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Abstract

This thesis addresses the problem of rapid speaker adaptation. This is the task
of altering the parameters of a speaker dependent speech recognition system so as
to make that system look more like a speaker dependent system using a very small
amount (<10 seconds) of speaker specific data. The approach to speaker adaptation
taken in this work is called speaker cluster weighting (SCW). SCW extends the ideas
of previous speaker cluster techniques by allowing the speaker cluster models (learned
from training data) to be adaptively weighted to match the current speaker. This
algorithm involves three major steps: speaker clustering, cluster model training, and
cluster weighting. We have explored strategies for use in each of these steps. For the
first step, we have developed a novel algorithm called least squares linear regression

clustering for the clustering of speakers for whom only a small amount of data is
available. For the second step acoustic models were trained using two strategies. In
the first, model interpolation, EM trained cluster acoustic models were interpolated
with speaker independent models to create more robust cluster models. In the second,
weight adaptation, the cluster models were trained by adapting the mixture compo-
nent weights of the SI model. Finally, for the third step, two strategies for cluster
weighting, one using the maximum likelihood criterion and one using the minimum
classification error criterion, were applied. Experiments were also run where the max-
imum likelihood cluster model was chosen as the adapted model. Combining some of
these strategies, a 10% relative improvement in WER was obtained for child speakers
as well as a 9% improvement for female speakers after 1 adaptation utterance.
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Chapter 1

Introduction

1.1 Problem Definition

A couple of decades ago a speech recognition system had to be speaker dependent (SD)
in order to be usable. In other words, the system’s acoustic models had to be trained
specifically for the speaker that would be using it. This required a lengthy enrollment
process for each specific user of the system, and after the system was trained, any
new users would have to retrain in order to obtain acceptable performance.

Through various advances in speech recognition technology, speaker independent
(SI) systems can now perform sufficiently well for most tasks. Still, a large perfor-
mance gap exists between SD and SI systems. For example, SD systems can achieve
word error rates that are 50% lower than those achieved by SI recognizers [19]. The
goal of speaker adaptation is to help close this gap.

Speaker adaptation techniques involve using utterances from a specific speaker,
called adaptation data, to change the parameters of an SI system. The parameters are
changed such that the new system more closely resembles an SD system trained for
that speaker. Seen in another light, this task is one of using correlations between the
acoustic characteristics of the speaker’s spoken utterances and the expected acoustic
characteristics of future utterances to better model the future utterances. Many
techniques have been developed to accomplish this task, the most popular of which
will be described in the next section.

A speaker adaptation task is often described according to two parameters. The
first describes the amount of adaptation data available. If very little adaptation data
is available (less than 10s), adaptation is referred to as rapid. The second parameter
is whether or not an accurate transcription of the adaptation data is available. If it
is, adaptation is referred to as supervised. Otherwise, it is unsupervised.

This work addresses the problem of rapid, unsupervised adaptation. The fact
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that very little training data is available makes the task more difficult, as does the
lack of an accurate transcription for the adaptation data. Various algorithms have
been developed for the general problem of speaker adaptation, and many of these have
been extended specifically to make them applicable to rapid, unsupervised adaptation.
These approaches and their extensions are described in the next section.

1.2 Previous Work

1.2.1 MAP-based Approaches

The problem of speaker adaptation is one of finding the most likely set of acoustic
model parameters given the adaptation data. That is, given sets of observations for
c classes, X0, X1...Xc we would like to choose the parameter set λi for each class, i,
such that:

λi = arg max
λi

p(λi|X0, X1...Xc) (1.1)

In both maximum-likelihood (ML) and maximum a posteriori (MAP) acoustic
model training, it is assumed that the parameters for a particular acoustic model, i,
depend only on the observations from that class:

p(λi|X0, X1, X2...Xc) ≈ p(λi|Xi) (1.2)

Using Bayes rule, we can say:

p(λi|Xi) =
p(Xi|λi)p(λi)

p(Xi)
(1.3)

Because p(Xi) is independent of λi, it can be ignored in the maximization. This
leaves us with:

p(λi|Xi) = arg max
λi

p(Xi|λi)p(λi) (1.4)

While maximum-likelihood approaches assume that p(λi) is uniform over all pa-
rameter sets, λi, MAP estimation does not. This requires estimation of a probability
distribution for the model parameters, p(λi) for each class i. When Xi is a small
amount of data, p(λi) makes the estimated parameters more robust.

As can be seen from the assumption in Equation 1.2, MAP adaptation only allows
for adaptation of acoustic models representing classes for which adaptation data has
been seen [14]. This makes adaptation with this approach very slow (i.e. many adap-
tation utterances are required) and, thus, unsuitable for rapid adaptation. However,
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MAP does have the desirable property that it will eventually converge to the ML
solution.

Various extensions of MAP have been developed for use in rapid adaptation. In
one extension, the regression based model prediction (RMP) approach [1], correlations
between Gaussian component means are determined from the training data. During
adaptation, these correlations are used to adapt multiple component means at once.
Ahadi and Woodland reported an 8% improvement in WER after one adaptation
utterance on the 1000 word Resource Management task [1].

Another extension, called structural MAP (SMAP) [29], works by organizing
Gaussian components into a tree. Adaptation occurs by starting at the root of the
tree and adapting each component, using it’s parent for the prior parameter distribu-
tion. Like RMP, this results in significant WER reduction after only one adaptation
utterance.

1.2.2 Transformation-Based Approaches

Maximum Likelihood Linear Regression

In its original form, maximum likelihood linear regression (MLLR) consists of adapt-
ing the means of a Gaussian mixture model using an affine transformation, as shown
here [26]:

µ
′

i = Agµi + bg (1.5)

This estimation is generally done using the EM algorithm. The same transfor-
mation can be used for all Gaussian components across all acoustic models, i, or
different transformations can be used for different groups of Gaussian components,
called regression classes. Methods have been proposed for choosing the groups in an
optimal manner [25]. MLLR can also be applied to the Gaussian covariance matrices.

In its basic form, MLLR has an advantage over MAP in that adaptation occurs on
acoustic models for which data has not been seen. The assumption in Equation 1.2 is
replaced with the assumption that a particular model’s parameters, λi, depend on all
the observations within the same regression class. The set of model parameters over
which the maximization is done is limited to affine transformations of the speaker
independent model parameters. This allows MLLR to achieve about a 15% reduction
in WER after about 1 minute of adaptation data [26]. MLLR will converge to the ML
solution if the number of regression classes is equal to the total number of Gaussian
components. MLLR does not, however, use any speaker correlation information from
the training corpus.

Although MLLR requires less adaptation data than MAP, 1 minute of data is still
more than is available in most spoken dialogue systems (e.g. Jupiter[17].) Various
attempts have been made to make MLLR more robust in the presence of smaller
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amounts of adaptation data. These include incorporating prior distributions of MLLR
parameters [5, 13], eigenspace based techniques [32], and a combination of the two
[4, 31]. Zhou and Hanson [32] achieved relative error rate reductions of 10.5% using
supervised adaptation on one adaptation utterance, while smaller reductions were
seen by Wang, et al [31].

Vocal Tract Length Normalization

Another form of transformation based adaptation is vocal tract length normalization
(VTLN). In VTLN, an estimate is made of the length of a speaker’s vocal tract. This
estimate is used to warp the frequency axis during feature calculation in such a way
as to normalize the speech to a standard vocal tract length. The optimal warping
is often chosen using the maximum likelihood criterion [24]. Claes, et al, instead
of normalizing the acoustic features, normalizes the acoustic models to account for
different vocal tract lengths [7].

1.2.3 Cluster-Based Approaches

Cluster Adaptive Training

In cluster adaptive training (CAT), the adapted model parameters are assumed to
be a linear combination of model parameters from different speaker clusters [12].
In one version, SI model component weights and variances are held constant, and
the adapted means are a linear combination of the cluster means. In another, a
transformation (specifically MLLR in [12]) is associated with each cluster, and the
adapted models are created using a linear combination of the cluster transformations.
The cluster weights are computed to maximize the likelihood of the adaptation data.
This method has been shown to yield relative improvements of about 7% on a large
vocabulary task using one adaptation utterance.

Eigenvoices

Like CAT, the eigenvoice approach is based on creating an adapted model through a
linear combination of basis model parameter sets [23]. However, unlike in CAT, when
using the eigenvoice technique these parameter sets are determined through principal
component analysis (PCA). Supervectors are formed by concatenating speaker mean
vectors, and “eigenvoices” are determined by performing PCA on these vectors. The
eigenvalues allow the eigenvoices to be ordered in terms of how much of the inter-
speaker variance they represent. Thus, one can systematically choose larger and larger
sets of eigenvoices as the amount of adaptation data increases.
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Unfortunately, in a large vocabulary system with a large number of acoustic mod-
els, the supervectors become extremely large and PCA becomes computationally in-
tractable. Nguyen, Wellekens and Junqa developed a less computationally intensive
method for finding the eigenvoices using an ML criterion [27]. Still, their work used
only 48 context independent acoustic models. Previously mentioned applications of
the eigenvoice concept to MLLR have, so far, achieved greater success for large vo-
cabulary rapid adaptation[32, 4, 31].

1.3 Goals and Overview

The goal of this work was to develop an approach for rapid speaker adaptation with
the hope of meeting or exceeding the success of other adaptation methods. As the
last section revealed, this translates into achieving about a 10% relative reduction in
WER.

The most successful approaches to rapid speaker adaptation use intra-speaker
inter-phone correlation information from the corpus. In the case of RMP, this infor-
mation is embedded in the correlations between Gaussian component means, while
in SMAP it is embodied in the component tree. In CAT and eigenvoices, the speaker
clusters contain the speaker correlation information.

In this work, too, speaker correlation information was obtained from the training
corpus in order to aid in rapid speaker adaptation. As in CAT and Eigenvoices, this
information was embedded in speaker clusters. The approach taken in this work was
speaker cluster weighting, first presented in [19].

This thesis is organized as follows. In Chapter 2, relevant details of the SUMMIT
recognizer and Jupiter corpus are presented. Chapter 3 describes and evaluates the
clustering algorithms explored. The speaker cluster weighting algorithm is presented
in Chapter 4 as well as details of the strategies utilized for each stage in the algorithm
and results. Finally, a summary and a description of possible future work are provided
in Chapter 5.
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Chapter 2

The SUMMIT Recognizer and

Jupiter Corpus

2.1 SUMMIT Recognizer

This work utilized the SUMMIT segment-based speech recognizer[16]. As SUMMIT

is a segment-based speech recognition system, the speech signal is first divided into
segments of relative acoustic regularity. These segments are then classified phoneti-
cally using probabilistic acoustic models. A lexicon and language model are applied
to the resulting labelling in order to obtain sentence hypotheses. The details of this
process along with the specific recognizer configuration used for this work follow.

2.1.1 Segmentation

Segmentation in SUMMIT is accomplished either by looking for points of large
acoustic change [15, 24] or through a probabilistic approach [3, 24]. The former is used
in this work. The result of segmentation is a set of landmarks positioned throughout
the utterance. These landmarks are placed both on the boundaries between phones
as well as in places internal to phones.

One can model the signal characteristics between these landmarks as well as the
characteristics of the acoustic change at these landmarks. In the first case, the models
are referred to as segment models, while in the second case they are referred to as
boundary models. Although SUMMIT is capable of using both of these types of
models simultaneously, in this work only boundary models are utilized.
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2.1.2 Acoustic Modeling

Features

As opposed to frame-based approaches where features are extracted at evenly spaced
frames, in SUMMIT a set of features is extracted for each hypothesized segment or
boundary. In this work, initially 112 features were extracted from each hypothesized
boundary. These features consisted of 14 Mel-frequency cepstral coefficients averaged
over 8 different regions near the boundary.

Principal component analysis was used to make the global covariance of the data
equal to the identity matrix [2]. The 50 dimensions with the largest eigenvalues were
used as the final acoustic features.

Acoustic Classes

In general, SUMMIT is capable of using any predefined set of acoustic classes. For
this work, the classes were determined through an automatic, decision tree clustering
process. The process began with a set of 2971 boundary models created from a
58 phone set. These models consisted of two types: those representing acoustic
boundaries between two phones (denoted t(p1|p2)) and those representing acoustic
boundaries within a single phone (denoted i(p1)). These were clustered into 1357
classes used for recognition.

Model Structure and Training

The acoustic models used in this work were mixtures of Gaussian components. Thus,
the probability of an observation, ~x, given an acoustic class, p, can be expressed as:

p(~x|p) = ~c · ~p(~x|p) (2.1)

Where ~c denotes the vector of Gaussian component weights:

~c =







c0
...

cN






(2.2)

The vector of component distributions is represented by ~p(x|p):

~p(~x|p) =







p0(~x|p)
...

pN (~x|p)






(2.3)
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Each component has a Gaussian distribution:

pi(~x|p) ∼ N(µi, σ
2
i ) (2.4)

The number of Gaussian components used for a particular model, N was depen-
dent on the amount of training data available for that class. Specifically, it was
determined using the following formula, where T is the number of training tokens:

N = min(50,
T

50
) (2.5)

Models were trained to maximize the likelihood of the data. This was completed
using the Expectation-Maximization (EM) algorithm [9].

2.1.3 Lexical and Language Modeling

In SUMMIT, lexical modeling is accomplished through the assignment of multiple
pronunciations for each word in the lexicon. First, each word is given a small number
of canonical phonemic representations. Then, a set of phonological rules is applied
that further expands the number of acceptable pronunciations. The result of applying
the lexicon to the labeled boundaries is a word network. To this, a language model is
applied, yielding the best (N-best) hypothesis (hypotheses). In this work, a lexicon
of 1893 words was used with a class-based, tri-gram language model.

2.2 Jupiter Corpus

The experiments utilize data collected from the Jupiter domain [17]. Jupiter is a
telephone-based spoken dialogue system for weather information, where users are can
ask multiple questions during one call. Utterances average about 3 seconds in length.
The Jupiter system does not keep track of callers’ identities, so each call is treated as
if it came from a different speaker, although many people call the system more than
once. The collected data used in this thesis was divided into 3 mutually exclusive
sets: the training set, the development set and the test set.

2.2.1 Training Set

The training set used in this work consisted of 17,116 calls. Each call had an average of
4.7 utterances per call giving the training corpus a total of 80,487 utterances. 13,030
calls contained male speakers, 3,297 calls involved female speakers and 1206 calls
involved child speakers. (Note that one call could contain more than one speaker.)
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The gender distribution of the utterances in the training set was 73% male, 18%
female, and 9% child.

2.2.2 Development Set

The development set contained 275 male calls consisting of 1299 utterances, 84 female
calls consisting of 274 utterances and 103 child calls consisting of 244 utterances.

2.2.3 Test Set

The test set was comprised of only calls with at least 6 utterances. It contained 105
male calls consisting of 1282 utterances, 24 female calls consisting of 285 utterances,
and 31 child calls consisting of 367 utterances.
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Chapter 3

Speaker Clustering

A key step in the adaptation algorithm used in this work is the clustering of the
training speakers. In this chapter, the general clustering approach is described, as
well as the distance metrics used with this approach. The quality of the clusters
produced using different distance metrics is evaluated.

3.1 Cluster Requirements

The goal of all speaker adaptation approaches is to learn something about the speaker,
then use that knowledge to improve recognition accuracy. In adaptation approaches
based on speaker clusters, this knowledge takes the form of intra-speaker, inter-class
correlation information, and is captured in the models built from the speaker clusters.

This means that speakers within each cluster should be acoustically similar across
a large number of phones. If this is the case, the acoustic models built from the
cluster data will be more focussed than the SI model. This is important if adaptation
is going to increase the discriminative power of the acoustic models.

In order for a cluster’s acoustic models to be robust, it is also required that
the cluster have a sufficient number of speakers. This means that clusters must be
reasonably balanced in terms of numbers of speakers.

3.2 Clustering Process

Ideally, all of the speakers in the corpus would have been clustered using a bottom-
up approach. However, the size of the corpus makes this impractical. Instead a
combination of bottom-up and k-means clustering was utilized.

The process consisted of three steps. First, a distance matrix was generated for
all speakers. This was done using one of the distance metrics described in the next
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section. The distance between each speaker and every other speaker was calculated
and stored in this matrix.

Second, bottom up clustering was performed on the first 5000 speakers using the
information in the distance matrix. At each iteration of the bottom up algorithm,
the two clusters with the smallest distance between them were merged. The distance
between two speakers was defined as follows: The distances for all pairs of points
such that the points do not belong to the same cluster were calculated. The distance
between the most distant pair was used as the initial distance between the two clusters.
This distance is represented as b(ci, cj).

Scaling was done in order to decrease the likelihood that very small clusters would
result. The final distance between two clusters was computed as follows:

d(ci, cj) =
Ni + Nj

NiNj

b(ci, cj) (3.1)

Here Ni and Nj represent the number of speakers in clusters i and j respectively.
In the third step of the clustering process, the remaining speakers are put into

the nearest cluster using the same distance measure as was described above. The
fourth step was completed only when using the feature mean distance and LSLR
characteristic distance metrics. In this step, k-means clustering was completed using
the clusters resulting from the previous step as seeds.

3.3 Distance Metrics

The distance metric used in the clustering algorithm plays a large part in determin-
ing the characteristics of the resulting clusters. The distance metrics described here
are designed such that clusters built using them will meet the cluster requirements
described in Section 3.1. As it has been reported that successful clustering proce-
dures separate male and female speakers, these metrics are evaluated based on their
ability to separate speakers of different genders [22]. The Jupiter training corpus, as
described in Section 2.2, was used for these evaluations.

3.3.1 Gender

Description

Using this metric, speakers are manually clustered according to their gender. For
this work, three genders are defined: male, female, and child. This simple metric has
proven very useful for speaker adaptation [19]. Its usefulness can be attributed to
the presence of strong within-gender acoustic correlation, largely due to the fact that
speakers of the same gender often share similar vocal tract lengths [11, 21].
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Gender-based metrics are especially useful on corpra such as the one to be used
in this research, where very little data is available for each speaker. Metrics based
on an acoustic similarity measure often fail under these conditions. However, using
gender as the distance metric limits the number of clusters to three.

3.3.2 Feature Mean Distance

Description

One straightforward measure of acoustic similarity is the feature mean distance. For
each speaker a mean feature vector is computed by taking the average value of the
PCA normalized features across all acoustic observations for a particular speaker.
This calculation is shown in equation 3.12, where ~v(s) is the mean feature vector for
speaker s, ~o

(s)
ij is the jth feature vector for the ith class for speaker s, n

(s)
i is the number

of feature vectors for class i for speaker s, and C is the total number of classes.

~v(s) =

∑C

i=1

∑n
(s)
i

j=1 ~o
(s)
ij

∑C

i=1 n
(s)
i

(3.2)

Distances between speakers are calculated by computing the Euclidean distance
between these averages:

dst =
√

~v(s) · ~v(t) (3.3)

This method may work well when a large amount of data is present for each
speaker. However, in the corpus used in this work, speakers are represented by only
a small number of utterances, resulting relatively little phonetic diversity. This lack
of diversity may result in poor estimates for the speaker feature means and hurt the
performance of this clustering approach.

Evaluation

Cluster Male (%) Female (%) Child (%)
1 38 45 17
2 76 18 6
3 89 9 6
4 76 14 10
5 81 14 5

Table 3.1: Gender distribution for 5 clusters created using the feature mean distance.
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Table 3.1 shows the gender distribution for 5 clusters created from the data in
the training set using the feature mean distance metric. We see that some separation
of the genders is present. Cluster 1 contains a large number of females and children
compared to the others, while cluster 3 contains relatively few. The other clusters,
however, are fairly mixed, indicating that this distance metric may not be capturing
the necessary speaker correlation information.

The failure of this clustering method in this context can probably be explained
by the limited data available for each speaker. The speaker feature means may have
been more affected by the phonetic content of each speaker’s data than by the general
acoustic characteristics of each speaker.

3.3.3 Average Class Feature Mean Distance

Description

The average phoneme feature mean distance is based on the feature mean distance.
However, instead of one mean feature vector being computed for each speaker, a set of
mean feature vectors corresponding to each class is computed. While in the case of the
feature mean distance, a global principal component transformation was performed,
here the transformation is class specific. The transformation is also constructed such
that the variance for each dimension after transformation is 1. This ensures that
inter-speaker Euclidean distances between averages from the same class will be on
the same scale, regardless of the class chosen.

Distances between speakers are calculated by finding the average Euclidean dis-
tance between the mean normalized feature vectors corresponding to the same classes
in each speaker. Calculation of the mean normalized feature vectors is shown here:

~µ
(s)
i =

n
(s)
i

∑

j=1

~o
(s)
ij (3.4)

To calculate the distance between two speakers, the set of classes, P, for which
both speakers have data is determined:

Pst = {i|∃~µ
(s)
i } ∩ {i|∃~µ

(t)
i } (3.5)

The average distance between these classes is then calculated:

dst =
1

num(Pst)

∑

∀iεPst

~µ
(s)
i · µ(t)

i (3.6)
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This distance measure has the potential to overcome the phonetic diversity prob-
lem encountered when using the feature mean distance. However, this distance mea-
sure may not prove robust for speakers whose data has very few common classes.

Evaluation

Cluster Male (%) Female (%) Child (%)
1 74 21 5
2 77 18 5
3 72 23 5
4 77 16 7
5 74 19 8

Table 3.2: Gender distribution for 5 clusters created using the average class feature
mean distance.

Table 3.2 shows the gender distribution obtained when clustering using the average
class feature mean distance. We see that all of the clusters have very similar gender
distributions. This is probably, in part, because, with the small amount of data
available for each speaker, the speakers share very few phones. The nature of this
distance metric is such that if two speakers do not both have examples of a significant
number of classes, the distance measurement between those speakers will not be
robust.

Another possible reason for the failure of this algorithm deals with the variability
of the within speaker variance across different classes. The feature vectors are nor-
malized to account for differences in feature variance across all feature vectors for a
particular class. However, they are not normalized to account for within-speaker vari-
ance. Figure 3.1 illustrates this. First notice that, if we look at all of the data points
across both speakers, the variance across each dimension could feasibly be the same
for classes A and B. If we looked at a random sample of feature vectors from class
A for each speaker, it is very possible the speakers would look acoustically similar.
However, looking at class B, this is clearly not the case. Thus, differences in feature
means for class A are not as meaningful as the differences in feature means for class
B. The average feature mean distance does not take this into account.
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Figure 3.1: Illustration of one possible deficiency of the average feature mean distance.

3.3.4 LSLR Characteristic Distance

Description

The LSLR characteristic was designed to overcome the shortcomings of the feature
mean distance and average class feature mean distance. Unlike the former, it is
reasonably insensitive to the phonetic content of a particular speaker’s data, and,
unlike the latter, it does not require that two speakers share a large number of phones.

Using this approach, a characteristic vector is computed for each speaker. The
vector is computed in two steps. First, an affine transformation is applied to the
observed feature vectors of a selected set of classes to transform them into a generic
class space. Second, the transformed features from all observations from the selected
set of classes from one speaker are averaged to create that speaker’s characteristic
vector. This computation for speaker s is shown here:

~v(s) =
1

(
∑

∀kεC n
(s)
k )

∑

∀iεC

n
(s)
i

∑

j=1

(Ai~o
(s)
ij +~bi) (3.7)

Here n
(s)
i is the number of observations for speaker s for class i. Ai and ~bi con-

stitute the affine transformation to the generic class and C is the set of classes being
transformed.

The transformation is computed in order to minimize the intra-speaker variation
of observations from different phones. Our work is partially influenced by Doh and
Stern who demonstrated the utility of an inter-class affine transformation [8].
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To compute the transformation for each phone, we begin by computing a mean
vector ~µ

(s)
i for phone i for each speaker s from all training observations of that phone

from that speaker. For practical purposes, one phone is chosen to be the destination
phone into which all other phones are transformed. The mean vector for the prede-
termined destination class for each speaker s is defined as ~µ

(s)
g . The optimal LSLR

transformation for phone i is thus expressed as follows, where Ns is the number of
speakers in the training corpus:

arg min
Ai,bi

Ns
∑

s=1

(Ai~µ
(s)
i +~bi − ~µ(s)

g )2 (3.8)

The transform for phone i is shared over all speakers s and is computed to minimize
the average intra-speaker distance between the transformed mean vector for phone
i and the destination mean vector. An LSLR transformation is computed indepen-
dently for each phone.

The minimization was performed with a standard least-squares approach. To
estimate the transformation from phone i to the selected destination phone g, the
average feature vectors for all of the speakers for phone i are collected in a matrix,
Wi. The last row of this matrix consists of 1’s, to allow for computation of the shift:

Wi =











~µ
(0)
i
...

~µ
(N)
i

1 . . . 1











(3.9)

The average feature vectors for phone g are collected into another matrix, X,
shown below:

X =







~µ
(0)
g

...

~µ
(N)
g






(3.10)

The rotation matrix and shift term are determined in the standard least-squares
manner:

[

Ai
~bi

]

= ((WT
i Wi)

−1WT
i X)T (3.11)

Once the transforms for each phone are computed, the characteristic feature vector
for each speaker is computed by averaging the transformed feature vectors from all
training observations of a selected subset of phones for that speaker. The distance
between two speakers is defined as the Euclidean distance between their characteristic
vectors:

dst =
√

~v(s) · ~v(t) (3.12)
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Evaluation

When using the LSLR characteristic distance, a set of classes must be chosen. Only
the data from this class set will be transformed and averaged to obtain the final LSLR
characteristic for a particular speaker.

For many reasons, using the entire set of acoustic classes is not ideal. First, not all
of the classes convey important information about the speaker. Fricatives and stops
provide very little information about how a particular speaker’s vowels and nasals
will be realized acoustically. Nasals, although good for speaker identification [10],
have little within speaker correlation with other phones. Computational considera-
tions also motivate the selection of a limited set of phonetic classes. Estimating the
transformation matrices involved in computing the LSLR characteristic takes a great
deal of computation as well as storage.

Various class sets were tried for this purpose, shown in Table 3.3. All sets involved
internal boundary models only. These models are labeled i(p), where p is the phone
for which the internal landmark is being modeled. The cluster gender distributions
for the 4 different sets are shown in Tables 3.4, 3.5, 3.6, and 3.7.

Class Set Classes
Fricatives i(f), i(s), i(sh), i(th), i(v), i(z), i(jh), i(zh)

Nasals i(m), i(n), i(ng)
Vowels i(aa), i(ae), i(ah), i(ah fp), i(ao), i(aw), i(ax), i(axr),

i(ay), i(eh), i(el), i(em), i(en), i(epi), i(er), i(ey),
i(ih), i(ix), i(iy), i(ow), i(oy), i(uh), i(uw), i(ux)

Selected Vowels i(aa), i(ae), i(ey), i(ih), i(iy), i(ow), i(uw)

Table 3.3: Class sets used for LSLR characteristic computation.

Cluster Male (%) Female (%) Child (%)
1 81 14 5
2 72 22 5
3 65 24 11
4 69 24 7
5 93 5 2

Table 3.4: Gender distribution for 5 clusters created using the LSLR characteristic
distance with the fricative class set.
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Cluster Male (%) Female (%) Child (%)
1 99 1 0
2 74 22 4
3 82 13 5
4 15 57 28
5 98 2 0

Table 3.5: Gender distribution for 5 clusters created using the LSLR characteristic
distance with the nasal class set.

Cluster Male (%) Female (%) Child (%)
1 100 0 0
2 100 0 0
3 98 2 0
4 1 64 34
5 37 55 9

Table 3.6: Gender distribution for 5 clusters created using the LSLR characteristic
distance with the vowel class set.

We see that the fricatives worked very poorly for clustering speakers. Although
the cluster containing the largest percentage of children, cluster 3, also contains the
smallest percentage of males, all of the clusters have a male majority. These results
were expected. Except for the lower cutoff frequencies of s and sh, the acoustic
realizations of most fricatives show very little dependence on vocal tract length. Thus,
an LSLR characteristic computed using fricative data will have very little correlation
with the gender of the speaker.

The nasal set resulted in better clusters than the fricative set. We see that cluster
4 contains very few males and a large percentage of children, while clusters 1 and 5 are
almost entirely male. While a speaker’s realization of the nasals has little dependence
on the oral cavity, it is highly correlated with the length of his vocal tract and the
shape of his nasal passage. Both of these physical characteristics are correlated with a
speaker’s gender, which explains the gender separation that occurred in the resulting
clusters.

The best clustering results were achieved with the two vowel sets. As shown in
Table 3.6, using all of the internal vowel boundary classes results in three clusters
that are almost entirely male, one cluster that is almost entirely children and females
and one mixed cluster. This is also true of the clustering result obtained using the

31



Cluster Male (%) Female (%) Child (%)
1 99 1 0
2 100 0 0
3 1 64 35
4 97 2 0
5 39 52 9

Table 3.7: Gender distribution for 5 clusters created using the LSLR characteristic
distance with the selected vowel class set.

selected vowel set. This is explained by the fact that the acoustic realization of vowels
is affected by both the vocal tract length and the oral cavity, both of which are highly
correlated with the gender of the speaker.

In order to ascertain the impact of the rotation matrix on cluster quality, clusters
were made using no transformation. The selected vowel set described in the previ-
ous section was used. Table 3.8, shows the clustering results for this case. This is
equivalent to using the feature mean distance, but only averaging the features for the
selected vowel set. We see that speakers of different genders are separated reason-
ably well. This can be attributed to two factors. First, the classes chosen for the
selected vowel set are acoustically similar insofar as they are all vowels. Second, the
vowels in the selected vowel set are used often. These two factors serve to mitigate
the phonetic diversity problem encountered when using the feature mean distance.
Still, comparing these results to those shown in Table 3.7, it is clear that using the
transformation improves the quality of the clusters.

Cluster Male (%) Female (%) Child (%)
1 96 4 0
2 92 7 2
3 13 58 29
4 95 5 0
5 11 77 13

Table 3.8: Gender distribution for 5 clusters created without transforming the data.
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3.4 Conclusions

The results presented in this section have shown that both the feature mean distance
and average class feature mean distance metrics perform poorly on our corpus. The
failure of these two approaches is due largely to the small amount of data available
for each speaker. When using the feature mean distance, this leads to feature mean
vectors that are affected more by the phonetic content of a speaker’s training data
than by her general acoustic characteristics. Using the average class feature mean
distance, this leads to pairs of speakers who share data for only a small number of
classes, resulting in unreliable distance estimates.

The LSLR distance overcomes the shortcomings of the feature mean distance
and average class feature mean distance. By transforming the speaker data from a
selected set of classes into a generic, global class, the LSLR distance results in clusters
that show separation of speakers of different genders. Use of a full matrix and shift
and selection of an appropriate set of classes is important to the success of LSLR
clustering.
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Chapter 4

Speaker Cluster Weighting

While Chapter 3 explored robust methods for creating speaker clusters, this chapter
will describe how those clusters were used as part of an adaptation approach called
speaker cluster weighting (SCW).

4.1 Overview

Speaker cluster weighting consists of two phases. The first phase occurs off-line (i.e.
before the recognition process begins), while the second phase occurs during recogni-
tion. These phases are illustrated in Figure 4.1.

The first phase of SCW consists of two steps. In the first step, speakers in the
training data are clustered according to acoustic similarity. The preceding chapter
presented various approaches to this task. In the second step, acoustic models are
trained for each speaker cluster. These models need to be both focused and robust.
Section 4.3 describes the approaches taken in this work for this second step.

During SCW’s second phase, the acoustic models for each cluster are combined
or selected in an optimal way using the adaptation data. Section 4.2 describes the
algorithms explored for this process.

4.2 Cluster Model Combination or Selection

After clustering has been completed and acoustic models are trained for these clusters,
adaptation is accomplished either by interpolating the cluster models or choosing
the set that best represents the current speaker. This process must allow enough
flexibility so that the resulting model can accurately represent those speakers poorly
represented by the SI model. However, if the approach is too flexible, adaptation will
not be robust in the presence of a small amount of adaptation data.
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Figure 4.1: Schematic description of speaker cluster weighting.

4.2.1 Best Cluster

In the best cluster approach, the set of cluster acoustic models is chosen that maxi-
mizes the adaptation data probability. While this approach does not allow as much
flexibility in the adaptation process as cluster weighting, it may be more robust in
the presence of small amounts of adaptation data. The acoustic model resulting from
choosing the best cluster from L clusters for a given phone p can be represented as:

pbc(~x|p) = pl(~x|p) (4.1)

pl(~x|p) is the probability distribution for class p for cluster l. l is chosen to satisfy
the following equation:

l = arg max
l

pbc(X|U, l) (4.2)

If un represents the class label for adaptation token xn, and assuming the obser-
vations are independent:

pbc(X|U, l) =
∏

∀~xn

pl(~xn|un) (4.3)

4.2.2 Cluster Weighting

Whereas in the best cluster approach a “hard” decision is made about which clus-
ter model to use for recognition, a “soft” decision is made when using the cluster
weighting approach. In the two cluster weighting approaches described here, adapted
acoustic models are weighted combinations of the cluster models. The acoustic model
resulting from cluster weighting for L clusters and a given phone p can be represented
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as:

pscw(~x|p) =

L
∑

l=1

wlpl(~x|p) (4.4)

We examined two criteria for choosing the weights, ~w. In the first case the likeli-
hood of the adaptation data is maximized. In the second, a minimum classification
error criterion is used.

Maximum Likelihood

Using maximum likelihood cluster weighting, the optimal weights, ~w will satisfy the
equation:

~w = arg max
~w

pscw(X|U, ~w) (4.5)

If un represents the class label for adaptation token xn, and assuming the obser-
vations are independent:

pscw(X|U, ~w) =
∏

∀~xn

p(~xn|un, ~w) (4.6)

This maximization is performed using the EM algorithm.

Minimum Classification Error

When training acoustic models for recognition, the goal is to make the models as dis-
criminative as possible. Training acoustic models using maximum-likelihood methods
does not directly optimize for this criterion. This can be especially problematic when
a limited amount of training data is available. To address this issue, various discrim-
inative training methods have been developed [28].

When performing cluster weighting, the goal is also to make the resulting model
as discriminative as possible in the face of limited training data. Thus, it seems
reasonable to apply discriminative criteria to the cluster weighting problem.

The approach taken is based on that described in Chou, et al for training acoustic
models [6]. First, a misclassification measure is defined based on the N-best utterance
hypothesis {U1...UN}, with an empirically tuned parameter ν:

d(X, ~w) = − log{p(X, U1|~w)} + log { 1

N − 1

N
∑

k=2

e− log{p(X,Uk |~w)}η}
1
η

(4.7)

The loss function is a sigmoid function of this misclassification error measure with
an empirically tuned parameter η:
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l(X, ~w) =
1

1 + e−γd(X,~w)
(4.8)

The goal of minimum classification error (MCE) acoustic model training is to
minimize the expected value of this loss function across all training utterance. In our
work, MCE has only been applied to the case when we are adapting using one adap-
tation utterance, so we need only to minimize l(X, ~w) for that particular utterance.

l(X, ~w) is minimized through a simple gradient descent approach. At each iter-
ation, 2L sets of possible cluster weights are computed. Each set of weights results
from either adding or subtracting a small value ε from one of the weights in the
current weight vector and then re-normalizing the weights such that they add to 1.
The set of weights giving the lowest value for l is then adopted as the new set. This
process continues until a minimal change in l results.

4.3 Cluster Model Training

The method in which the acoustic models are trained for each speaker cluster has
a significant impact on both the recognition accuracy of the adapted models as well
as the computation required to perform recognition. It is also intimately related to
the cluster combination or selection algorithm being used. By altering the way the
cluster models are trained, we are changing pl(~x|p) in Equations 4.1 and 4.4.

4.3.1 Standard ML Training

In standard ML training, the Gaussian component means and variances are trained
to maximize the likelihood of the cluster data. This is accomplished using the EM al-
gorithm. The number of components in each model is determined using Equation 2.5,
except that the maximum number of components is sometimes reduced.

4.3.2 Weight Adaptation

When using cluster weighting, the size of the resulting adapted acoustic models is
of particular concern. If each of the cluster models is as large as the SI model,
the resulting adapted acoustic models will require approximately L times as much
computation as the SI models (where L is the number of clusters.) However, if
the cluster models share the same Gaussian components, this problem is avoided.
Training cluster models using weight adaptation consists of adapting only the weights
of the Gaussian components of the SI model for each cluster. That is, for cluster l,
for each class p, a set of component weights ~c

(p)
l is chosen such that:

38



~c
(p)
l = argmax

~c
(p)
l

~c
(p)
l · ~psi(X

(p)
l |p) (4.9)

Here ~psi(X
(p)
l |p) represents the vector of Gaussian component distributions from

the speaker independent model for class p and X
(p)
l is the set of observations for class

p from cluster l. This maximization can be completed using the EM algorithm [9].
The resulting probability distribution for cluster l and class p can be expressed as
follows:

pl(~x|p) = ~c
(p)
l · ~psi(~x|p) (4.10)

Substituting this into Equation 4.4:

pscw(~x|p) =
L

∑

l=1

wl(~c
(p)
l · ~psi(~x|p)) (4.11)

Grouping terms, we obtain:

pscw(~x|p) = (
L

∑

l=1

wl~c
(p)
l ) · ~psi(x|p) (4.12)

From this final equation, we see that creating the adapted acoustic model is simply
a matter of assigning new weights to the speaker independent model components.
These new component weights, ~c

(p)
si , are computed by linearly combining the cluster

component weights according to the adaptation weights:

~c
(p)
si =

L
∑

l=1

wl~c
(p)
l (4.13)

4.3.3 Model Interpolation

The best cluster approach allows each cluster model to be the same size as the SI
model without creating a computational problem. However, using the best cluster
requires that each of the models be very robust. If not, an error in the model selection
process or the selection of a model corresponding to a cluster with very little data will
result in suboptimal performance, potentially even worse than that of the SI model. In
another light, while cluster weighting achieves robustness by making a “soft” decision,
the best cluster approach relies on the robustness of the cluster models themselves.

This robustness is achieved through model interpolation. With model interpola-
tion, a set of small acoustic models is trained for each cluster. These models are then
interpolated with the SI model. For those classes for which a large amount of training
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data is present in the cluster, the cluster model is weighted more heavily. For those
with a smaller amount of training data present in the cluster, the cluster model gets
less weight. The exact formula for these weights is presented in [20] and shown here:

pint(~x|p) =
N

(l)
p

N
(l)
p + K

pl(~x|p) +
K

N
(l)
p + K

psi(~x|p) (4.14)

Here pint(~x|p) is the final model density for class p, pl(~x|p) is the PDF of the model
for class p trained on cluster l, and psi(~x|p) is the PDF of the SI model for class p.

N
(l)
p is the number of examples of the class p found in cluster l and K is an empirically

determined interpolation factor.

4.4 Experiments and Results

4.4.1 Experimental Setup

Recognition experiments were conducted using both gender and LSLR clustering. For
gender clustering, three clusters were used, one containing all the males in the training
data (13,030 calls, 59,076 utterances), one containing all the females (3,297 calls,
14,386 utterances) and one containing all the children (1206 calls, 7034 utterances.)
The five clusters created using the selected vowel set, shown in Table 3.6, were used
in the experiments using LSLR clusters.

Unless otherwise noted, recognition was performed on each utterance in the test
set, using up to 5 of the same speaker’s utterances to adapt. The utterance being
recognized was not included in the adaptation data. The best path obtained using
the SI model was used as the transcription for the adaptation data, making the task
unsupervised.

4.4.2 Best Cluster

Model Training

For the experiments using the best cluster approach, models were trained using both
standard ML training (described in Section 4.3.1) and model interpolation (described
in Section 4.3.3.) The standard ML models had a maximum of 50 Gaussian compo-
nents per class. In the case of model interpolation, a set of SI models were trained
with a maximum of 40 components per class. These were interpolated with cluster
models with a maximum of 10 components per class.
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Results

The results of the experiments using the best cluster approach are shown using gender
clusters and LSLR clusters in Figures 4.2 and 4.3. Looking at the results obtained
using standard ML training, we see that, in some cases, recognition actually gets
worse after one adaptation utterance. This can probably be attributed to the fact
that, when adapting with only one utterance, it is more likely that a suboptimal
cluster will be chosen.

This problem seems to be mitigated by using interpolated models. The use of
interpolated models improves the recognition accuracy for speakers outside of a par-
ticular cluster. This means that recognition results are not as affected by an incorrect
cluster choice. Still, the interpolated models are focussed enough to produce WER
improvements after adaptation.

Tables 4.1 and 4.2 show WER’s for the standard ML and interpolated cluster
models on the test data. We see that the interpolated models perform better not
only on speakers of the gender corresponding to the cluster, but also on speakers of
different genders. This supports the hypothesis that, when using interpolated models,
WER is not as affected by an incorrect cluster choice.

Speaker Gender
Model Male Female Child
Male 13.2% 35.0% 66.1%

Female 30.1% 17.0% 30.8%
Child 42.6% 25.3% 29.2%

Table 4.1: WER for speakers of different genders on standard ML cluster models.

Speaker Gender
Model Male Female Child
Male 12.1% 23% 41.9%

Female 14.3% 17.1% 29.2%
Child 14.1% 18.5% 27.3%

Table 4.2: WER for speakers of different genders on interpolated cluster models.

4.4.3 Maximum Likelihood Cluster Weighting

Model Training

Experiments using maximum likelihood cluster weighting were conducted using mod-
els trained using standard ML training as well as models trained using weight adap-
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Figure 4.2: Recognition results using best cluster with gender clusters. Cluster models
were trained in the standard ML manner and using model interpolation.
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Figure 4.3: Recognition results using best cluster with LSLR clusters. Cluster models
were trained in the standard ML manner and using model interpolation.
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tation (described in Section 4.3.2.) When using standard ML training, each set of
cluster models had a maximum of 12 Gaussian components per class when using the
3 gender clusters and a maximum of 9 components per class when using the LSLR
clusters. Two SI models, one with a maximum of 12 components per class and one
with a maximum of 9 components per class were also trained. Smaller standard ML
models were necessary so that the final adapted models would be comparable in size
to the SI models. When using weight adaptation, SI models with a maximum of 50
components per cluster were trained. Weight adaptation was then used to create each
of the cluster models.

Results

Figures 4.4 and 4.5 show results using maximum likelihood cluster weighting with
gender and LSLR clusters. We see that, as was the case when using BC with models
trained in the standard ML manner, a degradation in performance sometimes oc-
curs after the first adaptation utterance. This is probably because one adaptation
utterance is not enough data to robustly estimate the cluster weights.

Using the weight adapted models results in better performance than when using
models trained in the standard ML manner, except on child speakers using gender
clusters. There are two possible reasons for this. First, while the same number of
cluster weights are being determined when using the weight adapted models, the
adapted model’s Gaussian component weights are more restricted. When using the
standard ML models, any Gaussian component in any model in a particular cluster
is tied to all the Gaussian components in that cluster. However, when using weight
adapted models, a components weight is tied to all the Gaussian components in all

the clusters. This added restriction allows for more robust adaptation of the weights.
Second, because only the component weights are being adapted for each cluster model,
training involves fewer free parameters, and the cluster models can be more robustly
trained.

The fact that better performance is achieved on children using the standard ML
models when using gender clusters is notable. One possible explanation is that, in
this case, many more Gaussian components are dedicated to child speakers than in
the SI model. While only about 9% of the training data consist of children, one third
of the Gaussian component means in the adapted model will have been determined
by the child speakers.
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Figure 4.4: Recognition results using maximum likelihood cluster weighting with
gender clusters. Cluster models were trained in the standard ML manner and using
weight adaptation.
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Figure 4.5: Recognition results using maximum likelihood cluster weighting with
LSLR clusters. Cluster models were trained in the standard ML manner and using
weight adaptation.
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4.4.4 Minimum Classification Error Cluster Weighting

Model Training

Minimum classification error (MCE) cluster weighting was applied only to the case
when the cluster models were trained using weight adaptation and gender clusters.
The same weight adapted models were utilized as were used in the ML case.

Tuning γ and η

As is described in Section 4.2.2 and shown in Equations 4.7 and 4.8, using the MCE
criterion for cluster weighting requires that two parameters be estimated, γ and η. γ

was chosen to be .001. A small fractional value was necessary due to the very small
log probabilities obtained for each N-best hypothesis. It was found that performance
on the development set remained the same for values of η greater than .8, so values of
η between .1 and .8 were then considered. The WER’s averaged over males, females
and children for these values are shown in Figure 4.6. From these results, .35 was
chosen for use in the experiments.
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Results

Experiments were run under four different test conditions: supervised instantaneous,
unsupervised instantaneous, supervised rapid and unsupervised rapid. Here, instan-
taneous refers to the case when the same utterance was used for adaptation as for
recognition. Rapid refers to the case when a different utterance was used for adapta-
tion. All the MCE experiments used only one adaptation utterance.

Figure 4.7 shows the relative reductions in WER obtained under the 4 different
test conditions. We notice that, in all cases except rapid adaptation on the children
speakers, performance degrades when going from supervised to unsupervised adapta-
tion. This is to be expected due to mistakes in the best path used for adaptation in
the unsupervised case.

We also notice that the difference in WER reduction between the supervised and
unsupervised cases is larger for the instantaneous adaptation experiments. This may
be because, in the instantaneous case, adapting using an incorrect transcription works
directly to increase the likelihood of the incorrect transcription given the adaptation
data. However, the negative impact this has on recognizing utterances different from
the adaptation data comes from the indirect effect of class models poorly adapted due
to the incorrect transcription.

We notice that, in the case of males and children, moving from supervised in-
stantaneous adaptation to supervised rapid adaptation results in worse performance.
This makes sense given that adaptation in the instantaneous case is focussed exactly
on those acoustic models that are used to recognize the utterance. It is unclear why
a decrease does not occur for the female speakers.

Using Figure 4.8, we can also compare the results of unsupervised rapid adaptation
using ML cluster weighting with the results obtained using MCE cluster weighting.
We see that using the MCE criterion leads to lower WER’s for females and children,
while performance for males remains the same. These results are reasonably consistent
with work done using discriminative criteria with MLLR [30, 18]. In Wallhoff, et al, a
variant of MLLR using the MMI criterion resulted in an improvement using supervised
adaptation [30]. Gunawardana and Byrne also used the MMI criterion with MLLR,
achieving improvements in the supervised case [18].

Gunawardana and Byrne ran experiments in the unsupervised case as well, and, as
was the finding in this work, this resulted in a degradation in comparison to supervised
adaptation. However, the degradation seen in that work lead to WER’s higher than
when using standard MLLR, while the unsupervised results obtained here are still
superior to those obtained with ML. This may be attributed to the much smaller
number of parameters being adapted in this work. This allows the parameter space
to be searched more thoroughly and also allows for more robust estimation in the
presence of a small amount of data.
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Figure 4.7: Relative reduction in WER for instantaneous and rapid adaptation in the
supervised and unsupervised cases using MCE criterion.
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Figure 4.8: Relative reduction in WER using unsupervised rapid adaptation with ML
and MCE criteria, both using one adaptation utterance and weight adapted gender
cluster models.
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4.4.5 Analysis

Best Cluster vs. Cluster Weighting

Figures 4.9 and 4.10 allow us to compare the best cluster approach to EM cluster
weighting. Both figures show results using the best cluster approach with interpolated
models and maximum likelihood cluster weighting with weight adapted models.

As a first observation, we notice that neither the maximum likelihood cluster
weighting approach nor the best cluster approach is consistently superior. This is not
even the case if the clustering approach is held constant.

Looking at the children speakers, we see that, when using gender clusters, the best
cluster approach outperforms maximum likelihood cluster weighting. However, when
using LSLR clusters, the opposite is true. This is most likely because none of the LSLR
clusters consist entirely of children. This means that, when using best cluster, a single
cluster model may not represent a child speaker well. However, maximum likelihood
cluster weighting allows for the interpolation of different models. It’s possible that,
for instance, interpolating a set of models from a cluster consisting largely of females
with a set of models from a cluster with a large number of children will produce a
better set of models for a particular child speaker than the set of models corresponding
to a cluster with a large number of children alone.

In the case of gender clustering, one of the clusters consists entirely of children.
Although this cluster may not be optimal for all children speakers, the negative
impact of the robustness problem encountered when estimating interpolation weights
outweighs the negative impact of being forced to choose only one cluster.

For females, the performance of best cluster and cluster weighting are comparable
when using gender clustering. When using LSLR clusters, however, best cluster
decreases WER by up to 1.3% more than maximum likelihood cluster weighting.

Looking at the male speakers, again the performance of best cluster and cluster
weighting are comparable when gender clusters are used. However, using LSLR clus-
ters, cluster weighting outperforms best model for male speakers when less than 5
adaptation utterances are present.

The speed at which adaptation occurs is also important. We observe that, when
using 5 LSLR clusters, adaptation occurs more quickly using the best cluster ap-
proach. Using gender clusters, adaptation occurs at about the same rate for both
sets of clusters.

Gender vs. LSLR Clustering

In Figures 4.11 and 4.12 we see that neither gender nor LSLR clustering proved
consistently superior to the other. This suggests that LSLR clustering is capturing
meaningful acoustic correlations between speakers.
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Figure 4.9: Recognition results using maximum likelihood cluster weighting with
weight adapted models and best model with interpolated models. Gender clusters
were used in these experiments.
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Figure 4.10: Recognition results using maximum likelihood cluster weighting with
weight adapted models and best model with interpolated models. Clusters were
created using the LSLR distance metric.
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Examining Figure 4.11, we see that after 3 adaptation utterances, using 5 LSLR
clusters results in 3.2% more relative reduction in WER than using gender clusters.
Children comprise only about 9% of the training data. It may be that the flexibility
provided by having more clusters allows better adaptation to those speakers least
represented in the training data.

Again using Figure 4.11, we can compare the speed of adaptation when using 3
gender clusters to that achieved when using 5 LSLR clusters. In both cases ML cluster
weighting is used. We see that, ignoring which set of clusters results in better overall
performance, it takes longer to reach the minimum WER when using the 5 LSLR
clusters than it does when using the 3 gender clusters. This makes sense, given that
using 5 clusters requires the estimation of 6 parameters (a weight for each cluster
model and the SI model), while using 3 clusters requires the estimation of only 4
parameters. Robustly estimating fewer parameters requires less adaptation data.

4.4.6 Conclusions

From the recognition experiments performed in this section, we can draw five main
conclusions. First, when using the best model approach, using interpolated models
results in significant improvement over using standard ML trained models. Interpo-
lated models provide robustness to compensate for the hard decision made when the
best cluster is chosen.

Second, when using the cluster weighting approach, weight adapted cluster models
are superior to standard ML cluster models. The weight adapted models lead to more
constraint during the weighting procedure, while weight adaptation also allows for
more robust training of the individual cluster models.

Third, using an MCE criterion for cluster weighting results in small improve-
ments over the ML criterion. Although improvements are greatest using supervised
instantaneous adaptation, gains are still seen in the unsupervised rapid case. This is
consistent with other work done using the MCE criterion for adaptation [30, 18].

Fourth, neither best cluster nor cluster weighting performs consistently better than
the other. While cluster weighting achieves higher reductions in WER on children
using gender clusters and on females using LSLR clusters, best cluster achieves higher
reductions on children using LSLR clusters and on females using gender clusters.
Because of its simplicity, it would seem that, in many applications, best cluster would
be preferable.

Finally, LSLR and gender clustering perform similarly overall. However, results
on child speakers, shown in Figure 4.11 suggest that, by allowing for more than 3
clusters, LSLR clustering provides added flexibility that results in better adaptation
for children speakers. On the other hand, Figure 4.11 suggests that increasing the
number of clusters decreases the speed of adaptation.
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Figure 4.11: Recognition results using 3 gender clusters and 5 LSLR clusters. Both
cases used EM cluster weighting with weight adapted models.

54



1 2 3 4 5
10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

35

Children

Females

Males

# of adaptation utterances

W
E

R

SI
Gender Clusters
LSLR Clusters

Figure 4.12: Recognition results using 3 gender clusters and 5 LSLR clusters. Both
cases used best model with interpolated models.
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Chapter 5

Conclusion

5.1 Summary

In Chapter 3, we explored three different distance metrics for automatic speaker
clustering. We showed that two of these metrics, the feature mean distance and
average class feature mean distance, performed poorly on the Jupiter training corpus.
This was due to the small amount of data available for each speaker. In the case of the
feature mean distance, this led to feature means that were skewed by the phonetic
content of each speaker’s data. In the case of the average feature mean distance,
the lack of per-speaker data led to pairs of speaker’s who did not have enough data
for the same classes to allow for a reliable measure of distance between them. By
transforming a small set of vowels from each speaker to a generic phonetic space,
then averaging the transformed feature vectors, the LSLR characteristic distance was
able to overcome this problem. With this metric, clusters were created that showed
separation of speakers of different genders.

In Chapter 4, various strategies applicable to SCW were described and evaluated.
This included the evaluation of gender and LSLR clustering in the context of SCW, as
well as approaches to cluster combination and selection and cluster model training.
Using the best cluster approach to model selection with model interpolation and
gender clustering resulted in a 9% relative improvement for female speakers, and
a 10% relative improvement for children speakers after 1 adaptation utterance. A
16% improvement was obtained for child speakers and 10% improvement for females
using 5 LSLR clusters with maximum likelihood cluster weighting and 5 adaptation
utterances.

Overall, LSLR clustering yielded results comparable to those obtained using gen-
der clusters. The superior performance of LSLR clustering on children after 5 adapta-
tion utterances suggested that, by allowing the creation of a larger number of clusters,
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those speakers most different from the majority in the corpus could be better adapted
to. However, the larger number of clusters also lead to longer adaptation times.

The important relationship between the cluster model training algorithm and
the cluster combination or selection algorithm was also demonstrated in Chapter 4.
Interpolated cluster models, by more robustly modeling the speaker clusters as well
as softening the best cluster hard decision, performed consistently better with the
best cluster approach than standard ML trained models. Weight adaptation proved
superior to standard ML training when using the cluster weighting approach, by
allowing the creation of larger cluster acoustic models without increasing the size of
the final adapted model,

Finally, it was shown that using an MCE criterion for cluster weighting yielded
slight improvements over using an ML criterion. Specifically, an additional 2% relative
improvement for females after 1 adaptation utterance was obtained using the MCE
criterion with gender clusters. Performance for males and children remained the same.

5.2 Future Extensions

One straightforward direction for future work involves improving the major steps in
SCW. LSLR clustering uses only vowels, and does not weight the vowels according
to their speaker-discriminative power. An approach where more of a speaker’s data
is used for clustering and where different acoustic classes are weighted according to
how well they characterizes a speaker could result in better speaker clusters.

Different cluster model training procedures could also be tried. MLLR or MAP
could be used to train acoustic models for the best cluster approach. Using the cluster
weighting approach, cluster model means could be adapted instead of component
weights. If the model weights and variances were kept constant in the adapted acoustic
models, this would make SCW look more like CAT or eigenvoices.

Another possible direction for future work would be to extend SCW for longer
term adaptation. This could be done by systematically increasing the number of
clusters as the amount of adaptation data increases. It could also be accomplished
by combining SCW with MLLR or MAP. One possibility is to adapt the individual
cluster models using one of these approaches before performing cluster weighting.

The LSLR characteristic distance metric could also be used as a point of de-
parture for future work. The feature normalization technique used to create LSLR
characteristic vectors could be used in other contexts. One possible application is
in speaker identification. By transforming all speaker data into a generic class (or
generic classes), it may be possible to reduce both the amount of enrollment data as
well as the amount of data needed for speaker identification.
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