a suite of tools that simplifies and streamlines this pro-
cess. SPEECHBUILDER aims to provide methods of configuring application specifics
that even a complete novice developer can tackle, while maintaining the power and

flexibility that experienced developers desire.

1.1 Motivation

Among the many factors motivating the creation of SPEECHBUILDER, the most
prominent were 1) the benefits of making spoken dialogue system development acces-
sible to novices, 2) the opportunities for data collection, and 3) the need to provide
an efficient way for experts to rapidly build spoken dialogue systems.

Over the past decade, the Spoken Language Systems Group at the MIT Labora-
tory for Computer Science has been actively developing the human language technolo-

gies necessary for creating conversational human-machine interfaces. In recent years

13

several systems have been publicly deployed on toll-free telephone numbers in North
America, including systems providing access to information about weather forecasts,
flight status, and flight schedules and prices [37, 28]. Although these applications have
been successful, there are limited resources at MIT to develop a large number of new
domains. Since it is the development of new domains that often exposes weaknesses
or deficiencies in current technology, the scarcity of resources is a stumbling block for
the advancement of the state of the art. SPEECHBUILDER attempts to address this
problem by streamlining the application development and deployment process, while
maintaining use of the same technologies that are used to build dialogue systems by
hand.

Even with tools such as SPEECHBUILDER, the variety of spoken dialogue systems
that experts can propose and create is limited. However, the number of people that
may be interested in creating applications using spoken language technology is vir-
tually unlimited, as are their ideas. Thus, it is naturally desirable for users of all
skill levels and backgrounds to be able to experiment with this technology. SPEECH-
BUILDER addresses this problem by utilizing intuitive methods of specification and
easily-managed deployment schemes to allow novice users to build spoken dialogue
systems.

Lastly, enabling a wide range of developers to implement and deploy various novel
domains presents significant opportunities for data collection. Applications built
using SPEECHBUILDER will provide raw data that will help improve the acoustic-
phonetic models used in recognition at MIT. This is especially useful because it is
possible that SPEECHBUILDER domains will present data from a wider variety of

speakers and acoustic environments than that of the systems deployed to date.

1.2 Goals

In this work the goals have been 1) to robustly accommodate the various scenarios
where spoken dialogue systems may be needed, and 2) to provide a stable and reliable

infrastructure for design and deployment of applications. Success in this project would

14

be to achieve these goals while maintaining ease of use for developers seeking to build
domains.

In past work dealing with facilitating spoken language system development [22],
the predominant model for SPEECHBUILDER-type tools has been to provide a speech
interface to a pre-existing application, the functionality of which appears as a black
box to the human language technologies. However, over the course of developing
SPEECHBUILDER it became clear that many domains that were of interest were in-
formation access applications (e.g. weather, flight information, stock quotes, direc-
tions). Thus, it became desirable to develop a SPEECHBUILDER application model
that involves configuring a speech-driven front end to a set of structured informa-
tion. SPEECHBUILDER addresses both problems in what have become two separate
application development approaches and methodologies.

SPEECHBUILDER attempts to enable developers to build conversational systems
that are comparable in quality and robustness to hand-built systems. This effort
involves many factors, such as providing effective mixed-initiative dialogue strategies,
robust language models for recognition and natural language parsing grammars, and

the tools for modeling the often complex relations between information concepts.

1.3 Approach

The approach that has been used in SPEECHBUILDER is to leverage the basic tech-
nologies that have been used to hand-build various demonstration dialogue sys-
tems within the GALAXY framework for spoken language system development [27].
SPEECHBUILDER uses information specified by the developer to configure human
language technology (HLT) components based on the specifications and constraints
provided by the developer. Since SPEECHBUILDER aims to allow developers to create
spoken dialogue systems comparable to those that have been hand-built in the past,
it is natural that SPEECHBUILDER should utilize much of the same human language
technology framework as the hand-built domains. In addition to this intuitive con-

nection between SPEECHBUILDER domains and these technology components, there

15

are several other reasons why this approach has been selected.

First, significant effort has been devoted in the past at MIT to improving tech-
nology in dialogue system architecture [27], speech recognition [11], language un-
derstanding [24], language generation [1], discourse and dialogue [28], and, most
recently speech synthesis [36]. Employing these HLT components minimizes du-
plication of effort, and maximizes SPEECHBUILDER’s flexibility to adopt technical
advances made in these areas, which may be achieved in efforts entirely disjoint from
SPEECHBUILDER development.

Second, since SPEECHBUILDER uses the full and unconstrained set of technology
components, domains created using SPEECHBUILDER can eventually scale up to the
same level of sophistication as that of the domains that have been hand-built at MIT.
In fact, this enables expert developers to use SPEECHBUILDER as a “springboard”
to bypass the often tedious and stressful effort of going through the initial stages of
spoken language application development.

Finally, since SPEECHBUILDER configures the core HLT components to accommo-
date user constraints and specifications, it is quite likely that the unforeseen scenarios
created by developers building various domains will expose deficiencies in the HLT’s
and thus drive potential improvements. In addition, since SPEECHBUILDER aims
to build portable domains with independently functioning components, it can help

stimulate improvements to the abstraction and portability of these components.

1.4 Terminology

As mentioned in Section 1.2, SPEECHBUILDER is modeled to allow for creation of
applications in the various scenarios for which speech-driven applications may be
needed. Currently, SPEECHBUILDER has two fundamentally different models for
domain structure to accommodate these scenarios.

The first model assumes that the developer desires to “speech-enable” an appli-
cation; that is, there is an application in existence, and the developer would like to

create a spoken language interface to that application. This is referred to as the

16

control model, because it can be used to create applications controlling various
real-world devices or software extensions. An example of an application that can be
implemented via the control model is the office device control domain, which allows
a person to use speech to control the various physical devices in their office. Another
example is a domain allowing the booking of flight reservations using spoken dia-
logue — this falls under the control model because of the complex transaction control
involved in completing a request.

The second model is designed for developers who want to provide a spoken in-
terface to structured information stored in a database. This is referred to as the
info model. Examples of domains that fall under this model include stock quotes,

weather information, schedule access, and radio station information.

1.5 Outline

Chapter 2 discusses previous work on facilitating the design and development of
spoken dialogue systems. Previously implemented technologies are compared and
contrasted to SPEECHBUILDER.

Chapter 3 gives an overview of SPEECHBUILDER’s architecture. It discusses how
the various human language technology components are used within SPEECHBUILDER
in both the control and the info models. This chapter also describes the web interface
that developers use to configure domain specifics.

Chapter 4 describes the knowledge representation used by SPEECHBUILDER. It
addresses the key-action linguistic concept representation inherited from the SLS-
L1TE system, the data concept representation used in the info model, and the response
specification facility used in SPEECHBUILDER.

Chapter 5 discusses some of the more non-trivial issues that have come up during
SPEECHBUILDER development and implementation. Specifically, it discusses issues
in speech recognition and natural language understanding, example generation, text-
to-phone conversion, and overall infrastructure.

Chapter 6 describes the current operating status of SPEECHBUILDER and gives

17

an overview of some of the domains that have been built by various developers inside
and outside of MIT.
Chapter 7 summarizes the thesis and proposes some future work that would im-

prove SPEECHBUILDER'’s infrastructure and robustness.

18

Chapter 2

Background

There are a number of efforts, present both in industry and in academia, to provide
tools for development of systems using spoken language and the formalisms for defin-
ing such systems. SPEECHBUILDER and its predecessor system, SLS-LITE, appear to
be among a small set of toolkits for development of mixed-initiative natural language
environments. This chapter presents the efforts to date and compares them to the

work done in this thesis.

2.1 SLS-Lite

SLS-LITE is the prototype system that preceded SPEECHBUILDER [22]. SPEECH-
BUILDER inherits much of its philosophy, as well as many of its features (such as the
linguistic concept representation), from SLS-LITE.

The SLS-LITE system focused on building spoken language interfaces to appli-
cations that might normally be driven with other modalities. SLS-LITE was the
first implementation of the framework linking recognition and understanding compo-
nents to a back-end application that implements domain-specific functionality and
turn management. This framework is still present as the “control model” in SPEECH-
BUILDER.

SLS-LiTE introduced the methodology of allowing developers to configure do-

main specifics using intuitive methods of specification. Developers specified linguistic

19

constraints and natural language templates by giving example user queries (actions)
and identifying concepts (keys). This is described in more detail in Chapter 4.
Finally, much of the code base for the SLS-LITE system is present in SPEECH-
BUILDER. SPEECHBUILDER introduces a more sound deployment infrastructure, and
a new mode of operation (info model) utilizing all of the major GALAXY components.
However, SLS-LITE is the foundation framework on which SPEECHBUILDER was cre-
ated, therefore much credit for the work leading up to this thesis research should be
given to Jef Pearlman and Jim Glass, who designed and implemented the original

SLS-LITE system [22].

2.2 VoiceXML

VoiceXML, the Voice eXtensible Markup Language, is a language for describing
human-machine interactions utilizing speech recognition, natural language under-
standing, and speech synthesis. VoiceXML was developed by a forum consisting
of various companies interested in spoken dialogue systems (such as AT&T, IBM,
Lucent and Motorola) and was later standardized by the World Wide Web Con-
sortium [33]. VoiceXML seeks to provide a medium for streamlined speech-driven
application development. However, the philosophy of VoiceXML differs from that of
SPEECHBUILDER in several key areas.

Primarily, SPEECHBUILDER is orthogonal in purpose to VoiceXML. VoiceXML
is a mark-up language which allows developers to specify the dialogue flow and the
language processing specifics of a speech-driven application. SPEECHBUILDER is
more of an abstraction layer between the developers of spoken language domains and
the technology that implements these domains. In fact, it is entirely possible that
in the future, SPEECHBUILDER will able to generate VoiceXML representations of
the domains built by developers. However, at the current time, SPEECHBUILDER
development has focused around deploying domains in the GALAXY framework [27]
(GALAXY has been adopted by the DARPA Communicator Program as the reference

architecture for design of mixed-initiative spoken language domains [26]). In contrast,

20

the VoiceXML standard is focused on more directed-dialogue applications, using very
constrained language parsing grammars. Since more flexible mixed-initiative systems
are harder to create than directed-dialogue domains, there is more of a need for tools
such as SPEECHBUILDER to help developers accomplish this task.

While SPEECHBUILDER is orthogonal to VoiceXML in purpose, it is important
to compare the technologies currently used by SPEECHBUILDER to those present in
systems specified with VoiceXML. VoiceXMIL uses Java Speech Grammar Format
(JSGF) [14] context-free grammars to define natural language understanding tem-
plates, with mechanisms for parsing poorly formulated queries. SPEECHBUILDER
domain recognizers are currently configured to use a hierarchical n-gram language
modeling mechanism (a more robust model for multi-concept queries) with backoff
to robust parsing (to help identify concepts when the user’s utterance contains use-
ful information but does not match the parsing grammars exactly). In addition, as
mentioned above, VoiceXML is primarily a protocol for describing human-machine
interactions in a predefined finite-state sequence of events (this is known as “directed
dialogue”). In contrast, SPEECHBUILDER allows developers to build mixed-initiative
applications, where the user can say any in-domain utterance at any time in the
conversation.

Finally, since VoiceXML is a specification language and not a complete system for
application configuration and deployment such as SPEECHBUILDER, an implementa-
tion utilizing VoiceXML requires the configuration of third-party speech recognition
and synthesis components. Several groups have implemented systems based on the
VoiceXML framework. It is appropriate to compare the functionality and flexibility
of these systems to that of SPEECHBUILDER, and this is done in the next two sections

of this chapter.

2.3 Tellme Studio

Tellme Studio is one implementation of the VoiceXML framework. It is similar to

SPEECHBUILDER in that it uses a web interface to configure application specifics.

21

However, it differs fundamentally from SPEECHBUILDER in that it requires develop-
ers to write JSGF grammars and call flow automata as part of the VoiceXML doc-
ument defining their domains. Thus, using Tellme Studio requires a certain amount
of expertise, and can involve a significant learning curve for those developers not fa-
miliar with writing language parsing grammars. SPEECHBUILDER’s web interface,
in contrast, uses example-based specification methods to define grammars and other
domain specifics. In fact, any developer can configure all of the aspects of the appli-
cation using the web interface; while more experienced developers are able to modify
domain specifics by manipulating the raw XML representation of their domains.
SPEECHBUILDER is similar to Tellme Studio in that it allows developers to de-
ploy applications using the the respective development site’s HLT framework and
telephony infrastructure. In addition, both systems allow for local installations for
advanced developers who would like to migrate mature applications to a deployment

infrastructure at the developer’s actual physical location.

2.4 SpeechWorks and Nuance

SpeechWorks [32] and Nuance [21], two of the market leaders in spoken dialogue
system development, have both begun efforts to simplify development of voice-driven
systems for their customers. SpeechWorks has created the SpeechSite product, which
is a pre-packaged solution for company information retrieval and presentation using a
speech-driven interface. SpeechSite is available commercially at a price level primarily
accessible to medium- to large-size companies. SpeechSite is similar in purpose to
some applications that may be built using SPEECHBUILDER, but is designed for a
specific domain and therefore can not be directly compared to SPEECHBUILDER. In
addition, SpeechWorks has implemented a “VoiceXML browser,” which is a software
package which deploys realizations of VoiceXML domains within the SpeechWorks
speech recognition and synthesis framework.

Nuance has developed V-Builder, which is a commercial product designed for im-

plementing VoiceXML-specified speech-driven domains. V-Builder provides a graphi-

22

cal user interface to allow developers to build applications compliant with the VoiceXML
protocol. However, domains created using V-Builder are prone to the same directed

dialogue call flow and grammar limitations as Tellme Studio (see section 2.3).

2.5 Others

Philips has created a unified platform for speech application development called
SpeechMania [23]. SpeechMania allows developers to define spoken language appli-
cations using a language called High Level Dialogue Description Language (HDDL).
HDDL gives the developers total control over the flow of the dialogue, and provides
connections to language technology components such as speech recognition, natural
language parsing, and synthesis. In this, SpeechMania is very similar to SPEECH-
BUILDER (in the control model). In contrast to SPEECHBUILDER, SpeechMania does
not utilize intuitive methods of linguistic specification, and therefore is not as acces-
sible to novice developers and those looking to quickly create a working application.
However, it is probably a more robust solution than SPEECHBUILDER for experienced
developers of dialogue systems who want to have total control over the dialogue and
HLT components. Because SpeechMania allows the developer to control the call low
using HDDL, it is not restricted to directed dialogue as VoiceXML systems are.

The Center for Spoken Language Understanding (CSLU) at the Oregon Graduate
Institute of Science and Technology has created a toolkit for the design of spoken
dialogue systems [6]. The CSLU Toolkit utilizes example-based methods of specify-
ing natural language understanding and generation templates, and uses a graphical
interface to configure the dialogue manager. These features make the CSLU Toolkit
accessible to developers of all levels of expertise; however, it is still constrained to

building only directed-dialogue systems.

23

24

Chapter 3

Architecture

SPEECHBUILDER makes use of the GALAXY framework [27|, which is used by all
of the spoken dialogue systems developed at MIT (see Section 1.3). GALAXY is
a highly flexible and scalable architecture for dialogue systems, and it serves as the
DARPA reference architecture for building research systems utilizing human language
technologies [26]. The first section of this chapter describes the HLT components that
are used within SPEECHBUILDER and how the GALAXY framework is used to unify
them. The second section describes the web-based interface that the developer uses

to configure domains.

3.1 Technology Components

The technology components for SPEECHBUILDER domains created within the control
model are configured quite differently from those using the info model (Section 1.4
defines these terms). Specifically, control model domains use a very limited language
generation server and have no built-in components to manage dialogue, discourse,
or information retrieval. Info model domains utilize a more complete set of HLT
components, similar to dialogue systems previously built within the GALAXY frame-
work [37, 28]. However, several components are present in both kinds of domains,
and are configured largely as they are in SLS-LITE [22], the predecessor system to

SPEECHBUILDER. This section presents the major technology components organized

25

by which domain model(s) use them, and ordered sequentially as they are used dur-
ing a turn of an application. Figures 3-1 and 3-2 illustrate the HLT architecture of a

SPEECHBUILDER domain, in the info model and the control model, respectively.

Language
Generation
Speech Dialogue
Synthesis Manager
[\
Audio Database SQL Relational
Server Server Database
\ /
Speech Discourse
Recoghnition Server
Language

Understanding

Figure 3-1: Info model SPEECHBUILDER configuration utilizing full set of GALAXY
components

3.1.1 Components Used Both in Control and Info Models
Hub

The GALAXY hub manages the communication between the HLT components in the
application. While some GALAXY components may be designed to operate directly
on other components’ output (e.g. the natural language understanding component
takes in N-best hypotheses from the recognizer), each component is written so that
it operates completely independently of the rest of the system. Thus, a central con-
trol module is necessary to control the information flow between the various HLT
components. The hub serves as this module.

The hub is a programmable server which uses a rule-based language to specify

26

CGIl Parameter
Generation

Speech
Synthesis

Audio SpeechBuilder | HTTP Developer
Server Server Application

\

Speech
Recognition

Language
Understanding

Figure 3-2: Control model SPEECHBUILDER configuration utilizing limited set of
GALAXY components

hub behavior in response to various events. The SPEECHBUILDER hub runs a special

program similar to that of the main systems built within the GALAXY framework.

Audio

SPEECHBUILDER applications use an audio server to control the hardware that ac-
cepts and digitizes the acoustic signal of the utterance. The most common mode
of operation for a SPEECHBUILDER domain is to accept utterances over a telephone

line. This is handled by the audio server in telephony mode.

In addition to being able to process telephone audio input, the audio server can
function in local-audio mode, which allows it to process utterances coming in over a
microphone connected to a computer’s sound card. This allows developers to deploy
installations of SPEECHBUILDER domains local to their own hardware, given that

they have access to GALAXY software.

27

Speech Recognition

SPEECHBUILDER domains use the SUMMIT speech recognizer [11] to transform the
speech signal into a list of N-best hypothesis strings for the spoken utterance. The
recognizer uses a hierarchical n-gram [22, 18, 34] as a statistical model for the kind
of sentences that it expects from the user. The linguistic information given by the
developer is used to generate the recognition grammars and to train the statistical
recognition model (n-gram). Generic telephone acoustic models are used for process-
ing the speech signal. These models are based on over 100 hours of training data
collected primarily from the JUPITER [37], VOYAGER [13, 27|, PEGASUS [30], and

MERCURY [28] domains.

The SPEECHBUILDER recognizer uses a new out-of-vocabulary (OOV) word mo-
del [2]. Out-of-vocabulary words, when not properly modeled, can seriously impair
recognition. The reason for this is that an unknown word in a sentence is not only
misrecognized, but can also result in deletion and substitution errors elsewhere in
the utterance. Since SPEECHBUILDER recognizers are usually trained from a small
set of example sentences, this problem is especially pronounced in SPEECHBUILDER
domains. The SPEECHBUILDER OOV models allow for a recognition hypothesis to
contain the tag “<unknown>” where an unknown word is detected. Usually in these
cases, at least partial information about the meaning of the utterance can be extracted

by the natural language understanding component.

Natural Language Understanding (NLU)

The NLU component takes the N-best list from the recognizer, parses each hypothesis,
and picks the one with the highest recognition score that matches the NL grammar
(which is configured based on developer specifications). Then it encodes the selected
hypothesis sentence in a “semantic frame” — a meaning representation of the query.
The NLU component used by SPEECHBUILDER is the TINA server that is present in

all of the prototype systems that have been built at MIT [24].

28

TINA works by matching the terminals of a hierarchical grammar to words occur-
ring in the utterance and attempting to build up a “parse tree” of nodes (which are
usually domain concepts). The semantic frame generated by TINA is a mapping of
the concepts that have been identified in the utterance to their corresponding values.
This process is driven by the natural language parsing grammar. Figures 3-3 and 3-4
illustrate example semantic frames. Figure 3-4 shows a semantic frame that was made
according to a grammar with a hierarchical structure (as specified by the developer).
Figure 3-5 illustrates the parse tree that is created when the grammar is applied to

this utterance.

{c request
:property "forecast"
:weather "rain"
:city "Boston"
:state "Massachusetts"
:day "Monday"}

Figure 3-3: Semantic frame for query “What is the weather in Boston Massa-
chusetts on Monday?”

{c list
:pred {p departure_time==
:relative "before"
:pred {p time==
:hour="10"
xm="AM" } } }

Figure 3-4: Semantic frame for query “Are there any flights leaving before
ten a m?”

Speech Synthesis

The speech synthesis component takes the textual response made by the language

generation component, and converts it to an acoustic signal resembling human speech,

29

sentence

full_parse

Bphrase

list

Fare $there $any $flights departure_time==

$leaving relative time==

‘ H‘—"')7-‘\\\“\\

relativeBEZ hour xm

$before haurBes =<mBED

|
$ten $a Fm

are there any flights leaving hefore ten a ul

Figure 3-5: TINA parse tree for query “Are there any flights leaving before
ten a m?”

which the audio component plays back to the user. SPEECHBUILDER uses DECtalk,

a commercially available synthesizer [9].

Text Generation

The text, or language, generation component (implemented via the GENESIS server [1])
is responsible for creating the various text representations of the meaning encoded
in the semantic frame. In the control model, text generation is used to create a
CGlI-encoded version of the semantic frame, which is passed to the back-end applica-
tion via an HTTP GET request. Table 3.1 shows examples of utterances and their
corresponding generated CGI encodings.

In the info model, the generation component takes on a much more significant role
— it is actually used for generating three different outputs. The first use of generation
is to create an internal “E-form” representation used by the discourse and dialogue
components [28]. E-forms, like semantic frames, encode the meaning representation
of the query, and can be augmented by the discourse and dialogue components based
on the query’s context. Figure 3-6 gives an example of an E-form. In this example,
the clause (or action) name is “request_property,” the output language that the next
iteration of GENESIS should use is “sql,” and the *conditions* item indicates that

the set of rows coming back from the database should be tested for non-nullness.

30

Can you tell me the phone number for Bob Jones
action=request_property
&frame=(name=Bob+Jones, property=phone)

I will be here from nine thirty to eleven o-clock
action=ScheduleTime&frame=(timel=(hour=nine,
minute=thirty),time2=(hour=eleven,minute=zero))

I would like to fly from Boston to San Francisco on Wednesday morning
action=list&frame=(departure_time=(time_of day=morning,
weekday=wednesday),destination=SFO,origin=BOS)

Table 3.1: Sample utterances and their CGI encodings made by the generation com-
ponent.

{c eform

:clause '"request_property"

:name "Victor Zue"

:property "phone"

:domain "SpeechBuilder"

:xconditions* {c condition
:key ":num_found"
:value O
‘test "1t" }

:out_lang "sql" } }

Figure 3-6: E-form for “What is the phone number for Victor Zue?”
The second use of the generation component is to formulate an SQL query based
on a semantic frame representing a request. For example, the following SQL query

would be generated based on the request “What is the phone number for Victor

Zue?”:

select * from speech_SLSinfo_tablel where name = ’Victor Zue’

The third use is to generate a response to the user which is vocalized using the

speech synthesizer.

31

3.1.2 Components used only in Info Model
Discourse

The discourse component is responsible for filling out a query using information col-
lected in its predecessor queries. For example, a user might say, “What is the phone
number for Joe Foo?” and then “What is his email address?” To humans, it
is natural to assume that the latter query is asking about Joe Foo’s email address.
The discourse component attempts to capture this intuition by recording and using
the utterance history.

In the control model, discourse resolution is left up to the back-end application.
The SPEECHBUILDER server can maintain basic history information, but the appli-
cation is responsible for storing and using this history to evaluate queries in context.

In the info model, a discourse server component is used. This component is
configured based on the concepts present in the application. It allows a query to
inherit key-value pairs from predecessor queries. In addition, it allows for masking of

history information when certain conditions indicate that it’s illogical to inherit [10].

Dialogue Management

In the control model, there is no dialogue management within the GALAXY archi-
tecture. Instead, the back-end application handles the turn management and state
tracking (see section 3.1.3).

In the info model, the dialogue management server is modeled after the function-
ality of the main MIT systems. This server manages the interaction of the NLU
component, the database server, and the language generation engine. After the query
is formulated as a semantic frame and is used to make an SQL query in the database,
the dialogue management component fills out the E-form using the database results.

This component is designed to handle the range of situations which can arise in
database query domains. For example, when there are no matches to an SQL query
in the database, this server sends a signal to the language generation component so

that it can output an appropriate response to the user. Similarly, when there is more

32

than one match to a query, the dialogue management component fills out the E-form,
so that the results can be presented in an informative, but not overwhelming, fashion

to the user.

Database

The database component is a link to the data server handling SQL requests. The
function of the database component is to send SQIL strings to the database and to
return the results as a key-value mapping similar to a flat semantic frame. The
database component used in SPEECHBUILDER is one that has been developed for
other domains. SPEECHBUILDER uses an Oracle database, although it would be

trivial to adapt to any database accessible with SQL.

3.1.3 Component Used only in Control Model — Back-end

In the control model, the back-end application is responsible for hooking into external
functionality, managing the dialogue and discourse, and generating responses. The
application is connected to the GALAXY components via a “back-end server.” This
server receives the semantic frame (encoded as CGI parameters) from the language
generation component, and uses HI'T'P to send it to the back-end application. The
back-end application processes the frame, takes any actions corresponding to the
query, and returns a response to be synthesized for the user.

CGI scripts are stateless from query to query; each invocation of a script is com-
pletely independent from any other invocation. However, maintaining some historical
information about previous queries is necessary for robust handling of local discourse
phenomena, and for maintaining a proper dialogue. For this reason, the back-end
server is designed to maintain a history string in its state variables. The back-end
application script is responsible for encoding its own history and later processing it
correctly.

In the info model, the database server, the dialogue manager, and the discourse

components provide the functionality that the back-end server and CGI application

33

provide in the control model. Thus, this server is not relevant and is not used in the

info model.

3.2 Web Interface

SPEECHBUILDER uses a web interface to allow developers to specify the details of their
applications. The web interface consists of a main module containing functionality
to edit the linguistic information for an application and several helper tools to edit

various details.

3.2.1 Keys and Actions

The main SPEECHBUILDER interface module allows developers to edit the concept
keys (the concepts present in the domain) and the sentence level actions (example
sentences using those concepts). Figure 3-7 illustrates a developer editing the “list”
action within the “mercury” domain. The developer can select existing sentences to
edit or delete, or can enter new sentences. On this screen, the developer can upload
an XML representation of the domain specifics, or a CSV file representing the data to
be used in the domain (in the info model). The developer can also specify the URL

for a CGI script with back-end functionality for the domain (in the control model).

3.2.2 Vocabulary Editing

SPEECHBUILDER provides developers with a tool to edit the vocabulary used for
speech recognition in a domain. SPEECHBUILDER relies on a dictionary of about
100,000 words (LDC [16] PRONLEX) and their pronunciations to generate the vo-
cabulary for a domain. However, often the developer introduces vocabulary words
that do not appear in the main dictionary. For these words, pronunciations are gen-
erated by rule [3], and often contain errors. The vocabulary tool allows the developer
to adjust the pronunciations present in the working vocabulary. This requires the

developer to be familiar with the phonemic unit set used by the suMMIT speech

34

recognizer.

3.2.3 Log Viewing

GALAXY maintains a comprehensive log for each domain built and deployed using
SPEECHBUILDER. Looking at these logs allows dialogue system developers to improve
their domains by analyzing how users interact with their system. For each exchange
between the system and the user, the log records the utterance waveform, the top
N-best recognition hypotheses for that utterance, the semantic frame encoding the
utterance, and the response presented to the user. A tool has been written at MIT
that can be used for viewing this information and transcribing the utterances for
training, using a web interface [29]. SPEECHBUILDER contains a slightly modified

version of this tool, as shown in Figure 3-9.

35

SpeechBuilder 2,07 o

Keys: <Sele 24hd| Edit I Create Rename

H-Keys: departure_time==, destination=, origin=, source=, time==
URL:

Apply

Compile and Run

Reduce

Help

Select Demain

Get XML

Get Domain

Upload Training

View Logfiles

Upload XML: (Warning! You will be overwriting the current configuration of the domain!)

Editing window

screen shows editing example

Figure 3-7: Web interface for SPEECHBUILDER. The

«

sentences for the “list” action.

36

SpeechBuilder 2.0 Ak wie:

Get Starter Pack

Giet XML

Vocabulary Maintenance Utility Get Domain
Upload Training
Edit Vocabulary
| Refresh Edit Responses
View Logfiles
Edit vocabulary words

Word Pronunciation

Accelerometer

Connections

Script last modified Tue Apr 10 13:32:05 2001.
Please report any errors or send any questions about Speech Builder to bug—speech .

Figure 3-8: The SPEECHBUILDER vocabulary editing tool. The screen shows the
developer editing the pronunciations of two words.

37

o]

UTT_NUM:

what is the phone number for Victor Zue

RECOGNIZED:
REPLY:

RequestFrame | ReplyFrame | Dislogue State | Filier List | Key Value | Sys_Initiative

UTT_NUM:

“unknown> for Stephanie Seneff

RECOGNIZED:
REPLY:

Figure 3-9: Log viewing tool used by SPEECHBUILDER. The screen shows a developer
examining two utterances spoken by the user.

38

Chapter 4

Knowledge Representation

A developer configuring a domain using SPEECHBUILDER needs to model the concepts
in the domain so that the proper grammars and generation templates can be built.
This chapter addresses the knowledge representation used in SPEECHBUILDER to
allow the developer to communicate domain specifics to the system. The first section
describes the concept keys and sentence-level actions, the linguistic units that define
the recognition and understanding templates. The second section discusses the model
for connecting a database schema to the SPEECHBUILDER linguistic primitives, using

accessor keys and properties.

4.1 Linguistic Concept Representation

In order to abstract the complexity of natural language parsing grammars from the
developer, SPEECHBUILDER uses an example-based method of specification. The
developers usually know, from intuition or experience, what queries the user may
make of their system, and can use this knowledge to give example sentences, or
“actions,” for their domain. In addition, they can formulate the concepts, or “keys,”
that appear in their domain, and the values they may take on.

Based on this intuition, SPEECHBUILDER organizes knowledge into concept keys,
and sentence-level actions. At times, these are simply referred to as “keys” and

“actions.” This part of the representation is inherited entirely from SLS-LITE [22].

39

Key | Examples

color | red, green blue

day | Monday, Tuesday, Wednesday
room | living room, dining room, kitchen

Table 4.1: Examples of concept keys

4.1.1 Concept Keys

Concept keys usually define classes of semantically equivalent words or word se-
quences. All the entries of a key class should play the same role in an utterance.
Concept keys can be extracted from a database table (in the info model), or can be
specified manually by the developer using the web interface. Table 4.1 gives some

examples of concept keys.

Concept keys are used as non-terminal nodes in the natural language parsing
grammar. The semantic frame is built using the concept keys that appear in a given
parse of a sentence. Thus, in order to appear in a semantic frame a word must be a

member of a concept key class.

SPEECHBUILDER allows concept keys to contain simple variations with the help
of a few diacritics, which are adopted from JSGF [14]. Parentheses can be used to
specify several alternatives, delimited by the “pipe,” |, which all become valid values
for this concept key (e.g. (Robert | Bob) Jones). Square brackets can be used to
define parts of the concept key that are optional and can also contain pipe-delimited
alternatives (e.g. Boston [Massachusetts | Mass]). Because some of the options
defined using these diacritics can be very similar to one another, SPEECHBUILDER
allows for regularization of the output value of these keys with the use of curly brack-
ets, {}. So, for example, if the developer wants to represent all references to the city
of Boston as BOS, they can form the concept key entry as Boston [Massachusetts

| Mass] {BOS}.

40

4.1.2 Sentence-level Actions

Actions define classes of functionally equivalent sentences, so that all the entries of
an action class perform the same operation in the application. Actions are used as
top-level nodes in the natural language grammar, and thus the particular action name
of a parsed utterance appears as the clause name in a semantic frame. A sentence can
only parse into a single action class, so the sentences within different actions should
not have any overlap. Table 4.2 gives some example actions.

A developer specifies actions by entering example sentences of that action, and
SPEECHBUILDER generalizes on the example to build the natural language grammar.
Example sentences within actions typically contain values of concept keys. SPEECH-
BUILDER generalizes all such sentences to accept all the entries within the particular
key’s class. For example, the last sentence in Table 4.2, “Turn on the TV in the
living room,” would be generalized into a template sentence as in Figure 4-1. At
run time, this sentence, if spoken by the user, would result in the semantic frame

given in Figure 4-2.
turn <onoff> the <appliance> in the <room>

Figure 4-1: Generalized sentence template from the example sentence “Turn on the
TV in the living room”

{c set
:onoff "on"
:appliance "TV"
:room "living room"}

Figure 4-2: Semantic frame for query “Turn on the TV in the living room” using
generalized template shown in Figure 4-1

4.1.3 Concept Hierarchy
SPEECHBUILDER allows the slightly more advanced developer to build a structured

41

Action | Examples

identify | what is the forecast for Boston

what will the temperature be on Tuesday

I would like to know today’s weather in Denver
set turn the radio on in the kitchen please

can you please turn off the dining room lights
turn on the TV in the living room

Table 4.2: Examples of sentence-level actions

grammar when this is desired. This is done by using parentheses (“bracketing”)
to enforce a structure, possibly containing hierarchy, in the example sentences that
appear inside the actions. The natural language parsing grammar is then generated
according to this structure.

Bracketing is accomplished by enclosing a part of the sentence in parentheses and
preceding it with a name and one or two equal signs (e.g. “hier key name==(wordl
word2 word3)”). The name given to the bracketed portion of the sentenced is referred
to as a hierarchical key, since it is treated similarly to a concept key in the NL
parsing graminar.

Bracketed parts of sentences can contain either strict or flattened hierarchy. Strictly
hierarchical bracketings preserve the complete substructure of the underlying con-
cepts, and are indicated by the “==" symbol. Flattened hierarchical bracketings
collapse any concepts contained within the hierarchical into the key class that is
identified by the name of the bracketed expression. Table 4.3 contains examples of

bracketed sentences and their resulting meaning representations (as encoded by the

CGI parameter generation component, see the Text Generation part of Section 3.1.1).

4.2 Data Concept Representation

The info model for SPEECHBUILDER domains is designed to create a spoken lan-
guage interface to a collection of structured data. The model calls for the data to

be formulated as a table or tables in a relational database. At the current time,

42

Put object==(the blue box) location==(on the table)
object=(color=blue,item=box),location=(item=table)
Put object=(the blue box) location=(on the table)
object=(blue_box),location=(table)

Put the box location==(on the table location==(in the kitchen))
item=Dbox,location=(relative=on,item=table,
location=(relative=in,room=kitchen))

Table 4.3: Examples of strict (==) and flattened (=) hierarchy.

SPEECHBUILDER is only able to handle single-table domains, due to the complexity
of the SQL generation grammars that are necessary to do SQL “JOIN” operations in
multiple-table schema.

Since developers may not have access to a relational database SPEECHBUILDER
allows them to upload the data using a comma-separated value (CSV) representation.
This format can be generated by any spreadsheet program or by hand. Table 4.4
illustrates a sample data set for a domain to present information about people working

in an organization, and Figure 4-3 gives the same data in CSV format.

| Name | Phone | Email | Office |
John Doe | 123-4567 | doe@foo.org 103
Bill Smith | 123-9876 | smith@bar.edu | 107
Mary Jones | 123-2222 | mary@baz.com | 257

Table 4.4: Data from the “info” domain

name, phone, email, office

key, people_property, people_property, people_property
John Doe, 123-4567, doe@foo.org, 103

Bill Smith, 123-9876, smith@bar.edu, 107

Mary Jones, 123-2222, mary@baz.com, 257

Figure 4-3: Data for the “Info” domain as a CSV file.

The data in Table 4.4 is used as an example throughout this section. In this

application, each entry in the database has four columns. A user query may ask about

43

any of them (e.g., “What is the phone number for Bill Smith”). However, in
most cases there will be some columns with information that won’t be the subject
of a query, called properties (e.g. it is not very common to ask “what is the
name of the person with the phone number 123-9876" so here Phone is such
a property). We call the columns which are likely to be used to identify a row
in the database accessor keys. So, since the database cells in the accessor key
columns will be used in queries, both the column values and the column names must
be incorporated into the speech recognition and natural language components. In
contrast, for the property columns, only the column names need to be incorporated

into these components.

Besides providing a name for each column the developer must specify whether the
column is an accessor key or a property. Since there are often groups of properties
that are essentially semantically equivalent from a natural language understanding
viewpoint (e.g. Phone and Email — both tend to be asked about in the same way),
SPEECHBUILDER allows the developer to define property grouping classes within the
CSV file. For example, in this case Phone, Email, and Office are all grouped into the
people_property group. The developer can then create one action class to access all of

the keys in this group.

This method of specifying the information that a domain should access fits in
with the Key-Action model described in section 4.1. Keys from the database table
become keys in the SPEECHBUILDER domain, while the cell values from the table
become the space for allowable values of their respective key. Each property group
receives its own key in the domain, but only the column names appear as the key
values, since the actual cell values are never vocalized by the user. For example,
for the people_property group, there would be a people_property key in the domain

PR

with values “phone,” “email,” and “office”. Based on information about accessor
keys and properties in the CSV file, SPEECHBUILDER generates very crude example
actions (see Section 5.3.1) to access the data (e.g., “What is the phone for Bill
Smith”). The developer is then able to modify these actions to allow for more robust

query handling for the domain.

44

4.3 Response Generation

In addition to configuring ways of asking about information, the developer needs to
specify how the information should be presented to the user. Just as SPEECHBUILDER
prepares generic example sentences for asking about information in a database ta-
ble, it also creates generic responses for presenting this data (e.g. “The phone is
:phone”). Here, the values received from database columns are indicated with the
column name preceded by the colon (:). However, these responses tend to be very
contrived because they are generated based simply on column headings, and it is hard
for SPEECHBUILDER to determine which column in a database row should be used
in the response. The response editing tool (shown in Figure 4-4) gives developers
the functionality to modify the output of the system by editing strings such as the

example given in this paragraph.

SpeechBuilder 2,055

Get Starter Pack

Geet XML

Response for property ‘email”:
Response for property “title”
Response for property ‘last_name”:

Response for property first_ name”:

Response for when more than one db rows match the
query but we want to give the result for all rows:

Response when no property is requested in the query:

Response for when many rows in the db match the
guery and we want to just say which ones:

Key to return as a short identifier for each match (used
with above response):

be more

Airst_name

Figure 4-4: SPEECHBUILDER response editing tool

Because data tends to be presented differently across various columns, each data-
base column has a set of responses corresponding to it. Namely, there are two re-
sponses per column — one to present the results of a successful query and another to
inform the user that the query matched a database row, but the property asked for is

not present in that row. In addition, there are a few generic replies which a developer

45

can configure, including a welcome and goodbye statement, as well as a statement
when the system cannot understand what it is supposed to do.

The system needs to robustly handle cases when there are no matching rows in the
database and when there is more than one row returned. SPEECHBUILDER provides
fields for these responses, as well as some helper keys — :num_found, which contains the
number of rows returned from the database, and :items which causes all items to be de-
scribed when included. SPEECHBUILDER allows the developer to distinguish between
when a “small” and a “large” amount of information is returned. When the amount of
data is relatively small, it is appropriate to present the response for each of the rows,
using the ritems key (e.g. “There are two people at LCS matching your query.
The telephone number for Bob Jones is 111-2222 and the telephone number
for Bob Smith is 222-1111"). When there is a large amount of data, the domain
will typically be configured to simply state the number of rows returned and ask the
user to narrow their query (e.g. “There are fifteen people who matched your

query: Bob Jones, Mary Smith, ... Please be more specific.”).

46

Chapter 5

Development Issues

When a developer builds an application using SPEECHBUILDER, the internal process
for configuring the various human language technology components is based on the
techniques used by experienced developers to build such systems by hand. This
chapter describes some of the features in SPEECHBUILDER that were more challenging
to implement or automate, or that pose interesting generalization or machine learning
problems. It focuses on issues in speech recognition and language understanding,

response generation, and general infrastructure.

5.1 Language Model Overgeneralization

5.1.1 Problem Formulation

SPEECHBUILDER writes a TINA natural language grammar for each domain. At run-
time, this grammar is used to parse sentence hypotheses presented by the recognizer.
In addition, TINA is used to train a language model to constrain recognition hypothe-
ses. SPEECHBUILDER uses a hierarchical n-gram [22, 18, 34] as a language model for
speech recognition. Each concept key in an example sentence becomes a preterminal
node in the n-gram [22]. Inside the keys, TINA uses a word bigram to model the prob-
abilities of accepting a certain value. In addition, TINA uses a recursive transition

network (RTN), which is similar to a bigram, to model the natural language gram-

47

mar constraints. This allows TINA to generalize on the training data to be able to
cover previously unseen word sequences. However, in SPEECHBUILDER domains, this
feature can also lead to overgeneralization in the natural language grammars. This
sometimes leads to incorrect recognition hypotheses being accepted by the natural

language server as valid parses.

Since the word bigram for each key is trained on the list of possible values for the
key, the intuition is that only one of the values present in the training data will be
accepted. However, due to the overgeneralization problem, occasionally this is not
the case. For example, if a city key contains the entries “London England” and “New

London Connecticut,” the grammar learns that:

e [ondon — England is a valid transition

e New — London is a valid transition and thus

e New — London — England is a valid transition combination

In this example, the grammar mistakenly learns that “New London England” is
a valid value for the “city” concept key class, and therefore the language model is
trained to accept this sequence. Thus, even though this value does not correspond to
a valid city, a recognition error could lead to a sentence containing this value being

accepted by the language model and the natural language grammar.

While this is a relatively minor and infrequently occurring error in most applica-
tions, it can actually be a very major one in a small set of domains. For example, in
a domain that allows the user to spell proper names, TINA learns that most letter-to-
letter transitions are acceptable. For example, in a sample data set of 1294 person
first and last names in the LCSInfo domain, 487 out of a possible 728 transitions
(67%) in the spelling bigram became valid alternatives. In actuality the average
name in the data set contained 5.9 letters, or about seven transitions. So clearly, the

overgeneralization problem is catastrophic in this domain.

48

5.1.2 Reducing Overgeneralization

SPEECHBUILDER addresses the overgeneralization problem by placing each value of
a key in its own non-terminal node in the parsing grammar. Figure 5-1 illustrates
a grammar with word spellings that suffers from the overgeneralization problem (for
example, “Bob Jones j on e s m ore” with an invalid spelling, becomes a valid
parse). Figure 5-2 is a modified version of the same grammar, which avoids this
problem by introducing an extra level of non-terminals. Each of the values of the
key name is now in a distinct non-terminal node. Since a bigram language model is
trained for each node, the key values therefore no longer interfere with one another’s
bigram transition probabilities and natural language constraints.

An important note is that this solution undeniably results in a bigger, slower gram-
mar (about four times slower on LCSInfo domain). However, usability experiments
have showed that the overgeneralization problem presents a significant impediment to
obtaining correct recognition hypotheses, and thus inevitably degrades the accuracy
of the system. In SPEECHBUILDER, this is an especially significant problem because
non-expert developers will not be able to understand what is causing this problem,
nor will they be able to do anything to fix it. Thus, this is considered a worthwhile

tradeoff for the purpose of this project.

.name
$Bob $Jones $j $o $n $e $s
$Mary $Smith $s $m $i $t $h
$John $More $m $o $r $e

Figure 5-1: Subset of a language parsing grammar that exhibits the overgeneralization
problem (dollar signs indicate grammar terminal nodes).

Another solution was implemented but did not effectively solve the problem. This
was to make separate non-terminal nodes for individual words based on their context
in the sentence (in this case the word immediately to the left, the “left context,” was
used). This improved the situation marginally, but in the end overgeneralization still

occurred because the long-range context of a word could not be modeled (e.g. “Bob

49

.name

name@@1
name@@2
name@@3

.name@@1
$Bob $Jones $j $o $n $e $s

.name@@2
$Mary $Smith $s $m $i $t $h

.name@@3
$John $More $m $o $r $e

Figure 5-2: The grammar of Figure 5-1 rewritten so as to avoid the overgeneralization
problem (dollar signs indicate grammar terminal nodes).

Jones j o n e s” and “Jonathan j on a t h a n” still yielded “Jonathan j o
n e s” as a valid parse).

The above solution reduces the number of instances in which the overgeneraliza-
tion problem is manifested. However, the problem will always be present in some
form as long as bigram-type grammars are used. For example, even with the above
solution, an example sentence like “the lamp is on the table” would allow the
grammar to accept “the lamp is on the lamp.” A more general solution is needed
to more consistently control the overgeneralization problem. One way of doing this
would be to use a context-free grammar such as JSGF [14] as the language model in
the recognizer. This modification will soon be implemented in SPEECHBUILDER for

comparison with the TINA-generated language model.

5.2 Hub Programs

The SPEECHBUILDER hub (see the Hub part of Section 3.1.1) executes one of several
programs specifically written for SPEECHBUILDER. There are several modes of oper-

ation for SPEECHBUILDER domains that require more than one hub program to be

50

present for each domain. Since SPEECHBUILDER servers interact differently in the
info model than in the control model, distinct hub programs exist for domains be-
longing to each of these two models. In addition, separate programs exist for running
the domain on the MIT telephony hardware connected the developer access line and

on the audio hardware of a developer local domain installation (see Section 5.6).

5.3 Creating Examples Based on Data

In the info model, the developer uploads a table of structured data to begin creating a
domain. From this information, SPEECHBUILDER configures the linguistic concepts
of the domain. This involves not only generating concept keys corresponding to
database concepts (as described in Section 4.2), but also creating example sentence-

level actions and responses for the domain. This section explains this process.

5.3.1 Sentence-level Actions

The data composes the base for the concepts present in the domain. However, it is
not possible to automatically robustly figure out how a query about the data might be
formulated, or how it should be presented to the user. SPEECHBUILDER attempts to
formulate reasonable example queries and response templates based on column names
and sample values extracted from the data. The developer can then edit the examples
and put in additional action sentences to make the domain much more robust.

The data for the LCSInfo domain given in Figure 4-3 are used as an example
throughout this section. SPEECHBUILDER needs to create example query sentences
for each one of the columns in the database and for each one of the property grouping
classes. The developer specifies which columns may be used to key a query to the
domain (accessor keys), but it is hard to determine which of the accessor keys in a
domain should be used to query for a particular column. Thus for the purpose of
generating example query sentences, SPEECHBUILDER picks an accessor key at ran-
dom. In the case of the LCSInfo domain, there is only one accessor key, name, so

SPEECHBUILDER uses that one. The sentences are generated according to a typical

51

info domain query: “What is the <property> for <key>.” In the LCSInfo do-
main, for the email column (request_email action), the example sentence is “What is
the email for John Doe,” which is actually a reasonable approximation for what
the queries may look like.

In the case of property groupings (see Section 4.2), the example sentence generated
for the action accessing the property grouping simply refers to one of the member
properties. Because SPEECHBUILDER generalizes example templates and the prop-
erty grouping name becomes a concept key in the domain, the action becomes valid

for any of the member properties.

5.3.2 Responses

SPEECHBUILDER follows a similar process for generating sample responses. Since
there is a response for presenting each one of the properties (see Section 4.3), selecting
which property to return in the responses is not an issue. The significant problem is
how to select which accessor key should be used to identify the particular row that
matches the user query. One method of handling this is to pick an accessor key at
random and use it to present the information. However, this can lead to misleading
and just plain incorrect responses. For example, in the flight schedule domain, if
aircraft_type is an accessor key, picking it would yield a response that looks like “The
747 flight leaves at two p.m.,” which is not very informative. A much better
response would include the airline and flight_number keys, e.g. “American flight
252 leaves at two p.m.” Due to this issue, SPEECHBUILDER does not include
any accessor keys in the sample responses. Thus each response consists of a simple
grammatical wrapper around a property, e.g. “The departure time is two p.m.”

Of course, the developer is free to modify the responses, as is discussed in Section 4.3.

5.4 Pronunciation Generation

SPEECHBUILDER generates the recognition vocabulary from the keys and actions

entered by the developer. SPEECHBUILDER obtains the pronunciations for domain

52

words from the 100,000-word LDC [16] PRONLEX dictionary that is used in most
domains at MIT. However, at times the developer enters words that are not in the
dictionary (often these are proper names). For these words, SPEECHBUILDER uses
a text-to-phone conversion tool called t2p that is part of CMU’s Festival speech
synthesis package [4]. t2p is a good first-level approximation of pronunciations. It
is able to achieve a 75% word correctness rate on the Oxford Advanced Learners
Dictionary of Contemporary English (OALD), and 58% on a dictionary containing
many more “foreign” words than the OALD [3]. The developer is able to adjust the

pronunciation by using the vocabulary editing tool described in Section 3.2.2.

5.5 Registration

Each SPEECHBUILDER developer is required to register for a user account. In order
to register to use SPEECHBUILDER, developers need to give some information about
themselves using the registration tool (shown in Figure 5-3). The registration tool
creates the domain directory structure for the developer and assigns a unique four-
digit “developer ID” to be used by people calling in to talk to the developer’s domains
(see Section 5.6). In order to access the domain editing screens, the developer log

into the system using browser authentication.

5.6 User Domain Access

SPEECHBUILDER gives developers two options for deploying their applications for
actual use. The first option is to run the domain servers on MIT hardware and direct
users to access the domain through the central domain access line. The second is to
run the domain on a machine local to the developer, with no dependence on MIT

hardware. This section describes these options.

53

SpeeChBUIlder 2' |Tu register as a SpeechBuilder

developer, please fill out the form below

Hrst Name

Last Name
Company

Email Address
Desired developer id
Password

Re—enter password

: Required field

-l May take up to 30 seconds to process registration

Figure 5-3: The SPEECHBUILDER developer registration tool.

5.6.1 Central Access Line

Most developers deploy their SPEECHBUILDER domains on telephony hardware lo-
cated at MIT. The MIT installation of SPEECHBUILDER is connected to a developer
access line a telephone number which all developers call to talk to their domains.
A developer starts the servers for a domain by clicking the “Start” button on the
SPEECHBUILDER domain editing interface. When calling in, users say a four-digit
identification number that was provided to the domain developer when he or she
registered to use SPEECHBUILDER. In order to limit resources used by the runtime

domain code, a developer is only allowed to run one domain at a time, so the caller

54

does not need to specify the domain they would like to talk to.

The developer access line is implemented using a new hub feature that allows
hubs to transfer control of an online call between one another [7]. A central switch
application receives the call, asks the caller for the developer 1D, and using the hub
transferring feature connects the call to the appropriate application. All developer
domains are currently run on one machine connected to a single phone line. However,
the hub switching code works across machines; so in the future it will be possible to
scale the developer access hardware to several servers connected to many incoming
lines.

Each developer’s runtime domain software consists of all of the HLT servers and
the developer hub. The servers of many developers need be able to coexist and be
uniquely identifiable on the machine(s) running the server software. SPEECHBUILDER
achieves this by assigning unique server port numbers to each developer. These port
numbers are assigned at the time the developer registers with SPEECHBUILDER, and
are stored in the scripts that are used to start the developer servers. This whole

process is concealed from the developer.

5.6.2 Local Audio Deployment

In addition to the central access line, SPEECHBUILDER allows developers to download
a complete set of server configuration files that allows them to run local installations
of their domains. The “packaged” domain files that the developer receives are the
same as the files used to run the domain on the central access line.

In order to be able to take advantage of this feature, there are several prerequisite
steps that a developer must take. First, the GALAXY software distribution must be
installed on the machine that is to run the domain (this distribution is available to
industry and government affiliates of the Spoken Language Systems Group of the
MIT Laboratory for Computer Science). Second, the developer must download the
generic acoustic models used by all SPEECHBUILDER recognizers, and install them
on the machine that is to run the domain. Finally, the developer must set up a local

audio configuration, such as a microphone and speakers connected to a sound card,

95

or a telephone and Skutch box (ring signal emulator) connected to a telephony card.

5.7 Echo Script

SPEECHBUILDER developers using the control model were often frustrated with hav-
ing to write an entire back-end application in order to test even the most basic
functionality of the HLT part of their domain. In addition, the developers wanted
access to the full recognition hypothesis for each utterance in addition to the meaning
representation of the query. A modification to the control model back-end server (see
Section 3.1.3) allowed the full recognized string to be sent to the back-end script.
Consequently, this allowed for the creation of a generic “echo script” that simply
repeats the recognized utterance to the user. This script allows developers to check
the performance of their domain’s speech recognition and natural language parsing
without writing a back-end script and finding a web server to host it. The echo script

is now the default back-end script in control model domains.

5.8 Parse Tree Display

The TINA natural language parsing system is able to generate graphics of trees repre-
senting the nodes in the grammar that were used in the parse (such as the one shown
in Figure 3-5). Jon Yi has implemented a CGI script that generates very similar
displays based on a URL-encoded representation of the linear parse tree output pro-
duced by TINA. This tool is very useful in helping the developers visualize the parsing
process that takes place in the natural language understanding components, and to
debug domains containing hierarchy or complex parses. SPEECHBUILDER allows a
developer to see a mapping of each example sentence to the “reduced” semantic frame
representation [22]. Each sentence printed on the reduction screen is linked to the
parse tree display tool with the specifics for that particular sentence included in the

URL.

56

Chapter 6

Current Status

At the time of writing of this thesis, SPEECHBUILDER is deployed with all of the
functionality working as described. SPEECHBUILDER began as version 1.0, which
was basically the SLS-LITE system with some improvements to the natural language
parsing grammars and the user interface, and developer registration and authentica-
tion. Version 1.1 brought more interface changes and introduced the developer access
line and portable domains. Version 2.0 introduced the info model and all of the sup-
porting tools (response editing, CSV file uploading, log file viewing, etc). Version 2.0
is the current “release” version; 2.1 is the “development” version which will include
the ability to use languages other than English, and will allow more than one table
in info model domains.

SPEECHBUILDER has been used in various environments (both inside MIT and
out) to build a number of spoken language systems. The domains that have been
built vary in complexity from somewhat contrived proof-of-concept applications, to
fully functional and complex domains used for real applications. This chapter talks
about some of this work.

The first section of this chapter discusses several fully-functional domains that
have been used for demonstrations or have been deployed for actual users. The sec-
ond section talks about some domains that have been built on a limited prototype
level (some in as little time as one hour) to experiment with or demonstrate SPEECH-

BUILDER functionality.

o7

6.1 Fully-functional Domains

6.1.1 LCSInfo and SLSInfo

LCSInfo is a phone-book type application for the more than 600 faculty, research
staff, and students working at the MIT Laboratory for Computer Science and the
Artificial Intelligence Laboratory. LCSInfo contains data about phone numbers, email
addresses, group affiliations, room numbers, and positions for the people included in
the domain. The data are updated automatically from the LCS personnel database
that is used to generate the “directory” listing on the LCS web page, and manually
from a flat file of AI Lab personnel. The domain can not only look up people’s contact
information, but can also connect the caller to a particular person’s extension (this is
similar to “auto-attendant” applications such as SpeechSite [32]). This was one of the
first domains to be built using SPEECHBUILDER, so it implemented using the older
control model. The back-end CGI script interfaces with the database and controls all

dialogue and discourse phenomena.

A new domain called SLSInfo, having similar functionality to LCSInfo, has been
built within the info model. SLSInfo only contains information about the people
in the Spoken Language Systems Group. Even though this domain was built in the
more constraining info model, its functionality is virtually identical to that of LCSInfo
(except for the smaller data set, of course). This is encouraging because it shows that
developers can create info model domains of similar complexity and flexibility as in

the control model, without doing any programming.

In addition, an instance of the SLSInfo domain has been manually modified to use
the ENVOICE concatenative speech synthesizer that is being developed at MIT [36].
This is encouraging for eventually being able to give developers the option of using

ENVOICE as an optional synthesizer for SPEECHBUILDER domains (see Section 7.5).

58

6.1.2 SSCPhone

Auto-attendant domains similar to LCSInfo/SLSInfo have been built using SPEECH-
BUILDER outside of MIT. The most prominent example of such a domain is the phone
book application at the Space and Naval Warfare Systems Center in San Diego, CA
— called SSCPhone. The domain specifics in SSCPhone are very similar to those
of LCSInfo. This domain allows users to access information about over 400 people

working at the facility.

6.1.3 Office

The office domain is an application that lets people control the various hardware
items occurring in a typical office using human speech. An actual installation of this
domain has been implemented in the office of the Director of the MIT Laboratory
for Computer Science [15]. The domain gives the user control over several devices
(window blinds, projector, television, computer, VCR, projection screen, DVD, etc.)
using simple speech commands. Since this domain involves external functionality, it
uses the control model. The CGI script being used with this domain at LCS connects
to the hooks controlling the various devices using a central switch made by Crestron

Electronics [5].

6.1.4 MACK

The Media Lab Autonomous Conversational Kiosk (MACK) is a domain developed by
the Gesture and Narrative Group at the MIT Media Lab as a speech-driven interface
to a computerized character that answers visitors’ queries about various Media Lab
specifics [20]. MACK has been built by MIT Media Lab personnel with only minor

help from experienced developers of speech-driven dialogue systems.

The conversational kiosk is a guide that helps visitors to the Media Lab
learn about what we do. A life-sized on-screen animated robot explains

the lab’s projects, groups, and consortia and gives directions about how to

59

find them. The agent shares with the visitor a real physical model of the
lab that the two participants can center their discussion around. Based
on our previous research on multimodal dialogue systems and shared col-
laborative spaces, this system leverages people’s natural language abilities

to provide a richly interactive and easy-to-use kiosk. [17]

MACK allows visitors to ask about the various groups, projects, and consortia
present at the Media Lab. It is also able to give people directions to various locations
at the lab. The MACK domain contains over 20 distinct actions and information
about over 40 groups, consortia and rooms.

MACK functions within the control model of SPEECHBUILDER, with a quite sub-
stantial back end application. The application controls the on-screen robot animation
functions, handles discourse and dialogue management, queries a database of group

information, and controls a separate speech synthesizer.

6.1.5 Weather

The weather domain is a “baby JUPITER” domain. It was built with the goal of even-
tually having the same functionality as the successful JUPITER weather information
system [37]. The weather domain is even ahead of JUPITER in the fact that it uses a
real-time weather feed as opposed to a periodically updated data set. This domain
contains information about over 500 cities in nearly 100 countries. It can report on
any weather-related topic, such as precipitation, wind, humidity, cloud cover, etc.
Currently, the weather domain is implemented within the SPEECHBUILDER con-
trol model. This domain fits nicely into the newer info model, except for the fact
that it requires the information lookup process to include a “JOIN” between several
database tables. While SPEECHBUILDER does not yet support multiple tables, imple-
menting this is a most immediate development goal. Once multiple table support is
in place, a performance comparison between the weather domain and the hand-built
JUPITER will be possible. This comparison will be used to judge the robustness of

SPEECHBUILDER domains.

60

6.2 Trial Domains

6.2.1 Schedule

The schedule domain is a dialogue system for accessing a class schedule for a meeting
of the industry affiliate user group of the Spoken Language Systems Group at LCS.
The domain is implemented within the info model. It contains information about a
full-day schedule of events and their details. It has information about the instructor(s)
of each activity, the class start and end times, and the class content. This domains
utilizes the SPEECHBUILDER bracketing facility (see Section 4.1.3) to allow the user
to make relatively complex queries such as “Who teaches the class that ends at
one?” and “When does the class taught by Jim start?”

The Schedule domain is a proof-of-concept domain that was implemented by Chao
Wang as part of a SPEECHBUILDER laboratory evaluation. With a relatively small
amount of work, this domain could be adapted to serve as a daily personal schedule

access application for any end user.

6.2.2 Stocks

The stocks domain is a demo system for accessing online stock quotes. This system
contains information about the stock price, day highs and lows, and bid and ask
prices, for a small group of stocks (less than ten). The stocks domain is implemented
in the info model with a table of static data. This domain was built by a group of
engineers from Fidelity Investments as part of the SPEECHBUILDER laboratory at an

industry affiliates meeting in about an hour’s time.

6.2.3 Flights

The flights domain was built largely to test the hierarchical bracketing feature of
SPEECHBUILDER (see Section 4.1.3). It was designed to simulate the MERCURY flight
reservation system [28], but in this implementation only accepts simple flight queries

— with no actual reservation transaction functionality. This domain was implemented

61

in the control model, and was never tested with any real back-end script (one similar
to the echo script described in Section 5.7 was used). This domain handles queries

about flights using as little or as much information as the user is ready to provide.

62

Chapter 7

Conclusions

SPEECHBUILDER, which was implemented as part of this thesis project, extends on
the SLS-LITE system [22] in many directions, improving the overall infrastructure
and the use of the underlying human language technology. SPEECHBUILDER is a
first attempt at a complete tool for development of robust mixed-initiative spoken
language systems that does not require developer expertise or application program-
ming. While almost every single component of the original SLS-LITE system has been
modified somehow as part of this work, SPEECHBUILDER improves over SLS-LITE

most significantly in the following areas:

1. Knowledge Representation. SPEECHBUILDER introduces the info model for
application development, which allows a developer to configure an information-

access application without doing any programming.

2. GALAXY Component Use. SPEECHBUILDER uses the full set of human lan-
guage technology components, similar to the spoken language systems previ-

ously built at MIT.

3. Infrastructure. SPEECHBUILDER contains a developer registration and au-
thentication scheme to allow for access control. In addition, SPEECHBUILDER
introduces the developer access line and gives developers the ability to run local

installations of their applications at their home sites.

63

4. Language Generation. SPEECHBUILDER, in the info model, uses the lan-
guage generation component extensively. For each domain, SPEECHBUILDER

generates fairly complex language generation templates for several distinct uses.

5. Speech Recognition and Natural Language Understanding. SPEECH-
BUILDER introduces the out-of-vocabulary model for speech recognition. In ad-
dition, SPEECHBUILDER patches the TINA grammar overgeneralization problem

and thus improves the accuracy of natural language parsing.

While SPEECHBUILDER improves on these areas, there is still much work to be
done in this field. The rest of this section discusses the ongoing and planned future

work on SPEECHBUILDER.

7.1 Dialogue Control

The current SPEECHBUILDER info model dialogue control manager uses a generic
hard-wired protocol for handling domain dialogue. In the future, this component
should increase in complexity and allow the developer more control over domain
situations. One improvement that can be made is to allow for automatic disambigua-
tion of incomplete queries (e.g., user: “I want to fly to New York tomorrow,”
system: “Okay. What city will you be leaving from?”). Another possible im-
provement is to allow the user to actually modify information in the database, so as
to allow for more transaction-based domains (such as flight reservations) to be imple-
mented in the info model. Yet another change is to give the developer control over
the dialogue situations, i.e. specifying heuristics for when disambiguation is needed,

when there is too much data to be spoken, etc.

7.2 Communication Protocol

The current CGI protocol for communication with back-end applications in the control

model can be improved. A web server runs each invocation of a CGI script in a

64

separate process using a separate socket connection. In addition, a CGI script has no
state from invocation to invocation. For these reasons, CGI is bulky and inefficient

for real-world applications.

A new communication protocol based on remote procedure call (RPC) conventions
is desirable. Work is currently being done to implement a Java API for connection to
remote applications running continuously on a single process, with state information

maintained in runtime memory space [8].

7.3 Confidence Scoring

SPEECHBUILDER recognizers currently do not have the ability to estimate the level
of confidence of a recognition hypothesis (that is, how certain the recognizer is that it
matches the corresponding acoustic evidence). Confidence scoring is a desirable fea-
ture, especially if control of various confidence scenarios can be given to the developer
(e.g., do not accept a user utterance if the confidence score is too low). Adding con-
fidence scoring would also allow for unsupervised training of acoustic and linguistic

recognition models (see section 7.4).

7.4 Unsupervised Training

The acoustic models currently used in SPEECHBUILDER recognizers are based on
generic telephone data collected in mainstream MIT domains. The language models
are trained on the example sentences that the developer provides in the sentence-level
actions, and there is no feedback loop to allow the data collected in the operation of
SPEECHBUILDER domains to be used to improve these models. With the confidence
scoring in place, a more long-term goal is to incorporate unsupervised training of
acoustic and linguistic models based on data recorded during the runtime of the

domain recognizer.

65

7.5 Synthesis

The current implementation of SPEECHBUILDER uses the DECtalk commercial speech
synthesizer [9], which provides speech synthesis of reasonable, but not exceptionally
high, quality. The MIT concatenative speech synthesizer, ENVOICE [36], would be
a significantly better-sounding solution. However, since an ENVOICE synthesizer is
based on a corpus of speech samples specific to the domain it is being used for, the
developer will need to do some work before being able to use ENVOICE in a given
domain. It would work well to give the developer the option of using ENVOICE if
there is time to record a synthesis corpus (perhaps using the developer’s own voice),

with DECtalk being the default option.

7.6 Multi-lingual SPEECHBUILDER

SPEECHBUILDER by convention has so far only addressed domains dealing with
speech in American English. However, domains in other languages have been im-
plemented using the GALAXY framework [35, 25|, and thus it is desirable to allow
SPEECHBUILDER developers to build domains in languages other than English (of
course a basic requirement is that a speech recognizer for the language be available).
There have been several efforts to “port” SPEECHBUILDER to non-English languages.
In the future, these ports will be integrated into SPEECHBUILDER. The domain se-
lection screen will allow the developers to select a language for a domain. While
the domain editing interface will be in English regardless of the domain language, the
recognition and synthesis components will be specific to the language selected for each
domain. The rest of this section describes the efforts to date to port SPEECHBUILDER

to Japanese and Mandarin Chinese.

7.6.1 Japanese — JSPEECHBUILDER

A Japanese port of SPEECHBUILDER has been implemented in cooperation with Dr.

Mikio Nakano, a visiting scientist from NTT, and John Yi [19]. The difficulties of

66

making this port have been allowing entry of Unicode characters on SPEECHBUILDER
domain editing screens, and phonological analysis of Japanese phonetic character
input.

Most of the SPEECHBUILDER code was already compatible with Unicode charac-
ters. However, the XML parser used within SPEECHBUILDER (XML: : Simple module)
was not readily compatible and required a small modification. Japanese is a syllable-
based language, so the example sentences entered by the developers do not typically
have explicit word markings. However, a word-level language model in the recognizer
performs much better than a syllable-level one. Thus, phonological analysis needs
to be performed on the sentences to identify the words. JSPEECHBUILDER uses a
phonological analyzer to segment the phoneme sequence for a sentence or key into

probable words.

7.6.2 Mandarin Chinese — CSPEECHBUILDER

The Mandarin Chinese port of SPEECHBUILDER has been implemented in cooperation
with a group of visiting scientists from Delta Electronics, Inc. under the leadership
of Dr. Lynn Shen. CSPEECHBUILDER uses a phonetic Romanization of Chinese
language utterances, and thus it does not need to use Unicode. CSPEECHBUILDER
does not attempt to solve the phonological analysis problem. Rather the developer
to identify words by joining sub-word units with underscores (e.g. “dian4 dengl”
meaning “light”).

CSPEECHBUILDER has been used to build several demonstration domains, in-
cluding an application to control various appliances in a futuristic home at Delta

Electronics [31].

7.7 Database Schema

The range of database schema that the info model can currently handle is very limited.
All database cell entries are treated as strings and there is no support for multiple ta-

bles. In the future, SPEECHBUILDER should be able to support numeral and boolean

67

data types in the database. The numeral data type will allow for test queries such
as “Show me all the flights after five.” The boolean data type will enable
SPEECHBUILDER domains to handle yes/no questions such as “Does that flight
serve dinner?”

Multiple table support is another essential improvement, as it will enable SPEECH-
BUILDER to handle domains where the data is spread over several database tables.
For example, in JUPITER there is a “geography” table containing city-to-airport-code
mappings, and a “weather” table containing forecasts keyed on airport codes [37].
Once this change is made, SPEECHBUILDER will be able to build a weather domain
using the same database schema as JUPITER. This is an important goal for pur-
poses of evaluating SPEECHBUILDER domain performance — since this will allow for
comparison the SPEECHBUILDER weather domain to JUPITER based on the standard

evaluation data sets [37].

68

Bibliography

[1] L. Baptist and S. Seneff. GENEsIs-1I: A Versatile System for Language Gener-
ation in Conversational System Applications. In Proc. ICSLP, Beijing, 2000.

[2] 1. Bazzi and J. Glass. Modeling Out-of-vocabulary Words for Robust Speech
Recognition. In Proc. ICSLP, Beijing, 2000.

(3] A. Black, K. Lenzo, and V. Pagel. Issues in Building General Letter to Sound
Rules. In Proc. ESCA Speech Synthesis Workshop, Jenolan Caves, 1998.

[4] A. Black and P. Taylor. The Festival Speech Synthesis System. Technical Report
HCRC/TR-83, Human Communication Research Centre, 1997.

[5] Crestron Electronics, Inc. http://www.crestron.com/.

[6] CSLU Toolkit. http://cslu.cse.ogi.edu/toolkit/.

[7] S. Cyphers. Personal communication, 2001.

[8] S. Cyphers and J. Smoler. Personal communication, 2001.

9] DECtalk. http://www.forcecomputers.com/product /dectalk /dtalk.htm.
[10] E. Filisko. Personal communication, 2001.

[11] J. Glass, T. Hazen, and L. Hetherington. Real-Time Telephone-Based Speech
Recognition in the JUPITER Domain. In Proc. ICSLP, Beijing, 2000.

[12] J. Glass and E. Weinstein. SPEECHBUILDER: Facilitating Spoken Dialogue Sys-

tem Development. Submitted to Eurospeech, Aalborg, 2001.

69

[13]

[14]

[15]

[16]

[19]
[20]
[21]

[22]

[20]

T. Hazen. Development of the VOYAGER system. MIT Laboratory for Computer

Science Spoken Language Systems: Summary of Research, pages 20-22, 1999.

Java Speech Grammar Format Specification.

http://java.sun.com/products/java-media/speech/forDevelopers/JSGF /.
M. Ladd and N. Meyerhans. Personal communication, 2001.
Linguistic Data Consortium. http://www.ldc.upenn.edu/.

MACK: Media Lab Autonomous Conversational Kiosk.
http://gn.www.media.mit.edu/groups/gn/projects/kiosk/index.html.

M. McCandless and J. Glass. Empirical Acquisition of Language Models for
Speech Recognition. In Proc. ICSLP, Yokohama, 1994.

M. Nakano and J. Yi. Personal communication, 2001.
Y. Nakano and J. Huang. Personal communication, 2001.
Nuance Communications, Inc. http://www.nuance.com/.

J. Pearlman. SLS-LITE: Enabling Spoken Language Systems Design for Non-
Experts. Master’s thesis, MIT, 2000.

Philips GmbH, Aachen. SpeechMania 7.1 Developers Guide, 2001.

S. Seneff. TINA: A Natural Language System for Spoken Language Applications.
Computational Linguistics, 18(1), 1992.

S. Seneff, J. Glass, T.J. Hazen, Y. Minami, J. Polifroni, and V. Zue. MOKUSEI:
A Japanese Spoken Dialogue System in the Weather Domain. NTT Ré&D, 49(7),
2000.

S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue. GALAXY-II: A
Reference Architecture for Conversational System Development. In Proc. ICSLP,

Sydney, 1998.

70

[27]

28]

[29]

[30]

S. Seneff, R. Lau, and J. Polifroni. Organization, Communication, and Control

in the GALAXY-11 Conversational System. In Proc. Furospeech, Budapest, 1999.

S. Seneff and J. Polifroni. Dialogue Management in the MERCURY Flight Reser-

vation System. In Proc. ANLP-NAACL Satellite Workshop, Seattle, 2000.

S. Seneff and J. Polifroni. Hypothesis Selection and Resolution in the MERCURY
Flight Reservation System. In Proc. Human Language Technology Conference,

San Diego, 2001.

S. Seneff, J. Polifroni, and P. Schmid. PEGAsSUS: Flight departure/arrival/gate
information system. MIT Laboratory for Computer Science Spoken Language

Systems: Summary of Research, pages 25-26, 1998.
L. Shen. Personal communication, 2001.
SpeechWorks International, Inc. http://www.speechworks.com/.

Voice eXtensible Markup Language version 1.0.

http://www.w3.org/TR/voicexml/.
C. Wang. Personal communication, 2001.

C. Wang, S. Cyphers, X. Mou, J. Polifroni, S. Seneff, J. Yi, and V. Zue. MUXING:
A Telephone-Access Mandarin Conversational System. In Proc. ICSLP, Beijing,
2000.

J. Yi, J. Glass, and L. Hetherington. A flexible, scalable finite-state transducer
architecture for corpus-based concatenative speech synthesis. In Proc. ICSLP,

Beijing, 2000.

V. Zue, S. Seneff, J. Glass, J. Polifroni, C. Pau, T. J. Hazen, and L. Hetherington.
JUPITER: A Telephone-Based Conversational Interface for Weather Information.

Proc. IEEE Trans. SAP, 8(1), 2000.

71

