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Abstract

This thesis describes a method for augmenting an audio-only speech recognizer with
visual lip-reading information, in order to improve the performance and robustness
of the recognizer. The speech recognizer's variable length audio segments are re-
solved with the �xed length video frames using segment constrained Hidden Markov
Modeling. A Viterbi search over the per-segment Hidden Markov Model resolves
the variable asynchrony between the audio and video streams. The two streams are
combined according to a relative weighting scheme, which is determined by optimiz-
ing on a held-out data set. Although a full audio-visual system has yet not been
implemented, this thesis describes the infrastructure that has been developed to ac-
commodate integration with a visual lip-reading module that will be completed in
the near future.
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Chapter 1

Introduction

Traditional speech recognition systems have relied purely on sound for input. One

way to improve their performance is to augment the audio data with visual lip-reading

information. By resolving the data received from both the audio and visual channels,

one can achieve lower word error rates than by using either channel on its own. This

technique is especially e�ective in noisy environments, where the audio waveform may

be partially corrupted.

This thesis describes modi�cations to the SUMMIT speech recognizer [3] that are

intended to facilitate integration with a visual channel. Although the full audio-visual

speech recognizer has yet to be completed, most of the key integration issues have

already been addressed. The following sections elaborate on the motivation for this

project, as well the main issues one must account for during integration.

1.1 Motivation: Bimodality of Speech

When humans listen to a speaker, they often rely not only on hearing but also on

sight. Observing the motions made by the speaker's lips and jaw enhances the intel-

ligibility of spoken language. Figure 1-1 shows the performance of human listeners

under various noise conditions, using both audio-only observations and audio-visual

observations. The �gure suggests that the visual modality provides only modest im-

provements in clear acoustic conditions, but becomes more signi�cant in the presence
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Figure 1-1: Improved recognition through vision of the speaker's face [1]

of noise [1].

It is also known that the vision and speech modalities complement each other.

Many sounds that are confusable by ear are easily distinguishable by eye, such as n

and m. Similarly, many phones that are diÆcult to distinguish by eye are easy to

identify by ear, such as p, b, and m.

These results all point to the potential bene�t of integrating the two modalities

into a speech recognizer. If done successfully, the recognizer should be able to achieve

at least modest improvements in normal acoustic environments, and substantial im-

provements in noisy conditions.

1.1.1 Phones and Visemes

Phonemes are the smallest linguistically distinguishable units of sound in the English

language, and phones are the acoustic realizations of phonemes. Some examples of

phones were mentioned above, such as p, b, and m. See Appendix A for a listing of

the English phones, along with their IPA symbols and corresponding TIMIT labels,

Visemes are a set of visual units that correspond roughly to phones, and describe

the visual realization of phonemes. In general, one can only see a speaker's lips

and jaws, while the other articulators (e.g., the tongue and the glottis) are typically

14



hidden from sight. Therefore, some visemes can actually correspond to more than one

phone, resulting in a one-to-many mapping. For example, the phones b and p di�er

from each other only in that b is voiced. Since voicing occurs at the glottis, which

is not typically visible, these two phones are visually indistinguishable and actually

correspond to the same viseme.

1.2 Issues in Audio-Visual Integration

This section describes three issues that must be considered in combining any audio-

visual speech recognizer. The issues are introduced, and several alternative solutions

are proposed.

1.2.1 Early vs. Late Integration

One of the key questions to ask when integrating audio and visual data is \When

should the information be combined?" In early integration, feature vectors from both

modalities are concatenated into one large vector. This resulting vector is then pro-

cessed by a joint audio-visual classi�er, which uses the combined information to assign

likelihoods to the recognizer's phonetic hypotheses.

In late integration, the audio data and video data are analyzed by separate clas-

si�ers. Each classi�er processes its own data stream, and the two sets of outputs

are combined in a later stage to produce the �nal hypothesis. The combination can

occur at di�erent levels. For example, visual visemes could be resolved against au-

dio phones. Other possibilities include combination at the state, syllable, word, and

utterance level.

1.2.2 Channel Weighting

Another issue to consider is the relative weighting of the two channels. Typically,

more information can be extracted from the audio stream than the video stream.

This is shown by the higher success rate of audio-only recognizers when compared to
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video-only recognizers [2]. These results are intuitive, since there are more phones

than visemes, indicating that audio information provides more distinguishing cues.

Thus, one would expect the audio channel to have higher priority over the video

channel. This strategy is often accomplished by optimizing the relative weights on a

held-out data set.

However, there are other factors to consider. For example, there might be sub-

stantial noise in one of the channels, in which case an integrity measure like the signal

to noise ratio would be useful. Also, certain phones may be more reliably represented

in one channel than the other. Thus, the weighting could be varied according to the

speci�c sound being processed at any moment.

1.2.3 Modeling Asynchrony

There is an inherent asynchrony between the visual and audio cues of speech. Some

phones may be pronounced roughly when the mouth moves to make the appropri-

ate sound. However, sometimes the mouth prepares to form the sound hundreds of

milliseconds before the phone is actually pronounced [1]. Thus, there must be some

way to handle this variable asynchrony between the two channels. Some integration

strategies handle it implicitly, for example by using early integration and training on

a large amount of varied speech. Other strategies model the asynchronous properties

explicitly, by using models that describe how much the two streams are o�set from

each other at any given time. Examples of both types of asynchrony resolution are

discussed in greater detail in Section 2.2.

1.3 Goals

The SUMMIT speech recognizer [3] provides a front-end for conversational systems

developed at the Spoken Language Systems Group at MIT's Laboratory for Computer

Science. The eventual goal of this project is to improve SUMMIT's word error rate via

integration with a visual lip-reading module. However, the production of a full audio-

visual speech recognizer is a multi-person e�ort. This project attempts to provide
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the infrastructure necessary to perform this integration. The infrastructure consists

of a method for resolving visual frame-level scores with audio segments, accounting

for possible asynchrony between the two streams.

In the absence of a visual phone classi�er, the infrastructure is evaluated using

audio input for both streams. The purpose of the evaluation is to ensure that the

techniques employed provide reasonable accuracy and speed, and will indeed be a

useful platform on which to perform integration.

1.4 Outline

The rest of this paper is organized as follows. Chapter 2 introduces the modeling

and search techniques that will be used in the thesis. It also discusses some previ-

ous work that has been done in audio-visual speech recognition, to provide suitable

context for this project. Chapter 3 describes how the integration was performed in

the SUMMIT recognizer. Chapter 4 explains how the infrastructure was tested and

lists some results. Chapter 5 explains how an audio-visual database was assembled

in preparation for integration. Finally, Chapter 6 provides some concluding remarks

and suggests directions for future research.
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Chapter 2

Background

This chapter describes standard speech recognition techniques used in this thesis, as

well as previous work that has been done in the �eld.

2.1 Speech Recognition Techniques

In this section, Hidden Markov Models are introduced in a high level manner. Because

they play a key role in the asynchrony modeling, it is important to understand their

capabilities and operation. After that, an eÆcient way of computing the best path

through a Hidden Markov Model given an observation sequence is described.

2.1.1 Hidden Markov Models

Hidden Markov Models (HMMs) [9] are a common way of modeling temporal events,

such as the generation of a phone. The event's progression is represented by a traversal

through a sequence of states, each of which generates an output. In the context of

speech recognition, the output may be some kind of feature vector such as a set of

Mel Frequency Cepstral CoeÆcients (MFCCs).

Figure 2.1.1 provides an example of a simple four-state HMM. The states are

labeled 0 through 3, and the arcs represent possible transitions between states.

The HMM is very powerful because of its probabilistic nature. Any given state
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1/3
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[1/2, 1/2] [0, 1] [1/8, 7/8] [1, 0]

Figure 2-1: A four-state HMM

and observation sequence are generated by a given HMM with a certain probability.

In general, the probability of emitting a certain observation from an HMM state is

de�ned by a continuous density function (CDF) for each state. However, for the

purposes of illustration the sample HMM discussed will use a discrete probability

distribution function (PDF) with two possible observation values, namely 0 or 1.

The probabilistic structure of any HMM can be de�ned by three sets of distributions.

First, the initial state matrix � has elements �i, and de�nes the probability of starting

out in state i. Second, the transition matrix A has elements ai;j, and yields the

probability of moving from state i to state j at any time. Finally, the observation

matrix B with elements bi;k de�nes how likely it is for state i to generate the kth

observation.

For example, the probability matrices for the HMM in Figure 2.1.1 might be

as shown in Equation 2.1. Notice that the initial probability matrix � forces any

state sequence to begin at state 0. The transition matrix A has non-zero elements

corresponding to the transition arcs shown in Figure 2.1.1, and allows backward

transitions since it is not upper-triangular.

� =
h
1 0 0 0

i
A =

2
6666664

1=3 1=3 1=3 0

0 1=2 1=2 0

1=3 0 1=3 1=3

0 0 0 1

3
7777775

B =

2
6666664

1=2 1=2

0 1

1=8 7=8

1 0

3
7777775

(2.1)
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2.1.2 Hidden Markov Models in Speech Recognition

In the context of speech recognition, HMMs are used to model the production of a

sequence of sounds, accounting for acoustic, lexical, and language constraints. The

discussion below focuses on the acoustic modeling aspect of HMMs.

At the lowest level, most acoustic HMMs model the production of phones. Section

2.1.1 described a simple HMM with one observation variable that could take on

certain discrete values. In speech recognition, acoustic HMMs usually emit a vector of

observations such as MFCCs, and each observation has a continuous density function

described by a mixture Gaussian function. In addition, the HMMs used in acoustic

modeling tend to be purely left-to-right, meaning the transition matrices are always

upper triangular.

Given a set of phone-level HMMs, word-level HMMs are realized by concatenating

the appropriate phone HMMs. For example, Figure 2-2 shows an HMM that could

represent the word \talk," which consists of the phones t, ao, and k.

0 1 20 1 2 1 20

ao kt

Figure 2-2: A word-level HMM for \talk"

Recognition usually consists of identifying the sequence of word models that is

most likely to produce the acoustic observations of a speech waveform. In order to

compare di�erent candidate HMMs to each other, one must determine the probability

of any given HMM producing a certain observation sequence. The correct way of

computing this probability is to sum over all possible state sequences that could have

produced the observations. However, in practice one usually compares competing

HMMs using only the best state sequence through any given model. The Viterbi

Search, described in Section 2.1.3, is an eÆcient algorithm for determining the optimal

state sequence and its associated probability.

Note that, aside from performing recognition, one might also wish to acquire the

best state sequence through an HMM for other purposes, such as performing forced
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transcriptions. Forced transcription is a process by which pre-determined word level

transcriptions are used in conjunction with an audio waveform to produce a phone-

level time alignment of the waveform. This phone-level alignment is necessary for

training a recognizer.

2.1.3 Viterbi Search

Given an HMM and an observation sequence, the Viterbi search is simply an eÆcient

way to determine an optimal state sequence through the HMM. It also yields the prob-

ability of following that state sequence and generating the given observations. More

formally, given a model � = f�;A;Bg and an observation sequence O = fo0; o1; :::; ong

then the Viterbi search can compute the state sequence Q = fq0; q1; :::; qng that max-

imizes the probability P (O;Qj�).

The algorithm itself is based on the idea of storing only the best partial path to

a state at any time. That is, for any observation ot in O and any state i, the search

remembers the best way of reaching state i at time t. The algorithm's operation

is easily visualized with a trellis such as the one shown in Figure 2-3, which shows

the best partial paths for the observation sequence O = 0; 1; 1. The observations

are lined up horizontally, since they correspond roughly to time, and the states are

aligned vertically.

S
ta

te
s

110

Observations

0

0 1/12

0

3

2

1

1/2

0 0 0

1/12

1/6

7/48

7/288

7/96

1/3

1/2

Figure 2-3: Viterbi trellis for the HMM in Figure 2.1.1

For each observation, the algorithm processes every state and determines the

highest scoring partial path, based on the results from the previous observation. The
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maximum score of a path terminating at observation t and state i is

Score(t; i) = max
j

[Score(t� 1; j) � P (qt = ijqt�1 = j)] � P (otjqt = i) (2.2)

if t is greater than 0. For the states corresponding to the �rst observation, there is

no history to take into account, so the score is simply

Score(0; i) = P (q0 = i) � P (o0jq0 = i): (2.3)

Computing the score in this fashion yields the values shown in Figure 2-3. For

example, at the third observation the path to state 1 has two competing partial paths,

one from state 0 and one from state 1. The path from state 0 would have a total

score of 1

12
� 1

3
� 1, while the one from state 1 would have a score of 1

6
� 1

2
� 1. Thus,

the path from state 1 is chosen. The rejected paths are shown as dotted lines in the

�gure, and the optimal paths are shown as solid lines.

Once the Viterbi trellis has been built, the results at the �nal observation are

examined to �nd the state that has the maximum score. The optimal path can then

be re-constructed by tracing backwards from that state. In Figure 2-3, the maximum

score at the third observation is 1

12
, occurring at state 1. Tracing backwards through

the trellis yields the optimal state sequence of f0; 1; 1g.

In practice, one usually uses log probability scores instead of probabilities to pre-

vent underow. In this case, the scores would be combined using addition instead of

multiplication.

2.2 Previous Work

This section is devoted to notable audio-visual speech recognition work that has al-

ready been performed. It focuses on Multistream Hidden Markov Models and Product

Hidden Markov Models, which provide a solid conceptual framework for this project.

It also touches on certain ideas used in Multi-State Time Delayed Neural Networks

and feature fusion via Hierarchical Linear Discriminant Analysis.
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2.2.1 Multistream Hidden Markov Models

Dupont and Luettin used Multistream Hidden Markov Models as the basis for their

audio-visual recognition work [2]. In this structure, a normal audio HMM such as

described in Section 2.1.2 is used to model the audio stream. Concurrently, an HMM

of similar structure is used to model the visual features at the same level. The two

streams are processed independently by their respective HMMs, but they are forced

to synchronize at pre-speci�ed anchor points. This structure is illustrated in Figure

2-4.

Figure 2-4: Two channel HMMs with the same topology [2]

The Multistream HMM structure is appealing because of its exibility. It allows

the two streams to be asynchronous, as long as they converge at the appropriate

anchor points. The amount of asynchrony can be restricted by allowing the streams

to diverge by a �xed amount. Also, each modality can be modeled with a di�erent

topology. Finally, the modeling can be performed at several di�erent levels, such as

phone, word, and utterance.

The probabilistic formulation of Multistream HMMs is based on a maximum a

posteriori (MAP) strategy. The goal is to �nd the word string � that, given the

observations O, maximizes the following probability:

P (�jO) =
P (Oj�)P (�)

P (O)
=

P (Oa; Ovj�)P (�)

P (Oa; Ov)
(2.4)

Note that O has been broken up into Oa and Ov, the audio and visual observations,

respectively. The term P(�) is pre-determined by the language model. The denomi-

nator can be ignored because it does not a�ect the choice of �. Thus, we can focus
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our attention on P (Oa; Ovj�).

Dupont and Luettin made the common assumption that the two streams are

conditionally independent, given the word string. Thus, the probability above can be

broken up as follows:

P (Oa; Ovj�) = P (Oaj�)P (Obj�) (2.5)

Although this assumption is false, it does make modeling the streams signi�cantly

easier. In order to weight the reliability of each individual channel, an exponential

weight is introduced:

P (Oa; Ovj�) � P (Oaj�)wP (Obj�)1�w (2.6)

where 0 � w � 1. Dupont and Luettin originally set w by optimizing the error rate

of a held-out development set. However, in their �nal experiments, they derived it

from the signal-to-noise ratio of the test data.

2.2.2 Product Hidden Markov Models

The product HMM is another approach proposed by Dupont and Luettin. It is simply

another representation of the Multistream HMM. Here, each product state consists

of several component states, one from each HMM in the multistream model. This

composite model represents every possible path through the initial HMM topologies.

For example, Figure 2-5 shows the product HMM corresponding to Figure 2-4. Note

that the product HMM states along the diagonal represent a synchronized progression,

while the o�-diagonal states represent asynchrony between the two streams.

Dupont and Luettin proposed two methods of learning the asynchrony between

the audio and video streams. The �rst method is known as static pruning. It assigns

a prior probability to each of the composite states, indicating how frequently it has

been visited. Then, the asynchronous states with a probability falling below a certain

threshold are trimmed away.

The second method involves modeling the duration of the states in the product
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Figure 2-5: A Product HMM based on the models in Figure 2-4 [2]

HMM. Each composite state is replaced with an HMM with the topology shown in

Figure 2-6. Although the states in this HMM are all identical to each other, they

have di�erent transition probabilities. Also, the loop in the last state causes the

probability to decay exponentially after a certain point. In this way, we can control

the expected amount of time spent in a given asynchronous state.

Figure 2-6: Duration model [2]

2.2.3 Multi-State Time Delay Neural Networks

Meier et al investigated the use of multi-state time delay neural networks (MS-

TDNNs) in audio-visual speech recognition [6]. The MS-TDNN has a multi-layered

architecture. The lowest layer is the input layer. At each frame t, the feature vectors

from the frames ft�2; t�1; tg are passed to the hidden layer. Similarly, the phoneme

layer generates outputs based on �ve sequential frames from the �rst hidden layer.

The use of di�erent-sized windows in the �rst two stages captures behavior that takes

place over varying amounts of time.

The integration experiments utilized two MS-TDNNs, one for audio and one for
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video. The combination occurred at the outputs of the �rst, second, and �fth stages.

This layered architecture is quite exible, and allows integration at several di�erent

points.

Three di�erent techniques were used to weight the information coming from each

channel. The �rst method used the entropy in the given modalities. The second used

a piecewise-linear mapping of the signal-to-noise (SNR) ratio in the acoustic signal.

The SNR estimate was adjusted every 500 ms. The last weighting scheme was the

most intriguing. It utilized a neural network to estimate separate weights for each

phone or viseme, based on the training data. This method makes intuitive sense,

because some units will probably be hard to distinguish in the audio channel but not

in the video, and vice versa.

One advantage of using the MS-TDNN approach is that it does not assume that the

two streams are conditionally independent. However, choosing this approach makes

it diÆcult to model the dependency and asynchrony between the two modalities.

2.2.4 HiLDA Feature Fusion

Most experiments conducted in audio-visual integration seem to favor late integration

over early integration. Perhaps this is because late integration allows the di�erent

modalities to be weighted more e�ectively and permits explicit asynchrony model-

ing. One exception to this pattern is the Hierarchical Linear Discriminant Analysis

(HiLDA) integration strategy. HiLDA is an early integration method that performs

almost as well as the HMM techniques described above, and even out-performs them

in a clean speech environment [8]. The HiLDA technique is illustrated in Figure 2-7.

Audio

Video

LDA/MLLT

LDA/MLLT
audio−visual

video

LDA/MLLT
audio AV−Concat AV−HiLDA

24 x 9

24 x 15

60

41

101 60

Figure 2-7: Architecture of HiLDA System
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Linear Discriminant Analysis (LDA) is applied to the individual audio and vi-

sual vectors, and the resulting vectors are concatenated. Since this combined vector

is quite large, it is projected to a lower dimensional space by applying LDA one

more time. The result is then rotated with a Maximum Likelihood Linear Trans-

form (MLLT). Unlike the HMM-based fusion methods described above, this tech-

nique doesn't rely on the assumption of conditional independence between the two

modalities.
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Chapter 3

Integration

This section describes the audio-visual integration strategy taken in the SUMMIT

recognizer. First, the rationale behind choosing a late integration strategy are dis-

cussed. After that, the use of a segment network in the SUMMIT speech recognizer

and its role in producing scores are introduced. Finally, the technique for resolving

asynchrony between the audio and visual streams is described.

3.1 Early vs. Late Integration

Figure 3-1 gives a high-level overview of the current integration strategy, and shows

how the audio and visual streams are handled. Each input stream is processed by

a classi�er. The output of classi�cation is a set of phonetic units with associated

likelihoods, and a set of possible viseme units. The viseme units are then mapped

to phonetic units using a probabilistic mechanism such as a histogram. These two

streams of phonetic units are then combined in the integration module. This process

can be viewed as late integration at the phonetic level.

We chose to perform late integration for several reasons. Early integration is

not very well suited to this task. Feature concatenation would result in a high-

dimensional data space, making a large multimodal database necessary for robust

statistical model training. Also, it would be very diÆcult to model the asynchrony

of the two input modalities, since the system would be making decisions on the
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Figure 3-1: Overview of integration strategy

features themselves, not on symbols derived from those features. It may be possible

to use time windows consisting of multiple frames to try and capture associated events

occurring at di�erent times, but this approach would also be diÆcult. In addition,

explicit channel weighting would be impossible. Instead, the classi�er would have to

be trained on large amounts of data in various noise environments.

In contrast, late integration o�ers many advantages. We could make full use of

the data we possess. All audio-visual speech could be used to train both classi�ers,

while the purely audio data we already have could be used to strengthen the audio

classi�er. Late integration also permits explicit modeling of the asynchrony between

the two streams.

3.2 Channel Combination

The SUMMIT speech recognizer uses a Viterbi search to generate hypotheses. Two

types of acoustic scores are used during the search: segment scores and boundary

scores. The audio-visual integration strategy aims to augment the audio segment

scores with additional scores based on segment information. The relative weighting

of the various classi�er scores is determined by optimization on a held out data set.

In order to understand the scoring mechanisms, one must understand the creation

and use of segment networks in SUMMIT. The �rst subsection below provides a high

level overview of segment networks. Then the subsequent subsections describe their
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role in producing audio and visual scores, and how these two scores are combined.

3.2.1 Segment Networks

One of SUMMIT's distinguishing characteristics is its use of segment networks to

process speech. Typical speech recognizers use measurements extracted from frames

that are equidistant in time. In contrast, segment networks are based on the idea

that speech waveforms can be broken up into variable length segments that each

correspond to a signi�cant acoustic unit, such as a phone.

When SUMMIT begins processing a speech waveform, it hypothesizes points in

time where salient acoustic landmarks might exist. These hypothesized landmarks are

used to generate a network of possible segments. Figure 3-2 shows a simple segment

network constructed for the phrase \computers that talk."

Figure 3-2: Example segment network

The end result of recognition is a path through the segment network, where all

selected segments are contiguous in time and are assigned an appropriate phone.

Various factors are considered when deciding on this path, such as acoustic, lexical,

and language constraints. The optimal path through the network in Figure 3-2 has

been highlighted.

3.2.2 Segment Scores vs. Boundary Scores

When determining acoustic constraints on its path selection, the recognizer com-

bines scores extracted in two conceptually di�erent ways. The �rst type of score

involves features taken at hypothesized segment boundaries. These scores are known

as boundary scores. The second type, which is based on measurements taken over an

entire segment, are called segment scores. These two score categories are combined
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Figure 3-3: Combination of Segment Scores and Boundary Scores

in a weighted linear fashion during the recognizer's main search. This concept is

illustrated in Figure 3-3.

At a high level, the audio-visual recognizer simply modi�es the segment scoring

scheme. The segment acoustic scores are linearly combined with segment level visual

scores to produce an audio-visual score for every segment. The visual scores are

generated using visual models that each span one frame of video, in contrast to the

audio models that span an entire phonetic segment. In order to generate segment-

level scores from frame-level models, a method for combining the frame scores must

be devised. This combination method is described in the next section, as part of the

modeling of the audio and visual streams' asynchrony.

3.3 Modeling Asynchrony

As discussed in Section 1.2.3, one of the key issues in audio-visual integration is the

modeling of the asynchrony between the audio and video streams. In SUMMIT,

this modeling consists of three main parts. First, a way of assigning �xed-length

video frames to variable-length audio segments is de�ned, in order to meaningfully

compare model scores for the two streams. The mapping is done in such a way that

any segment path will include each video frame exactly once. Next, the degree of

audio-visual asynchrony in a given segment is represented by a segment-level Hidden

Markov Model (HMM). Finally, the most likely alignment of the streams in each
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segment is found by doing a Viterbi search on the HMM. The score generated for this

segment is then simply the total log probability of the best path found.

3.3.1 Mapping Frames to Segments

For any given audio segment, the recognizer must identify the visual frames that

correspond to it. Since the audio sampling rate is often not an integer multiple of the

video sampling rate, some convention must be de�ned to systematically map frames

to segments. Figure 3-4 shows one such convention.

In this scheme, the beginning and ending times of any frame are averaged to obtain

the frame's midpoint. Then, the frame is assigned to any segment whose beginning

lies before the midpoint, and whose end lies after it. Figure 3-4 shows in gray which

frames have been mapped to the segment labeled d(uw,er). This scheme has the

desirable property that for any given path of non-overlapping segments covering all

times in the utterance, each video frame is mapped to exactly one segment.

er(d,z)

d d d d d er ereruw

d(uw,er)

er(uw,z)

Figure 3-4: Mapping frames to segments by midpoint of frame

Note that this �gure presents a di�erent labeling scheme than that used in Fig-

ure 3-2. Here, each segment label represents a triphone of the form B(A,C), where B

is the current phone, A is the preceding phone, and C is the following phone. This

new scheme introduces contextual dependencies between adjacent phones, and will

be important in the asynchrony representation discussed next.
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3.3.2 Representing Asynchrony with a HiddenMarkov Model

Due to the di�erent sampling rates of the two streams, and e�ects such as anticipatory

visual cues, it is very likely that not all the visual frames in an audio segment will

represent exactly one phone. For example, in Figure 3-4, the �rst frame in the segment

d(uw,er) actually represents the transition from the phone uw, most of the frames

represent the central phone d, and a few of the end phones correspond to preparation

for the upcoming phone er. In order to �gure out the best possible frame alignment,

we must use a probabilistic representation that will allow us to eÆciently compare

competing alignments. The representation used in this project is a Hidden Markov

Model (HMM).

d(uw,er)[0] d(uw,er)[1] d(uw,er)[2]

10 2

Figure 3-5: Using a Hidden Markov Model to represent audio-visual asynchrony for
a given segment

Figure 3-5 shows how the asynchrony is represented for the triphone d(uw,er). The

HMM has three states, corresponding roughly to the transition from the left context

uw, the main phone d, and the transition to the right context er. This �gure de�nes

yet another labeling convention, which is built on top of the triphone labels. Each

triphone now has three state labels, identi�ed by bracketed indices. In the example

shown, the state labels are d(uw,er)[0], d(uw,er)[1], and d(uw,er)[2]. The structure

of the HMM is left-to-right, with possible self transitions and skip states.

The initial state probabilities and transition probabilities for each HMM are

trained from frame-level transcriptions of recorded data. The observation proba-

bilities associated with each state come from frame-level visual models, which yield

likelihoods for observing a certain set of visual feature values given a certain state.

Note that there is a large degree of state sharing possible in such a structure.

There are roughly 234,000 triphones in a standard SUMMIT system, which yields a
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possible 702,000 frame-level models. However, many of these models actually repre-

sent very similar phones. For example, d(uw,er)[0] and d(uw,iy)[0] both describe a d

transitioning from a uw so it might be reasonable for them to use the same model.

Similar sharing can be induced for the last state in an HMM, i.e. state 2.

Aside from this index based classing, one can take advantage of the sharing across

phones typically done in a recognizer, where acoustically similar diphone transitions

and triphone segment models are grouped together. In this case, the diphone classing

would help us share the frame models with indices 0 and 2, and the triphone classing

would help us share frame models with index 1.

3.3.3 Finding an Optimal Alignment

Having established a model structure for aligning visual frames with an audio segment,

it is quite straightforward to determine the optimal alignment. We simply do a Viterbi

search over the HMM, and �nd the state sequence that is most likely to produce the

visual features observed. The optimal state sequence will tell us the frame alignment

preferred, and the best path score (usually computed as the total log probability of

the transitions and observations along the path) will yield an overall score for the

entire segment.
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Figure 3-6: Two consecutive segment-level HMMs. The boxed HMM states and their
assigned frames share the same observation model.
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To illustrate how the asynchrony modeling is used in an actual segment path with

multiple segments, consider the example shown in Figure 3-6. Here, the triphones

d(uw,er) and er(d,z) occur one after the other. Each triphone segment is modeled

with its own HMM, which has been searched to produce the alignments shown in the

diagram. Note that the two HMMs have been joined with a non-emitting node, which

allows transitions from state 1 of d(uw,er) and to state 1 of er(d,z). Although the

HMM structure implemented allows skip states, it may be advisable to anchor every

phone at state 1 when performing actual audio-visual integration. This way, each

state sequence would be forced to contain the main acoustic content of the phone,

and the other two states would simply serve to resolve asynchrony with adjacent

phones.

For example, consider the boundary between the two phones d(uw,er) and er(d,z).

State d(uw,er)[2] and state er(d,z)[0], which are boxed together in Figure 3-6, both

represent the transition from one phone to the next. Thus, it is possible for these

states to share the same visual observation density function. The only real di�erence

between the states are their associated transition probabilities, which depend on the

HMM to which each state belongs. Together, these two states explicitly determine

the amount of asynchrony at the phone boundary. By varying the spread of the

frames corresponding to these states, the amount of asynchrony can be shifted and/or

expanded.
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Chapter 4

Experimental Study

Ideally, the end result of integration would be a full audio-visual recognizer that

could be compared against the standalone audio recognizer. However, in reality the

integration work described above is part of a multi-person project. At the time of

this writing, the visual classi�er was still un�nished. Thus, an alternative method of

evaluating the integration infrastructure had to be found.

An easy way to test the infrastructure is to use audio frames in place of video

frames. In this scenario, the frame-based scores were generated using the same audio

waveform processed by SUMMIT's boundary classi�er, and the normal audio segment

scores were not used. This process was consistent with the goals of the evaluation,

which were to verify the functionality of the code and to understand how well the new

frame-based scoring mechanism performed during recognition. The next two sections

describe the conditions under which the evaluation was performed and the results

obtained from the experiments.

4.1 Evaluation Conditions

This section describes the recognizer con�gurations that were used during the ex-

periments. It also details the procedure for training frame-level acoustic models and

per-segment HMMs, and discusses some optimizations that were performed.
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4.1.1 Recognizers

The baseline SUMMIT recognizer was con�gured as described in [10], incorporating

both boundary and segment acoustic scores. The boundary models included 134

class triphone internal models and 643 class diphone transition models. For segment

scoring, 960 class triphones were used. The classes were determined automatically

using bottom-up clustering.

The test recognizer was also triphone based, but utilized boundary and frame-level

scores. Recall that the frame-level models are based on a convention that maps each

triphone label to three frame model labels, identi�ed by a bracketed index of 0, 1,

or 2. The frame models corresponding to states 0 and 2 were classed according to

the baseline recognizer's diphone transition classing. That is, the models with index

0 were grouped by the transition from their left context to the central phone, and

the models with index 2 were grouped by their central phone and right context. On

the other hand, the frame models with index 1 were classed according to the baseline

recognizer's triphone segment classing. In total there were 573 frame models of index

0, 960 frame models of index 1, and 573 frame models of index 2.

The frame classi�cation was based on 14 MFCC features extracted across seven

regions for each frame: three regions preceding the frame, the frame itself, and three

regions following the frame. Each region was 5 milliseconds in length. Once the

feature vectors were extracted, principal components analysis (PCA) was applied

to decorrelate the measurements and reduce dimensionality to 50 before performing

frame classi�cation.

4.1.2 Training Frame-Level Acoustic Models and HMMs

In general, when one trains a set of acoustic models for speech recognition, a set of

waveforms and corresponding time-stamped transcriptions are required. Sometimes

these time-stamped transcriptions are readily available. Usually, though, only the

word level transcriptions are available, and the time stamps must be generated by

the recognizer via forced transcription. This situation is troublesome, because a good
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recognizer is needed to produce reliable forced transcriptions, but forced transcrip-

tions are required to train a good recognizer.

Since recognition in the TIMIT domain is at the phone level, manually produced

phone timestamps are available for each utterance transcription. Thus, a set of time-

stamped transcriptions are already provided for training segment-level boundary mod-

els. However, the segment scores have to be produced with the aid of frame-level

models, which require frame-level transcriptions. To generate an initial set of frame-

level transcriptions, a simple algorithm that divides each phone-level time interval

into thirds and assigns each third to a frame-level model was applied. For example,

consider the phone-level transcription for \talk" shown in Table 4.1.2. Given this

transcription, the algorithm produces the frame-level timestamps in Table 4.1.2, as-

suming a frame rate of 100 Hz or 10 ms per frame. Note that while this example uses

10 ms frames for simplicity, SUMMIT typically uses frames of 5 ms each.

Start Time (ms) End Time (ms) Phone
0 30 t(-,ao)
30 100 ao(t,k)
100 120 k(ao,-)

Table 4.1: Example phone-level transcription

Start Time (ms) End Time (ms) Phone
0 10 t(-,ao)[0]
10 20 t(-,ao)[1]
20 30 t(-,ao)[2]
30 40 ao(t,k)[0]
40 50 ao(t,k)[0]
50 60 ao(t,k)[0]
60 70 ao(t,k)[1]
70 80 ao(t,k)[1]
80 90 ao(t,k)[2]
90 100 ao(t,k)[2]
100 110 k(ao,-)[1]
110 120 k(ao,-)[2]

Table 4.2: Example phone-level transcription
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The triphone t(-,ao) is easy to divide into thirds, since the time interval it occurs

over corresponds to exactly three frames. The ao(t,k) segment, on the other hand,

cannot be divided evenly, so an extra frame with index 0 is inserted. The �nal triphone

k(ao,-) represents a special case, where the total number of frames across the phone

is less than three. In this case, we start building up from index 1, to ensure that the

main phone is included. Thus a one-frame triphone A would have frame transcription

A[1], and a two-frame version of A would have transcription A[1] A[2], as shown.

In this simple example, the phone boundaries in the original transcription were

all a multiple of the frame size (i.e., 10 ms). However, since the time stamps are

manually determined, there are actually many boundaries that do not line up with the

frame divisions. To handle this situation, we simply follow the mapping convention

described in Section 3.3.1 and assign frames to phones based on their midpoint. All

experiments described in this chapter used the initial frame-level transcriptions for

training. That is, no iterative retraining based on forced transcription was performed.

As for the per-segment HMMs, each model's initial state probabilities and transi-

tion probabilities were determined by collecting statistics from the frame-level tran-

scription �les. When no statistics could be gathered for a particular HMM, it was

initialized with a simple uniform initial state matrix and a uniform left-to-right tran-

sition matrix, as shown in Equation 4.1. The per-state observation probabilities are

generated by the frame-level models, so there is no need to explicitly de�ne them.

� =
h
1=3 1=3 1=3

i
A =

2
6664

1=3 1=3 1=3

0 1=2 1=2

0 0 1

3
7775 (4.1)

4.1.3 Optimizations

When the integration strategy described in Chapter 3 was initially tested, the rec-

ognizer consumed an enormous amount of memory and ran exceedingly slowly. It

required over 1 GB of RAM and took about 20 minutes to decode a single utter-
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ance. In order to reduce these computational demands, several optimizations were

performed on the system. Although some of them resulted in slightly sub-optimal

performance, they allowed us to perform a more thorough evaluation by running more

experiments.

One way to speed up the decoding is to tighten the pruning of the recognizer's

search. Originally, the recognizer used a relative pruning threshold of 30, and kept

a maximum of 10,000 competing hypotheses at any point in time. These thresholds

were reduced to 10 and 500, respectively. Since tightening these constraints resulted

in very little performance degradation in the baseline recognizer (approximately .2%),

it seemed reasonable to apply the reduced thresholds across all experiments.

In addition, since the optimal frame-level alignments for each segment are only

necessary when performing forced transcription, the code was modi�ed to only record

the best path during forced transcription. This simple modi�cation not only resulted

in improved speed, but saved a large amount of memory.

Another method for reducing the requirements for both memory and speed is to

simply restrict the triphone models that the search can score against. Of all 234,000

possible triphone models, only about 75% are physically realizable. Thus, prohibiting

the search from considering any of the remaining 25% was a straightforward way to

improve the decoding eÆciency.

Implementing the optimizations described above reduced the memory requirement

to about 700 MB and resulted in a decoding time of 4 minutes per utterance. Although

these �gures are still much worse than those of the baseline recognizer, to some degree

an increase in computation is inevitable because of the scoring of multiple frames

in each segment, and the large number of possible triphone models for each frame

considered.

4.2 Testing and Results

The recognizer was evaluated on the TIMIT corpus [11], which de�nes the phonetic

recognition task described in [4]. The TIMIT training set of 4620 utterances was
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used for training the models, and the development set of 400 utterances was used

for testing. Several experiments were conducted, in which only the segment-based

boundary scores were used, only the frame-based scores were used, and both scores

were used in conjunction. In addition, a series of experiments were performed using

full-forward scoring over the per-segment HMM instead of Viterbi scoring. The results

of these experiments are shown in Table 4.2, which displays the recognizer's word

error rate (WER) under various testing conditions. The performance of the baseline

recognizer, which uses standard segment and boundary scores, is also shown. Note

that the search methods \Viterbi" and \Full-Forward" only apply to frame scoring.

Scoring Method Viterbi WER Full-Forward WER
Boundaries 29.4 29.4
Frames 30.0 31.6
Boundaries + Frames 26.7 26.7
Boundaries + Segments 27.7 27.7

Table 4.3: Performance of di�erent scoring techniques

In isolation, the frame-based scores don't perform as well as the boundary-based

scores. However, when boundary scores are combined with frame scores, the resulting

word error rate is better than that of either technique in isolation. In fact, it even

improves on the current baseline recognizer, which uses boundary and segment scores.

Finally, the full-forward scoring required slightly more computation than the Viterbi

scoring, but yielded slightly worse results.
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Chapter 5

Audio-Visual Data Collection

The preceding chapters have described work that has been done to prepare for audio-

visual integration. Aside from having the necessary mechanism for combining the

audio and visual streams, integration would also require a large amount of data for

training and testing. Unfortunately, there were no publicly available databases of

audio-visual speech that were suitable for our task. Therefore, we initiated a fairly

large data collection e�ort in anticipation of the eventual integration. The following

sections describe the main data sets available, our data collection procedure, and

some statistics on the �nal set.

5.1 Existing Data Sets

The most extensive database collected speci�cally for audio-visual speech recognition

(AVSR) research is the IBM ViaVoice database [5]. It contains 50 hours of dictation

style utterances, collected across 290 subjects. Unfortunately, this data set has not

been made available for public use, and therefore could not be leveraged for our

project.

Another well known data set is the Multi-Modal Veri�cation for Teleservices and

Security applications (M2VTS) corpus [7]. It was collected at the University of Surrey

in England, and included 4 recordings of 295 subjects. Since this database was geared

towards security applications, the data consisted mainly of continuous digit sequences
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read into a camera. It also included rotating head shots, i.e. video taken from

di�erent angles, which are appropriate for 3D imaging experiments. This database

is available at cost from the University of Surrey, but the use of digit sequences

was too constraining for our purposes. The newest version of the database included

some non-digit utterances, but not enough to robustly train and test a recognizer.

Several smaller databases encountered online had similar limitations, and thus are

not described here.

5.2 AVSR-TIMIT Data Collection

The database for this project consisted of read utterances from the TIMIT-SX data set

[11]. Volunteers were taken into a quiet room and asked to record a set of sentences,

which were all recorded and digitally stored.

The �rst utterance recorded by any volunteer was \Don't ask me to carry an oily

rag like that." This sentence was simply provided to make the user more accustomed

to the recording procedure, and will be ignored when generating the �nal corpus.

5.2.1 Goals

The main goal of the data collection was to collect a large degree of phonetically

varied speech, balanced over the entire corpus. The SX sentences within the TIMIT

corpus are a good match for such a requirement. TIMIT SX contains roughly 450

sentences designed speci�cally to cover the most common phonetic contexts in as few

sentences as possible.

In addition to phonetic variety, another goal was to include a large number of

speakers. Ideally, the speakers would include a roughly even split between males

and females, and be fairly uent in English. The recording conditions were designed

to be visually and acoustically clean. However, the use of a far-�eld microphone

instead of a close-talking one introduced some degree of environmental noise and

room reverberation.
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5.2.2 Recording Process

The volunteer was seated in front of a computer, which had a beam forming mi-

crophone array on the keyboard and a video camera mounted on a tripod, behind

and slightly above the monitor. The volunteer was instructed to interact with the

computer using a graphical interface, shown in Figure 5-1.

Figure 5-1: Graphical Interface for Data Collection

Each of the roughly 20 utterances was shown on the interface in turn. The user

would press and hold the \Record" button to record the utterance. When the button

was released, the program would echo the recorded waveform back, so that the user

could hear his/her own recording. After that, the program would automatically

advance to the next utterance.

Throughout the entire process, someone was present in the room to tell the user

to re-record a sentence if necessary, e.g. if there was an orthographic mistake. If a

sentence had to be re-recorded, the user would simply use the \Backup" button shown

in Figure 5-1 to revert to the previous utterance. This practice was necessary to ensure

that the speech matched the orthographic transcription so that retranscription would

not be necessary.

The video camera had a side panel that would allow the user to see if his/her face

was still in frame. Since the camera was mounted slightly above the monitor and

the subject was reading from the screen, his/her eyes were usually directed slightly

downwards. A blue curtain was draped behind the user to make the background

mostly uniform.
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(a) Without side illumination (b) With side illumination

Figure 5-2: Sample screen shots from audio-visual data collection

For the last �ve utterances in each session, a small lamp was turned on so that

the subject's face was illuminated from the side. This practice was included to add

some lighting variation to the data. Figure 5-2 shows two sample screen shots from

the audio-visual data set collected.

5.2.3 Statistics

The �nal audio-visual TIMIT data set included 223 speakers, of which 117 were male

and 106 were female. All but 12 of the subjects were uent speakers of English. Since

each person recorded about 20 sentences, the set consists of roughly 4500 utterances.

The video was recorded in uncompressed DV (digital video) AVI format in 720 x 480

resolution.
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Chapter 6

Conclusion

6.1 Summary

The goal of this thesis was to develop a speech recognition system that could use

visual as well as audio data, in an e�ort to improve recognition performance. The

improvement would be mild in clean acoustic environments, and more substantial in

noisy environments.

The infrastructure necessary to integrate the audio and visual channels was devel-

oped. Video frames were mapped to audio segments, and the asynchrony between the

two streams was resolved using a Hidden Markov Model for each segment. A video

score was then generated using a segment-constrained Viterbi search, and was com-

bined with the audio score to produce an audio-visual score used by the recognizer's

main search.

In the absence of a video classi�er, the infrastructure was tested using audio

data for both channels. The use of segment-based boundary scores and frame-based

scores yielded better recognition results than the baseline recognizer on a TIMIT-SX

development set of 400 utterances. Unfortunately, the large amount of computation

required to use the frame-based scores make them inappropriate for real-time speech

recognition tasks. However, the frame-based scoring mechanism does seem to be a

good foundation for eventual integration with a visual channel.
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6.2 Future Work

Although a preliminary evaluation of the frame-level scoring mechanism was per-

formed in this thesis, there are many more experiments that would provide more

insight into its performance. For example, one could �nely adjust recognizer parame-

ters such as the segment transition weight and the relative weighting between segment

and boundary scores to further improve the recognition performance. Another pos-

sibility is to modify the Viterbi search over each segment's HMM to proceed in a

greedy fashion, so that it only extends the best partial path at any given time. This

approach could potentially increase speed while not drastically a�ecting the word

error rate. In addition, one could try iterative retraining by generating frame-level

forced transcriptions and training new models on those transcriptions.

Of course, the most promising direction for further research is using the infrastruc-

ture to integrate SUMMIT with a visual channel. This direction is promising from

several perspectives. As mentioned in Chapter 1, using visually derived frame-based

scores would provide new information that could noticeably improve recognition per-

formance, especially in noisy environments. In addition, the speed would be greatly

improved because the video sampling rate is usually around 30 frames/sec, compared

with the current audio sampling rate of 200 frames/sec. This slower sampling rate

would improve decoding speed by roughly an order of magnitude, since there will

be less frames to score in each segment. Also, since audio-visual asynchrony usually

comes in the form of anticipatory visual cues, the per-segment HMM could be reduced

to two states, so that only the current phone and the right context need be consid-

ered. Furthermore, since there are less visemes than phones, there would be fewer

unique models to score against. These factors, combined with further optimization,

could result in an audio-visual recognizer that yields better recognition performance

than the current baseline and decodes in real time.
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Appendix A

Phonetic Unit Chart

The following is a table of the IPA symbols for the phones and the corresponding

TIMIT labels, along with example occurrences. The table continues on the following

page.

IPA TIMIT Example IPA TIMIT Example

[a] aa bob [|] ix debit

[@] ae bat [i] iy beet

[^] ah but [J] jh joke

[O] ao bought [k] k key

[a⁄ ] aw bout [k›] kcl k closure

[{] ax about [l] l lay

[{‡ ] ax-h potato [m] m mom

[}] axr butter [n] n noon

[a¤ ] ay bite [4] ng sing

[b] b bee [FÊ] nx winner

[b›] bcl b closure [o] ow boat

[C] ch choke [O¤ ] oy boy

[d] d day [p] p pea

[d›] dcl d closure [√] pau pause

[D] dh then [p›] pcl p closure
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[F] dx muddy [?] q glottal stop

[E] eh bet [r] r ray

[lÍ ] el bottle [s] s sea

[mÍ ] em bottom [S] sh she

[nÍ ] en button [t] t tea

[4Í ] eng Washington [t›] tcl t closure

[∑] epi epenthetic silence [T] th thin

[5] er bird [U] uh book

[e] ey bait [u] uw boot

[f] f f in [uÚ ] ux toot

[g] g gay [v] v van

[g›] gcl g closure [w] w way

[h] hh hay [y] y yacht

[H] hv ahead [z] z zone

[I] ih bit [Z] zh azure

- h# utterance initial and �nal silence
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