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Abstract

This thesis seeks to improve our understanding of the effects of prosodic and temporal
variations on a speech recognition system by acquiring a tagged corpus of natural
emotional speech elicited in human-computer interaction and developing a robust
set of features to quantify acoustic correlates of emotion. A focus will be given
to frustrated emotional speech since the accuracy using just this emotional state has
been found to do a better job at discriminating between emotional and non-emotional
speech [1], and frustration also leads to an unpleasant experience for the user.
Three corpora are used to investigate properties of emotional speech and identify
features to be used during classification and recognition tasks. Two of the corpora,
MERCURY and Lockheed, consist of utterances that occur naturally during a routine
task. The Linguistic Data Consortium corpora of Prosody and Emotional Speech,
representing the third corpus, is comprised of utterances spoken by actors. Both
elicited and non-elicited speech are used to provide a comparative study of emotion.
Using parallel utterances as the basis of our investigation, an analysis of speech
variations caused by emotion was performed using spectrograms and prosody-based
tools. Six prosodic features were proposed to be good discriminators of emotional
speech. Using data collected from a real-life scenario, the classification experiment de-
termined that average pitch was the best at discriminating between emotional states,
while maximum pitch was best for discrimination success using acted data.
Human-listener studies are presented to assess the labeling method used for tag-
ging the emotional utterances, and to make comparisons between human and com-
puter emotion recognition. Finally, a comparison of results from both the real and
acted data supports our hypothesis that results reported on acted data may be mis-
leading since non-elicited emotional speech is more subtle and harder to detect.
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Chapter 1

Introduction

The success of a speech recognizer depends mainly on two factors—accuracy and ro-
bustness. That is, in order to perform an intended task, speech recognition systems
must be able to achieve low error rates and then maintain them under varying condi-
tions. However, variations among speakers often pose problems for speech recognizers
and make it difficult to maintain low error rates.

Variations in an individual’s speaking style and emotional state may also degrade
recognition performance. Exaggerated pronunciation of specific phones or syllables,
also known as hyperarticulation, has been a topic of study as it relates to emotion
[1]. Often users who are not understood by a dialogue system tend to hyperartic-
ulate misrecognized words or phrases, usually leading to further misrecognition and
frustration.

In order to build dialogue systems that are robust to speaking style variations,
research on speech and emotion becomes an important topic of study. With the in-
formation gleaned from research on emotion, dialogue systems could assist frustrated
users by offering a response that guides the user to speak neutrally so that the desired
task can be achieved, suggesting an alternative mode for entering data, or transferring
the user to a human operator. The latter would be extremely advantageous within
call centers where a system’s response could mean the difference between maintaining
and losing a customer.

This thesis will identify characteristics of emotional speech and propose a set of
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features for maximum discriminability, with the goal of incorporating these features
into a dialogue system. This objective will be pursued by visually inspecting emo-
tional speech using spectrograms and prosody-based tools, computing measurements
for observed physical features, and finally running classification experiments utilizing

these features.

Emotion can be communicated through verbal and non-verbal cues. Using verbal
cues, certain word choices such as “bored” or “frustrating” may be used to indicate a
speaker’s emotional state. Non-verbal communication may include facial expressions,
body gestures, and changes in prosody within an utterance. For example, acoustic
features such as a sigh or an increase in the total energy of an utterance may also
suggest that a speaker is bored or frustrated, without the explicit semantics being

used.

There are several challenges involved in developing systems to recognize emotion
in speech. One challenge that often arises is finding an accurate description and
annotation for the expressed emotion. For example, one individual may describe a
perceived emotional state as frustration while another may choose to describe the
same emotion as irritation. While both labels may indicate displeasure of the user,
these differences make quantifying emotion very difficult. Across interdisciplinary
domains, how emotion is characterized varies greatly. Another challenge is the collec-
tion of emotional speech. Real-life scenarios, which are ideal for collecting emotional
data, are often difficult to monitor, and one is faced with the task of screening large
quantities of collected data for those few utterances that are emotionally charged. Fi-
nally, after an expressed emotion is decoded within an utterance, the dialogue system
must be able to integrate information about the user’s emotional state and adjust
accordingly.

In the remainder of this chapter, an overview of emotion research and data collec-
tion techniques will be presented. Section 1.1 covers prosody and gives some statistics
on the recognition performance of emotional speech in the MERCURY corpus. Section
1.2 presents previous work that has been done on emotion and describes techniques

that are employed to collect emotional data. Section 1.3 details the thesis objective
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followed by an outline of the chapters of this thesis in Section 1.4.

1.1 Background

Prosody is generally thought of as the organizational structure of an utterance. In
human-human communication, from a listener’s point of view, prosody is associated
with the perception of a speaker’s intention based on acoustic aspects of speech, i.e.,
duration, pauses, fundamental frequency (Fp), and amplitude. The speaking style
and emotional state of an individual can also affect the prosody of an utterance. In
the context of automatic speech recognition, the emotional state of a user significantly
affects the prosody which in turn also affects the recognition performance. In fact,
for a frustrated emotional state, the effect is often performance degradation.

This research is confined to investigating the information within the speech signal
that corresponds to emotion. A study of the acoustic correlates and changes in the
prosodic parameters is presented as a means of characterizing emotional speech. It is
well known that an individual exhibiting frustration alters his or her speaking style
in a way that can have adverse effects on speech recognition, subsequently leading to
further frustration [29, 30, 47]. A vicious cycle ensues, and neither the user nor the
system can carry out the desired task.

For example, preliminary experiments on MERCURY suggest that the recognition
performance degrades from 15% to almost 33% for neutral and frustrated emotional
states respectively. That is almost a 120% increase in word error rate when the
emotional state of the user changes from neutral to frustrated. Similarly, there is
a 67% increase when comparing the emotional state of neutral and happy speech.
The degradation of the recognition performance for emotional speech, whether as a
result of a pleasant or unpleasant experience by the user, causes serious problems
for the speech recognizer. This thesis, then, seeks to do the following: (1) explore
those properties, primarily prosodic, that may be useful in detecting emotion, and (2)
investigate acoustic correlates of emotion that influence speech degradation. Ideally,

developing a system that can detect the emotional state of a user and adjust its
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behavior accordingly will indirectly lead to better recognition by changing the user’s

behavior and reducing frustration.

Figure 1-1 displays the spectrograms of three utterances with the same linguistic
content but different emotional states spoken consecutively by a female user in the
MERCURY domain. The utterance spoken is “february twenty sixth”. The spectro-
grams show an increase in frustration, with (a) being the non-emotional utterance
and (c) representing the most frustrated utterance. The spectrogram for the non-
emotional utterance shows that the overall energy is much less than that of the highly
frustrated utterance. There also appears to be a lengthening of the vowels as the
emotional state changes. As shown in the last spectrogram, there is also a noticeable
increase in the pause duration for the emotional utterance. It is hoped that these vi-
sually observable changes within repetitive utterances with different emotional states

will aid in characterizing and eventually detecting emotion within speech signals.

In other literature, the recognition accuracy of emotional data is noted to be about
70% on average [33, 34] while an accuracy of about 60% is achieved for automatic
classification based on prosodic models [40]. While much of the literature accepts
the recognition accuracy to be between 60-70% for emotional speech, there are no

standard corpora, making it difficult to compare results across experiments.

1.2 Previous Work

Much of the research that has been done on emotion recognition has been in the fields
of psychology and linguistics. Research on the integration of prosody and emotion
into more sophisticated human-computer systems has only occurred within the past
few years. While much of the current research has acknowledged the importance
that prosodics play in detecting emotion, there does not appear to be any general
consensus on which features may be good predictors of emotional state, and whether

other features not typically associated with prosody may also play a role.
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Figure 1-1: Spectrograms of three utterances with the same linguistic content but
different emotional states for the phrase “february twenty sixth” spoken by a female
speaker. The differences in the neutral utterance (a) and the highly frustrated utter-
ance (c) supply a great deal of information. The frustrated utterance illustrates an
increase in energy and the duration of vowels and internal pauses.
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1.2.1 Research Approaches

Previous research into emotional speech focuses on either recognizing emotion or
expressing emotion and has been undertaken with differing motives. Some researchers
take the social science approach whereby basic human needs are examined and then
systems are developed to help meet those needs [2, 9]. Others investigate emotion to
educate users of a system by providing feedback or mirroring their present emotion

and providing devices to help users classify surrounding emotions[5, 21].

Researchers at the MIT Media Lab have explored several systems that recognize
and respond to emotion and help the user increase self-awareness of his emotional
state [35, 37]. The HAL 9000 computer was created as an affective computer and
has abilities that influence an individual’s emotions. Other systems that were devel-
oped were designed to help children and are used for educational and entertainment

purposes.

Holzapfel and his colleagues are doing work that focuses on the cognitive and
physical aspects of recognizing emotion [18]. To investigate the physical aspects of
emotion, the observed emotion is obtained by recording speech, facial expressions, and
through sensors in contact with a person. The Bayes Point machine [41] is another
example of evaluating a user’s emotion using sensors. This research is based on the
hypothesis that users interact via a mouse to apply excess pressure when difficult
events are encountered. Eight pressure sensors are mounted on a computer mouse
and measurements are taken from one of two distinct regions, with or without a
usability bug. This research is encouraging and emphasizes that human emotions

impact even simple common tasks.

Different research approaches for recognizing emotion are also accompanied by
different classification models. A classification model that uses specific features from
the speech signal to recognize the user’s emotion is needed if any meaningful char-
acterization is to be obtained. For this project, only two target emotional states,
frustrated and non-emotional (neutral), were used for the purpose of emotional char-

acterization. These two states were chosen since they are of greatest relevance to our
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intended application.

1.2.2 Data Collection Techniques

Recognition rates are heavily dependent on the techniques used in data collection.
Previous work has been done primarily using elicited emotions since data collection
of real-life scenarios is often very difficult to monitor and acquire. As a result, more

creative techniques for simulating and collecting emotional data have been employed.

Experienced Actors

The most common technique for collecting data for emotional studies is using a con-
trolled group of experienced actors to simulate a specific emotional state. The same
sentence and test conditions are generally used to minimize non-emotional variations.
Using experienced actors often produces the greatest amount of emotional data since
the only limitation involves the actor’s ability to mimic a particular emotional state.
This technique, although ideal for areas of research in speech synthesis, is not optimal
for speech recognition, where testing conditions usually include natural emotions that
are exhibited differently by different speakers and that are likely to be much more
subtle.

Wizard-of-Oz

The Wizard-of-Oz (WOZ) scenario appears to be a good compromise between the
availability of data and a real-life setting. In this data collection technique, users are
presumably naive; that is, they are unaware that they are not communicating with a
real computer system. Typically, WOZ experiments frequently reject or misrecognize
user utterances in order to evoke a particular emotional state. Consequently, WOZ
experiments can be a valuable tool for evaluating peculiarities and designs in human-

computer dialogue systems [12].
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Real-life Settings

The goal of the preceding techniques is ultimately to model normal speech of a human
being in a real-life setting. As stated earlier, there are difficulties in acquiring large
amounts of emotional data in real-life scenarios. By switching to different applica-
tions, the emotional state as well as the targeted users may change. For example,
monitoring a user’s emotional state during the middle of rush hour would conceiv-

ably be much different than monitoring a subject’s emotional state during a birthday

party.

1.2.3 Discussion

Although researchers have begun to study the effects that emotion has on recognition
performance, much of the published results have been obtained using elicited speech.
While the results give some idea of the work that still needs to be done in this field, it
is also misleading since non-elicited emotional speech is more subtle and has its own
challenges. For example, an actor portraying a frustrated emotional state will usually
exaggerate the fundamental frequency and energy of his speech so that the emotion
present is obvious, but in a real-life scenario a user may become so frustrated that he
lowers his fundamental frequency as if he is bored or even laughs. Now the emotional
state that is present becomes harder to detect because the expressed emotion is similar
to the emotional states of boredom or elation.

Techniques also vary making it difficult to compare classification and recognition
results. As yet, there are no standard corpora used for emotion research. Researchers
have used corpora that vary from movie segments to non-professional actors, such as
students, to perform classification and recognition experiments. Because corpora use
different vocabularies and systems use different language models, results are not as
easily comparable.

Also, much more attention has been given to developing human-computer inter-
faces that express emotion as opposed to developing systems that detect emotion.

Research on synthesis of emotional speech is another topic of interest for similar rea-
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sons to that of emotion recognition. The integration of prosodic information on the
front-end and back-end of the spoken language system will hopefully lead to conver-

sational systems that are more natural.

These differences in data collection, techniques, corpora and recognition systems
have made understanding and comparing emotion classification and recognition re-
sults difficult. For these reasons, there is still a great deal to be accomplished within

emotion and prosody research.

1.3 Objective

The objective of this thesis is to acquire a tagged corpus of natural emotional speech
elicited in human-computer interaction, develop a robust set of features to quantify
acoustic correlates of emotion, mainly frustration, and to improve our understanding
of the effects of prosodic and temporal variations on the speech recognition system.
To accomplish this goal, the thesis presents a comparative study of statistical results

and human listener studies.

The fundamental frequency has been recognized as an important feature in dis-
ambiguating between emotional states. Pitch detection is essential for the completion
of the thesis goals. There are several challenges associated with extracting pitch in-
formation using pitch detection algorithms. To address these challenges, this thesis
uses a continuous pitch detection algorithm that was developed within the Spoken
Language Systems group [49]. The main contributions of this thesis are a direct re-
sult of using the pitch detection algorithm to create vowel-level and utterance-level
features for investigation. However, since an in-depth discussion on pitch detection is
another research topic, this thesis will only present relevant details of the algorithm

that are necessary for understanding the methodology used for this project.
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1.4 Outline

The remainder of the thesis is organized into five chapters and an appendix. Chapter
2 covers the experimental methodology. The methodology is designed to minimize any
variations within the speech signal caused by differences in speakers, gender, and lan-
guage pronunciation not associated directly with the expressed emotion. The tasks to
be performed are utterance-level emotion classification and recognition. The corpora,
pitch tracking tools, and recognition system are also presented in this chapter.

Chapter 3 covers the preliminary data analysis. We identified a significant num-
ber of situations where users repeated an utterance multiple times and sequentially
because of persistent recognition error. We decided to exploit these repeated utter-
ances to serve as the basis for understanding acoustic correlates of emotion because
they form an ideal condition of parallel utterances in terms of speaker and linguistic
content, differing only in the presumed emotional state provoked by repeated recog-
nition failure. An overview of the acoustic features used during the experiments
will also be presented. Emotional characteristics of the speech signal are examined
using spectrograms, graphical tools, and ROC curves. Training and classification
techniques are also presented. These experiments are analyzed to better understand
which parameters are most correlated with emotion.

Chapter 4 presents the human-listener studies. The design and interface of the
human listener study will be presented and analyzed. Results are presented for com-
parison with the statistical results for the acted and real data. These experiments
are analyzed to better understand the challenges associated with detecting emotion
in spoken language systems.

Chapter 5 summarizes the thesis and suggestions for future work on this project

are discussed. The appendix includes sample output from the corpora.
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Chapter 2

Experimental Methodology

Within human-human communications, recognizing emotions is a critical skill for
reasoning through life-threatening situations, integrating into social environments,
and successfully communicating a desired goal that should be achieved. Overall,
humans are very good at detecting the presence of emotion, although classifying
the specific emotion proves more difficult. While linguistic evidence may influence
a person’s decision for selecting a particular emotional state, humans are able to
perceive elicited emotion fairly accurately based merely on the prosodic cues present
in a speech signal [32]. Using this knowledge as a foundation for our research, this
thesis identifies prosodic features and investigates how variations in these parameters
affect the performance of a speech recognition system.

The goal of this thesis can only be achieved if there are some identifiable and
reliable acoustic correlates of emotion embedded within the signal characteristics.
This thesis designs an experimental method that uses parallel utterances to analyze
and identify acoustic and prosodic cues of emotion. These parallel utterances consist
of n-tuple repetitions that are structured essentially the same linguistically but differ
in their emotional state. This way, an optimal comparison can be made between the
parallel utterances by isolating the expressed emotional state.

Parallel utterances within a particular n-tuple group are spoken by the same
speaker. Speaker dependency eliminates any variability in prosodic properties due

to speaker variations. Using the results found during the data analysis, emotion
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classification and recognition tasks can be performed. The emotion classification and
recognition tasks use the SUMMIT (“Speech Understanding by Machine at MIT”) [51]
recognition system developed within the Spoken Language Systems (SLS) group.

The remainder of this chapter will cover the corpora and general methods used
in this research. A brief discussion of the pitch detection algorithm will also be
presented. Section 2.1 presents the corpora and data collection techniques. The
emotional corpora are primarily configured from the Lockheed Sea Shadow' data
although the MERCURY? data was used to verify statistical findings and investigate
linguistic features of emotion, and the Linguistic Data Consortium (LDC) corpora
of Prosody and Emotional Speech were used as a comparison between unelicited and
elicited speech.

Because our research uses repeated utterances to analyze emotional speech, an
understanding of the effects of prosodic variations on speech will be useful in de-
termining reliable features. Section 2.2 presents a general overview of prosody and
a discussion of the most recognized prosodic features is given. The pitch detection
algorithm is also presented.

Section 2.3 covers the methods used to effectively analyze the emotional charac-
teristics. A discussion of the analysis, classification experiments, and human listener
studies will be given. Section 2.4 presents the system used during the classification
and recognition tasks, and section 2.5 covers the tasks to be performed during clas-

sification. Finally, section 2.6 gives a summary of the chapter.

2.1 Corpora

The collection of emotional speech for building the corpora was a substantial part of
this thesis. Our study relied on two corpora, chosen primarily on the basis that the

emotion under investigation was not intentionally elicited. The corpora were collected

YA corpus provided by Lockheed Martin. Details about the ship and the
program surrounding its creation can be found at several websites, including
http://www.globalsecurity.org/military /systems/ship/sea shadow.htm

2A corpus of human-computer dialogues in a flight reservation domain developed in the SLS

group.
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from real-life scenarios that naturally elicited emotion from the user. Consequently,
the corpora are invaluable in emotion research. During the latter part of this thesis,
the LDC corpora of Prosody and Emotional Speech were used to compare results
between unelicited and acted speech. The amount of data and emotional utterances
used during this research is summarized in Table 2.1.

Data collection, in general, is no easy task. In the area of emotion research, data
collection is even more laborious because this topic of study is relatively new, often
leaving the data collection the sole responsibility of the researcher, especially if a study
of emotion produced in real-life situations is desired. The labeling of a sentence as
emotional is a subjective process, and is not consistent among different listeners, as
will become evident in the chapter on listener studies.

This thesis focuses primarily on differentiating between frustrated and neutral
emotional states because understanding these two states would arguably lead to de-
signing better spoken dialogue systems. Frustration is an emotional state that is
also of interest to commercial companies because of the injurious threat that losing
a customer poses when misrecognition occurs repeatedly. Focusing on characterizing
the acoustic and prosodic properties of frustrated speech will then hopefully lead to
insights about the difficulties and issues that should be addressed when dealing with

emotional speech.

2.1.1 Mercury Data

The first corpus was constructed from MERCURY, an application based on the GALAXY
architecture [45], developed within the SLS group, that allows users to arrange airline
flights and price itineraries. In many cases, the users were actually trying to arrange
a real flight itinerary; however, there were occasions where users were not making
real travel plans. Consequently, the frequency of frustrated utterances in the data
was lower than it would have been in an actual flight reservation scenario.

Data collection was done over the telephone and all data were sampled at 8 kHz.
Approximately 22,000 utterances spanning a time-frame of about one year were lis-

tened to carefully for identification of one of three emotional states: neutral, frus-
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trated, and happy. 1,674 utterances were labeled as frustrated, 38 as happy, and the
remaining utterances labeled as neutral. 120 sessions were identified as having at
least one utterance that was frustrated, 7 sessions as having at least one utterance
that expresses satisfaction, and 3 sessions were identified as a mixed session, meaning
there is at least one frustrated utterance and one happy utterance.

A number of interesting utterances that were identified in the MERCURY corpus
provided valuable insight into events surrounding user frustration. For example, some
users choose to express their emotion predominantly using linguistic cues, by using
swear words, negative constructors, and termination commands, while others modify
the prosodic features. We also observed that recognition error prompted repetition
of information. In a few cases, the repeat utterance was spoken nearly the same;
however, many users emphasized misrecognized words or altered the structure of the
utterance. By making use of this information, we were able to qualitatively assess

the effect that emotion has on recognition.

2.1.2 Lockheed Data

The second corpus was constructed from Lockheed data within a laboratory simulat-
ing being aboard the Sea Shadow. The Sea Shadow is a limited mobility platform used
to research and test advanced technologies for surface ships in the areas of propulsion,
automation, sea-keeping abilities, and reduced radar signature. The test craft was
developed under a combined program by the Advanced Research Projects Agency
(ARPA), the Navy, and Lockheed Martin Missiles and Space Company. The Sea
Shadow program began in the 1980’s. As part of its purpose to explore strategies
for reduced manning automation, a task scenario was developed to monitor multiple
events from within several domains and hopefully encourage multi-tasking. Orig-
inally, a corpus was constructed from actual speech aboard the Sea Shadow ship.
However, because the speech was recorded on the ship’s intercom microphones, many
of the waveforms were noisy, therefore making it very difficult to obtain an accurate
pitch extraction. As a result, a corpus was formed using the Lockheed lab data since

the goal of this task was the same as the data collected aboard the Sea Shadow ship.
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The Lockheed corpus was collected from 12 speakers, eleven male and one female,
covering one American English dialect. Each speaker was informed to carry out a task
scenario similar to what he or she may experience aboard the Sea Shadow ship. Sam-
ple tasks included reporting the delivery time and quantity of supplies, reporting the
status of equipment and routine maintenance, and verifying user information. Each
speaker spoke about 200 utterances for a total of almost 2,400 utterances. Of these
2,392 utterances, 268 were labeled as repeat utterances. Repeat utterances, spoken
consecutively by an individual speaker, are labeled with an appropriate emotional
state of either frustrated or neutral, and grouped by their linguistic content. Of the

repeat utterances, 124 were labeled as frustrated.

An example scenario typically carried out on the ¢ssoc (pronounced /sis” ak/)
system is shown in Figure 2-1. The CSSOC recognizer was configured from the SUMMIT

system.

2.1.3 LDC Prosody Corpus

The final corpus was compiled by the LDC and consisted of speech read by a group
of actors in various emotional states. Unlike the other two corpora, this corpus
was already tagged with an appropriate emotion and transcription, making the data

collection relatively quick and painless.

The LDC corpus was collected from 7 speakers with 14 differing emotional states.
Utterances were semantically neutral in that they consisted of only months and dates,
as in august thirteenth. The emotional states of the LDC corpus included panic,
anxiety, boredom, disgust, elated, and neutral speech. Since utterances for the Lock-
heed corpus were separated only into two emotional states, the emotional states for
the LDC corpus were also separated into two distinct emotions by collapsing similar
emotional states and eliminating others. For example, the emotions disgust, hot
anger, cold anger and dominant were collapsed into the general emotional state
frustrated. Neutral utterances were already tagged as such and were simply added

to the corpus and labeled with an emotional state of neutral.
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cssocC: | This is ¢ s s 0 ¢, now operational, over

USER: CSSOC THIS IS MAGTF FIVE

0ssoC: | Magtf five this is cssoc over

USER: STAND BY TO RECEIVE RAPID REQUEST

CssOC: | Roger, ready to recetve, awaiting precedence? over

CSSOC: | attention, alert about status update for b rats request, defer now?
USER: AFFIRMATIVE

CSSOC: | Magtf five, back to your request, Awaiting precedence? over.
cssoc: | Alert! Starboard engine water temperature is 201.

USER: SAY AGAIN

cssocC: | Alert! Starboard engine water temperature is 201.
USER: WHAT IS THE FIRE MAIN HEADER PRESSURE
USER: WHAT IS THE FIRE MAIN HEADER PRESSURE
CssoC: | Fire main header pressure is 71.

USER: SEND MY ALERT

cssoc: | I don’t understand your intention.

CssocC: | Fire main header pressure is 71.

USER: BYE

cssocC: | Goodbye Joe.

CssOC: | Magtf five, back to your request, Awaiting precedence? over

Figure 2-1: Example dialogue from the Lockheed corpus. This dialogue includes
repeat utterances that were later used to investigate acoustic and prosodic cues in
emotional speech.

2.1.4 Corpus Properties

Most of the work in this thesis was done on the Lockheed lab corpus. For the re-
mainder of this thesis, reference to any data or results should be assumed to be for

the Lockheed corpus unless explicitly noted otherwise.

Each utterance in the corpus was given 12 properties to aid in identification
and analysis. The following properties were used: tag, waveform file, speaker,
gender, call_id, length, original_orthography, orthography, artifact,
repeat, emotional state, and contains oov. The property descriptions along
with an example of the corpus output for the listed properties can be found in the

appendix.
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Corpus Total | Emotional
MERCURY 22,212 1,674
Lockheed 1,739 112
Lockheed Lab | 2,392 124
LDC 2,378 1,419

Table 2.1: List of corpora used during this research. The MERCURY and Lockheed
corpora were manually created and utterances were tagged by a single individual for
the appropriate emotional state.

2.1.5 Transcriptions

Except for the LDC corpus, the transcriptions for all corpora were entered manu-
ally after listening to each utterance. All words that were observed in the recorded
utterance were transcribed with the appropriate phonetic transcription to alleviate
issues associated with out-of-vocabulary words. For instance, some of the utterances
contained words such as “moron” and swear words. Utterances such as these were
transcribed so that a phonetic and word alignment could be obtained and the utter-
ance could be used in this research, since we needed to make use of all of the data that
were available. Table 2.2 lists the acoustic-phonetic symbols used with their ARPA-
bet symbols, and example reference expressions are provided as a reference guide for

many of the symbols used in chapter 3.

2.2 Prosody

Prosody provides additional information about the meaning or encoded message of an
utterance, whereas linguistic cues provide information about the literal content. In
general, prosody refers to the complex organization of physical, phonetic effects that
are used to express attitude and emphasis in human communication. Indeed, both
types of information, linguistic and prosodic, contribute to the correct understanding
and successful communication of a message. Prior to determining the differences
between emotional and non-emotional speech, the prosodic features of the speech

signal must be captured for analysis. This thesis focuses on investigating the prosodic
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Label | ARPAbet | Example | Label | ARPAbet | Example |

Vowels and diphthongs
v () | iy beet w uw boot
I ih bit i ux toot
ev (&l) | ey bait 2 er bird
£ eh bet @ (o) | ay bite
® ae bat o (o) | oy boy
a aa bob v aw bout
o) ao bought 9 ax about
A ah but ¥ ix debzt
o ow boat o axr butter
(§) uh book
Glides Liquids
w W way r(1 |r ray
y (§) y yacht 1 1 lay
] el bottle

Nasals
m m mom m em bottom
n n noon n en button
1 ng sing D eng Washington
I3 nx winner
Fricatives

S sea V/ z zone
$(J)) |sh she z(3) |zh measure
f f fin v v van
0 th thin 0 dh then
h hh hay
Stops
P P pea b b bee
t t tea d d day
k k key g g gain
P pcl pops b' bcl bobs
t! tcl pots d’ gecl pods
k' kcl pocks g gecl bogs
? q button r dx muddy
Affricates
&) [ecn | choke HEHIE | joke

Table 2.2: Phonetic labels for American English. The Label column lists the la-
bels used in SLS, with the corresponding IPA label in parentheses when they differ.

The ARPAbet column lists the equivalent labels in the ARPAbet ASCII phonetic
alphabet.
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properties of the speech signal in the hope that these properties will disambiguate
between emotional and non-emotional speech.

According to many research studies, there are three physical, prosodic features
that are most useful in detecting emotion—fundamental frequency, duration, and
energy[10, 27, 50]. The perceptual form of these prosodic features are pitch, speaking
rate, and loudness, respectively. This research uses and makes reference to the physi-
cal features instead of their perceptual counterparts because the physical features are
measurable parameters.

Additionally, the fundamental frequency has been recognized as the most impor-
tant prosodic feature in distinguishing between emotional states [43]. Consequently,
detecting the fundamental frequency then becomes an essential step in the analysis
of prosody and emotion in speech signals. One way to accomplish this is by using a

pitch detection algorithm.

2.2.1 Pitch Detection

This thesis uses a continuous pitch detection algorithm (CPDA), which was designed
specifically for prosodic modeling applications for telephone quality speech[49]. The
pitch estimation method is based on the harmonic matching approach [16], which uses
the relationship of harmonics being spaced a constant distance from the fundamental
on a log frequency scale, and a dynamic programming search technique. The dynamic
programming search finds a pitch value for every frame, including unvoiced regions. In
our research, a segmentation of the waveform was obtained using a speech recognition
system, and prosodic features from the vowel segments are analyzed.

Figure 2-2 shows the Fj contour overlaid on a spectrogram for an utterance from
the Lockheed corpus. As shown in the figure, the fundamental frequency is signif-
icantly weaker than the harmonics and may visually disappear so that an accurate
pitch estimation depends on proper utilization of the higher harmonics®. To better

assess the pitch tracker, its output is doubled so that it should coincide with the

3The weak fundamental is due to a high-pass filter in the telephone handset.
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B T Transcriplion View

(d) | | m ae gcldel| d ae a3 | | 2 ay LR aw tel =

( e) maghf Elon Sok

Kl I
[ Previous Mext Me]ﬂay Quit Sove|Bevert Utterance: dchacon 003 _root_djm_011 Uttarance State: neutral Time: Frequency:

Figure 2-2: (a) waveform, (b) wide-band spectrogram, (c) narrow-band spectrogram
in logarithmic frequency scale with pitch extracted using CPDA, (d) phonetic align-
ment, and (e) word alignment for the utterance “magtf (pronounced /maeg’ deef/)
five out” spoken by a female speaker.

second harmonic. Therefore, all pitch estimations must first be halved for analysis
purposes. Also, notice that the chosen Fj path during unvoiced regions and frication
is random and scattered. These values are not meaningful, but are a reflection of the
fact that the algorithm always proposes a value for Fj.

Using this visual representation as a guide, changes in the prosodic parameters
within a repeat n-tuple could be observed initially and then later quantitatively an-
alyzed using statistical analysis. Once the pitch estimation was determined, the
extracted pitch values allowed pitch contours to be plotted so that any differences
within repeat sets were emphasized.

For example, in Figure 2-3, the fundamental frequency for the utterance “defer”
spoken on three different instances, each consecutively following the other, is plotted.
These three utterances form a triple repeat set. The first utterance has a higher overall
fundamental frequency at the onset of the /3/ in “defer” (0.2 seconds in the figure).

Furthermore, the first utterance, which is also designated as the neutral utterance, is
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shorter than the more frustrated utterances or the utterances immediately following
it. This would indicate that there is a decrease in the speaking rate as the utterance
is repeated. In more severe cases of vowel or utterance lengthening, the user may be

hyperarticulating words, which would certainly lead to performance degradation.
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Figure 2-3: Fundamental frequency contours of the utterance “defer” spoken three
times, sequentially by a male speaker. The /3v/ of “defer” begins at about 0.2 seconds.

2.3 Methods

Using the parallel utterances as the basis for this research, several methods were uti-
lized to analyze the acoustic and prosodic cues for emotional speech. First, a visual
inspection of the waveform was done to identify specific features of emotional speech
by comparing different parallel utterances with differing emotional states. Second,
a statistical analysis was performed using the features that were visually observed.
Next, classification experiments were conducted to test how well our algorithm dis-

criminated between the emotional and non-emotional speech using the extracted fea-
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tures. Finally, a human listener study was conducted to assess the reliability of the
emotional labels and to provide a comparison to the classification results. These

methods will be described in more detail in Chapter 3.

2.4 System

The classification and recognition tasks are configured using the SUMMIT system.
SUMMIT is an automatic speech recognition system that utilizes acoustic models,
language models, and pronunciation models to determine the best hypothesis for
a spoken utterance. Unlike many of the current speech recognition systems which
use hidden Markov models, the SUMMIT system is segment-based; that is, it focuses
on phonetic segment boundaries corresponding to specific acoustic events to extract

features.

2.5 Tasks

For the classification and recognition tasks, most of the features were characterized
initially with respect to the vowels in the signal. Emotion classification involves
determining the emotional properties within the utterance, in particular the vowel
segments, given the signal and phonetic alignments. Classification, which also involves
acoustic modeling and feature extraction, is dealt with during the training phase of
the experiment. Emotion recognition consists of determining the emotional state of
an utterance by utilizing the acoustic models and combining classification results. For
this thesis, classification was a binary decision, i.e., an utterance was recognized as

either possessing emotion, frustration in our case, or not possessing emotion.

2.5.1 Feature Extraction

The primary goal of feature extraction is to determine a set of features that will max-
imize the differences among different classes. Six prosodic features were extracted

during the classification and recognition tasks. These prosodic features were ini-
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tially computed as vowel-level features and then later manipulated to corresponding
utterance-level features.

The six features investigated for maximum discrimination were average pitch,
average energy, maximum pitch, pitch movement, average vowel duration, and the
difference between the maximum pitch value in the first and last vowels in the ut-
terance. Of these features, one was related to the extrema of the utterance, three
were averages, and the remaining two were features associated with how the pitch
moved throughout the utterance. The classification system uses linear discriminate
analysis (LDA) to determine which features best discriminate between emotional and

non-emotional utterances. These features will be defined in more detail in Chapter 3.

2.5.2 Evaluation

The evaluation of the classification and recognition experiments is based mainly on the
error rate as it relates to the threshold value that was computed. This thesis focuses
more on identifying the acoustic correlates of an emotional utterance as opposed to the
more challenging task of improving speech recognition performance. Improvements

in recognition performance will hopefully be undertaken in the future.

2.6 Summary

In this chapter, the experimental methodology is presented as an approach for iden-
tifying and investigating linguistic and prosodic features that are correlated with
emotion. Three corpora are highlighted, with their data collection, transcription
techniques, and corpus properties also being mentioned. A general overview of the
continuous pitch detection algorithm and the classification and recognition systems

used in this research are also presented.
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Chapter 3

Analysis of Speech Variations due

to Emotion

The elation of the recent birth of a child or the frustration of experiencing a missed
flight can be recognized without visual cues. For instance, imagine that you want to
tell a friend who is 800 miles away of the delivery of your firstborn child, using the
telephone as the medium for exchange of information. To portray the excitement of
the occasion, one might speak with a higher pitch or the speaking rate may increase
slightly. Regardless of what actually goes on, there is an extremely high chance that
your excitement will be successfully conveyed to the listener.

As illustrated in this simple example, emotion can be perceived not only through
gestures and facial expressions, but also with only the presence of auditory informa-
tion. So the appropriate question then becomes, “How are we able to detect emotion
with only audible clues?” There has already been some research done in this area.
Schroder and his colleagues showed that the amusement expression, namely smiling,
is visual and audible in speech [44].

This thesis explores those parameters that allow a listener to detect a perceived
emotion in a speech signal. More specifically, this research will utilize the knowledge
of how humans recognize emotion and attempt to characterize emotional speech for a
computer. The goal of this thesis is to identify prosodic features and how they affect

the perception of a user’s emotion.
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The methodology developed for this thesis is useful for comparing and analyzing
speech variations due to emotion. The repetition of utterances structured essentially
identically, by consecutively following each other and spoken by the same speaker,
allow comparison of differences caused by variations in prosodic features only. Fre-
quently, these prosodic variations correspond to a change in emotional state. An
analysis of these repeat utterances serves as the basis of understanding and eventu-
ally characterizing emotional speech.

The remainder of this chapter will cover the various methods employed to identify
extractable features to be used during the classification and recognition experiments.
A discussion of the results for these experiments will also be presented. Section 3.1
covers the analysis techniques that were used during visual inspection of the data. A
discussion of the spectrograms and prosody-based tools, as well as the set of features
chosen for maximum discrimination is presented.

Section 3.2 gives an overview of the classification experiments, detailing the train-
ing and testing conditions used for both the real and acted data. The results of the
recognition tasks are presented as well. Section 3.3 presents ROC plots for the acted

data, and the summary in Section 3.4 concludes this chapter.

3.1 Visual Inspection

While the presence of emotion may be perceived subjectively by a human listener,
a method of visually displaying extractable speech features is important for finding
objective measurements, especially for later use in an automatic emotion recognition
system. One of the most common means for studying sound is by using a spectrogram.
A spectrogram is a visual representation of sound that is created by displaying a
frequency-time plot of intensity encoded on a gray-scale.

Another way to display the emotional characteristics, in particular the prosodic
characteristics, in the speech waveform is with fundamental frequency contours. In
this research, the fundamental frequency contours were computed using a pitch de-

tection algorithm designed for continuous speech. For details about this algorithm,
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please refer to [49].

Visual inspection of the waveforms was an important step in finding promising fea-
tures for the classification task. Consequently, hundreds of dialogues were first qual-
itatively analyzed and utterances inspected using spectrograms and prosody-based
tools in order to resolve the subjective properties of emotion into measurable, physi-

cal properties.

3.1.1 Linguistic Analysis

During the early stages of this thesis, the MERCURY corpus was of primary interest
because it was observed to have both linguistic and acoustic cues for emotion. An
example dialogue from the MERCURY corpus that was labeled as frustrated is shown
in Table 3.1. Using just the context information, hopefully it is fairly evident that the
user had some difficulty with the dialogue system. Upon inspection of this dialogue,
a number of interesting linguistic features were observed. One feature that was found
was the use of negative constructors, i.e, NOT X, Y. In this example, the user uses
this sentence structure to change the arrival destination.

Another linguistic feature that was observed during several of the MERCURY di-
alogues was repeated requests. There are also several examples of repeated requests
in the sample dialogue. In general, it was observed that recognition error prompted
repetition of information. These repetitions prompted an interesting approach for
characterizing emotional speech. For instance, the repetition of “I’'m not returning”
motivated the study of other parallel utterances. 50 parallel utterances were found in
the MERCURY corpus, and it was often found that the repeated utterances had a more
frustrated emotional state. Many users emphasized misrecognized words or altered
the structure of the sentence. Finally, the example dialogue shows a premature ter-
mination command. Although this linguistic feature is useful for analysis purposes,
the result usually ends in the dialogue being terminated and the intended goal being
unsuccessful. Other linguistic features that were observed in the MERCURY corpus
were an increase in the frequency of correction commands, swear words, vocabulary

indicating irritation such as “moron” and “frustrating”, interrogative statements, and
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USER: NEW USER

MERCURY: | Okay, I'll enroll you temporarily as a guest user. How can I help
you?

USER: UH I'D LIKE TO KNOW THE CHEAPEST FLIGHT TICKET FROM
BOSTON TO KOREA SEOUL

MERCURY: | I'll look for the cheapest fare when I price your itinerary. Okay
from Boston to Riga. What date will you be traveling?

USER: LET’S SAY JUNE UH FIFTH NO NO JUNE TENTH

MERCURY: | Okay, from Boston to Riga on Sunday June 10. Can you provide
the approximate departure time or airline?

USER: UH NO BUT ACTUALLY IT’S NOT BOSTON TO WHATEVER CITY
YOU THINK IT’S BOSTON TO SEOUL KOREA

MERCURY: | Sorry, I'm not sure what you said.

USER: I WANT TO KNOW THE FLIGHT FROM BOSTON TO SEOUL KOREA

MERCURY: | Okay from Boston to Seoul. What date will you be traveling?

USER: UH AS I SAID LET’S TRY JUNE TENTH

MERCURY: | Okay, from Boston to Seoul on Sunday June 10. Can you provide
the approximate departure time or airline?

USER: NO

MERCURY: | Okay, flights from Boston to Seoul departing between 5:00 am and
11:00 pm on Sunday June 10. One moment please . ... There are
no nonstop flights. I have flights on American, Delta, Korean Air,
Northwest, Singapore Airlines, and United. The first flight leaves
at 9:30 am and arrives at 6:30 pm. You arrive the following day.

USER: SO THAT’S HOW LONG IT TAKES LIKE HOW LONG IS THE FLIGHT
IF YOU START AT NINE AND ARRIVE AT SIX

MERCURY: | Sorry, I'm not sure what you said.

USER: HOW LONG IS THE FLIGHT

MERCURY: | Okay, flights from Boston to Seoul departing between 5:00 am and
11:00 pm on Sunday June 10. One moment please ... There are
no nonstop flights. I have flights on American, Delta, Korean Air,
Northwest, Singapore Airlines, and United. The first flight leaves
at 9:30 am and arrives at 6:30 pm. You arrive the following day.

USER: OKAY I'LL ARRIVE ONE DAY LATER I UNDERSTAND ANYWAYS
OKAY SO HOW MUCH IS KOREAN AIR

MERCURY: | Sorry, I'm not sure what you said.

USER: HOW MUCH IS THE FLIGHT TICKET

MERCURY: | I heard you ask about fares. After you have selected the flights for
your itinerary, I will be able to lookup the fare. Is there something
else I can do for you?

USER: OKAY KOREAN AIR JUNE TENTH
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MERCURY: | Okay, US Airways flights from Boston to Seoul departing between
5:00 am and 11:00 pm on Sunday June 10. One moment please
... There are no nonstop flights. I have a flight connecting in New
Yorks LaGuardia leaving at 9:00 am and arriving at 4:30 pm. You
arrive the following day? Would that work?

USER: OKAY

MERCURY: | US Airways flight 6807 connecting to Korean Air flight 82 in New
Yorks Kennedy has been added to your itinerary. You depart Boston
at 9:00 am and arrive in Seoul at 4:30 pm. You arrive the following
day. What date will you be returning on?

USER: UH I’'M NOT RETURNING

MERCURY: | I'm sorry, but I didn’t catch the date. Could you please repeat it
please?

USER: I'M NOT RETURNING

MERCURY: | Okay, from Seoul to Boston on Thursday July 19. Can you provide
the approximate departure time or airline?

USER: NO FORGET IT BYE

MERCURY: | Sorry, I'm not sure what you said.

Table 3.1: Example of a frustrated dialogue in the MERCURY flight travel domain.
This dialogue includes linguistic features that were helpful in determining promising
features for emotion classification.

variations in the MERCURY system commands.

In addition to finding linguistic features that signaled a user was frustrated, acous-
tic features that were observed also told a similar story. Some of the acoustic features
that were present in the MERCURY data and then later investigated in the other cor-
pora were changes in fundamental frequency, energy, hyperarticulation, breathy sighs,
and changes in speaking rate. By making use of both the linguistic and acoustic fea-

tures, we were able to qualitatively assess the effect that emotion has on recognition.

3.1.2 Spectrographic Analysis

Spectrograms are a two-dimensional representation of the short-time Fourier trans-
form and provide an effective way to analyze signal characteristics. Figure 3-1 shows
spectrograms of the utterance “scratch that” spoken by a female speaker. The ver-
tical axis represents the frequencies of the spectral components, the horizontal axis

represents the time, and the gray scale represents the relative intensity of the sound
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Figure 3-1: Spectrograms of the utterance “scratch that” for different emotional states
spoken by a female speaker in the Lockheed corpus. Because spectrogram (b) was
a repeat of (a), with the same linguistic content but differing emotional states, this
allowed an analysis of variations in prosodic features caused by emotion.

at a particular frequency and time. In general, the darker the color the higher the
amplitude of the spectral components at that frequency. In addition, plots of zero
crossing rate, total energy, and low-frequency energy are included at the top of the
spectrogram, while the waveform is displayed at the bottom. The utterance is tran-
scribed as /sk'ree¢ dat/.

In comparison to the neutral spectrogram, there is an increase in total energy
in the frustrated spectrogram, which is seen in the darker intensity. There is also a
significantly longer gap between the two words in the frustrated spectrogram. As a
listener, an increased gap would be perceived as a pause. Additionally, the vowel /a/
in both “scratch” and “that” has been lengthened.

During the course of this research, an interesting phenomenon was observed when
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utterances were repeated. In general, the repeated utterance was longer in duration
than the originally spoken utterance. This occurred because the user clarified or
stressed the part of the utterance that was misrecognized, usually speaking in a
frustrated emotional state. Often this meant that the user decreased his speaking
rate. The increase in utterance duration was the result of a combination of an increase
in internal pause duration and vowel lengthening. These events can be seen directly
in figure 3-1.

In extreme cases of vowel lengthening, the user over-articulates words, resulting
in further system degradation. Figure 3-2 shows three separate spectrograms of the
words “newark!” and “new york?” extracted from utterances spoken by the same
speaker in the MERCURY corpus. The transcription for “newark” and “new york” is
/¥ (a)rk/ and /nu” york/, respectively.

At some point during the dialogue, the user becomes so annoyed with the system
that he begins to hyperarticulate the words in the repeated utterance. In the neu-
tral spectrograms, there is no distinguishable syllable or word boundary. However,
in the frustrated spectrogram, there is a clear syllable boundary around 4.1 seconds
separating the first syllable from the last syllable in “newark.” In comparison to
(a), the spectrogram in (b) also has more total energy, especially in the /k/ at the
end of the word. Furthermore, the third formant in the vowel at 4.2 seconds has a
steeper fall than in (a). When speaking naturally, the “a” in “newark” is pronounced
/3/, but when “newark” is hyperarticulated, the “a” now sounds like /a/. The frus-
trated spectrogram now resembles two separate words which would present difficulty
for the recognizer and aggravation for the user if he intended one word, such as in
this case. The last spectrogram is presented for comparison of “new york” and the

hyperarticulated “newark.”

The spectrogram helps to visually display how hyperarticulation alters a word or

1The neutral utterance is “i want to go from los angeles to newark then directly on to london on
united airlines.” The frustrated utterance is “i want to go from los angeles to newark from newark
to london heathrow.” The speaker is male.

2The utterance is “well i wanted to make a connection from los angeles to newark and the system
kept hearing me say new york and i finally said newark.” This utterance is a comment to the system.
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Figure 3-2: Spectrograms illustrating differences between a normal pronunciation (a)
and hyperarticulated pronunciation (b) of the word “newark.” Spectrogram (c) shows
a normal pronunciation of the word “new york” and is presented for comparison.
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utterance. To an enraged user, clearly enunciating his words may seem like a good
method for obtaining system recognition; however, as shown in figure 3-2, the result
is often unfavorable and actually counteracts system recognition.

Another tool that was utilized during this research also made use of the spec-
trogram and additional prosodic information as well. Figure 3-3 shows a graphical
viewing tool with a smoothed fundamental frequency contour and energy included
for the same utterance, “scratch that,” as shown in figure 3-1. This Transcription
View tool shows not only spectrographic characteristics of the waveform but prosodic

characteristics as well.

(a)

o
M) |
. !

© s

(C) {

(e)
® | : I I I ) N . I ) ’
ol | = B

Previous Next Choose Play Quit| -« 11ovr! | Utterance: dchacon_002_root_djim_044 Emotional State: Time: Frequency: |

Figure 3-3: (a) waveform, (b) wide-band spectrogram, (c) narrow-band spectrogram
in logarithmic frequency scale with extracted pitch, (d) smoothed pitch contour, (e)
energy, (f) phonetic alignment, and (g) word alignment for the utterance “scratch
that.”

3.1.3 Prosodic Analysis

The prosodic characteristics of the emotional speech in our corpus were explored
using a graphical transcription tool. To compute physical, objective features, the

fundamental frequency was extracted and analyzed. In Figure 3-4, the fundamental
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frequency for the utterance “two one six zero®,” spoken by the same speaker, is
plotted. Utterances two and three are repeated utterances with an emotional state

of frustrated, while the first utterance is neutral.
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Figure 3-4: Fundamental frequency contours of the utterance “two one siz zero”
spoken three times by a female speaker. The frustrated utterance, utterance3, is
significantly longer than the previous utterances.

The first noticeable difference between the three utterances is the utterance dura-
tion. As the utterance is repeated, the duration tends to increase. The third utterance
is significantly longer than the previous utterances and has clear word boundaries.
The second utterance has a slightly lower fundamental frequency than the other two
utterances. Interestingly enough, this was the case with several of the repeat groups.

However, some people expressed their frustration by lowering their fundamental
frequency, which caused the speaker to sound more depressed rather than frustrated.
On the other hand, other speakers increased their fundamental frequency to por-

tray their irritation with the system. In fact, while analyzing utterances that were

3The utterance is from the Lockheed corpus. The speaker, dchacon, is female.
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unelicited, there was no noticeable pattern observed for the fundamental frequency.
However, when using data collected from the LDC corpus, the fundamental frequency
generally increased when the speaker acted in a frustrated emotional state. A few
examples from data collected from the Lockheed and LDC corpora are presented to

illustrate this finding.

Figure 3-5 shows three fundamental frequency contours of the utterance “two
one five six” from different speakers in the Lockheed corpus. In (a), there is very
little difference between the fundamental frequencies of the neutral and frustrated
emotional states. To detect emotion in the speech of this particular speaker, one

would need to rely on other prosodic features besides fundamental frequency.

However, in the male speaker, there is a significant difference in the fundamental
frequency between emotional states. In contour (b), the frustrated emotional state
shows an increase in utterance duration, but the fundamental frequency is lower than
in the neutral utterances. Generally, we would expect a frustrated user to shout or
speak firmly with the system. Graphically, this would correspond to an increase in
the fundamental frequency. However, as shown in (b), with “real-life” data, this may
not occur.

In order to make some comparison between the acted and real data, utterances
were chosen from the LDC corpus with either exact word combinations or similar
word-initial and word-final phones to eliminate differences in fundamental frequencies.
For instance, since the utterance “two one five six” was analyzed in the Lockheed
corpus, an attempt was made to find an utterance that contained /u¥/ and /1/.
Instead, an utterance that contained /u¥/ and /e/ was chosen from the LDC corpus,
since no exact match was found. The resulting utterance was chosen to be “two

thousand ten” for comparison.

Upon initial inspection, there are some clear differences between the real data and
acted data, as shown in Figure 3-6. As shown in fundamental frequency contours (c)
and (d), in the initial /u¥/ in the contour plots of the acted data, the fundamental
frequency contours of the frustrated utterances are significantly higher than those

of the neutral utterances. The large shift in fundamental frequency is indicative of
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Figure 3-5: Two separate sets of fundamental frequency contours for the utterance
“two one five six” in the Lockheed corpus. There was no observable pattern for the
fundamental frequency of a frustrated emotional state. In contour (a), the speaker
does not heavily rely on Fy to express frustration. The speaker in (b) lowers his
fundamental frequency to express frustration.
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an exaggerated change. These changes are so extreme that a human listener would
have no problem identifying the intended emotional state. The /e/ at the end of the
utterance appears to be reduced in the plots, and the utterance duration once again
is lengthened.

Even in cases where the phones in the utterance were completely different, this
finding still held. Figure 3-7 shows F{ contours for the utterance “eight hundred one”
for two separate speakers. Once again, the fundamental frequency increases when
the emotional state changes from neutral to frustrated, and the utterance duration
increases in contour plot (a).

Using similar examples, it became apparent early on that an increase in fundamen-
tal frequency, often found in emotional data recorded by an actor, did not accurately
categorize much of the data that was collected in our corpus. However, we were able
to make use of the variance in the fundamental frequency and propose appropriate

features for our classification experiments.

3.1.4 Feature Extraction

Linear feature extraction can be thought of as finding a set of vectors that effectively
capture the information present during an experimental observation while reducing
the dimensionality. For this research, we desire to extract features which focus on

discriminating among emotional and non-emotional speech.

3.1.5 Vowel-level Features

The vowel-level features were computed as an intermediate step toward finding utterance-
level features. During the analysis stage of this research, vowel-level prosodic features
for each utterance were computed. Using the illustration in Figure 3-8, the prosodic
features will be presented for one vowel segment, which is easily extended to other
segments in the utterance. The fundamental frequency contour is of the utterance
“two thousand nine.” The first vowel /u”/ is from time 0.0 to 0.2 seconds, the second

vowel /d¥/ from time 0.2 to 0.4 seconds, and so on.
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Figure 3-6: Four separate sets of fundamental frequency contours for the utterance
“two thousand ten” in the LDC corpus. Unlike the real data, there is a significant
difference in the frustrated and neutral emotional states, with the frustrated state
usually being higher. Contours (a), (b), and (d) also show that the utterance duration
increases for frustrated emotion.
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Figure 3-7: Two separate sets of fundamental frequency contours for the utterance
“eight hundred one” in the LDC corpus. Contours (a) and (b) show an extreme
difference in Fj between neutral and frustrated emotional states.
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The four prosodic features that are labeled in the figure are (1) maximum pitch,

(2) average pitch, (3) pitch slope, and (4) vowel duration. The pitch-based features

were all normalized with respect to the mean pitch of the first utterance in the repeat

series. It was felt that this is a realistic model for what could be done in a dialogue

setting.

Table 3.2 shows the extracted measurements for each of the vowels in the utter-

ance. The second row corresponds to the illustrated features.
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Figure 3-8: Illustration of the vowel-level prosodic features. The prosodic features
that are highlighted are (1) maximum pitch, (2) average pitch, (3) pitch slope, and
(4) vowel duration.
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max | avg | pitch avg | avg vow

pitch | pitch | slope | energy | duration

214.4 | 208.3 4.1 143.8 120.1
191.3 | 179.2 -7.1 169.0 187.5
151.2 | 140.0 -6.5 127.2 229.3
140.5 | 124.7 | -12.7 147.0 243.1

Table 3.2: Example of extracted vowel-level features for a vowel segment in an utter-
ance. These particular values are for the frequency contour plot in Figure 3-8. Row
2 corresponds to the highlighted vowel, where columns 1, 2, 3, and 5 represent the

values of the illustrated features.

3.1.6 Utterance-level Features

The vowel-level features were then manipulated to compute the utterance-level can-
didate features for classification. The utterance-level features were normalized with
respect to gender and the first utterance in a repeat group. In general, the first
utterance was the most neutral of all the utterances in the repeat group. This nor-
malization was done to attempt to adjust for the speaker dependencies of the pitch
value.

A single emotion feature vector is then constructed from the set of utterance-
level features that are computed. For this research, six different features which were
thought to be correlated with emotion were utilized in the training process. These

utterance-level features are as follows:

1. max_pitch: The maximum fundamental frequency of the utterance maximized

over the maximum fundamental frequency in each vowel.

2. avg_pitch: The average fundamental frequency for the utterance derived from

the fundamental frequencies of the vowels.

3. pitch_movement: The absolute value of the fundamental frequency for each
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vowel in the utterance was computed, then averaged to obtain the total excur-

sion of the fundamental frequency throughout the utterance.

4. avg_energy: The average energy for the utterance derived from the energy in

the vowels.
5. avg_vow_duration: The average of all of the vowel durations in the utterance.

6. delta_first_last : The difference between the maximum fundamental frequency

of the first and last vowels in the utterance.

3.2 Classification Experiments

Classification experiments are performed to analyze which prosodic features best dis-
criminate between emotional and non-emotional data. The analysis focuses on six
features in which one or more were consistently observed in the frustrated utterances

of our corpora.

3.2.1 Emotion Classification

The classification method for this project was based on the technique originally used
for confidence-scoring in the Spoken Language Systems (SLS) group [15]. Using this
technique, a greedy search is performed over all the candidate prosodic features. Fea-
tures are then iteratively added to a single emotion feature vector from the candidate
set until the addition of features no longer improves performance. To produce a sin-
gle emotion score for a hypothesis, a linear projection vector is trained and used to
reduce the emotion feature vector. A probabilistic emotion score is then computed
based on a maximum a posteriori probability (MAP) classification. During this pro-
cess, a threshold is computed to achieve a local minimum error. A negative score
results in a rejection while a positive score results in an acceptance, where acceptance
means the utterance is emotional.

To accomplish the objectives of this project, several preliminary steps were com-

pleted to determine a set of prosodic features to use during classification. Simple
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linear discrimination analysis (LDA) was then used to construct a Gaussian model
and obtain a probabilistic emotion score using prior probabilities and the computed

threshold.

3.2.2 Training and Testing Conditions

Prior to training each utterance, the data are labeled as either correct or incorrect. In
this experiment, the correct label corresponds to an utterance possessing emotion and
an incorrect label to a non-emotional utterance. A cross-validation approach was used
to train and test on the data. This approach was chosen since there was a limited
amount of data. Our experiments were performed using the Lockheed and LDC
corpora. Using the Lockheed corpus, the classification experiment was conducted
using 2,247 utterances spoken by 12 different speakers. Eleven speakers were used for
training and the remaining speaker was held out for testing.

The LDC corpus of acted data was also used in order to make comparisons between
naturally elicited and acted data. The classification and recognition experiments using
the LDC corpus consisted of 1,208 utterances spoken by 7 different speakers. To train
the accept/reject classifier, a different speaker was held out for testing each time to
ensure that the recognizer performance was predicted on unseen speaker data.

The training and testing conditions were first performed using a combination of all
six of the utterance-level features. Based on the resulting weights calculated for each
of the features, we were able to make an initial assessment of the best discriminating
features. To evaluate the discrimination success of each utterance-level feature, each

individual feature was trained separately on both of the corpora.

3.2.3 Results

Table 3.3 and Table 3.4 show the preliminary results of the classification and recog-
nition tests for the real and acted data, respectively. The results obtained using the
Lockheed data was, in general, inconclusive because there was such a limited amount

of emotional utterances. In fact, almost half of the speakers had spoken fewer than two
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emotional utterances. As a result of this, the test set for these speakers was severely
biased toward the neutral utterances, and the accuracy rate was not as meaningful.
Table 3.3 lists only the speakers that had approximately 10% of their utterances as
emotional.

Dch, the speaker with the most frustrated utterances, had an accuracy rate of
71.0%, which is consistent with other literary results on emotion recogniton. This
performance rate is still not better than chance, and is most likely due to a combina-
tion of the speaker exhibiting emotion and being the only female in the classification
and recognition experiments, such that the effect of training on only males and testing

on a female hurt performance significantly.

Test Speaker | Test | Frustrated | Neutral | Accuracy
dch 290 84 206 71.0
jgr 258 22 236 91.5
jmc 170 22 148 88.7
jri 170 22 148 87.1
kba 192 18 174 92.7

Table 3.3: Performance results in cross validation experiments for Lockheed data.
Only 5 of the 12 speakers were reported since the remaining 7 speakers had fewer
than 10% of their total utterances as emotional.

For the Lockheed corpus, the emotion classification technique yielded that the
avg_pitch feature was best at discriminating between emotional states, and max_pitch
was second best. Generally speaking, although these features had the highest weighted
value out of all of the extracted features, their weights were still relatively small.

The results for the acted LDC data are given in Table 3.4. Although the accuracy
rates are not as high as those of the real data, these results are more significant and
provide a better indication of how emotional utterances affect recognition performance
because there is more emotional data. Furthermore, because this data was produced
by actors, we can make a direct comparison with results from other literature. The
average accuracy for all of the speakers is 70.1%. The performance on each of the

speakers is more than 10% better than chance performance.
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Test Speaker | Test | Frustrated | Neutral | Accuracy
cc 166 7 89 71.7
cl 120 48 72 83.3
g 285 143 142 76.1
ig 219 115 104 64.8
mf 86 33 53 73.3
mk 90 40 50 75.6
mm 242 135 107 57.4

Table 3.4: Performance results on cross validation experiments for acted data. Over-
all, these results are consistent with other published results on emotion. The female
speakers are gg, jg, mk, and mm.

It is interesting to note that the speakers who had the worst accuracy rates, jg and
mm, are both female speakers. The other two female speakers in the experiment are
gg and mk. Three of these female speakers also have the highest number of frustrated
utterances. While this corpus contains only acted speech, this situation frequently
occurs in real-life scenarios when a user interacts with a dialogue system. As system
misrecognition occurs, the number of emotional utterances increases while recognition
performance decreases.

For the acted data, the classification experiment yielded that max_pitch was the
best at discriminating between our emotional states. The feature avg pitch was

second best, followed by avg_energy.

3.3 ROC Plots for Acted Data

It is interesting to examine the emotion recognition results for the acted data using
a Receiver Operating Characteristic (ROC) curve. The ROC curve measures the
trade-off between the acceptance of correctly identified emotional utterances (i.e. de-
tection rate) and the false acceptance of utterances that were incorrectly identified
as emotional (i.e. false alarm rate). Ideally, we would want to see more emotional
utterances being correctly identified, and fewer neutral utterances incorrectly identi-

fied as emotional. This would correspond to the curve shifting toward the upper left
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of the plot.

Figure 3-9 shows the ROC plot for the acted data. The three best individual
features and a combination of the top two discriminating features are plotted. It
is clear from the figure that max_pitch does significantly better than avg pitch,
and furthermore, does as well alone as any combination of it with other features.
Thus, although avg_pitch is the second best feature, it is too highly correlated with
max_pitch to be of further use to the system. The system instead prefers to add
the avg_energy feature as its second candidate. However, although avg_energy does
significantly better than chance performance by itself, it is unable to further improve
over the max pitch feature acting alone. This can be interpreted as a positive result.
That is, for a very simple scoring mechanism on a single feature, significant results

can be achieved in discriminating emotion in acted speech.

Choosing an exact operating point on the curve, we can examine the relative
capability of the individual features. From the figure, the best operating point for the
avg energy parameter is at around 65% correct acceptance. Using the avg energy
feature, the system would falsely recognize nearly 38% of the neutral utterances as
being emotional. However, using just the max_pitch for maximum discriminability,

we could reduce the false acceptance rate to 30%.

These results indicating that the maximum pitch, average pitch, and average
energy are good discriminators of emotion is not surprising, especially since these
findings are a result of using acted speech. Recall from earlier sections in this the-
sis, that the excursion between the fundamental frequencies of real and acted data
was dramatically different. Frequently in acted data, the most heavily relied-upon
features for expressing emotion is that of fundamental frequency and energy. This
also agrees with other literary works that recognize the fundamental frequency as
the most reliable feature for detecting emotion. However, the fundamental frequency,
specifically the maximum pitch, is unfortunately not a good discriminator for real

data.
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Figure 3-9: ROC curve for the LDC data. This curve was produced by three individ-
ual prosodic features and by a full-trained model using the best two discriminating
features max_pitch and avg_energy.

3.4 Summary

This chapter describes the various methods that were employed in this thesis to
identify prosodic features for emotion classification and recognition. Using repeat
utterances as the basis of our investigation, an analysis of speech variations due to
emotion was performed using dialogues to capture linguistic information, spectro-
grams to illustrate changes in the energy or utterance duration, and prosody-based
tools to emphasize the changes in fundamental frequency and duration. A discussion
is given on how the extracted features were chosen as well as a description of each.
The classification and recognition tasks are presented and results are discussed and

evaluated.

While we were successful in building a model that could discriminate acted emo-
tional and non-emotional speech, the model was unable to make those distinctions on

the natural emotional speech. In the next chapter, we will see that human listeners
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are also not particularly consistent in their judgments of emotional content of natural
speech drawn from spoken dialogue interaction, even when given the arguably easier

task of discriminating minimal pairs, with the same speaker and linguistic content.
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Chapter 4

Human Listener Studies

The corpora for this thesis were manually created by relying on a single individual
(myself) to classify the appropriate emotional state for each utterance. Since there was
no collaboration on ambiguous utterances or subtle differences that may have been
perceived, it is quite easy to comprehend that this method of tagging the emotional
state of an utterance might have been problematic. An utterance that was perceived
to be frustrated was assumed to be so throughout the analysis, then later used to
determine the prosodic features for classification. However, if there was a more likely
emotional state for the utterance, then the results from the classification experiments
would not be as reliable. To counter the subjectivity of one individual tagging all
utterances and to assess the quality of the corpora, a listening study was performed

with human subjects.

4.1 Experimental Setup

Listening experiments were performed with 6 human subjects, three male and three
female, who had not previously listened to utterances in the corpus. These subjects
were asked to rate the expressed emotion of an utterance by comparing it to the first
utterance in its repeat group. Four different repeat groups were used during this
experiment.

For any single repeat group, the subject was given a set of instructions concerning
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their task. A screen snapshot of the interface is displayed in Figure 4-1. Two utter-
ances are played successively, with one utterance guaranteed to be the first utterance
of the set. The order in which the utterances are played was randomly chosen. The
subject is allowed to listen to the pair of utterances as many times as needed by

clicking the Repeat button.

You are about 1o hear pairs of utterances, recarded in a lab setting

1o simulate being aboard the Lockheed Sea Shadow. The utterances are
spoken by a female native American speaker. The utterances are
essentially the same linguistically but may differ in the expressed
emational state. You will be asked to choose which utterance in the

pair is more annoyed. You will be able to replay each pair of utterances

- as many times as you nead

The words in this test are drawn from a database of Sea Shadow monitaring

1=2 J and task commands, which has a vocabulary of about 300 words. Some are

cammon words and numbers, some are names and some others are just strange.

- N Try nat to facus an the words that are spaken but mare on how the words are
‘- spoken in each utterance.
Repeat Please click the button that best describes which utterance wou thought
was more or less frustrated. 5o if yvou think that the emotional state of
Mumbar Files: 1 utterance 1 was more frustrated than that of utterance 2, cick ' 1 = 2°
If wou think that utterance 2 was more frustrated than utterance 1, then
Current File: 11 click "1 < 2*. Finalky, if you think that there was na distinguishable

difference in the emational states of the utterances, then click '1 = 2'

Mumber Utterances: 5 . 7 9
Ta listen 1o the utterances again, click the 'Repeat’ buttan.

Current Utterance: 2

Thank wou for participating in nmy emotion listening test!

Figure 4-1: Interface for Human-Listener Experiment.

After listening to the utterances, the subject is then prompted to click the cor-
responding button that best describes which utterance he or she thought was more
or less frustrated. The subject is asked to click “1 > 2” if he thought that the first
utterance played was more frustrated than the second. On the other hand, if he
thought that the second utterance that was played was more frustrated, then he was
prompted to click “1 < 2”. If the speaker judged that there was no distinguishable
difference in the emotional states of the utterances that were played, then he was

asked to select “1 = 2”.

Sennheiser headsets and the audio capabilities of a Dell computer were used for
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conducting these experiments. Three of the four lists consisted of utterances that were
repeated with almost exactly the same linguistic content. The fourth list, however,
consisted of utterances that were fragments that contained the same linguistic message
as the first utterance, in an elliptical form.

The goal of this study was to evaluate if other subjects could detect changes in

emotional state when utterances were repeated in succession.

4.2 Results

This experiment yielded some useful information. First, for all repeat groups except
one, the emotional state of the repeats was rarely judged to be less emotional than the
first utterance. It is clear from the wide variability in the results that the emotional
content of these utterances is not very clearly manifested, and this may partially

explain the inability of the system to discriminate the emotional content as well.

Utterance | More | Less | Same
2 0.50 0.33 | 0.17
3 0.67 0.17 | 0.17
4 0.67 0.33 |0
5 0.17 0.50 | 0.33

Table 4.1: Results from group 1 of human-listener study.

Utterance | More | Less | Same
2 0.33 0 0.67
3 0.67 0 0.33
4 0.33 0 0.67
5 0.67 0 0.33

Table 4.2: Results from group 2 of human-listener study.
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Utterance | More | Less | Same
2 0.83 0 0.17
3 0.67 0 0.33
4 0.17 0 0.83
5 0.50 0 0.50

Table 4.3: Results from group 3 of human-listener study.

Utterance | More | Less | Same ‘
2 0.33 0.33 | 0.33
3 0 0.50 | 0.50
4 0.33 0 0.67
5 0.67 0 0.33
6 0.17 0 0.83
7 0 0 1.00
8 0.33 0.17 | 0.50

Table 4.4: Results from group 4 of human-listener study.
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Chapter 5

Conclusion

In this thesis, we explored characteristics of emotional speech by using the spectro-
gram and prosodic tools. Three corpora were created, of which the Lockheed and
LDC corpus were used for a comparative study between real and acted data. Six
prosodic features were extracted from the collected data and studied to determine
their potential to discriminate among frustrated and non-emotional speech.

An experimental methodology was designed for optimal comparison of the acoustic
correlates of emotion. It was observed early on that speakers often repeated words
or utterances when misrecognition occurred. The repetitions were usually structured
the same linguistically, and frequently a change in emotional state also occurred.
Consequently, using these parallel utterances helped isolate the expressed emotional
state and eliminated variabilities due to variations in speaker and linguistic content.

Most of the analysis relied on spectrographic and prosodic analysis to determine a
set of features for classification. In our investigation, we found that results normally
reported in other literature, although encouraging, are an unrealistic comparison for
classification and recognition experiments with real data. In particular, the funda-
mental frequency is a good discriminator for acted speech, but not necessarily for real
data.

The classification performance on acted speech was significantly better than that
on the natural emotional utterances, suggesting that acted emotion may be an unre-

alistic model of the variability encountered in real emotional expression. We found
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that a combination of the maximum pitch and average energy features did the best

job of discriminating between emotional and non-emotional speech.

5.1 Future Work

Because the data collection required such a great deal of time, we did not get to a
point where we could integrate a system component to respond to an emotive user. An
effective component could be just a supportive response to indicate to the user that
the system understands he or she is having difficulty, or the system could change its
mode of operation to a more directed dialogue model, or offer an alternative method
to entering the data (e.g. key pad or spelled mode).

The preliminary investigation into reliable features for natural emotion recogni-
tion is discouraging. Clearly, more work needs to be done. One issue may be the
difficulty in reliably extracting, abstracting, and normalizing pitch information, par-
ticularly for telephone quality speech. In a realistic environment, one should be able
to compute baseline pitch and energy data from the first few utterances the user
utters in a dialogue, and normalize further utterances based on these computations.
However, further complicating factors are the users’ inclination to perhaps conceal
their emotions, or even to be unemotional in the face of difficulties due to a detach-
ment with respect to a simulated task. It may even be worthwhile, once systems are
able to respond appropriately to negative emotion, to train the users to act emotional
when they are having difficulties with communication.

For the acted data, consistent with the observation that maximum pitch and
average energy were intuitively good discriminators of emotion, these features were
also statistically shown to do well. Further work needs to be done to build confidence
in the emotion scoring technique and the classifier. One way to accomplish this is
to investigate additional features that may be correlated with emotion. It would
also be beneficial to perform additional classification experiments on each feature

independently and compare human listener studies with recognition results.
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Appendix A

Corpus Preparation

The following example output lists the properties of the Lockheed corpus. This is an

example for the speech waveform labeled as jfranke 002 root_djm_030.

(lockheed_lab.corpus)

(datum jfranke_002_root_djm_030: 12 props)
(tag: jfranke_002_root_djm_030)
(waveform_file: .../lab_data/jfranke/002/root_djm_030.wav)
(speaker: jfranke)

(gender: male)

(call_id: jfranke_002)

(length: 10800)
(original_orthography: roger out)
(orthography: roger out)
(artifact: no)

(repeat: no)

(emotional_state: neutral)

(contains_oov: no)
A description of the 12 properties of the corpus are as follows:
e tag: the identification label for an utterance
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waveform_file: location of waveform

speaker: individual user that was recorded speaking utterance
gender: adult male or female speaker

callid: similar to session but includes speaker as well

length: utterance length in samples

original orthography: transcription of the utterance before artifacts and oov

words were removed

artifact: special tag for designating whether the utterances has certain acoustic

events such as laughter or coughing
repeat: indicates whether utterance is a repeat

emotional state: indicates whether utterance is emotional (frustrated) or non-

emotional

contains_oov: indicates if the utterance contains out-of-vocabulary words
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