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Abstract

Speech synthesis is an automatic encoding process carried out by machine through which symbols
conveying linguistic information are converted into an acoustic waveform. In the past decade or
so, a recent trend toward a non-parametric, corpus-based approach has focused on using real hu-
man speech as source material for producing novel natural-sounding speech. This work proposes a
communication-theoretic formulation in which unit selection is a noisy channel through which an
input sequence of symbols passes and an output sequence, possibly corrupted due to the coverage
limits of the corpus, emerges. The penalty of approximation is quantified by substitution and con-
catenation costs which grade what unit contexts are interchangeable and where concatenations are
not perceivable. These costs are semi-automatically derived from data and are found to agree with
acoustic-phonetic knowledge.

The implementation is based on a finite-state transducer (FST) representation that has been success-
fully used in speech and language processing applications including speech recognition. A proposed
constraint kernel topology connects all units in the corpus with associated substitution and con-
catenation costs and enables an efficient Viterbi search that operates with low latency and scales to
large corpora. An A∗ search can be applied in a second, rescoring pass to incorporate finer acoustic
modelling. Extensions to this FST-based search include hierarchical and paralinguistic modelling.
The search can also be used in an iterative feedback loop to record new utterances to enhance corpus
coverage.

This speech synthesis framework has been deployed across various domains and languages in many
voices, a testament to its flexibility and rapid prototyping capability. Experimental subjects com-
pleting tasks in a given air travel planning scenario by interacting in real time with a spoken dialogue
system over the telephone have found the system “easiest to understand” out of eight competing sys-
tems. In more detailed listening evaluations, subjective opinions garnered from human participants
are found to be correlated with objective measures calculable by machine.

Thesis Supervisor: James R. Glass
Title: Principal Research Scientist
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Chapter 1

Introduction

Speech synthesis [71] is an automatic encoding process carried out by machine through

which symbols conveying linguistic information are converted into an acoustic pressure

waveform. The speech message may originate from a representation of the meaning to

be communicated. The process of language generation produces a set of lexical unit

sequences, or sentences, that best convey the message. Higher-level constraints such

as discourse or dialogue may influence the structure, or syntax, of the sentences in the

interest of unambiguous, efficient communication. In humans, language generation

may also be influenced by paralinguistic factors (vocal effects which may convey

meaning external to linguistic information) such as emotion, intent, diction, and

socioeconomic background. The phonemic baseforms of the lexical units, or words,

are accessed from a lexicon, and variational, allophonic phenomena may occur within

and between words. Pronunciation variations may depend on phonotactics (permitted

sound sequences in a language), regional dialects, speaking rate, effort of enunciation,

or, in humans, paralinguistic factors such as formality, and familiarity. In parallel to

the phonetic sequence comes a description of the prosodic intonation contour which

includes pitch, duration, and energy. Prosody is affected by all of the above linguistic

and paralinguistic factors. For example, phrases may be separated into pitch groups

to lessen cognitive load and accents may be applied onto words carrying information
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new to the running dialogue. The final pressure waveform is synthesized from the

acoustic-phonetic and prosodic descriptions through simulation of the human speech

production mechanism. Again, in humans, paralinguistic factors such as background

noise, duress, or health may apply.

The process described above is multi-staged and involves many decisions made at the

interface of each stage. As it progresses from symbols to signals, it is inherently a

one-to-many mapping and many possible output waveforms (as interpreted by the

human listener) may actually convey the same, original message. Information about

the encoding process is typically captured through some combination of knowledge-

engineered rules and data-driven models. This dichotomy reflects the classic trade-off

between top-down and bottom-up approaches. In typical rule-based systems, experts

infer a set of hard rules from mostly knowledge and experience. The rules may be

stored in structures such as decision trees, which have a top-down view of the world.

In typical data-driven systems, experts infer a set of features which are measured over

a corpus of data and are used to estimate statistical models. As these models are

crafted, a compromise must be struck between parameter parsimony and data under-

fitting. Top-down and bottom-up learning can also be combined into a two-stage

learning process. For example, an acoustical model that incorporates context may

use a decision tree to split contexts into more homogeneous categories. Bottom-up

estimation proceeds to estimate statistical models for each of the categories.

One particularly enlivening application of speech synthesis is in spoken dialogue sys-

tems which allow humans to interact via voice with a machine to access information

and process transactions. In short, their sole function should be to offload burden-

some tasks and increase human productivity. In this context, speech synthesis is used

by machine on the output side to provide information and aural feedback to the hu-

man user. This auralization defines a persona or voice that the user associates with

the system, which, more often than not, leaves a lasting impression of the overall

system. In order to reduce the cognitive load [110, 85] of understanding on the part

of the user, it is then imperative to design a speech synthesizer for outputting system
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responses which sound natural, like a human. Moreover, in displayless systems where

audio is the sole channel of feedback, any shortcomings in the naturalness and intel-

ligibility of the speech synthesis will be irreparable. Attention and focus diverted to

understanding synthetic speech can only negatively impact the ability to recall, for

example, information from a list [80].

In spoken dialogue systems, the interface medium is speech, and dialogue interac-

tions are speech-to-speech, which means that the user speaks to the system and the

system speaks back to the user. However, within the computer, the representation is

necessarily symbolic. Hence, the user’s query is translated to a lexical representation

by means of speech recognition. From that hypothesized word sequence the meaning

and intent can be derived by means of language understanding. Now, the machine

can then retrieve information based on the query and formulate a reply via language

generation. The symbolic response is then transformed back to the speech domain

by the process of speech synthesis described above.

1.1 Background

Although speech synthesis has had a long history [71, 87], progress is still being made

[43, 152] and recent attention in the field has been primarily focused on concate-

nating real human speech selected from a large corpus or inventory. The method of

concatenation [107] is not a new idea and has been applied to other parametric speech

representations including, for example, linear prediction coefficients [102], sinusoidal

modelling [88], multiband excitation modelling [44], and harmonic-noise modelling

[138]. Whereas the units of concatenation were selected by rule before, nowadays

unit selection techniques [61] are typically employed to select variable-length or non-

uniform units [118] from a large corpus [61, 8]. Because of reduced storage costs over

the years, unit representation has tended away from parametric and towards non-

parametric models (i.e., using the speech waveform itself). Before the advent of using
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real human speech, rule-based formant methods as shown in Figure 1-1 were popular.

Unit selection was trivial with a database of very few (one) examples, while much

manual tuning was required in the modification and generation stages. Hard decisions

made by decision trees [13, 59, 148, 29] or omission of units from the corpus [9, 38] are

typically made before the unit selection search to prune the search space. Intonation

contours can be applied by waveform modification as part of a post-processing stage

[12] or it can be modelled in the unit selection search [29, 19, 21]. Speech synthesis in

limited domains [10] can sound natural and is often a good starting point for synthesis

research. The above techniques are mostly independent of the target language and

can be applied in a multilingual setting [133].
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Figure 1-1: Architecture of rule-based formant speech synthesizer.

Initial work by the author on concatenative synthesis in an automobile classified

advertisement system [90] explored using synthesis units at the lexical level and con-

structed entire sentences from pre-recorded words and phrases. Because the units

were relatively long in duration, concatenations (and any associated concatenation

artifacts) occurred less frequently in time. Anecdotally speaking, prosody, not co-

articulation, matters at the supra-lexical level. By recording words and phrases in

prosodic contexts similar to where they would be used, a very high naturalness was
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achievable with a compact corpus. However, the type of responses was limited to the

type of carrier phrases used in recording. Although this approach was well suited to

constrained domain applications, recording entire words became unwieldy for large

vocabulary sizes.

Later work by the author [162] on a precursor to the flight arrival system described

in [126] lifted the restriction on unit size and experimented with using sub-lexical, or

sub-word units. As described previously, costs were devised at the phonological level

to favor certain substitutions and concatenations over others. Informal, perceptual

studies were used to determine what the phonological classes and synthesis costs

should be. It was found that manner of production and place of articulation could be

linked to co-articulatory effects. Accordingly the classes and costs were manually set

to consider these co-articulatory factors. In experiments with English words, longer

units were found to sound more natural. Prosody seemed to suffer when concatenating

smaller units, perhaps, because prosodic effects of lexical stress were not considered,

for example. Nonetheless, it gave a glimpse of what naturalness was possible using

phonological units.

The result of the prior work performed by the author described above is a corpus-

based, concatenative speech synthesizer which performs unit selection at the phono-

logical level on a domain-dependent corpus of speech. Figure 1-2 shows a diagram of

the stages involved in going from an input specification to a synthetic waveform. Unit

selection is the most challenging step: with 10 examples for each of the 7 sounds in

“computer”, there are 107 combinations from which to select one sequence. Because it

is utilized within spoken dialogue systems, many of the above processes are implicitly

captured by the very nature of the constrained domains. For example, neither syntac-

tic parsing nor prosody generation is totally essential for natural-sounding synthesis,

because the domain-dependent corpus of speech mirrors the structure of typical sys-

tem responses. As a result, the speech synthesizer is somewhat custom tailored to

the task and does not necessarily generalize well to other domains. Understanding

and compensating for this and other aspects is the focus of this thesis.
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Figure 1-2: Architecture of corpus-based unit selection concatenative speech synthe-
sizer.

1.2 Approach

The problem can be stated as follows: develop a flexible, expressive concatenative

speech synthesis framework for scalable, efficient unit selection from large corpora

that can be applied to and evaluated across multiple domains, languages, and voices.

Desirable features include being able to automatically determine parameter settings

from example data and to unify past synthesis research ideas under one framework.

This thesis proposes to capture the entire transformation from symbols to signals in

speech synthesis with finite-state models. The appropriate stages will be determined

and connected by the appropriate interfaces which serve to buffer and to isolate. Each

stage transduces an input language to an output language and should be capable

of handling a network or graph of possible inputs and of producing a network or

graph of possible outputs. When (soft) decisions are to be made, quasi-probabilistic

weights or encoding length costs statistically learned from labelled exemplars should

prioritize alternatives. As stages of finite-state transducers (FST’s) [115] sequentially
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cascade, so will the weights, and the best transformation shall arise from all considered

combinations.

One theme explored throughout this thesis is the commonality between speech recog-

nition and synthesis. Modelling techniques for context-dependent acoustics and pro-

nunciation variation, for example, can be directly borrowed from recognition work.

Their application is just slightly different because in recognition the word sequence

is unknown, whereas in synthesis it is known. The FST representation has been ap-

plied to speech recognition with great success in where, for example, Viterbi and A∗

search algorithms were used for 1-best and N -best lexical decoding. These search

algorithms are generically defined for FST’s, oblivious to their specific application,

and, therefore, reusable. On the other hand, note that, because many processes in

speech synthesis have analogues in speech recognition, a potential by-product of this

research work may be the beginnings of a new architecture for speech recognition.

This thesis work will be based on a common model of speech synthesis known as text-

to-speech (TTS) synthesis which contains three main stages. Because, many state-

of-the-art speech synthesizers operate in this modality, they will serve as references

for comparison and contrast. TTS conversion contains three main stages:

• Text analysis includes sentence parsing, abbreviation and numeral expansion,

and pronunciation generation.

• Prosody modeling predicts intonation and accents from analyzed text and gen-

erates acoustic parameters (e.g., duration).

• Waveform generation produces speech from description of units.

Additionally, waveform generation approaches are categorized as follows: terminal-

analog rule-based models (e.g., MITalk [1], DECtalk [71]), articulatory/physical mod-

els (e.g., Kelly & Lochbaum [68], HLsyn [159]), and waveform concatenation (e.g.,

ATR Chatr [24], Festival [14], Bell Labs [8]). Waveform concatenation has recently
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become popular in the speech synthesis literature primarily because of its low com-

plexity and of decreasing storage costs. Because it uses speech units excised from

natural speech spoken by a human, it has demonstrated potential for producing

natural-sounding synthesis.

Concatenative approaches are grounded on two basic premises as described by Hunt

and Black [61]: 1) speech spoken in one context may be used in another, and 2)

splicing of the speech signal can be performed with little perceptual distortion. To

achieve this sleight of hand, certain criteria must be prescribed for the realization of

these two ideas. The degree to which the two above premises hold can be measured by

substitution and concatenation costs, respectively. In the implementation of the first

concept, one defines a set of contextual classes that are deemed to have the same co-

articulatory effect on the realization of a speech segment. For example, phonological

equivalence classes can be determined with acoustic-phonetics knowledge. For the

second concept, it is contended that signal splicing may be less noticeable at places

where the signal undergoes changes anyways, such as at places of source change or

extreme spectral change. With the above in mind, novel speech can be generated

from a pre-existing corpus by locating appropriate segments of speech and making

judicious splices.

The above description of concatenation can be likened to the operation of cut-and-

paste found in many text editors. In concatenative synthesis, what you cut and where

you paste are the determining factors of naturalness. A unit selection algorithm is

defined to select the units of appropriate makeup for concatenation at appropriate

places. It can be as simple as a deterministic mapping of lexicon entries to speech

waveform segments also known as the “canned speech” approach. In general, unit

selection can be considered as a constrained optimization problem where the goal is

to find the least-cost path through a graph of unit candidates. Because unit selection

is a graph-based search, algorithms such as Viterbi and A∗ are commonly employed

to find a unit sequence that minimizes an overall cost metric. If the search is greedy,

variable-length units are created by concatenating adjacent speech segments.
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Because the cost metrics are measured over observed variables and not the hidden,

psychophysical quantities, it is not clear that the best path corresponds to the most

natural-sounding sequence of units. Because human users are the ultimate consumers

of speech synthesis - they are the ones interacting with the machine through a spoken

interface - their opinion of the synthesis provides important subjective feedback. If

their subjective opinion can be related to the objective cost measures used by the

search, then the validity and usefulness of the entire optimization framework described

here is ensured. Then the limiting factors for widespread deployment of unit selection

frameworks for concatenative speech synthesis become the design of the corpus and

the design of the costs.

1.3 Outline

By discovering some deeper patterns in acoustic-phonetics, phonology, and prosody, it

may be possible to increase the flexibility of this concatenative speech synthesizer and

to synthesize less constrained textual input. Under the proper formulation, statistical

instruments can be used to glean these patterns from data. Analysis-by-synthesis

methods can also be useful in driving incremental feedback processes, such as corpus

design. Digital signal processing may potentially play a role in creating novel signals.

A truly automated, systematic approach will incorporate these techniques to minimize

the amount of human intervention needed, save for the actual acquisition of human

speech.

To first gain a foothold, Chapter 2 describes the optimization framework used for unit

selection. A communication-theoretic formulation casts the process of unit selection

as a noisy channel through which an input specification passes and speech segments

emerge. The degree to which the input is degraded is measured by description length

costs which describe how well the output approximates the input. A mathematical

framework for efficiently applying these description length costs is also introduced.
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Perceptual experiments are performed in Chapter 3 to better understand what con-

stitutes a unit. A distributional analysis of the English language enumerates sonorant

sequences and examines their composition and frequencies of occurrence. Digital sig-

nal processing techniques are employed to determine ideal points of concatenation.

Novel speech segments are searched for and created with source-filter separation and

re-combination at the sub-phonetic level. The results of these manual experiments

provide insight on how to design units automatically.

Chapter 4 defines an acoustic model for synthesis units. Phonological classes are

automatically acquired by a decision tree and are used to categorize units into clus-

ters for subsequent characterization by statistical methods. An information-theoretic

criterion is introduced to compare the statistical models and to derive substitution

and concatenation costs in an automatic fashion. These costs appear to agree with

acoustic-phonetics knowledge and with experiments on sonorant units conducted ear-

lier.

Next, Chapter 5 delineates an implementation of the unit selection framework based

on finite-state transducers. The search space is defined as a cascade of FST’s which

successively transform the input sequence of words into a graph of possible sequences

of units. A key contribution is an FST topology connecting all units in the corpus

with associated substitution and concatenation costs that makes the search efficient.

Search behavior under Viterbi pruning is explored as well as rescoring of an N -best

list generated by a second-stage A∗ search.

Then, methods and processes for practice are laid out for semi-automatically design-

ing, creating, and deploying synthesizers. Best-of-breed practices are used to success-

fully use automatically-trained, FST-based unit selection concatenative speech syn-

thesis in spoken dialogue systems. A wholistic evaluation of human users carrying out

a flight planning task finds that the system is “easy to understand”. Further listening

evaluations drill down and examine the efficacy of automatically trained phonological

classes and acoustic costs by relating their performance to opinion scores garnered
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from human participants. A simple intonation model is found to have the potential

to systematically enhance naturalness. Preliminary experiments with evaluation by

recognition show how machines can enter the feedback loop for automatically tuning

and improving synthesizers.

Finally, Chapter 7 states conclusions and points to directions for future research.
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Chapter 2

Unit selection

This chapter introduces the concept of unit selection, an optimization scheme for

selecting a best sequence of units, which is utilized in many speech processing ap-

plications, including recognition and synthesis. In speech recognition, an optimal

sequence of units (e.g., hidden-Markov model states) is selected to best explain a

sequence of observations in the hopes of minimizing word error rate. In speech syn-

thesis, an optimal sequence of units is selected to best reconstitute a sequence of

speech-describing symbols in the hopes of synthesizing natural-sounding, artifact-free

speech.

In this work, the process of unit selection is cast in a communication-theoretic for-

mulation, where the unit selection process is likened to a noisy transmission channel

and symbol corruption is minimized in an optimization framework. This is analo-

gous to the model laid out for speech recognition [65]. Because the description of

the units may not entirely be captured by symbols alone, a rescoring stage with nu-

merical measurements can be performed afterwards. In this case, the first stage/pass

can be thought of as a coarse search which is refined by the second stage/pass. The

implementation of this multi-pass system with finite-state transducers is outlined

subsequently in Chapter 5.

33



2.1 Introduction

In the most general of terms, unit selection is the process by which a higher-level

description of speech is transformed into a lower-level description of speech given a

corpus. This transformation may be as simple as a one-to-one mapping implemented

by a table lookup, or it may involve path dependencies and be constructed as an

optimization implemented by dynamic programming. Path dependencies necessitate

bookkeeping of state, whereas (static) table lookup operates independently of state

(i.e., stateless or context-free.) However, since the path-independent process of ta-

ble lookup can be subsumed by a path-dependent algorithm, the distinction is not

necessarily operational, but merely descriptional in nature.

The direction of transformation chosen for our discussion here - from a higher level to a

lower level - is arbitrary. Once the direction is chosen, knowledge-bearing information

needs to be encoded at the destination level. In speech recognition, the unknown to be

inferred is the word sequence, and language models assist in the inference of the word

sequence by providing constraints at higher levels. In speech synthesis, the unknown

to be inferred is the unit sequence, and acoustic models assist in the inference of the

unit sequence by providing constraints at lower levels.

There is a branching factor associated with the selection process from the known to

the numerous possibilities of unknowns. In speech recognition, as acoustic models

are proposed at each step to best describe an observation, the more discriminating

the models are, the less of a branching factor there is. When the scores from the

acoustic models are not as diverse, there is heavy competition between the models,

and multiple hypotheses need to be considered in parallel, giving rise to a larger

branching factor. Likewise, during the next step of stringing sounds (phones) into

words (lexical items), when a sub-sequence is non-unique, multiple word hypotheses

need to be maintained until a unique (given the history) sound breaks the tie. At

the final stage, language models resolve ambiguity by constraining lexical sequences
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and possess a measurable branching factor known as perplexity, which quantify the

average number of possible words following any word on average.

In corpus-based concatenative synthesis, what is known is the message and what is

unknown is the sequence of segments which reconstitute speech. The message may

be conveyed by a multitude of different wordings. The alternate sentence arrange-

ments represent the first level of branching. Next, multiple phonemic pronunciations

may be specified for each word with additional pronunciation variation captured by

phonological rules. At this point - ignoring multiple, parallel paths for now - when

a wording is resolved down to a sequence of phonological units, say N of these, to

match, there a total number of 2N−1 concatenation scenarios to consider. This expo-

nential branching factor is due to the N−1 interleaved binary decisions made between

each of the N units on whether to concatenate or not. Clearly, sequential decision

making (either hard/irreversible or soft/deferred decisions) is required to deal with

such an expansionary unfolding of possibilities. For each unit, unit selection will con-

tinue to select units from the current utterance barring mismatch on the subsequent

unit. Otherwise, unit selection will choose from all the exemplars in the corpus which

match the subsequent unit. Say that there are on average L exemplars per unique

unit in the corpus. In the worst case when all N − 1 decisions are to concatenate -

or, equivalently, when all N units are non-contiguous - there are a total number of

LN possibilities that match the input unit sequence. Indeed, there is a demonstrable

need for combating such growth which increases exponentially with respect to the

size of the corpus (L) and the task (N).

The foregoing has paid attention to the selection aspect of unit selection. The actual

nature of the unit in unit selection is a design choice in of itself. The requirements of

the unit are that it encode linguistic, intonational, and (possibly) paralinguistic in-

formation. The information can be described at various levels, low and high, or even

a hierarchical mixture thereof. Linguistic information would encompass segmental

information, from the phonological to the syllabic to the lexical level. Intonational in-

formation include supra-segmental information, such as emphasis, rhythm, and stress,
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for which pitch, duration, and energy are acoustical correlates, respectively. This cor-

respondence need not be one-to-one though, because of many factors and influences.

It can also extend to supra-lexical levels where phrases or multi-word sequences are

described. Paralinguistic information can describe notions such as speaker gender,

accent, voice quality, and emotional state.

While information that is encoded hierarchically is represented vertically or spatially,

information can also be represented horizontally or laterally across time, giving rise

to the notion of non-uniform or variable-length units. For example, individual phones

can be split into half-phones [8] or diphones [107, 102, 26] or they can be merged into

multi-phone units, or individual words can be merged into multi-word units. The

decision to merge speech segments into, generally speaking, multigrams [35] can be

made a priori, or at run-time. Effectively, multigrams can be thought of as a fixed

segmentation of smaller speech segments, the result of domain-dependent analyses

carried out empirically over a given data set. The merging may be motivated by

capturing frequently observed sub-sequences or by discovering building blocks well-

shielded from concatenation artifacts for concatenation, motivations to be described

next in Chapter 4. Although it represents a hard decision, the design of the selection

process is simplified, because the very existence and identity of a multigram preserves

the computation that has been performed a priori. The creation process of non-

uniform or variable-length units can be deferred to run-time by making soft decisions

in the sequential decision making process. Here, a greedy search encouraging the

selection of variable-length sequences can be utilized.

The final aspect which defines a unit is its resolution. The exact identity of the

unit can be resolved with both symbols and numbers, corresponding to discrete and

continuous measures, respectively. For example, individual allophonic variations of

phones (allophones) can be considered separately as discrete features (e.g., nasaliza-

tion or palatalization of vowels). When dealing with pitch, a choice can be made

between a continuous scale (e.g., 108 Hz) or a discrete scale (e.g., low vs. high).
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Given the above examination of what constitutes a unit, it is foolhardy to regard any

particular spatio-temporal segmentation of speech units at any level of resolution as

optimal, especially in the face of rare events in heavy-tailed distributions [93] and

evidence of constant language evolution [92]. The design process of the unit destined

for usage in unit selection must be repeated longitudinally in order to adapt to new

data.

2.2 Background

Previous work on unit selection with focus on non-uniform unit and algorithmic de-

velopment can be traced back to the Advanced Telephony Research Institute Inter-

national (ATR) in the late 1980’s, where Sagisaka [118] first developed the notion of

non-uniform units for speech synthesis. Later works by Iwahashi [63] introduced a

taxonomy of costs for joining units. After the ν-TALK speech synthesizer [119] was

completed at ATR, Campbell [24] applied this framework to larger corpora in the

CHATR system with implementation carried out by Hunt and Black [61].

Unit selection involves finding an appropriate sequence of units, u∗
1:N , from a speech

corpus given an input specification, u1:N , where the subscripts denote a sequence of N

units counting from 1. In mathematical terms, this is represented as an optimization

with a cost metric, J(·, ·).

u∗
1:N = argmin

û1:N

J(u1:N , û1:N)

Typically an independence assumption is made to simplify the joint optimization

over the N -length sequence into N individual, term-wise substitution costs, S, with
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concatenation costs, C, between the selected units.

u∗
1:N = argmin

û1:N

C(u0, û1) + S(u1, û1) + C(û1, û2) + · · · +

C(ûN−1, ûN) + S(uN , ûN) + C(ûN , uN+1)

= argmin
û1:N

C(u0, û1) +
∑N

i=1 S(ui, ûi) +

∑N−1
i=1 C(ûi, ûi+1) + C(ûN , uN+1)

(2.1)

Note that u0 and uN+1 represent initial and final boundary units and are not part of

the final selected sequence. Their usage is actually quite subtle, as the concatenation

costs at the boundary, C(u0, û1) and C(ûN , uN+1), have heterogeneous arguments,

whereas the N − 1 concatenation costs between the selected units, C(ûi, ûi+1), have

homogeneous arguments. While the latter is quite understandable as it considers

concatenating actual instances of speech from the corpus, the former reflects the desire

to select starting and ending units, û1 and ûN with surrounding contexts, u0 and uN+1.

Because the arguments are heterogeneous in the former case, the functional form of

C may differ for the heterogeneous case. Unfortunately, some of these subtleties are

lost in the notation, but it is used herein nevertheless for its clarity of presentation.

Although these contexts are typically chosen to be silence (i.e., in the absence of

speech production), choosing speech contexts enables the selected units to blend with

running context.

Though this formulation is simple, many issues immediately arise:

• What are the units, u?

• How is the optimization performed?

• Is unweighted addition the proper method of unit cost combination?

• What are the definitions for substitution costs and concatenation costs?

• What is the proper space-time tradeoff between computing the costs on-line
and pre-computing (and storing) the costs off-line?
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If pre-computation of C is necessary in advance of run-time over all M units in the

corpus, then there are a quadratic number, M2, of C(ûi, ûj) terms for all i, j.

In Equation 2.1, greedy selection of variable-length units is encouraged by setting

concatenation costs between adjacent units in the speech corpus to zero. Likewise,

when there is an exact match of context, the substitution cost is zero. Of course, this

entire setup is based on the premise that objective measures can capture perceptual

distances. Chapter 6 describes experiments in which correlations are found.

In practice, the above optimization is handled with a dynamic programming approach,

a type of sequential decision making algorithm. Definitions for these cost functions

stemming from acoustic and information-theoretic motivations are later presented

in Chapter 4. A clustering technique presented in a following section in this chap-

ter linearizes the above quadratic factor by replacing instance-to-instance costs with

cluster-to-cluster costs with the introduction of a centroid-based approximation that

is accurate on average. What follows first is a reformulation of the above optimization

in terms of communication theory.

2.3 Communication-theoretic formulation

Consider a communication-theoretic formulation of the unit selection process in which

the unit selector is a black box receiving an input specification and transmitting the

best match. This black box can be thought of as a noisy transmission channel [65],

because the output may not precisely match the input. Corruption of the message

is quantified by description lengths which describe the penalty in approximating the

input with the output. When a message is transmitted through the unit selector

without degradation, then it must be that the desired units are entirely contiguous

within the speech database. The content and format of the message is left unspecified

in this generic formulation.
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In Figure 2-1, the input specification, u (ignoring subscripts), passes through unit

selection and exits as u∗. To adapt this communication-theoretic formulation to the

substitution and concatenation costs, S and C, described in Section 2.2, construct

the input and output as streams of interleaved unit and transition symbols. The unit

symbols may contain contextual (e.g., triphone β(α : γ) denotes β in the context

of α and γ) information as well. Transition symbols are pseudo-units that have no

acoustic realization but serve as place-holders between units. Transition symbols

are marked differently depending on whether they bridge two contiguous units (α|β)

or not (α]|[β). Naturally, all transition symbols on the input side are marked as

contiguous (α|β), because ideally that is the desired case. Note that the left context

of β and the right context of γ are not corrupted in this transmission example.

Unit Selectionu u∗

β(α : γ) β|γ γ(β : δ) β(α : φ) β]|[γ γ(ψ : δ)

Note: β(α : γ) denotes β with left and right contexts, α and γ, respectively.
β|γ and β]|[γ are contiguous and non-contiguous transition symbols, respectively.

Figure 2-1: Communication-theoretic formulation of unit selection.

Because the input and output streams contain unit and transition symbols by con-

struction, it is straight-forward to quantify the corruption of unit and transition

symbols with substitution (S) and concatenation (C) costs, respectively. To handle

the pathological cases described above, S is zero when the input and output symbols

are identical and C is zero when a contiguous transition symbol appears unchanged

at the output side (i.e., β|γ on the input side agrees with β|γ on the output side.)

For the remaining cases, costs are automatically determined from data as described

next in Chapter 4. For now, turning back to Figure 2-1, it is seen that the total cost

or approximation error, J(u, û), for the example inputs and outputs is:

J(u, û) = Sβ(α:γ)→β(α:φ) + Cβ]|[γ + Sγ(β:δ)→γ(ψ:δ) (2.2)
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Since J(u, û), a sum of description lengths, is minimized, this setup can also be

regarded as a minimum description length (MDL) formulation. The connection here

to MDL literature is interesting, because by minimizing the approximation error, unit

selection will tend towards a minimum-error transmission channel. When there are

no errors in transmission, all the transition symbols have arrived without corruption,

which means that all the units were selected contiguously from the corpus. Perfect

reconstruction of the input specification with speech recorded in a corpus is the best-

case scenario, since the output will be natural by definition as it represents a stretch

of speech spoken entirely in succession by a human.

The triphone encoding of unit context (left and right neighbors) described in the

foregoing discussion is entirely arbitrary and does not affect the generality of the

formulation. However, to illustrate further parameter reductions for the purpose of

practical implementation under this triphone context model, another independence

assumption can be made, where substitution costs for triphones are decoupled into

left-sided and right-sided components. That is, when β(α̂ : γ̂) is used in place of

β(α : γ), the total substitution cost is:

Sβ(α:γ)→β(α̂:γ̂) = Sl
[α]β→[α̂]β + Sr

β[γ]→β[γ̂] (2.3)

Equation 2.2 can now be simplified with this decoupling relation in Equation 2.3

producing the final cost function, J(u, û), used from hereon in.

J(u, û) = Sl
[α]β→[α]β + Sr

β[γ]→β[φ] + Cβ]|[γ + Sl
[β]γ→[ψ]γ + Sr

γ[δ]→γ[δ]

= Sr
β[γ]→β[φ] + Cβ]|[γ + Sl

[β]γ→[ψ]γ

Note that since the left context of β, α, and the right context of γ, δ, survived

transmission, as depicted in Figure 2-1, the substitution costs, Sl
[α]β→[α]β and Sr

γ[δ]→γ[δ],

are identically zero. This contextual reduction of a triphone into a left-sided biphone

(e.g., [α]β) and a right-sided biphone (e.g., β[γ]) is similar to context modelling carried

out by Serridge in speech recognition experiments [127].
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If the units - described here with Greek letters - contain information across multiple

spatial levels, as described in introductory discussion in Section 2.1, there is the

potential for additional combinatorial expansion [153] in the number of units. The

practical way to deal with this is to decouple the costs and recombine them with

addition, as seen here in this example of simplifying triphone costs to biphone costs.

Then, for example, intonation symbols would be seen in the input and output streams

alongside with unit symbols describing acoustic-phonetic properties. Costs describing

mismatch in intonation would also be applied, perhaps, with linear combination. A

more visual representation of applying costs at different spatial levels will be described

in Chapter 5 with the finite-state transducers.

2.4 Parameter reduction: linearization

This section introduces a very general technique for parameter reduction when dis-

tances between individual instances are approximated by distances between distri-

butions or clusters of individual instances. If the space in which the instances lie is

well partitioned by the clusters, then the characteristics of each cluster (i.e., location

and spread) need only to be determined once. When a new instance is collected, its

relation to instances already present is known once its cluster identity is established.

Energy1 devoted to determining the optimal set of clusters is amortized over new,

incoming data. The following discussion is tailored to unit selection, but there should

be little loss of generality in this choice of application.

In a corpus with M units, a complete characterization of all concatenations (i.e., each

unit on the left and right sides of a concatenation) would require M2 parameters. As

new units are incrementally added to this corpus, an entire sweep through the old

units is required to calculate the values for the additional parameters. For example,

1It would be inaccurate to talk about time that is amortized. Energy, which is the product or
combination of work and time, is the more accurate notion.
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incrementally adding just one more unit requires (2M + 1) new parameters - there

are M concatenations with the new unit on the left of the concatenation boundary,

M on the right, and 1 with itself - for a grand total of M2 + (2M + 1) = (M + 1)2

parameters. For corpora with a large number of units, such an approach does not

scale and a method for mitigating the growth of parameters is necessary. The method

presented here groups units into a reduced number of clusters which are then further

analyzed for parameter calculations. The clusters are assumed to be a representative

collection which can be reused as new units are incrementally added to the corpus.

While this clustering approach trades off accuracy for speed, the appropriateness of

such a tradeoff can be decided by examining the correlation between the true and

approximate parameter values.

Consider a space where units of a corpus are represented by points. Figure 2-2

depicts data points which have been grouped into two distinct clusters, A and B,

whose member points are marked by triangles and pentagons. The concentric ellipses

denote the orientation and the shape of the cluster distributions. The centroids of

clusters A and B are pointed to by ā and b̄, respectively. Perturbations from the

centers, ã and b̃, respectively determine the locations of points a and b relative to

their cluster centroids. In other words, it holds that a = ā + ã and b = b̄ + b̃.

Determination of the concatenation parameters for all such a and b pairs is a wieldy

task as described above. By making a series of approximations, the number of pa-

rameters can be made linear with respect to the number of points. Since the triangle

inequality states that ||x + y|| ≤ ||x|| + ||y||, then the norm of the sum is decou-

pled into a sum of norms and pairwise interactions (i.e., summation) need not be

considered. The following set of equations list the series of steps beginning from the

original comparison between a and b and ending at a final form involving only cluster

comparisons and perturbation norms or lengths. Note that an alternate form of the

43



Cluster A
Cluster Bb − a

b̄ − ā

ã

b̃

a

b

ā b̄

Figure 2-2: Cluster modelling framework for parameter reduction.

Points, a and b, are located at positions determined by perturbations, ã and b̃, from cluster centroids,
ā and b̄. Via two repeated applications of the triangle inequality, the true distance between a and b,
||a−b||, is decomposed into an approximate distance represented by the sum of the distance between
the centroids, ||ā− b̄||, and the perturbation lengths, ||ã|| and ||b̃||.

triangle inequality, ||x − y|| ≤ ||x|| + ||y||, is employed in the second application.

|| b − a || = ||
(
b̄ + b̃

)
− (ā + ã) ||

= || (b̄ − ā
)

+
(
b̃ − ã

)
||

≤ || b̄ − ā || + || b̃ − ã ||
≤ || b̄ − ā || + || b̃ || + || ã ||

(2.4)

Although pairwise comparisons are required between the clusters, this is a computa-

tion of fixed cost performed just once if the clusters are representative of a language

and can be regarded small especially if the number of clusters is significantly less than

the number of units in the corpus. Any metric which satisfies the triangle inequality

is applicable including the Euclidean and Mahalanobis distances. The former is a

simple inner product on a vector space, while the latter considers possibly weighting

and rotating dimensions of the vector space. In the equation below, the Mahalanobis
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distance is specified with a concentration matrix of Σ−1, which parallels the notation

in describing Gaussian random variables to be seen shortly. The Euclidean distance

is a special case of the Mahalanobis distance when Σ−1 = I, where I is the inverse

matrix.
|| x ||E = xTx

|| x ||M = xTΣ−1x

The performance of the above approximation in Equation 2.4 can be evaluated by

calculating its bias with respect to the true expected value. In particular, consider

a multi-variate, d-dimensional Gaussian random variable, X, which is distributed

according to mean, µ, and variance, Σ.

pX∼N (µ,Σ)(x) =
∣∣(2π)dΣ

∣∣− 1
2 e− 1

2 (x−µ)T Σ−1(x−µ)

Using a formula [116] for expected Mahalanobis distances2, an expression for the

expected Mahalanobis distance between a pair of points is obtained. Note that the

joint expectation over X and Y is evaluated with an iterated expectation and that

the means and covariances for X and Y are, respectively, mX and SX and mY and

SY .

E [|| x − y ||M ] = EX,Y

[
(x − y)T Σ−1 (x − y)

]

= EX

[
EY∼N (mY ,SY )|X=x

[
(x − y)T Σ−1 (x − y) |X = x

]]

= EX∼N (mX ,SX)

[
(x − mY )T Σ−1 (x − mY ) + Tr [Σ−1SY ]

]

= (mX − mY )T Σ−1 (mX − mY ) + Tr [Σ−1SX ] + Tr [Σ−1SY ]
(2.5)

Next, the approximation to the true pairwise distance can be calculated in a simi-

lar fashion. Relating the former notation of cluster centroids and perturbations to

the current description of multi-variate Gaussian means and variances produces the

2EX∼N (m,S)

[
(x− µ)T Σ−1 (x− µ)

]
= (m− µ)T Σ−1 (m− µ) + Tr

[
Σ−1S

]

45



following equation:

|| x − y ||M ≈ || mX − mY ||M + || x − mX ||M + || y − mY ||M
= (mX − mY )T Σ−1 (mX − mY ) + (x − mX)T Σ−1 (x − mX) +

(y − mY )T Σ−1 (y − mY )
(2.6)

The right-hand side of this equation consists of three terms, of which the first is

deterministic. For the latter two terms, the joint expectation simplifies to a marginal

expectation (over different variables) for each term.

E [|| x − y ||M ] ≈ (mX − mY )T Σ−1 (mX − mY ) +

EX∼N (mX ,SX)

[
(x − mX)T Σ−1 (x − mX)

]
+

EY∼N (mY ,SY )

[
(y − mY )T Σ−1 (y − mY )

]

= (mX − mY )T Σ−1 (mX − mY ) +

(mX − mX)T Σ−1 (mX − mX) + Tr [Σ−1SX ] +

(mY − mY )T Σ−1 (mY − mY ) + Tr [Σ−1SY ]

= (mX − mY )T Σ−1 (mX − mY ) + Tr [Σ−1SX ] + Tr [Σ−1SY ]
(2.7)

The result from this analysis shows that, on average, values of the true distance as

defined in Equation 2.5 can be substituted with values of the approximate distance

as defined in Equation 2.7 with no apparent loss. This definition is very intuitive

as it decomposes the distance between two instances into the sum of distances to

their respective cluster centroid (intra-cluster distance) and distances between their

respective clusters (inter-cluster distance).

If information about the true locations of a and b is incomplete, then the best way to

cope in the absence of any further information is to set || ã || and/or || b̃ || to zero.

This is the Principle of Maximum Entropy. Whether equivalent expressions can be

derived by working from first principles would be an object of future interest. By

setting either of the perturbation distances to zero, heterogeneous comparisons are

obtained: the distance from an instance to a cluster is the distance of the instance to

46



its cluster (intra-cluster distance) plus the distance between the clusters (inter-cluster

distance).

With K clusters and singular cluster membership for each of the M units, there

are M intra-cluster distances and K2 inter-cluster distances bringing the number of

parameters to a grand total of M + K2. When the number of clusters is significantly

fewer than the number of units (K << M), the savings over the original case of M2

parameters can be quite large.

2.5 Summary

This chapter has laid out definitions and motivations for unit selection, a communication-

theoretic framework for modelling the process, and a groundwork for practical imple-

mentation.

The expansionary factors of combinatorial proportions in unit selection highlight the

need for sequential decision making algorithms. A particular one, dynamic program-

ming using a Viterbi heuristic, will be described in Chapter 5. A natural fit for

finite-state transducers, only symbolic information will be used in the first stage to

find the optimal sequence. Then, a second stage using numeric information will be

used to re-prioritize or re-sort the top hypotheses. In such a multi-stage setup, the

first stage can be regarded as a coarse search which prunes away irrelevant and sub-

optimal portions of the search space for a finer search by the second stage.

Modelling the unit selection process with a communication-theoretic formulation

paves the way for modelling the costs and it gives clues as to how the costs should be

determined from data. Although the parameter reduction method presented here in

this chapter assumes a metric obeying the Triangle Inequality, metrics to be exam-

ined in Chapter 4 may break this mold in the interest of preserving accordance with

the terminology of symbol corruption in communication theory. More specifically, a
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generalization of Mahalanobis distance called Kullback-Leibler distance will be used

as the workhorse for automatically deriving costs from data.

The nomenclature of substitution and concatenation costs can be slightly generalized

to describe the costs of being somewhere and of going somewhere. Calling them unit

and transition costs is another suitable way of referring to them. The unit cost is

the suitability of using a unit, or being in the state corresponding to that unit. The

transition cost is the suitability of moving to another unit, or moving to the state

corresponding to that other unit.

By judicious choice of unit and transition costs, other applications may arise. The

data sets for the experiments described in Chapter 3 are constructed by using an

interactive tool to discover words matching certain lexical patterns. In this case,

the beginnings and ends of words are connected to initial and final states, unit costs

are set to ∅, and transition costs within and between words are set to ∅ and ∞,

respectively, to heavily constrain the search - only entire words can be found and

switching between words is disallowed as it would create new, and possibly, nonsense,

words. Permitting switching could lead to other applications such as pronunciation

generation (i.e., letter-to-sound) for novel words [81, 86] which could be used to

address out-of-vocabulary (OOV) issues. The inverse task of recognizing novel words

(i.e., sound-to-letter) would be another possibility.
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Chapter 3

Analysis of sonorant sequences

3.1 Introduction

Previous work by the author on unit selection [162] studied speech production and dis-

covered that by making concatenations at places of source change (i.e., from voiced to

unvoiced speech as in vowel to fricative) concatenation artifacts could be minimized.

What was also revealed was an inadequate understanding of whether concatenations

could be made in running voiced speech (e.g., between vowels and semivowels.) This

chapter describes experiments wherein the framework of unit selection introduced in

the last chapter is used to pre-select a small corpus of words containing only vowels

and semivowels and to subsequently select optimal sub-sequences for constructing

novel speech. The rationale behind the pre-selection of such a corpus lies in the fol-

lowing distributional analysis of the English language inspired by Shipman’s earlier

work [128]. The distributional analysis is used as a way to guide corpus development.
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3.2 Distributional properties

An analysis of the English language was conducted [162] using a 90,000-word lexicon

from the Linguistic Data Consortium called the COMLEX English Pronunciation

Dictionary [89], commonly referred to as pronlex. The analysis was limited to the

non-foreign subset of pronlex containing approximately 68,000 words. Focusing on

contiguous vowel (16 total without lexical stress, /i¤ /, /I/, /e¤ /, /E/, /@/, /a/, /a⁄ /,

/a¤ /, /O/, /o⁄ /, /O¤ /, /u⁄ / / U/, /^/, /{/, /5/) and semivowel (4 total, /r/, /l/,

/w/, /y/), sequences and their occurrences within words were enumerated as shown

in Table 3.1. The International Phonetic Alphabet (IPA) is used to write phonetic

symbols [73].

Length Example # of units % cumulative # of occurrences % cumulative
1 /I/ 16 0.01 100,513 63.3
2 /rI/ 167 10.7 40,778 89.0
3 /{rI/ 484 39.0 12,916 97.1
4 /y{le¤ / 637 76.3 3,392 99.3
5 /o⁄ ri¤ {l/ 312 94.6 906 99.8
6 /y{l{ra¤ / 80 99.2 226 100.0
7 /@r{lElI/ 13 100.0 21 100.0

Total 1,709 100.0 158,752 100.0

Table 3.1: Analysis of vowel and semivowel sequences in pronlex.

An analysis of contiguous sequences of vowels and semivowels within words was performed on the
non-foreign subset of pronlex containing about 68,000 words. Including sequences of up to length
3, 97.1% of all occurrences are covered by only 39.0% of all units.

Sequences of length 1 are trivially the 16 vowels in English as the sequences were

constrained to contain one vowel at a minimum. When sequences of length 2 are

considered, a total of 167 units - an empirical number that is small compared to

the theoretical number, (16 + 4)2 = 400 - are added which accounts for 89% of

the cumulative occurrences; with only approximately one-tenth of the units, 89% of

occurrences are accounted for. At a sequence length of 3, a large majority (97.1%)

of the occurrences is cumulatively observed with still only 39% of the units. These

economical operational points of 2 and 3 entreat further analysis. Table 3.2 shows the
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breakdown of vowel and semivowel sequences of length 2, where S denotes semivowel,

and V denotes vowel. While the SV set (62 units) and the VS set (29 units) are

empirically close to their theoretical limits of 64 and 32, respectively, the VV set (76

units) is around one quarter of 162 = 256.

Structure Finer structure # of units % # of occurrences %
SV 62 25,416

rV 15 24.2 13,535 53.3
lV 16 50.0 7,700 83.5

wV 16 75.8 2,764 94.4
yV 15 100.0 1,417 100.0

VS 29 12,147
Vl 16 55.5 7,226 59.5
Vr 13 100.0 4,921 100.0

VV 76 3,215
¤ V 36 47.4 2,543 79.1
⁄ V 22 76.3 500 94.7
5V 9 88.2 143 99.1
OV 1 89.5 12 99.5
aV 3 93.4 8 99.7
{V 3 97.4 7 99.9
^V 1 98.7 1 100.0
IV 1 100.0 1 100.0

Total 167 100.0 40,778 100.0

Table 3.2: Analysis of vowel and semivowel sequences of length 2 in pronlex.

Vowel and semivowel sequences of length 2 can be divided into SV, VS, and VV subsets. The SV
and VS sets are empirically close to their theoretical limits, whereas the VV set is much smaller
relatively. However, the four top ranking members of the VV set could be considered to belong to
the SV set as well, because the left vowel acts like a semivowel. From this viewpoint, a majority of
the sequences of length 2 can be represented by a super-SV set.

What is especially striking about the VV set is its substructure: the four top mem-

bers with the most number of occurrences, ¤ V, ⁄ V, 5V, and OV, are all related to

semivowels. ¤ V and ⁄ V refer to the first vowel being a diphthong ([i¤ ], [e¤ ], [a⁄ ], [a¤ ],

[o⁄ ], [O¤ ], and [u⁄ ] were all represented) with a palatal and bilabial offglide, respec-

tively. It could be argued that 5V is related to the rhotic liquid ([5] is an extreme

version of [r]) and that OV is related to the lateral liquid ([l] is an extreme version of

[o] which is quite close to [O].) These four top-ranking members of the VV set account

for 89.5% of VV units and 99.5% of the occurrences of VV units. Figure 3-1 shows
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how the substructure of the VV set is dominated by the first four members.
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Figure 3-1: Distribution of VV finer structure.

The SV set accounts for 25,416 occurrences, or 62.3% of the total number of occur-

rences, 40,778, of sequences of length 2. If the four top-ranking members of the VV

set, ¤ V, ⁄ V, 5V, and OV, are also regarded as part of the SV set due to arguments

above, then their additional occurrences of 2543 + 500 + 143 + 12 = 3198 brings the

total occurrences in the super-SV set up to 28,614, or 70.2%. The membership of the

SV set increases from 62 to a grand total of 120 (62+36+22+9+1) members, which

account for 71.9% of the 167 units that are sequences of length 2.

Drilling down one level further, analysis of the ¤ V reveals that the top four members,

i¤ I, i¤ 5, i¤ {, and i¤ e¤  - all starting with i¤  - account for 762, 453, 316, and 218 occurrences,

respectively (numbers not separately shown in a table.) These top 4 of the 36 members

in the ¤ V set have a total of 762 + 453 + 316 + 218 = 1749 occurrences and account

for 68.7% of the 2,543 occurrences within the ¤ V set and for 54.4% of the 3,215

occurrences within the VV set.

What the foregoing suggests is that if it were possible to make a concatenation be-

tween a semivowel and vowel - to sever their link as it were - a majority (89.0%) of
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the cumulative occurrences of sequences of length 2 in the English language could be

covered. It is tempting to conjecture that the members of the pseudo-SV subset of

the VV set are actually highly evolved SV units in disguise! If this conjecture holds,

then perhaps units from the pseudo-SV subset of the VV set can be spliced at the

place of maximal constriction. What remains to be answered is the question of how

sequences of length 3 break down.

As shown in Table 3.3, a coarser analysis of sequences of length 3 reveals an inter-

esting pattern, that the VSV set accounted for 80.6% of the occurrences. It was

conjectured [162] that the sequences of length 3 could be compactly covered with se-

quences of length 2. More specifically, that VS and SV constituents could be merged

to form VSV units - sub-phonetic concatenations within a semivowel would not be

detectable. Also conjectured was that SVS could not be similarly constructed because

their composition suggests an entire syllable - sub-phonetic concatenations within a

vowel would be detectable. The implications of this are that if most (80.5%) of the

sequences of length 3 could be synthesized from sequences of length 2, then recording

10.7% (up to length 2) of the units covers up to 97.1% of occurrences (up to length

3). Such savings imply that a compact corpus would serve well in most cases.

Structure # of occurrences % cumulative
VSV 10,404 80.6
SVV 1,163 89.6
SVS 1,145 98.4
VVS 174 99.8
VVV 24 100.0
VSS 6 100.0

Total 12,916 100.0

Table 3.3: Analysis of vowel and semivowel sequences of length 3 in pronlex.

Enumerating vowel and semivowel sequences of length 3 shows that the VSV set represents a majority
of the occurrences. If VSV units can be formed by concatenating VS and SV units, then most of
the sequences of length 3 can be reproduced by sequences of length 2.

As described next, tools whose formulation are based on unit selection can be used

to pre-select a corpus containing words purely formed from contiguous vowel and

semivowel sequences. Recordings of these words are used as raw materials for investi-
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gating the hypotheses suggested by above analyses. Novel VSV units are synthesized

from constituent VS and SV units. The pseudo-SV members in the VV set are also

spliced.

The distributional analysis performed here considered contiguous sequences of vowels

and semivowels. Not considered were contiguous sequences of only vowels. It may be

that longer sequences of vowels, VN , can be decomposed into smaller VV sequences.

In a separate analysis of pronlex shown in Table 3.4, it was found that almost 90%

of the occurrences of multi-vowel sequences had the diphthongs, [i¤ ], [a¤ ], [u⁄ ], and [o⁄ ],

as its first vowel, with [i¤ ] accounting for almost two-thirds of the total occurrences.

Phone # of occurrences % of occurrences
[i¤ ] 2,803 65.02%
[a¤ ] 458 10.62%
[u⁄ ] 312 7.24%
[o⁄ ] 255 5.92%
[5] 150 3.48%
[e¤ ] 138 3.20%
[a⁄ ] 110 2.55%
[O¤ ] 46 1.07%
[O] 15 0.35%
[{] 10 0.23%
[a] 10 0.23%
[^] 2 0.05%
[I] 1 0.02%
[E] 1 0.02%

Total 4,311 100%

Table 3.4: Analysis of multi-vowel sequences in pronlex.

When contiguous sequences of vowels are enumerated in pronlex, 90% of the occurrences consist
of sequences which start with the diphthongs, [i¤ ], [a¤ ], [u⁄ ], and [o⁄ ]. In fact, sequences beginning [i¤ ]
account for almost two-thirds of the total occurrences.

3.3 Crystal tool

Figure 3-2 depicts one particular embodiment of the unit selection framework pre-

sented here in the form of an interactive tool, crystal, which expedites lexicon anal-
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ysis and discovery using pattern matching with regular expressions. Search queries

can be stated in the form of phonemic, syllabic, lexical stress, or graphemic (letter)

patterns. Regular expressions enable the specification of alternatives via the boolean

OR (|) operator and of repetition via Kleene star or closure (e.g., the regular ex-

pression ’(a|b) ∗ c’ matches strings such as ’abac’.) Successive applications of regular

expression lead to the discovery of smaller subsets of words sharing common struc-

ture. Words matching the search query are reported with their pronunciation, stress

pattern, and a frequency and rank given by the Brown Corpus [72]. This tool, inci-

dentally, has become part of the laboratory and teaching materials in the Automatic

Speech Recognition course, a graduate-level subject numbered 6.345 at MIT.

Figure 3-2: Screenshot of the crystal tool.

Beginning with the 19,837 words in the Merriam-Webster Pocket Dictionary of 1964, a reduced
set of 197 words is obtained by retaining only words purely composed of vowels and semivowels.
By only allowing poly-syllabic words from the Brown Corpus, a final set of 37 two-syllable and 6
three-syllable was recorded by a human talker.
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This particular re-implementation of the original tool, AleXiS, designed by Kassel

[165] and later ported from LISP to C by Peter Daly was performed by the author

using finite-state transducers (FST’s), which are described in Appendix A and which

receive additional treatment in Chapter 5. This Lexical access given partial phonetic

information has been applied to speech recognition in the past [62]. The usage of an

FST framework for implementation is a natural choice, because regular expressions

are finite-state acceptors, a subset of finite-state transducers. In this application, it

is desired to locate only words matching a search criterion and not to create nonsense

words outside of the vocabulary. As such, substitution and concatenation costs were

set to pathological values of ∅ and ∞, respectively.

Beginning with the 19,837 words in the Merriam-Webster Pocket Dictionary of 1964,

an initial search for words containing only vowel and semivowel phonemes located a

total of 197 (a 100-fold reduction.) By focusing on words containing more than one

syllable, a smaller set of 89 words (a 2-fold reduction) was determined. A further

restriction was made by only allowing words from the Brown Corpus. This final set

contained 37 two-syllable and 6 three-syllable words which were spoken by a human

talker and recorded. A graph of the distributional characteristics in Figure 3-2 shows

an abundance of words consisting of three and four vowels and semivowels. When

ranked by their Brown Corpus frequency, the top-ranking words have three or more

phonemes. This concentration is also confirmed from Table 3.1 which shows counts of

483 and 637 for words consisting of three and four vowels and semivowels, respectively.

Table 3.5 lists all 43 words and their pronunciations in the order of number of syllables.

3.4 Sub-phonetic: manual experiments

Because the formation of lateral pathways in the vocal tract can result in spectral

changes [47], it was hypothesized in a fashion similar to earlier treatment of source

changes that a splice may not be perceptible at this point and that speech sounds
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airy e¤  ri¤  era i¤  r{ rally r@ li¤  willow wI lo⁄ 
allay { le¤  error Er 5 real ri¤  lÍ wily wa¤  li¤ 
alley @ li¤  laurel lo⁄ r {l really ri¤  li¤  worry w5 ri¤ 
allow { la⁄  lawyer lO¤  5 relay ri¤  le¤  yellow yE lo⁄ 
ally @ la¤  leeway li¤  we¤  rely ri¤  la¤ 
array { re¤  leo li o⁄  roller ro⁄  l5 aerial e¤  ri¤  {
arrow @ ro⁄  liar la¤  } ruler ru⁄  l5 arroyo { rO¤  o⁄ 
aware { wer lower lo⁄  5 rural rU r{l oriole o⁄  ri o⁄ l
awry { ra¤  loyal lO¤  {l wary we¤  ri¤  warily we¤  r{ li¤ 
early 5 li¤  oral o⁄  r{l weary wi¤  ri¤  warrior wo⁄  ri¤  5

Table 3.5: Multi-sonorant sequences.

When analyzing the Merriam-Webster Pocket Dictionary of 1964 for words entirely composed of
contiguous vowels and semivowels, there are 37 two-syllable and 6 three-syllable words.

could be naturally concatenated at this boundary. In working with pre-vocalic [l]

sounds the possibility of concatenating at these syllable boundaries became apparent.

For example, the first syllable, [@], of the words, “ally”, “alley”, and “alloy”, were

found to be interchangeable. Hardly any concatenation artifacts were perceived when

care was taken to splice: 1) at waveform zero-crossings which demarcate pitch period

boundaries, 2) at the first pitch period whose the amplitude is abruptly reduced

due to the lateral constriction of the pre-vocalic [l], and 3) at a pitch period where

pitch is continuous across the concatenation. The locations of the pitch periods were

manually marked in these manual experiments.

Figure 3-3 shows the word, ‘alloy’, and the location of the pitch period where the

concatenation would be applied. The time cursor is placed at the boundary between

[@] and [l] where the waveform amplitude drops abruptly. A zoomed-in portion

of the waveform can be seen in the top pane; more detail can be shown at the

expense of the alignment of the top and bottom time cursors, because the time scale

is smaller. This screenshot and others following are taken from an interactive tool

named Concatenation View (cv) based on the sapphire framework [56] that allows

for the cumulative construction of synthesized speech from user-selected segments of

utterances in a given corpus. The formants are tracked with a software package called

ESPS+ [143] and the formant tracks have been resampled to a pitch-synchronous
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rate. Pitch periods spread out further in time correspond to a lower pitch, while

pitch periods packed more densely in time correspond to a higher pitch. The pitch

tracking contains some errors as the pitch drops towards the end of the word in the

vowel, [O¤ ], as evidenced by the occasional missing or spurious pitch period.

In examining spectrograms of inter-vocalic glide ([w] and [y]) and retroflexed ([r])

sounds, regions of extreme articulation in which spectral prominences - sometimes

referred to as formants - reach extrema during the evolution of their trajectories

could be consistently located. Because an earlier hypothesis had stated that areas

of extreme articulation or low energy (these two criteria may be correlated) may

outline places where splicing can occur without much perceptual distortion, further

concatenations were performing at the middle point of [r], [w], and [y] sounds. For

example, a natural-sounding ‘aerial’ could be reconstructed by replacing the start of

‘aerial’ as uttered by a human speaker with the [e¤ ] vowel and the first half of the

[r] liquid from ‘airy’. The optimal cross-over point was determined by the minimum

point reached by the second spectral prominence. In the word ‘airy’ and ‘aerial’

shown in Figures 3-4 and 3-5, respectively, the time cursor is placed where the second

spectral prominence reaches a minimum. By using the first syllable of ‘airy’ and the

ending syllables of ‘aerial’, a synthetic ‘aerial’ is created in Figure 3-6. Although the

third spectral prominence is not perfectly aligned at the concatenation boundary, this

does not contribute to a perceptual artifact in an informal listening test.

In these two examples of ‘alloy and ‘aerial’, the first part of word A and the second

part of word B is used to generate a synthetic version of word B. Although the result

is only half-synthetic, technically speaking, what is demonstrated is that the extreme

articulation loci reached in the evolution of liquid production demarcate possible

boundaries for concatenation.
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Figure 3-3: Screenshot of the word ‘alloy’ taken from cv tool.

The time cursor is placed at the boundary between [@] and [l] where the amplitude of the waveform drops abruptly corresponding to the time of lateral
constriction. Listening has shown that these locations can be used as splice points and that concatenations made at such points are indiscernible
provided that the pitch is continuous. The cv tool displays overlaid formant tracks which are sampled at a pitch-synchronous rate (i.e., variable frame
rate.) The pitch tracker makes some errors as the pitch drops towards the end of the word in the vowel, [O¤ ].
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Figure 3-4: Screenshot of the word ‘airy’ taken from cv tool.

The first half of the word ‘airy’ is selected by splicing in the semivowel, [r], where the second spectral
prominence (marked by the magenta color) reaches a minimum in frequency.

Figure 3-5: Screenshot of the word ‘aerial’ taken from cv tool.

The second half of the word ‘aerial is selected by splicing in the semivowel, [r], where the second
spectral prominence (marked by the magenta color) reaches a minimum in frequency.

Figure 3-6: Screenshot of the synthetic word ‘aerial’ taken from cv tool.

A synthetic word ‘aerial’ is created by substituting the first half with the word ‘airy’; the second
half remains the same. A slight discontinuity in time is noticeable as the third spectral prominence
does not line up perfectly. However, this is hardly noticeable in a listening test.
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As vowel diphthongs can be realized with [w] or [y] off-glides resulting from bilabial

or palatal constriction, respectively, a further source of concatenation points was

discovered by working with glides in a diphthong context. This also opens a door to

the possibility of synthesizing vowel-vowel sequences from smaller-sized constituents,

a notion backed by the data presented in Tables 3.2 and 3.4.

More manual experimentation synthesized natural-sounding speech by concatenating

near the areas of extreme articulation in vowel diphthongs. For example, a synthetic

‘lawyer’ was created from an original ‘lawyer’ by substituting the first syllable, [lO¤ ],

from ‘loyal’; the splice was made towards the end of [O¤ ] where the second spectral

prominence reaches a peak. Because these two words share the same stress pattern,

strong-weak, the synthetic result sounds natural. A similar example of synthesizing

‘lawyer’ will be presented in the next section on automatic experiments.

In a counter-example illustrating the effect of incorrect prosody, concatenating the

first syllable of ‘leeway’ with the second syllable of ‘aware’ in the middle of the pre-

vocalic [w] semivowel formed a nonsense word, ‘leeware.’ Although the formants and

pitch were continuous and the splice was not perceptually noticeable, stringing two

lexically stressed syllables in succession did not sound natural.

The principles derived in the manual experiments guided the development of a search

heuristic which maximized continuity in formant structure and pitch. As a proof

of concept, the next section discusses experiments performed automatically with no

human guidance.

3.5 Sub-phonetic: automatic experiments

In this section, concatenations are made at the sub-phonetic level [60] and their

locations are automatically determined by a search heuristic seeking to maximize

continuity in formant structure and pitch. To enable the concatenation to occur at
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any point within a phone, the units are designated to be individual pitch period with

no phonetic identity. This is the smallest possible unit in the temporal scale and there

is no spatial structure - more precisely, it is flat - because phonetic identity is not

provided. In other words, no symbolic information is provided and strictly numeric

information is matched to determine the concatenation points.

No symbolic and all numeric information represents an extreme in the continuum

of input specifications for unit selection. This permits fine control over the desired

spectral dynamics, a feature being simultaneously an advantage and disadvantage.

The reasons for the former are obvious, while the reasons for the latter include the

difficulties of generating the input specification and modelling at search time the

perceptual impact of deviations from the input.

To prepare a corpus for a fully numerical search, formants (spectral prominences)

and pitch are tracked with dynamic programming procedures. As in the previous

experiments, formants are calculated with ESPS+ software which fits linear predictive

coefficients (LPC) [84], a form of autoregression, to find the locations of resonances on

a sliding window basis. Figure 3-7 gives an example of LPC analysis applied to a single

pitch period extracted from a vowel, [u⁄ ]. Because the poles of the transfer function

are close to the unit circle in the z-plane, estimates of the resonance frequencies can

be obtained by mapping the angles of the complex poles to linear frequencies. Note

that the first formant can be estimated as shown by the dotted line by the location

of the first zero crossing, τZ , in the time-domain waveform of the pitch period (i.e.,

F1 = 1
2τZ

.) A smooth evolution over time of these resonances is achieved by enforcing

smoothness constraints with a heuristic that is maximized using a Viterbi search.

This stitches together local LPC-based formant estimates into a smooth trajectory.

Pitch period boundaries are also automatically determined by dynamic programming

[144] which optimizes local agreement of pitch period spacings with some notion

of pitch such as peaks in the locally windowed auto-correlation function. A pitch

trajectory from a pitch tracker may also be used to guide the search heuristic. Figure
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Figure 3-7: LPC analysis applied to a pitch period from [u⁄ ].

A single pitch period is extracted from the vowel, [u⁄ ], and is processed by LPC analysis. Because
the poles of the transfer function are close to the unit circle in the z-plane, the resonance frequencies
can be well estimated by mapping their angular locations to linear frequencies. Note that the first
formant can also be estimated from the first zero crossing of the time-domain waveform.

3-8 shows the result of automatically determining pitch period boundaries in the word

‘lawyer’. The panes correspond to the zoomed-in waveform, spectrogram, zoomed-out

waveform, phonetic transcription, orthographic transcription, pitch trajectory from a

pitch tracker, pitch period transcription, and pitch trajectory locally estimated from

pitch period spacings. Once individual pitch periods are resolved, an estimate of the

first formant, overlaid on the spectrogram, can be obtained from the first zero crossing

as previously described. Although the algorithm suffers as pitch drops, the accuracy

can be quite high as illustrated by a highlighted pitch period.
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Figure 3-8: Automatic determination of pitch periods in ‘lawyer’.

A dynamic-programming search is used to automatically determine the locations of pitch periods
by smoothly connecting local estimates. Once the pitch periods are located, local estimates of the
pitch and the first formant frequency can also be obtained from the pitch period length and the first
zero crossing, respectively.
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Individual pitch periods are inserted into the corpus as units without any phonetic

identity attached to them. All units in the corpus are available for selection at search

time. The unit cost is the distance between the desired and selected formants. The

transition cost between two selected pitch periods is zero if they are contiguous,

otherwise it is a constant plus the distance between the selected pitches. The squared

Euclidean distance was the metric used in these automatic experiments.

In these automatic experiments, jackkniving is performed by leaving out one utterance

and reconstructing it from the other utterances in the corpus. The formant and pitch

trajectories of the jackknived utterance are used as the input specification. Because

the experiments in this chapter are performed on voiced speech, the trajectories are

continuous. A search lattice is constructed by licensing all pitch periods in the corpus

for each input pitch period. As described in Chapter 2, this lattice has N slices

containing L nodes each for a total of LN nodes, where L is the size of the corpus

and N is the length of the input specification.

This fully interconnected lattice is efficiently explored by a dynamic programming

algorithm. For each of the N slices in the lattice, a node receives incoming connections

from each of the L nodes in the previous slice. The score at the current node is the

previous unit cost plus the transition cost between the previous and current node.

Only the incoming connection corresponding to the lowest score is remembered by a

back pointer and once the end of the lattice is reached, the best path is formed by

tracing back through the back pointers.

Figure 3-9 shows the process of synthesizing ‘lawyer’ by concatenating the first and

second syllables from ‘loyal’ and ‘layer’, respectively. The time cursors in Figures

3-9(a) and 3-9(b) mark the pitch periods of the concatenation boundaries that the

search algorithm chooses. In each case, the second spectral prominence appears to

be at a maximum, emulating the ideal behavior proposed in the manual experiments

described in the previous section. Figure 3-9(c) displays the jackknived utterance,

‘lawyer’, whose formant and pitch trajectories were used as the input specification.
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Figure 3-9(d) shows the synthetic ‘lawyer’ entirely reconstructed from ‘loyal’ and

‘layer’. The spectrograms for the natural and synthetic versions of ‘lawyer’ are quite

similar. The formant structure appears to be aligned at the point of concatenation

and the synthetic waveform sounds entirely natural with neither formant nor pitch

discontinuities.

Though individual pitch periods offer a great amount of control, it may be possible

to retain much of this control by properly segmenting semivowels and diphthongs and

by adjusting segment boundaries to coincide with pitch periods [60]. For example,

in Chapter 4, it is discovered from data that inter-vocalic [l] can be divided into

half-phones at the spectral extremum [51] and that these half-phones can be used for

concatenations. The spectral extrema that would have been found anyways by the

sub-phonetic search are pushed out to segment boundaries.

The result produced by this jackkniving experiment with sub-phonetic units is good

and gives a proof of existence for such a framework. Because oracle information was

provided from an utterance spoken by a human, future work is needed to generate

the trajectories and their timing in order to produce a self-standing system.
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(a) Screenshot of the word ‘loyal’ taken from cv tool. (b) Screenshot of the word ‘layer’ taken from cv tool.

(c) Screenshot of the word ‘lawyer’ taken from cv tool. (d) Screenshot of the synthetic word ‘lawyer’ taken from cv tool.

Figure 3-9: Jackknived synthesis of ‘lawyer’ from ‘loyal’ and ‘layer.’

The word ‘lawyer’ is jackknived from the corpus, but its formant and pitch trajectories are kept to serve as the input specification. A search algorithm
with a heuristic of maintaining continuity in formant structure and pitch concatenates the first syllable of ‘’loyal’ with the second syllable of ‘layer’
at the optimal location.
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3.6 Frame-based units

In the unit selection experiments performed in this chapter, individual pitch periods

are marked by either labor-intensive manual or error-prone automatic methods. In

the given example, the corpus was prepared by marking pitch periods automatically

via a dynamic programming method. This procedure is prone to error as the pitch

periods are located by hard decisions. This pitch-synchronous temporal segmentation

implies a variable-frame-rate (VFR) analysis of speech. The units are concatenated

without signal processing - although abutting signals implicitly assumes rectangular

windowing, there is no blending of pitch periods at a concatenation boundary. It can

be shown that if pitch periods are blended in the time domain, then it is equivalent to

concatenating short-time spectral analysis frames at a constant frame rate (CFR) in

the time domain and inverting the sequence of spectral frames back to a time-domain

waveform; this is the basis of overlap-and-add (OLA) methods [26]. The analysis

stage operates at a variable frame rate and the synthesis stage operates at a constant

frame rate. Figure 3-10 shows a portion of voiced speech with a Hanning window

(essentially an inverted and raised cosine window) overlaid. The speech waveform

modulated by the Hanning window produces a windowed pitch period. Because the

units are entire pitch periods which go to zero amplitude at the boundaries, blending

in the time domain works well if the pitch is continuous at a concatenation.

If the Hanning window length is fixed, then, when windowed pitch periods are laid in

succession, their corresponding windows sum to unity for all time. This is the benefit

of CFR synthesis. The challenge lies in the VFR analysis, locating the windows at a

pitch-synchronous rate in order to reduce phase mismatch at synthesis time. In this

example, the Hanning window is centered at the maximum amplitude of the pitch

period. When the pitch period changes, an adaptive Hanning window could be used,

wherein the length of the window changes with the pitch, but this complicates the

synthesis by requiring an amplitude normalization stage as the windows do not add

to unity under changing window lengths. WSOLA [154], for example, is a principled
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Figure 3-10: Plot of voiced speech waveform and Hanning-windowed pitch period.

When modulated by the Hanning window shown in green, a windowed pitch period shown in red is
sectioned out of the voiced speech waveform shown in blue.

approach with VFR analysis and CFR synthesis. When two non-contiguous pitch

periods are concatenated, a cross-correlation analysis is performed to find the optimal

lag or lead between the window centerings of the source waveforms.

In the method described above, the sectioning of voiced speech into windowed pitch

periods can be performed off-line prior to run-time. This computation can be pushed

to run time by performing the analysis at a constant rate and the synthesis at a

variable rate; this is the basis behind other OLA methods. Because there may be

phase mismatch from the CFR analysis stage, the optimal lag or lead is determined

at run-time with, for example, cross-correlation analysis. However, now the windows

do not sum to unity and amplitude normalization must be performed.

Figure 3-11 demonstrates the need for blending or smoothing pitch periods when

concatenating in regions of voiced speech. The word ‘Billings’ is synthesized from the

first syllable of ‘billionth’, [bIl], and the second syllable of ‘darlings’, [lI4z]. Although
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[l] in ‘billionth’ is inter-vocalic (i.e., sandwiched between two vowels) and the [l]

in ‘darlings’ is pre-vocalic (i.e., preceding a vowel), the units are fairly compatible,

because the boundaries are chosen at the point of maximum articulation within the [l]

where the second and third formants reach a minimum and maximum, respectively.

When no smoothing is performed, an irregular pitch period of lower pitch - listening

would show a perceivable effect - is produced at the concatenation boundary as can

be seen from Figure 3-11(a). When smoothing is performed, the pitch is regular and

the amplitude envelope comes to a minimum at the point of maximal constriction

in the vocal tract. Also, in the smoothed case the second formant appears to be

slightly more continuous. The amplitude envelope of the [l] from ‘billionth’ may be

slightly more attenuated than appropriate for a word such as ‘billings’, because the

[l] anticipates a tense vowel, [i], in ‘billionth’ as opposed to anticipating only a lax

vowel, [I], in ‘billings’; thus, there is feature spreading of tenseness from the vowel to

the [l] attenuating it sooner.

3.7 Source-filter separation

In the example of ‘lawyer’, the formant structure and pitch are matched simultane-

ously during the search. In the source-filter model of speech production, this bifurca-

tion of formant structure and pitch corresponds to the filter and source, respectively.

The vocal tract is modelled by a filter and glottal excitations are modelled by a source.

If this separation of acoustics (filter) and excitation (source) can be performed suc-

cessfully, it is possible to catalogue a corpus by its filter and source characteristics

independently. Unit selection for the filter and source can proceed independently and

in parallel. When selection is completed, the source and filter are re-combined at

synthesis time. In this fashion, data sharing is made possible and promoted through

the combining of sources and filters from different speech segments.

The particular form of source-filter separation employed here was first used by Seneff
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(a) Screenshot of the synthetic word ‘billings’
when concatenated without smoothing.

(b) Screenshot of the synthetic word ‘billings’
when concatenated with smoothing.

Figure 3-11: Comparison of pitch continuity without and with smoothing.

The word ‘Billings’ is synthesized from the first syllable of ‘billionth’ and the second syllable of
‘darlings’. When concatenation is performed without smoothing pitch periods, an irregular pitch
period of lower pitch is formed and the effect is negatively perceivable. When smoothing is performed
in the second case, the pitch is continuous and is preferable over the first case.

[123] for the purposes of pitch, duration, and voice modification. First, a frequency-

domain representation is broken down into a magnitude and phase component: H(jΩ) =

|H(jΩ)|e6 H(jΩ). Then, the magnitude function, |H(jΩ)|, is smoothed in frequency

with a (Hanning) window in frequency, W (jΩ). This smoothed magnitude function,

HS(jΩ) = |H(jΩ)| ∗W (jΩ), is divided out of the original representation to obtain an

excitation function, HE(jΩ) = H(jΩ)/HS(jΩ). Note that the smoothed magnitude

function is real, while the excitation function is complex.

If the spectral frames, H(jΩ), are taken from a narrow-band spectrogram, then indi-

vidual pitch harmonics are resolved in frequency. The purpose of smoothing the mag-

nitude function is to remove these striations in frequency. When the smoothed mag-

nitude function is divided out, the spectral frame is flattened and what remain in the
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excitation function are the individual pitch harmonics which resemble a comb filter.

The smoothed magnitude function, HS(jΩ), and excitation function, HE(jΩ), can

be separately catalogued in the corpus and re-combined to synthesize novel speech.

For example, if another smoothed magnitude function, HS′(jΩ), is combined with

HE(jΩ), the resulting spectral frame, HS′(jΩ)HE(jΩ), can be inverted back into

a time-domain waveform. When sequence of frames are manipulated on a sliding

window basis, methods to invert short-time fourier transforms (STFT) are well un-

derstood [112, 53].

Figure 3-12 shows the process of transforming the word ‘IMport’ (word sense is noun)

into a synthetic ‘imPORT’ (word sense is verb) by using the excitation from a natural

‘imPORT’. This matrix of plots was created using matlab [95]. The three columns

correspond to the natural ‘IMport’, the natural ’imPORT’, and the synthetic ’im-

PORT’. The four rows correspond to the waveform, the spectrogram (STFT), the

smoothed magnitude function, and the excitation function. The striations in the

excitation function move closer (especially in ‘imPORT’) as the pitch lowers at the

end of the word - lower pitch means more finely spaced harmonics - but traces of the

underlying acoustic-phonetics are still observed when, for example, the second and

third formants converge to make the articulatory gesture for the [r]. The smoothed

magnitude function from the natural ’IMport’ is resampled at the phonetic level to

match the phonetic timings of the natural ’imPORT’ - this guarantees rhythm and

timing. The second and third formants of [I] are seen to fall faster in anticipation of

the labial nasal, [m] - frames have been omitted in the resampling process. This re-

sampled smoothed magnitude function is combined with a natural excitation function

for ‘imPORT’ and the new STFT is inverted to produce novel speech. The synthesis

sounds very natural and the desired rhythm is achieved. Since the amplitude envelope

was not transplanted, the first syllable appears to be somewhat louder than desired

in the waveform plot. This may be a secondary effect and could be corrected by

modulating the amplitude with the desired envelope.
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Figure 3-12: Smoothed magnitude from ‘IMport’ combined with excitation from ’imPORT’.

In this panel of plots, the waveform and its narrow-band spectrogram are shown on the first two rows. The smoothed magnitude function in the third
row from ‘IMport’ is resampled at the phonetic level to match the timing from ‘imPORT’. Then, it is combined with the excitation in the fourth
row from ‘imPORT’ to form a synthetic ‘imPORT’ which sounds natural. Additional improvement could be gained by fitting the energy envelope in
addition to the rhythm.
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This example of cross-synthesis demonstrates the expressive power - transposing the

stress pattern - made possible by source-filter decomposition. However, the problem

is relatively constrained, because the excitation function is taken from another word

with the exact pronunciation, /Im/ /pOrt/. This previous example adds a degree of

freedom in that prosody can be shared when the phonetic pronunciation is the same.

What would add another factor of flexibility is sharing prosody when the phones are

different and the next example illustrates just this. Table 3.6 lists other pairs with

opposite lexical stress patterns for different word senses. These 25 word pairs created

by Aull [3, 2] form a pool from which other experiments can be conducted.

ATtribute atTRIBute CONtract conTRACT INcline inCLINE TORment torMENT
COMpact comPACT CONtrast conTRAST INsult inSULT TRANsport tranSPORT

COMpound comPOUND CONvert conVERT OBject obJECT UPlift upLIFT
COMpress comPRESS DIgest diGEST PERfect perFECT UPset upSET
CONduct conDUCT EScort esCORT REbel reBEL
CONflict conFLICT EXport exPORT REcord reCORD
CONtest conTEST IMport imPORT SURvey surVEY

Table 3.6: Word pairs with transposed lexical stress patterns [2].

Figure 3-13 shows the process of transforming the word ‘IMport’ (word sense is noun)

into a synthetic ‘imPORT’ (word sense in verb) by using the excitation from a natural

‘comPACT’. The three columns correspond to the natural ‘IMport’, the natural ‘com-

PACT’, and the synthetic ‘imPORT’. Although the stress pattern has been modified

as desired, the final vowel does not sound natural, possibly, because of interaction

between the [r] in ‘IMport’ and the [@] in ‘comPACT’. As before, the separation is not

perfect and the smoothed magnitude function for ‘IMport’ has surrendered some of

the [r] coloring to the excitation function. Whereas the [r] in the natural ‘IMport’ en-

codes a cue of the following phoneme, /t/, in the form of glottalization - an attribute

of the American English dialect - the [@] in ’comPACT’ has no glottalization and the

resulting synthesis sounds more like ’imPOR’ with the phoneme, /t/, unrealized in

acoustic terms. Future work should investigate categorizing speech sounds into classes

for which excitations can be transplanted without perceivable effects, and, more gen-

erally, creating templates of smoothed magnitude profiles which can be dynamically

warped in time and amplitude to fit the desired context at synthesis time.
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Figure 3-13: Smoothed magnitude from ‘IMport’ combined with excitation from ’comPACT’.

The smoothed magnitude function from ‘IMport’ is resampled at the phonetic level to match the timing from ‘comPACT’. Then, it is combined
with the excitation from ‘comPACT’ to form a synthetic ‘imPORT’, the second syllable of which does not sound natural. This may be due to
incompatibility between /rt/ from ‘IMport’ and /@/ from ‘comPACT’.
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3.8 Nasals

The foregoing has dealt with vowels and semivowels, yet the broad class of sonorants

also includes nasals, [m], [n], and [4], which are produced through the nasal cavi-

ties. Because nasals tend to color or nasalize surrounding speech segments, especially

vowels more so in anticipation of a following nasal, going forwards in time - their

analysis is now briefly performed in this section. Previous work by the author [162]

determined that because nasalization is so distinctive, it can be quite jarring in con-

catenative synthesis when segments are either misleadingly nasalized or when they

are not properly nasalized. For example, if a nasalized vowel is concatenated with

a non-nasal consonant, the cue encoded in the vowel of a coming nasal segment is

dissonant with the spliced non-nasal consonant. On the other hand, if a normal vowel

is concatenated with a nasal, the onset of the nasalization in the nasal is quite abrupt

as the cue was not present in the vowel. The scenarios described above are already

understood and are not addressed any further. Rather simple studies are mentioned

here in passing as well as future directions.

Three types of mono-syllabic sequences were studied: nasal-vowel-nasal (NVN), nasal-

vowel-stop (NVS), and stop-vowel-nasal (SVN). Nasals and stops were exhaustively

cycled, but only five representative vowels were chosen. As depicted in Figure 3-14,

the nasals include /m/, /n/, and /4/; the voiced stops are /b/, /d/, and /g/; and, the

voiceless stops are /p/, /t/, and /k/. The five vowels are sampled from the outer and

central locations of the vowel quadrilateral shown in Figure 3-15: /i¤ / is high-front,

/@/ low-front, /a/ low-back, and /u⁄ / high-back, and /^/ central. The vowel and

consonant charts shown here were created by Rob Kassel and are used as teaching

materials at MIT in Speech Spectrogram Reading: An Acoustic Study of the English

Language, a summer course numbered 6.67s.
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Friendly Little Consonant Chart
"Somewhat more accurate, yet somewhat less useful."

Labial Alveolar Palatal Velar
Place of Articulation

Voicing:  Unvoiced  Voiced
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The Semi-vowels:

is like an extremey i

is like an extremew u

is like an extremel o

is like an extremer 5

The Affricates:

is likeC t+S

is likeJ d+Z

The Odds and Ends:

 h (unvoiced h)

 H (voiced h)

 F (flap)     FÊ (nasalized flap)

 ? (glottal stop)

Weak (Non-strident) Strong (Strident)

Rob's

Figure 3-14: Rob Kassel’s Happy Consonant chart.

Happy Little Vowel Chart
"So inaccurate, yet so useful."

SCHWAS:
Plain [{] About [{ba⁄t]
Front [|] Roses [ro⁄z|z]
Retroflex [}] Forever [f}Ev}]

F 2
 In

cr
ea

se
s

F1 Increases

MID LOWHIGH

FRONT

BACK

uÚ


OU
u

ao

^,{

E
@

eI

i

TENSE = Towards Edges
tends to be longer

LAX = Towards Center
tends to be shorter

Rob's

Think F3 is mighty low? Your pal 5 is the way to go!

Figure 3-15: Rob Kassel’s Happy Little Vowel chart.
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With five vowels, six stops, and three nasals, a total of 180 syllables were recorded:

30 (2*5*3) NVN, 60 (2*5*6) NVS, and 90 (6*5*3) SVN. Care was taken to intonate

the syllables with a consistent melody. Because /4/ is not allowed to begin a syllable

in English, the syllables in the NVN and NVS sets only begin with /m/ and /n/.

This data set was used for concatenation experiments that investigated where place

of articulation (i.e., labial, alveolar, and velar) is encoded for a nasal, and what

properties of nasals are invariant. Because the concatenations were made at the

boundaries between vowels and nasals, the exact point of splicing is easily determined

from a waveform display; consistent intonation ensures pitch continuity.

Table 3.7 lists a series of concatenation experiments performed with recordings from

the NVN set. Phonemes that are shown in parentheses refer to context and their

acoustic realizations were not actually concatenated. By replacing nasals in the initial

and final positions with nasal produced at other places of articulation, the hypothesis

that the nasal murmur encodes place was tested. After concatenating the units and

listening to the results, it was determined that, for example, changing the first phone

in /m@m/ to /n/ did not change the perception to /n@m/; the place of articulation

for the intial nasal is encoded as labial co-articulation at the start of /@/. This

would suggest that nasal murmurs can be used interchangeably without regard to

their phonetic identity; they can be collapsed into one class.

Figure 3.8 shows the results of experiments conducted with recordings from the NVS

and SVN sets. Nasals in the initial and final positions were replaced by nasals from

other vowel contexts. For example, the initial nasal in /n@p/ was replaced by the

nasal in /nip/. As expected, the perception of the syllable did not change, confirming

the hypothesis that nasals are fairly stable and do not encode information about

bordering vowels; this suggests an invariance of nasals to vowel context. Because

both the initial and final positions were studied, these studies suggest that nasals do

not receive influence from either their right or left borders. Additional studies beyond

those described here are needed to systematically and exhaustively learn other cues

and invariances for nasals.
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Units concatenated Expected perception Actual perception
Swapping nasal in initial position

/n/(@m) + (m)/@m/ /n@m/ /m@m/
/n/(i¤ m) + (m)/i¤ m/ /ni¤ m/ /mi¤ m/

/m/(@m) + (n)/@m/ /m@m/ /n@m/
/m/(i¤ m) + (n)/i¤ m/ /mi¤ m/ /ni¤ m/

Swapping nasal in final position
/m@/(m) + (m@)/n/ /m@n/ /m@m/
/m@/(m) + (m@)/4/ /m@4/ /m@m/
/m@/(n) + (m@)/m/ /m@m/ /m@n/
/m@/(n) + (m@)/4/ /m@4/ /m@n/
/m@/(4) + (m@)/m/ /m@m/ /m@4/
/m@/(4) + (m@)/n/ /m@n/ /m@4/

Table 3.7: Nasal experiments with NVN set.

In these experiments, nasals in initial and final positions were replaced by nasals produced at other
places of articulation. Phonemes in parentheses denote context and were not concatenated. Chang-
ing the place of articulation did not change the perception of the syllable as expected. Rather,
the place of articulation was encoded in the vowel and the original perception was not overriden
by a different nasal murmur. This would suggest that nasal murmurs can be used interchangeably
regardless of their phonetic identity and left and right context.

Units concatenated Expected perception Actual perception
Swapping nasal in initial position

/n/(i¤ p) + (n)/@p/ /n@p/ /n@p/
/n/(ap) + (n)/@p/ /n@p/ /n@p/
/n/(^p) + (n)/@p/ /n@p/ /n@p/

/n/(u⁄ p) + (n)/@p/ /n@p/ /n@p/
Swapping nasal in final position

/ta/(m) + (ti¤ )/m/ /tam/ /tam/
/ta/(m) + (t@)/m/ /tam/ /tam/
/ta/(m) + (t^)/m/ /tam/ /tam/

/ta/(m) + (tu⁄ )/m/ /tam/ /tam/

Table 3.8: Nasal experiments with NVS and SVN set.

In these experiments, nasals in initial and final positions were replaced by nasals that were produced
at the same place of articulation but in other vowel contexts. Phonemes in parentheses were not
concatenated. Whether the vowels were front, back, high, or low was not encoded as cues in the nasal.
The nasal segments were invariant to their vowel context and the perception remained unchanged
as expected. These results suggest that vowel context can be ignored when substituting nasals from
other contexts.
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3.9 Discussion

The sub-phonetic and frame-based units are used in this chapter to build an input

specification with numerical information and very little or no symbolic information.

Many of the ideal concatenation points determined are located at extrema of the

spectral prominences. If these stationary points can be reliably transcribed, it may

be possible to reduce the input specification to a symbolic one. For example, after

forced phonetic alignments are obtained using an automatic speech recognizer, all

/w/ sounds could be split into two demi-phones where the splice boundary is the

point of extreme articulation.

The work presented in the next chapter focuses on an opposite approach of attack

to building an input specification, using primarily symbolic information. Because

numeric information is essentially discarded, symbols that are well isolated at their

boundaries must be discovered by automatic means. Using notions from information

theory, the best boundaries are defined to be those across which the acoustics are

maximally unpredictable. While experiments described in Chapter 6 show that this

information theoretic framework works favorably, it is currently unclear how defining

boundaries to be placed at points of extreme articulation as described above can be

reconciled with placing boundaries of maximum uncertainty.

Many of the studies performed in this chapter involved words containing only one

or two syllables. A natural extension would examine more complex poly-syllabic

words, phrases, and sentences. In the source-filter decomposition, equivalence classes

need to be defined for excitations depending on acoustic-phonetics and higher-level

information like prosody. Some of the distributional analyses carried out in this

chapter point out similarities between semivowel-vowel and vowel-vowel sequences.

They lead to conclusions which seem to blur the distinction between vowels and

semivowels. This knowledge should be incorporated in order to more accurately

locate concatenation boundaries for speech synthesis [33, 149, 151, 78, 83, 25].
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Chapter 4

Acoustic modelling

4.1 Introduction

An important component of any speech processing system is an acoustic model which

separates speech sounds into categories for subsequent characterization. The cat-

egorization can be guided by a combination of rules and data. Knowledge of the

phonological organization of a language can be used to create rules that are veri-

fied by a corpus of data. Once speech sounds are categorized into separate clusters,

characterization entails the extraction of numerical measurements from the data and

the summarization - usually statistical in nature - of these measurements. The two

processes of categorization and characterization may contain linkage in the form of

feedback. The best set of categories may be implicit in the mathematics of char-

acterization. Knowledge of acoustic phonetics may provide hints to the best type

of characterization. Once this process, as depicted in Figure 4-1, is completed, a

set of models is arrived at and new incoming data can be classified or evaluated for

conformance with the models.

Categorization and characterization may be iteratively performed as in the case of

81



Data Characterization ModelsCategorization

Data
Classed

Figure 4-1: Categorization and characterization in modelling.

Incoming data is grouped into distinct clusters by the process of categorization. Subsequently a
typical procedure entails characterizing these clusters by statistical summarization where average
and deviating behavior are established forming models. New data can be classified by such models
blindly or, otherwise, can be evaluated for their conformance to such models.

decision tree clustering where pools of speech unit exemplars are successively divided

into a tree of finer classes by phonologically motivated decisions. Once further division

does not give additional improvements - as measured by some notion of how well the

model fits the data - a node in the tree is reached. Exemplars at the node are grouped

as a class and a characterization can be performed. A summarization of the class by

its average behavior and deviance from the norm is standard and can be efficiently

estimated by accumulating first and second order moments.

This chapter details a general framework for categorizing and characterizing speech

units for use in concatenative speech synthesis. Specific choices of parameters and

algorithms that are made in the presentation of this material are for ease of exposition

and should not detract from the overall concept. Many of these choices are motivated

from prior work in speech recognition and have effectiveness which demonstrably

carry over to speech synthesis. Future work can examine more tailored choices under

the general framework presented here.

Once characterization produces a set of models, they can be compared to produce a

set of inter-cluster distances which can be used to approximate instance-to-instance

comparisons as previously described in Chapter 2. This forms the basis for the auto-

matic determination for substitution and concatenation costs. The Kullback-Leibler

metric is presented for calculating distances among the set of models. Because of pa-

rameter reduction arguments made in Chapter 2 inter-instance distances are replaced

by distances between their respective corresponding clusters.
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4.2 Observation space

A definition of the observation space is necessary for categorization that is driven by

data and is given here. Characterization also proceeds from the identical observation

space. As depicted in Figure 4-2, an observation space is defined around a boundary

between speech units, α and β, which may be phonetic units, or, more generally,

classes of phonetic units. The notation, α[β], refers to a unit, α, in the context of a

β on its right side. Similarly, the notation, [α]β, refers to a unit, β, in the context of

an α on its left side.

α β

xα[β] x[α]β

Figure 4-2: Graphical representation of observation space and boundary measure-
ments.

An observation space is defined about the boundary between α and β. Measurements made on the
left side are referred to with the notation α[β] which denotes α in the presence of β on the right
side. Similarly, measurements made on the right side are referred to with the notation [α]β which
denotes β in the presence of α on the left side. The former is forward looking and is termed the
prospective space, while the latter is backward looking and is termed the retrospective space.

The space to the left of the boundary is termed the prospective space and the space

to the right of the boundary is termed the retrospective space. The reason for this

nomenclature is apparent. As β assumes different values, right-most portions of α

close to the boundary may change in anticipation of β. Likewise, as α assumes differ-

ent values, left-most portions of β close to the boundary may preserve characteristics

from α. What is required is a disciplined approach to determining a parsimonious

set of right and left contexts bearing, respectively, maximal anticipatory and preser-

vatory effects. This is the process of categorization and will be presented in the next

section.
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4.2.1 Measurements

Measurements, x, culled from this observation space are divided into prospective

measurements, xα[β], and retrospective measurements, x[α]β. These measurements are

distilled into prospective and retrospective models which form the basis of comparison

for automatically determining costs. This is the process of characterization and will

be presented in a later section.

As depicted in Figure 4-3, prototype measurements are computed at a constant frame

rate that undergo further processing depending upon target usage. In the case of

substitutions, measurements are extracted from the outermost portions of a speech

segment. For concatenations, measurements are extracted about a boundary up to

an arbitrary distance away, because the location of the next boundary on either side

is unknown.

As in the summit system [50], a segment is divided into roughly thirds (in a 3-4-3

ratio) with the outermost portions being the first and last 30% of a segment. In the

lower part of Figure 4-3 these 30% portions are bounded by dotted lines and form

regions over which prototype measurements are averaged. Notice that the middle

40% portion of the segment is not used. In the upper part of the figure, boundary

measurements are averaged over blocks of time whose widths are unrelated to segment

lengths. Arranged in a telescoping fashion these blocks double in size as their distance

from the boundary increases. Example locations which bound these blocks are ±5,

±15, ±35, and ±75 milliseconds away from the boundary.

The prototype measurements used in this work are mel-frequency cepstral coefficients

[34], a representation commonly used in speech recognition. First, the waveform is

pre-emphasized with first-order differencing (e.g., H(z) = 1 − 0.97z−1.) Second, the

waveform is windowed (e.g., with a Hamming window of length of 21 milliseconds)

and the short-time Fourier transform is computed across a discrete number of bins

(e.g., 28 = 256)at a constant frame rate (e.g., 5 milliseconds). Next, mel-frequency
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Prototype measurements

Segment measurements

Boundary measurements

30% 30% 30% 30%40%40%

α β

α|β

Figure 4-3: Prototype measurements are used to form boundary and segment mea-
surements.

Prototype measurements are taken at a constant frame rate and are then combined to form measure-
ments at the boundary and segment level. Telescoping averages of blocks of increasing (doubling)
size are taken around the boundary for the former. Segments are broken into roughly thirds and
measurements are averaged over these smaller portions.

spectral coefficients result from processing squared magnitudes through a filterbank

consisting of triangular filters spread across a mel-scale (i.e., linearly spaced filters

for low center frequencies and logarithmically spaced filters for high frequencies.)

Finally, a discrete cosine transform is used to decorrelate these coefficients into the

final representation of mel-frequency cepstral coefficients.

4.3 Categorization

Decision tree clustering is used to form categories for grouping data. After all the

data is grouped into initial clusters, successive decisions are made to divide the data

into smaller, more homogeneous clusters. If the decisions are two-way, then a binary

tree results. Growing of the tree is terminated when further improvements in cluster

homogeneity, as measured by likelihoods, is minimal and a node or leaf in the tree

results. At this point, the node or leaf is termed a cluster and characterization can

proceed. Decision tree clustering is a semi-automatic procedure utilizing knowledge
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only to form the initial clusters and to structure the types of decisions.

The decisions are based on phonological criteria such as manner of articulation (e.g.,

vowel, liquid, glide, nasal, stop, fricative, affricate) and place of articulation (e.g.,

labial, dental, alveolar, velar.) Diphthongs, a monosyllabic speech sound that glides

from the articulatory position for one vowel towards the position of another, may be

classed differently when considering their impact from left and right locations. For

example, [a¤ ], when viewed from the left side, appears to be a low and back vowel, [a],

whereas, when viewed from the right side, it appears to be a high and front vowel,

[i]. It will accordingly have different co-articulatory impact on other speech segments

depending on whether it is located the left or right side.

4.3.1 Substitution classes

Contexts which have similar effects on the outermost portions of neighboring seg-

ments are merged into substitution classes which group interchangeable contexts.

For determining substitution classes, the decision tree clustering algorithm is initial-

ized with all the data grouped by phonetic identity. In other words, a separate tree is

grown for each phonetic unit. Because substitution costs are decoupled in Equation

2.3 into left-sided and right-sided substitution costs, the classes for categorization are

also decoupled into left-sided and right-sided counterparts. Hence, the decision tree

clustering algorithm is repeated for left and right contexts for each phonetic unit. Ex-

ample criteria that are matched at the nodes are listed in Appendix B under Figures

B-1 and B-2.

Figure 4-4 shows a sample clustering run of left contexts for [^]. Displayed in the

form of a dendrogram, moving down the vertical axis corresponds to increasing like-

lihood. Divisions with larger likelihood increases occur towards the top of the tree

and divisions with smaller likelihood increases occur towards the bottom of the tree.

Clustering ends with remaining divisions do not significantly improve the likelihood

86



of the data. Horizontal branching to the left and right corresponds to a mismatch and

match with the knowledge-driven decision, respectively. For example, when node, 1,

splits into a node, 3, and a leaf, 4, data points in leaf, 4, correspond to [^] with a left

context of [z] or [s]. In this unbalanced tree with only left branches, the members of

the leaves, 2, 4, 6, 7, and 8, can be easily read from the knowledge-driven decision

made at each node. As another example, leaf, 8, contains all exemplars of [^] whose

left context is silence (- is silence between utterances and is silence between words).

2467 8

0 = aw ow uw w ww

1 = z s

3 = er -r r rr axr

5 = -

Figure 4-4: Sample clustering run for left context of [^].

The clustering run is depicted as a dendrogram in which decisions branch left and right depending
on whether the matching condition is met (right for a match.) The vertical scale is likelihood of the
data and greater vertical distance from the top of the tree corresponds to increased likelihood. At
each point in the tree, a decision is made to maximize likelihood. For example, node, 1, branches
right into leaf, 4, which contains exemplars of [^] whose left context is an alveolar fricative (both
voiced, [z], and unvoiced, [s].)

4.3.2 Concatenation classes

A concatenation class merges into a single class multiple phonetic transitions which

exhibit similar acoustical patterns around a boundary. This necessitates a fusion of

the left and right contexts into a single concatenation class label and will introduce

additional complexity in determining concatenation classes beyond that in determin-

ing substitution classes.
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For clustering transition contexts, the decision tree clustering algorithm can choose

to divide either left or right contexts at each node in the tree. This is different from

the procedure for substitution classes where only the clustering was restricted to one

side per run. Example criteria that are matched at the nodes are listed in Appendix

B under Figures B-3 and B-4.

The initialization for clustering phonetic transitions involves, for the sake of tractabil-

ity, creating an initial set of clusters with broad classes of speech sounds for the left

and right contexts. As seen in Figure B-5, the broad classes roughly correspond

to vowels/glides, stops, closures, strong fricatives, weak fricatives, lateral liquids,

retroflexed liquids, and nasals.

Figure 4-5 depicts a sample run of the decision tree clustering algorithm for transition

contexts consisting of stops on the left side and vowels and glides on the right side.

This time, the tree is fairly balanced. The left-most leaf, 25, represents the exemplars

which did not match any branching criteria and contains the following transitions

between velar stops, k and g, and lax vowels, I, |, and ux: g|I, g||, g|ux, k|I, k||, k|ux.

The right-most leaf, 36, represents the exemplars which match all branching criteria

and contains the following transitions between unreleased dental stops, d and tË, and

[a]: d|a and tË|a. For a middle leaf, say, 62, which is arrived at by the nodes, 0, 1, 3, 8,

and 16, the left contexts are unreleased dental stops, d and tË, and the right contexts

are @, a⁄ , and E. The corresponding transition contexts are: d|@, d|a⁄ , d|E, tË|@, tË|a⁄ ,

and tË|E. Leaves, 55, 56, 40, 27, and 28, contain exemplars with a front, high vowel on

the right side, because they descend from the right branch of node 1 - matching i and

y (in both intra-syllable and inter-syllable positions.) For example, leaf, 55, contains

g|i, kË|i, k|i, and p|i. Leaves 27 and 28 both contain transitions with i and y in the

right context, but the left contexts differ in voicing because of the branch made at

node 14 between tË/t and d.
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0:r: aa ah ao ax ay ow oy uh uw w ww 

1:r: iy y yy 

3:r: ae aw eh ey 

7:l: d t t− dr tr 

11:l: b p p− 

26:l: b p− 

12:l: d

23:r: ih

37:r: ih ix 

24:r: ix

8:l: d t− 

15:l: b p− 

21:l: g k− 

31:l: d t t− dr tr 

63:r: ae eh 

32:l: k−

22:r: eh

16:r: ae aw eh 

4:l: d t t− dr tr 

13:l: b p− 

39:r: y yy 

14:l: d

2:l: d t t− dr tr 

5:r: aa

19:l: b p p− 

33:r: ax

43:l: g

57:r: ow uh 

34:l: b p− 

20:l: p

6:l: d t− 

9:r: w ww 

17:r: aa ay 

29:r: aa ah ao ax ay ow oy uh 

42:r: ah ax 

10:r: aa

35:r: ah ax 

1825 27 28 30 3638 40 414445 46 47 4849 50 51 5253 5455 56 58 59 6061 626465 66 67 6869 70 71 7273 74

Figure 4-5: Sample clustering run for stop-vowel and stop-glide transitions.

The clustering run presented here produces a fairly balanced tree for dividing stop-vowel and stop-glide transitions into more homogeneous clusters.
Decisions made at each node branch either left or right depending on whether matching criteria are satisfied. In the case of clustering transition
contexts, nodes can be divided by either left or right contexts unlike before. For example, leaf, 62, is reached by nodes, 0, 1, 3, 8, and 16 and contains
exemplars of transitions with unreleased dental stops, d and tË, on the left of the boundary and vowels, @, a⁄ , and E on the right of the boundary.
The transition contexts are: d|@, d|a⁄ , d|E, tË|@, tË|a⁄ , and tË|E.
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4.4 Characterization

With data grouped into distinct clusters by the stage of categorization, a charac-

terization is made by summarizing or distilling the data into models. These models

are used as the basis of comparison for determining synthesis costs. A model is de-

fined over an observation space and measurements taken from this space are used

to build the model. Segment measurements from the prospective observation space

(the right-most 30% portion to the left of a boundary) will be used to define the

right-sided substitution costs and segment measurements from the retrospective ob-

servation space (the left-most 30% portion to the right of a boundary) will be used

to define the left-sided costs. Boundary measurements taken jointly from both spaces

are used to define the concatenation costs. By making a multi-variate Gaussian as-

sumption, the building of models entails calculating first- and second-order statistics.

The measurements are stacked into multi-dimensional vectors and running counts of

the first-order moment ( 1
N

∑N
i=1 xi) and second-order moment ( 1

N−1

∑N
i=1 xTi xi) are

accumulated.

For the substitution costs, the first F mel-frequency cepstral coefficients (MFCC1:F )

averaged over segmental thirds serve as the observation vector. For the right-sided

and left-sided substitution model, the coefficients are averaged over the right-most

and left-most 30% portions of the segment, respectively. For the concatenation costs,

the first F mel-frequency cepstral coefficients are averaged in a telescoping fashion

about the boundary. The innermost set of blocks are from 0 to ±5 milliseconds. The

next set of blocks range from ±5 to ±15 milliseconds. This continues until the final

set of blocks which range from ±35 to ±75 milliseconds. A total of 8 blocks span a

region of 150 milliseconds about the boundary.

With the segment and boundary measurements segregated by substitution and con-

catenation classes, characterization by statistical summarization completes the acous-

tic model for concatenative speech synthesis. The final step of comparison for es-
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tablishing inter-model distances is detailed in the next section which automatically

determines substitution and concatenation costs from data.

4.5 Comparison

The parameter reduction framework outlined in Chapter 2 paved the way for approx-

imating instance-to-instance costs with cluster-to-cluster costs. With the clusters

created by categorization and characterization as described in this chapter, a com-

parison of the clusters will determine the substitution and concatenation costs.

A particular application of the general parameter reduction framework introduced

in Chapter 2 is made by choosing the Kullback-Leibler distance, an information-

theoretic metric (see Appendix D for more details), as the measure for inter-cluster

distances. Although the framework was derived for a metric, such as the Mahalanobis

distance, which obeys the Triangle Inequality, an exception is made here to better fit

the communication-theoretic formulation of unit selection also presented in Chapter

2 in which the penalty of symbol corruption is measured by description length costs.

Minimizing symbol corruption caused by the communications channel (unit selection)

is accomplished by minimizing these description lengths. This can be thought of as

an minimum description length (MDL) framework.

4.5.1 Information-theoretic distance metrics

In creating an automatic procedure for determining synthesis costs, the Kullback-

Leibler (KL) divergence measure serves as the main workhorse. Although KL dis-

tance, D(p || q), has many interpretations in different contexts, the underlying theme

is that it represents the asymmetric cost of approximating p with q. In communica-

tions, it describes additional information the transmitter must supply about q given
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that the receiver already has information about p, H(P ). In an MDL framework, it

quantifies the additional number of bits required to describe q given p. Equation 4.1

is a definition using the difference between a cross entropy and a self entropy. The

second term, self entropy, is H(P ) and represents given information. By subtracting

it away from the first term, the residual is additional information required to use q in

place of p. Because of the communication-theoretic framework introduced in Chapter

2 for unit selection, symbol corruption can be directly measured by the KL distance.

D(P || Q) =
∫

p(x) log
p(x)
q(x)

dx = EP

[
log

1
q(x)

]
− EP

[
log

1
p(x)

]
(4.1)

Because Kullback-Leibler distance captures the notion of asymmetric substitution and

provides an associated cost, it is well suited to defining substitution costs. When two

contexts have a similar acoustical effect on a segment, spectra taken from the segment

should be similar. In statistical terms, distributions of spectra conditioned on either

of the two contexts should be similar. The similarity is measured by the KL distance;

the KL distance between contexts which have similar acoustical effects will be low.

By measuring the KL distance between models defined over the prospective space

representing different right-sided substitution classes, a set of right-sided substitution

costs can be constructed. The reverse argument applies for constructing left-sided

substitution costs.

For a unit α, Equation 4.2 defines the right-sided cost for substituting the desired

context of β with a backoff context of γ. The probability distribution functions,

p(xr | α[β]) and p(xr | α[γ]), are conditionally estimated from the right-most 30%

portion of the segment, α, under the conditions of the right context being β and γ,

respectively.

Sr
α[β]→α[γ] ≡ D (p(xr | α[β]) || p(xr | α[γ])) (4.2)

Similarly, Equation 4.3 defines the left-sided cost for substituting the desired context

of β with a backoff context of γ and the probability distribution functions, p(xl | [β]α)

and p(xl | [γ]α), are conditionally estimated from the retrospective observation space,
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the left-most 30% portion of the segment, α, under the conditions of the left context

being β and γ, respectively.

Sl
[β]α→[γ]α ≡ D (p(xl | [β]α) || p(xl | [γ]α)) (4.3)

Together, Equations 4.2 and 4.2 define a three-step process for determining substitu-

tions costs:

1. Take segmental measurements under different context conditions.

2. Estimate conditional probability distribution functions.

3. Measure Kullback-Leibler distance.

Because the Greek letters, α, β, and γ, can be phones or any class of phones, any

arbitrary categorization can be used to group contexts.

Another information-theoretic measure closely related to KL distance is mutual in-

formation which measures statistical independence between two random variables.

As shown in Equation 4.4, it can be defined as the KL distance between a joint dis-

tribution and the product of its marginal distributions, which describes how well a

joint distribution can be factored into marginal distributions. By carefully choosing

P and Q later, a direct connection between mutual information and a desired notion

of concatenation cost can be made.

I(P ; Q) = D(pP,Q(x, y) || pP (x) ∗ pQ(y))

=
∫
X,Y

pP,Q(x, y) log pP,Q(x,y)
pP (x)∗pQ(y) dx dy

(4.4)

Another definition relates mutual information to the difference between unconditional

and the conditional entropies. If knowledge about Q does not reduce the uncertainty

in P (i.e., H(P | Q) = H(P )), then there is zero information in common. Equation
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4.5 relates to this mathematical statement.

I(P ; Q) = H(P ) − H(P | Q) (4.5)

Let α|β be the boundary between α and β and define P and Q to be the spectral

distributions estimated from telescoping averages of the boundary measurements,

p(xrt | α[β]) and p(xlt | [α]β). The joint distribution is p(xlt , xrt | α|β). If α|β is a

good concatenation boundary, then α and β are fairly separable (independent) and

can be broken into α[β] and [α]β. In other words, the joint distribution (representing

α and β contiguously) can be factored into marginal distributions (representing α[β]

and [α]β non-contiguously.) This is how mutual information as stated in Equation

4.4 relates to concatenative synthesis. An interpretation of Equation 4.5 follows.

If the mutual information is low across a concatenation boundary, the conditional

entropy is high and little information is communicated across the boundary. Knowl-

edge about spectra on the right side of the boundary sheds little light on spectra on

the left side of the boundary. Since there is large spectral change at the boundary,

previous work described in Chapter 3 shows that a concatenation at this point would

be less discernible. An information impasse makes for a good concatenation point.

The boundary is a communications barrier and this is how mutual information as

stated in Equation 4.5 relates to concatenative synthesis. This notion is also found

in statistical machine translation systems [17] where rifts [6] are used to segment sen-

tences into chunks that can be individually translated. Mutual information has also

been applied to infer boundaries between grammar constituents [82, 16].

With the statistical independence and communications arguments made above, a

definition for concatenation cost by mutual information naturally follows. By rewrit-

ing a non-contiguous transition unit, α]|[β, as a concatenation of α[β] and [α]β, the

concatenation cost is defined as the approximating the contiguous transition unit,

α|β, with the concatenation of two non-contiguous parts; this approximation is the
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definition of mutual information.

Cα]|[β ≡ D(p(xrt , xlt | α|β) || p(xrt | α[β]) ∗ p(xlr | [α]β))

= I (p(xrt | α[β]) ; p(xlt | [α]β))

When a multivariate Gaussian assumption is made, expressions (see Appendix D for

derivations) in terms of nats (natural bits of ln 2 bits) for KL distance and mutual

information have a closed form:

D(P || Q) = 1
2

[
(µQ − µP )TΣ−1

Q (µQ − µP ) +

Tr
[
ΣPΣ−1

Q − I
] − log |ΣPΣ−1

Q |]

I(P ; Q) = 1
2 log

(
|Σpp| |Σqq|

|Σ|

)
, Σ =


 Σpp Σpq

Σqp Σqq




The expression for KL distance is a sum of three terms: a Mahalanobis distance

(under Q), a trace term, and a logarithmic term. The logarithmic term can be

regarded as the ratio of two volumes, ln(|ΣP |/|ΣQ|). ΣPΣ−1
Q is a ratio of covariance

matrices and measures how similar the dispersions of the random variables, P and

Q, are. When ΣP = ΣQ, the ratio is unity (the identity matrix) and the trace

and logarithmic terms vanish and the KL distance becomes a Mahalanobis distance,

obeying the Triangle Inequality. Because of this, the KL distance can, in practice,

be used within parameter reduction framework laid out in Chapter 2 for both intra-

cluster and inter-cluster distances. For substitution costs, Equation 2.4 becomes:

|| x − y ||M ≈ || x − mX ||M + || mX − mY ||M + || y − mY ||M
≈ D(N (x, ΣX) || N (mX , ΣX)) + D(N (mX , ΣX) || N (mY , ΣX)) +

D(N (mY , ΣY ) || N (mY , ΣY ))

We model the observations with Gaussian distributions because closed-form expres-

sions exist for their entropies. Although others have used numerical integration or

empirical estimates [155], Gaussian distributions are simple to estimate with only

first- and second-order statistics needed. Also, the distribution for a class of units
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can be formed by combining statistics of individual units in a bottom-up fashion.

4.6 Analysis

This section describes experiments testing the automatic frameworks for determining

classes and costs. First, knowledge-derived classes from previous work are used to

test the information-theoretic metrics and to produce a set of semi-automatically

determined costs. Second, classes derived from decision tree clustering are used to

calculate a set of fully automatically determined costs.

In the first case, a corpus consisting of around 100 minutes of in-house, wideband

recordings from one speaker reading typical system responses in weather information,

flight status, and air travel domains was used. Because the corpus is small, behavior

of the costs was analyzed across broad classes of speech sounds. This is equivalent to

tying or fixing the parameters to be the same for members within the broad class.

In the second case, a larger corpus of 124,180, telephony-quality spontaneous utter-

ances from multiple speakers in a weather domain was used. This sample of the

English language is larger and classes and costs could be calculated at the phonetic

level; no parameter tying was necessary in this case.

Visual representations of costs produced by the information-theoretic metrics are

shown in this section. Experiments carried out with automatically determined costs

are described in Chapter 6.

4.6.1 Automatically determined costs

Figure 4-6 displays bubble plots of concatenation and substitution costs. For the

purpose of visualization, the radius of the circle (not the area) is used to depict the
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magnitude of a cost. The classes are held fixed from previous work so that direct

comparisons of the costs can be made.

Figure 4-6(a) shows a bubble plot of concatenation costs where the rows and columns

represent the context to the left and the right of the concatenation boundary, re-

spectively. The contexts are vowels, semivowels, nasals, and obstruents. Because

concatenations are less discernible at places of source changes, the mutual informa-

tion is expected to be lower at such places. Indeed concatenations between vowels

and semivowels, for example, where the source does not change, are most costly.

Semivowel-nasal and vowel-vowel concatenations are the next most costly. Fricative-

vowel, nasal-stop, and fricative-semivowel boundaries are the least costly concatena-

tions.

V

V

S

S

N

N

R

R

F

F

(a) Concatenation cost.

F
L

FL
SL

SL
F
D

FD
SD

SD
F
P

FP
SV

SV

(b) Substitution cost.

Figure 4-6: Bubble plots of concatenation and substitution costs.

Left: Bubble plot of concatenation costs matrix. Rows and columns correspond to context (vowel,
semivowel, nasal, stop release, fricative) on the left and right sides of phonetic boundaries. Right:
Bubble plot of substitution costs matrix for phonetic context to the right of vowels. Rows and
columns correspond to true and approximating contexts (fricatives and stops in labial, dental,
palatal, and velar places of articulation).
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Figure 4-6(b) displays the right-sided substitution costs for vowels in terms of varying

contexts: fricatives and stops in labial, dental, palatal (more precisely, fricatives and

affricates), and velar places of articulation. Because the lips are responsive articu-

lators, transitions leading into labial stops are very spectrally distinctive and this is

reflected in the large substitution costs seen in the second row. Large costs also ap-

pear for interchanging palatal and labial places. Finally, it is undesirable to substitute

a velar stop with a labial stop.

Because the dynamic range of the concatenation costs does not appear to be high, it is

possible that the concatenation classes are overly broad. In contrast, the classes in the

example substitution cost matrix are low in size with only two or four members each.

The next section reports results when the classes are also automatically determined

from data.

4.6.2 Automatically determined classes

Table 4.1 displays automatically determined classes for left contexts of [i]. an con-

tains alveolar nasals, fr contains fricatives, rl contains rhotic liquids, bs contains

back stops plus [p], ls contains unreleased labial stops, ln contains labial nasals, ll

contains lateral liquids, lg contains segments containing labial glides and offglides,

lc contains labial stop closures, and oc contains all other contexts.

Figure 4-7 displays left-sided substitution costs for [i] with automatically determined

classes. Columns with large bubbles, LG, LC, and LN, primarily correspond to labial

contexts which exert strong influence on the beginning of [i]. This suggests that labial

contexts leave indelible marks and are poor imposters for other contexts. Substitution

costs are fairly small across the board for the row corresponding to fricatives. This

suggests that the beginning of [i] is well shielded from the frication and that contexts

besides labial glides can be substituted.
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Table 4.1: Substitution classes for [i¤ ].
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Figure 4-7: Substitution costs for [i¤ ].

A total of 1,116 concatenation classes were determined by the decision tree clustering

algorithm. While it is not possible to list all the classes, spot checks can be made once

a statistical summarization is in hand. Figure 4-8 shows two panels containing the

distribution of concatenation costs and a normality test and two panels containing

the same for costs that have undergone logarithmic transformation. The mean cost,

1.997, is to the right of the median cost, 1.800, and so there is positive skew (the

skew is to the right) as also confirmed by a skewness1 of +1.361. The distribution

is quite peaky (leptokurtotic) with a kurtosis2 of 5.424. In the normal probability

plot, the empirical cumulative distribution function is plotted against the data. Note

that the percentiles are normally spaced along the abscissa. If the normality test

holds, the scatter plot should fall along a straight line. The costs appear to be well

modelled by a lognormal distribution, because after a logarithmic transformation, the

normality probability plot is fairly linear and the skewness and kurtosis are close to

the theoretical values of 0 and 3, respectively, for a normal distribution.

Another interesting way to view the concatenation costs is presented in Figure 4-9

1Skewness is defined by E[(x − µ)3]/σ3, the ratio of the third central moment and the cube of
the standard deviation. For a normal distribution, skewness is zero.

2Kurtosis is defined by E[(x− µ)4]/σ4, the ratio of the fourth central moment and the square of
the variance. For a normal distribution, kurtosis is 3.
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Figure 4-8: Distributional analysis of automatically determined concatenation costs.

Concatenation costs appear to take on a peaky shape with a positive skew, statistical moments
which are rather well normalized after a logarithmic transformation. Properties of the distributional
are used to focus spot checks on specific concatenation classes, which, for the most part, seem to
confirm hypotheses coincident with speech knowledge.

in which the number of observations for a concatenation class is plotted versus the

concatenation cost. This direct relationship exists, because the observation space for

the boundary model is joint of the prospective and retrospective space or the left and

right sides of the boundary, respectively. The inverse relationship suggests that large

costs happen for classes with few observations and small costs happen for classes with

many observations, although the trend for the former is far more pronounced.

These statistical and distributional criteria can be used to select a small number of

the 1,116 concatenation classes for spot checks. The four concatenation classes with

the most number of observations are transitions between different types of silences in-

cluding end-of-utterance silence, epenthetic silence, and unvoiced stop closures. Con-

firming an earlier hypothesis from Chapter 3, concatenations within inter-vocalic [l]
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Figure 4-9: Analysis of number of observations in concatenation class versus concate-
nation costs.

A scatter plot of concatenation costs along the ordinate with the number of observations for the
concatenation class along the abscissa seems to suggest an inverse relationship. It is not clear whether
poorly sampled concatenation models have a bias towards higher costs.

segments have a cost of 1.610, below the mean of 1.997. However, for reasons unclear,

this was not the case for inter-vocalic [r] segments, which have a high cost of 4.534.

Perhaps the boundaries were not consistently placed or the high cost was associated

to its rare occurrence which placed below the fifth percentile (4.26%). A frequently

occurring transition, i¤ |y, had a cost of 1.649, confirming a hypothesis of concatenating

in the off-glides of diphthongs. A class containing a¤ |y and O¤ |y had a concatenation

cost of 2.091, while a class containing e¤ |i¤ , e¤ |y, y|y, and y|i¤  had a low cost of 1.206.

Transitions at ⁄  off-glides had higher costs: for example, o⁄ |w, 2.620 and u⁄ |w, 2.568.

Due to the nature of the clustering procedure in which left and right contexts can be

split in arbitrary order, it is difficult to present all 1,116 concatenation costs in an

organized manner.

Some of the lowest costs mostly consisted of transitions from phones to silence.

Nasal-fricative and fricative-fricative transitions were especially low too. Interest-

ingly enough, the third highest cost of 5.798 was attributed to the transition between

silence and [b] in which pre-voicing during the silence interval is highly correlated

with the stop. Vowel-vowel as well as retroflex-vowel transitions had especially high
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costs too. The highest cost, 6.380, was a class of transitions from the vowels, @, E,

and uÚ , to w. Other high costs occurred within syllabic rhymes or offsets, u⁄ l, 5.691,

o⁄ r, 5.124, u⁄ r, 3.821, Ul, 3.509.

A similar distributional analysis can be performed for substitution costs if they are

pooled. For example, the 90 separate costs learned for substitutions of context on

the left side of [i¤ ] as shown in Figure 4-7 are combined with all left-sided costs from

other phones. After pooling, the distributional analysis for left-sided and right-sided

substitution costs is displayed in Figure 4-10. Because kurtosis is less than three, the

distributions are somewhat more flat (platykurtotic) than a normal distribution. The

skew is well removed by the logarithm function for the right-sided case, although not

so for the left-sided case.

The absolute values can not be compared with the concatenation costs, because of

differences in the observation space. However, the relative values for the left- and

right-sided cases, means of 1.848 and 1.464, respectively, are more comparable, be-

cause of similar observation spaces and features. Still, the conclusion proffered by the

plots would imply that co-articulatory effects are more pronounced in a preservatory

(retrospective) than in an anticipatory (prospective) sense.

The analysis presented here has looked at the distributional properties of synthesis

costs which appear to take on lognormal distributions. The question of whether

entropies take on lognormal distributions remains open. The analysis was used to

focus attention on certain concatenation and substitution costs and to make spot

checks. Future investigations should examine how best to summarize the information

encoded by these costs in a more disciplined manner.
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(a) Distributional analysis of left-sided substitution costs.
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(b) Distributional analysis of right-sided substitution costs.

Figure 4-10: Distributional analysis of automatically determined substitution costs.
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4.7 Related work

Much of the earlier work in the literature has concentrated on instance-level costs that

directly compare speech segments, or instantiations of the speech units. Numerical

metrics such as Euclidean, Kullback-Leibler, and Mahalanobis distances calculated

over spectral features have been considered [21, 22, 39, 61, 69, 160, 137, 70, 161].

The concatenation cost defined here bears similarity to disconcatibility as proposed

by Iwahashi [63] and to splicing cost proposed as by Bulyko [22]. The use of mutual

information to find boundaries across which information is blocked is related to rifts

[6] as studied in statistical machine translation [17]. Automatic determination of

contextual classes has been addressed by decision tree clustering [99, 97, 98, 13] and

Hidden-Markov Models [41, 37].

4.8 Summary

An acoustic model is built for concatenative speech synthesis by categorization and

characterization of speech data. The classes used in grouping data into categories are

automatically determined by a decision tree clustering algorithm. Segment models

are estimated from measurements taken from the outermost portions of a segment

and substitution costs given by the KL distance are used to approximate instance-to-

instance costs. Boundary models are estimated from telescoping averages around a

boundary and concatenation costs are given by the mutual information of measure-

ments around a boundary.

Because the information-theoretic criteria introduced here are generic, the effective-

ness of the synthesis costs will mostly depend on the design of the observation space

and subsequent density estimation. As in most speech recognition work, an assump-

tion of normality or Gaussianity is made for simplicity. Although recognition and
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synthesis are inverse problems with many commonalities [104], the best performance

in each problem may not necessarily be achieved by the same type of features. The

current observation vector looks the same amount ahead and backward in time. It

might be conceptually attractive to design heterogeneous features [54]. For exam-

ple, the time windows could adapt to the phonetic context, or they might be biased

towards the future for modelling speech sounds in languages that have more antici-

patory rather than carry-over co-articulation. A practical issues not addressed here

is the balancing of concatenation and substitution costs. The dimensionality of the

observation space for the concatenation cost is double that of the dimensionality of

the observation space for the substitution cost, suggesting that the entropy of the

former is double too. Also, because the observation spaces from which boundary and

segment measurements are taken are entirely different, the costs may be of different

scale and need to be combined in a weighted fashion.
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Chapter 5

Finite-State Transducers

5.1 Introduction

This chapter describes the use of Finite-State Transducers (FST) to encode the net-

works participating in the unit selection search. The reasons for adopting finite-state

methods are legion including that the representation is concise and that the algo-

rithms which operate on transducers are well understood. In this chapter, FST’s

are introduced as a research tool in the speech community by exploring past applica-

tions. Secondly, the cascade of FST’s which define the unit selection search space and

their individual topologies are described. Next, various search algorithms are defined

along with pruning techniques and their empirical performance is examined on unit

selection tasks. Then, the Viterbi and A∗ search algorithms are integrated with an

intervening rescoring stage into a multi-pass search. Finally, possible extensions to

the foregoing are discussed.
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5.2 Background

Because many processes in speech processing can be modelled with finite-state con-

straints, finite-state transducers [115] have unleashed a wave of unification and are

gaining ever increasing popularity within the speech and language processing com-

munity. While the design of FST computational tools may not be trivial, the FST

concept itself is one which represents a canonical model for computation. The algo-

rithms are need only be written once and represent a toolbox with which to manipulate

transducers. Applications include decision trees [134], pronunciation variation mod-

elling [94, 57], speech recognition [51], and text analysis for text-to-speech synthesis

[132].

5.3 Unit selection cascade

As described in Chapter 2, unit selection is a constrained optimization that determines

from an input specification the optimal sequence of waveform segments to concate-

nate. In the following exposition, the input specification is assumed to be composed

of a sequence of words which may be optionally marked with information such as

supra-segmental knowledge [76]. The mapping from words to waveform segments as

shown in Figure 5-1 is captured by a composition (see Appendix A for a definition)

or succession of FST’s: W , L, P , T , and S. This factoring allows us to independently

model, design, and refine the underlying processes. When combined with a search,

these components work in succession from an input sequence of words to produce a

sequence of waveform segments suitable for concatenation.

Each of the transducers, W , L, P , T , and S, serve a purpose in effecting the trans-

formation from words to waveform segment descriptors. W , is a finite-state accep-

tor (FSA) which specifies the word sequence. L is a lexicon which maps words to

phonemes and can capture multiple pronunciations. P , which maps phonemes to
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Figure 5-1: FST representation of unit selection.

The search space is represented by the FST cascade, ((W ◦ (L ◦ P )) ◦ T ) ◦ S. The lexical network,
L ◦P , is taken from our speech recognition work. The final composition between ((W ◦ (L ◦P )) ◦T )
and S takes place on the fly as part of a Viterbi search, the efficiency of which is highly enhanced
by the network topology of S.

phones, models pronunciation variations. To be described in later sections, T in-

serts intervening transition [64] (diphone-like) symbols for the primary purpose of

search efficiency. While the first four FST’s find inverse counterparts in a similar

decomposition of the speech recognition process, the topology of the final FST, S,

makes unit selection possible and computationally efficient. That phonological units

- as opposed to another spatio-temporal representation such as, for example, sylla-

bles - are encoded by the transducer has no impact on the validity and generality of

the FST framework. The use of the phone as the unit for selection merely clarifies

presentation.

In practice, W can be a graph that produces multiple wordings of the same mes-

sage for variety. For words whose pronunciations may differ in a context-dependent

manner (e.g., read → r ( E | i¤  ) d), creating lexical variants of words enables explicit

selection, in this example, of word tense (e.g., past versus present) or word sense (e.g.,

noun versus verb), as in IMport versus imPORT. While the pronunciation variation

generated in P should be maximally accommodative in speech recognition, it may be

desirable to limit the variation in speech synthesis for the purpose of increasing intel-

ligibility. Soft limits can be achieved by weighting arcs, whereas hard limits can be

achieved by removing arcs - effectively infinite weighting. Finally, L, P , and T can be

composed and optimized ahead of time (i.e., opt(L◦P ◦T )) to minimize computation

at run-time. See Appendix A for more details on transducer optimization.

The final ingredient in FST-based unit selection is the synthesis FST, S, which maps
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phones (with transition phones) to waveform segments. The actual composition be-

tween ((W ◦(L◦P ))◦T ) and S takes place during a Viterbi search to be described later.

Properties of S which expedite this search include low perplexity (average branching

factor) and scalability. The solution presented in this work decouples the domain-

independent and domain-dependent portions residing in S. Specifically, domain-

independent or language-dependent costs relating only to the pertinent language form

a constraint kernel that encodes speech knowledge for concatenative speech synthesis.

Phonetic transcriptions of individual utterances are represented as finite-state phone

chains and are connected to the constraint kernel at the phone level. If the input

word string, W , is identical to a particular utterance in S, then that utterance can be

retrieved in its entirety by simply walking its finite-state chain, because there will be

a one-to-one correspondence between the phones in the input specification and the

phones in the utterance. Otherwise, the constraint kernel, by generating transition

symbols to match those in the input specification, allows fragments from different

utterances to mix and match producing new speech. These transition symbols also

have an associated weight and the optimal transition point between two utterances

depends on local context in the first utterance before the transition and local context

in the second utterance after the transition.

5.4 Input specification

To give an example of how input is specified, Figure 5-2 depicts the word sequence,

‘Boston’, as represented by an FST, W . Because the input is the same as the output,

this FST is actually an FSA, and a singular label is displayed here.

0 1
boston

Figure 5-2: FST of the word, ‘Boston.’

This FST, W , encodes the word sequence, ‘Boston’. Actually an FSA, W absorbs and emits ‘Boston’
on the left and right side, respectively.
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When this example W is composed with the lexicon and pronunciation rules, (L◦P ),

on the right, the resulting FST, W ◦ (L ◦ P ), as displayed in Figure 5-3, absorbs

‘Boston’ on the left side and emits the corresponding phonetic sequence, [bOstIn], on

the right side. Note that the ‘Boston’ label on the input side coincides with the first

phone, [b], of its pronunciation, and that ASCII symbols are used for the phonetic

symbols.

0 1
boston:b

2
ao

3
s

4
t

5
ih

6
n

Figure 5-3: FST of the pronunciation of the word, ‘Boston.’

This FST, W ◦ (L ◦ P ), encodes the pronunciation for the word, ‘Boston’. ‘Boston’ is absorbed on
the left side and the corresponding phonetic sequence, [bOstIn], is emitted on the right side.

Up to this point, the pronunciation is the same one as in the speech recognizer used to

derive phonetic transcriptions encoded in S for consistency reasons. However, P could

be more restrictive and under-generate pronunciations to assume different speaking

style. Now the phonetic sequence is populated with intervening transition symbols

as shown in Figure 5-4, the purpose of which is to encode context at concatenation

boundaries. The resulting FST, W ◦ ((L◦P ) ◦T ), absorbs the word, ‘Boston’, on the

left side and emits the corresponding phonetic and transition sequence, b b|O O O|s s

s|t t t|I I I|n n, on the right side.

0 1
boston:b

2
b|ao

3
ao

4
ao|s

5
s

6
s|t

7
t

8
ih

9
ih|n

10
n

Figure 5-4: FST of the pronunciation and transitions for ‘Boston.’

This FST, W ◦ ((L◦P )◦T ), encodes the pronunciation and transition phones for the word, ‘Boston’.
‘Boston’ is absorbed on the left side and the corresponding phonetic and transition sequence, b b|O
O O|s s s|t t t|I I I|n n, is emitted on the right side.

In practice, (L◦P )◦T is pre-computed and the two steps illustrated above in Figures

5-3 and 5-4 happen in one step. For more than one word in W , the words absorbed

on the left side coincide with the first phone of their pronunciations on the right side.

(L ◦ P ) ◦ T generates pronunciations for only known words, although this can be

remedied by using dynamic FST’s to handle out-of-vocabulary words [120].
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5.5 Corpus utterances

Figure 5-5 gives an example of how the transcriptions of recorded utterances are

encoded in S with finite-state phone chains. Phone are absorbed on the left side and

waveform segment descriptors, which are composed of waveform tags, and start and

end samples, are emitted on the right side. On the other hand, transition symbols

are absorbed with no corresponding emission and serve only a bookkeeping purpose

to be described later.

In this FST, S, the input phone and transition symbols have a one-to-one correspon-

dence with the output phone and transition symbols of the input specification in

Figure 5-4. When they are composed, the word, ‘Boston’, can be synthesized. How-

ever, since there is no freedom in S to enter late or depart early, it can only be used

to synthesize the word, ‘Boston’. One way to alleviate this problem is to introduce

skip arcs as depicted in Figure 5-6 which enable the selection of sub-word sequences

from the word, ‘Boston’. For example, the first syllable, [bOs], could be selected by

departing early, taking the arc from state 5 to state 11. Note that early departure

arcs follow the emission of waveform segment descriptors and that later entry arcs

precede the emission of waveform segment descriptors.

Although sub-sequences can be selected (e.g., [bOs] or [tIn]), they are strictly contigu-

ous and chronological in order. Introducing yet more skip arcs will enable the selection

of sequences that are non-contiguous and anti-chronological. This time, however, the

skip arcs must bear transition symbols which did not naturally occur. For example,

in the FST displayed in Figure 5-7, introducing an arc with transition symbol, b|I,
from state 1 to state 8 allows the creation of the sequence, [bIn], from non-contiguous

units. The arc with transition symbol, t|O, introduces an anti-chronological transition

that could be followed to create the sequence, [tOs], from non-contiguous units.
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0 1
b:mercury059|36952|37240

2
b|ao

3
ao:mercury059|37240|39960

4
ao|s

5
s:mercury059|39960|41640

6
s|t

7
t:mercury059|41640|42602

8
t|ih

9
ih:mercury059|42602|43713

10
ih|n

11
n:mercury059|43713|44680

Figure 5-5: FST for corpus representation of utterance, ‘Boston.’

This FST depicts a typical finite-state phone chain in S which encodes the transcription for a recorded utterance. Phones are absorbed on the left side
and waveform segment descriptors are emitted on the right side. Transition symbols, which are absorbed without emission, play a bookkeeping role
to be described later. In this example, an utterance tagged as mercury059 contains speech for the word, ‘Boston’. Each waveform segment descriptor
consists of the waveform tag, and start and end samples delimited with |.

0

1

b:mercury059|36952|37240

2

4

6

8
10

b|ao

11

3
ao:mercury059|37240|39960

5
s:mercury059|39960|41640

7
t:mercury059|41640|42602

9
ih:mercury059|42602|43713 n:mercury059|43713|44680

ao|s

s|t

t|ih

ih|n

Figure 5-6: FST for corpus representation of utterance, ‘Boston’, with skip arcs.

The FST from Figure 5-5 is augmented here with skip arcs that enable the selection of sub-word sequences. Early departure arcs follow the emission
of waveform segment descriptors and later entry arcs precede the emission of waveform segment descriptors. For example, the first syllable, [bOs],
could be selected by departing early, taking the arc from state 5 to state 11.

0

1
b:mercury059|36952|37240

2

4

6

8
10

b|ao

b|ih

11

3

ao:mercury059|37240|39960

5
s:mercury059|39960|41640

7t:mercury059|41640|42602

9
ih:mercury059|42602|43713 n:mercury059|43713|44680

ao|s

s|t

t|ao
t|ih

ih|n

Figure 5-7: FST for corpus representation of utterance, ‘Boston’, with skip arcs for non-contiguous and anti-chronological
selection.

The FST from Figure 5-6 is further augmented here with arcs bearing transition symbols that enable the selection of sequences that are non-contiguous
and anti-chronological. For example, the sequence, [bIn], can be selected by following the arc with transition symbol, b|I, from state 1 to state 8.
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Although it is possible to add more and more skip arcs allowing for the selection

of more and more sub-sequences that are non-contiguous and anti-chronological in

nature, this process will lead towards a quadratic number of arcs. Also, it is not clear

that the näive addition of arcs with transition symbols will select sequences that sound

natural. For example, the left context of [O] is a voiced, labial stop, [b], whereas the

left context of [I] is an unvoiced, dental stop, [t]. Co-articulatory effects will likely

be observed in the leftmost portions of the vowels, [O] and [I], which would likely

lead to conflicting co-articulation in novel sequences like [bIn] and [tOs]. Penalties, of

varying degrees, should be assessed for these types of mismatch and, in the presence

of more exemplar units, these penalties would be used to prioritize certain pairings

of non-contiguous units over others. The next section describes how all possible skip

arcs are enumerated along with associated penalties and packaged into a constraint

kernel of manageable size (i.e., independent of corpus size).

5.6 Constraint kernel

As described in Chapter 2 and empirically demonstrated in Chapter 4, contexts which

have similar effects on the acoustics of speech segments can be grouped into equiv-

alence classes based on symbolic information alone. The search can be in a finite

number of states - determined by past context - as it progresses and future decisions

are based on past and present information. This section describes the organization of

language-dependent constraints or costs into a constraint kernel which can be reused

in other domains. This notion of reuse is in congruence with the desire to amortize

the energy of aggregating costs for a particular language into a structure which can be

used for future applications in other domains. Although the framework is presented

using only one symbol of context before and after (i.e., triphone), it is extensible to

additional context.

The constraint kernel organizes costs which connect all M units in a corpus. As
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described in Chapter 2, in corpora with large M , the number of costs, M2, is large,

and incrementally adding new units takes 2M + 1 operations. What the constraint

kernel does is to introduce a structure to the costs whose size is independent of the size

of the corpus and only dependent on the number of speech sounds and co-articulatory

contexts in a language; this can be a big win for corpora with large M .

The diagram in Figure 5-8 depicts the four intermediate layers of the constraint

kernel, along with portions of two corpus utterances (top and bottom of figure). It

builds upon the example of ‘Boston’ begun in Figure 5-5. For now some details are

omitted for clarity (e.g., output labels of arcs containing waveform segment descriptors

corresponding to source and destination utterances). In the example shown, the layers

bridge a pair of source (‘Bosnia’) and destination (‘Austin’) utterances synthesizing

‘Boston’ from [bO] in ‘Bosnia’ and from [stIn] in ‘Austin’. The outermost layers of the

kernel (1 and 4) serve to multiplex and demultiplex transitions from and to speech

segments in the synthesis corpus, respectively. Each state in these two layers connects

all instances of a transition between two particular phones in the corpus. The two

corpus utterances are only shown to illustrate the function of the constraint kernel

and are not considered as part of the constraint kernel.

The units are phonological and the concatenation and substitution costs depend only

on the local phonetic context of the transition. For example, the state marked O|z
in layer 1 in Figure 5-8 gathers all instances of transitions between [O] and [z] in the

corpus (with one of them being in the word ‘Bosnia’). Likewise, the state marked O|s
in layer 4 connects to all instances of transitions between [O] and [s] in the corpus (with

one of them being in the word ‘Austin’). The states in layer 1 encode the current

context and future context whence the arc comes. The states in layer 4 encode the

past and current context thither the arc goes. In general, if there are P phones in

the language, there are P 2 states in each of these two layers.
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Source utterance

Destination utterance

4 Outgoing transitions

1 Incoming transitions

2 Right−classed incoming transitions

3 Left−classed outgoing transitions

b b|O O

O

O|z

O|z

z

O|s

O|s

O|s

a|s

s s|t t

O|dental

sonorant|s

O|s:ε/sl + sr + c

O|s:ε/sr + c

O|s/c + sl

O|s/c

Figure 5-8: FST, S, contains corpus utterances and constraint kernel for efficient unit selection.

Utterances are connected by a language-dependent constraint kernel of a fixed size (i.e., number of states and arcs) which contains four layers to
intermediate all possible connections. The outermost layers (1 and 4) connect from and to the utterances in the corpus. When contexts are matching,
there are direct connections from layer 1 to layer 4 with only concatenation costs. When contexts are completely mismatched, the innermost layers (2
and 3) are connected by arcs with concatenation and substitution costs. In the case of partially matching contexts, arcs from layers 1 to 3 and arcs
from layers 2 to 4 encode costs with one-sided substitution costs.
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For complete generality, layers 1 and 4 should be fully interconnected so that any

state in layer 1 can connect to any state in layer 4 with an associated concatenation

cost, c, and substitution cost, s. Since there are P 2 states in layers 1 and 4 each, a full

interconnection would require P 4 arcs between these two layers. By making use of the

parameter reduction introduced in Chapter 2, states in layers 1 and 4 can be grouped

into clusters from which a significantly smaller number of inter-cluster costs can be

calculated. The equivalence classes are learned by clustering based on decision trees as

described in Chapter 4 and merge speech sounds which exhibit similar co-articulatory

behavior.

This is the motivation for introducing a set of classed layers, layers 2 and 3, which

encode prospective and retrospective context, respectively. The assumption made

in Equation 2.3 justifies the separation of right and left context into layers 2 and 3,

respectively. The substitution cost, s, is broken down into a left and right cost, sl and

sr, respectively. The left cost is associated with matching the left phone of a layer 1

state with the left phone of a layer 4 state. The right cost is the penalty associated

with matching the corresponding right phone labels.

In Figure 5-8 with the O|z transition in layer 1 for example, the right equivalence class

for the /z/ is determined by the /O/. In this case, all consonants with an alveolar

or dental place of articulation are deemed to have the same effect on the vowel, and

are grouped into a dental equivalence class, as shown in layer 2. Similarly, with the

O|s transition in layer 4, the left equivalence class for the /O/ is determined by the

/s/. In this case, all sonorants are deemed to have the same effect on the fricative,

and are grouped into a sonorant equivalence class, as shown in layer 3. The cost of

connecting these two states is the cost, sl, of substituting an /O/ as a sonorant, the

cost, sr of substituting an /s/ as a dental consonant, and the concatenation cost, c,

of making a splice between a vowel /O/ and a fricative /s/ (arc weights are delineated

by a ‘/’ in Figure 5-8). In this example, the substitution and concatenation are very

reasonable, so the overall cost is small.
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If there are an average of C̄r right-sided equivalence classes per phone and an average

of C̄l left-sided equivalence classes per phone, then layers 2 and 3 have a total of

C̄rP and C̄lP states, respectively. To provide complete generality, these two layers

are fully connected with C̄lC̄rP
2 arcs. Since C̄r, C̄l << P , this structure requires

significantly fewer arcs than fully connecting all states in layers 1 and 4 (P 4 arcs).

Table 5.1 summarizes the number of states in the four layers. When C̄ = C̄l = C̄r,

this expression for the total number of states, P (C̄l + C̄r + 2P ), can be simplified to

2P (P + C̄).

Layer Function Number of states
1 Multiplex transitions P 2

2 Class right context PC̄r

3 Class left context PC̄l

4 Demultiplex transitions P 2

Total P (C̄l + C̄r + 2P )

Table 5.1: Number of states in each layer of constraint kernel.

Layers 1 and 4 contain one state per transition, of which there are P 2 where P is the number
of phones. Layers 2 and 3 are classed versions of layers 1 and 4 containing PC̄r and PC̄l states,
respectively.

Each state in layer 1 connects to only one state in layer 2, and each state in layer

4 connects to only one state in layer 3. Although inter-cluster costs are used in the

connections between layers 2 and 3, intra-cluster costs have not been utilized. These

would correspond to the generalizations made by the arcs between layers 1 and 2

(e.g., how does the O|dental cluster differ from the O|z cluster) and the specializations

made by the arcs between layers 3 and 4 (e.g., how does the O|s cluster differ from the

sonorant|s.) Going from layer 1 to 2 loses information and going from layer 3 to 4 gains

information. These generalization and specialization costs correspond to the intra-

cluster costs in the parameter reduction framework and merit future investigations

as sparse data issues (i.e., training P 2 transition models) may come into play.

In order to account for making splices where the contexts match exactly, P 2 direct

connections are made between states in layers 1 and 4 which have identical labels. The

only cost associated with these arcs is the concatenation cost, c, which depends on
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the particular transition context. An example arc in Figure 5-8 travels from the O|s in

layer 1 directly to the corresponding state in layer 4. Similarly, there are C̄rP
2 direct

connections between layers 2 and 4 for all cases where the left labels are identical. An

example arc is illustrated in Figure 5-8 for this case since the /O/ vowel is common

between the two states. In this case the total cost is the right substitution cost, sr,

and the concatenation cost. Finally, there are also C̄lP
2 direct connections between

layers 1 and 3 for all cases where the right labels are identical. An example arc in

Figure 5-8 connects the a|s state in layer 1 to the sonorant|s in layer 3. The cost on

these arcs is a concatenation cost plus a left substitution cost.

As shown in Table 5.2, the total number of arcs in the constraint kernel, P 2(C̄lC̄r +

C̄l + C̄r + 1), is therefore fixed, and is independent of the size of the speech corpus

itself. When C̄ = C̄l = C̄r, this expression can be simplified to (P (C̄ + 1))2. This

along with the total number of states, 2P (P + C̄), as tallied in Table 5.1 determines

the storage requirements of the constraint kernel.

Layers Left match Right match Number of arcs
2 → 3 No No P 2C̄lC̄r

1 → 3 No Yes P 2C̄l

2 → 4 Yes No P 2C̄r

1 → 4 Yes Yes P 2

Total P 2(C̄lC̄r + C̄l + C̄r + 1)

Table 5.2: Number of arcs in between layers of constraint kernel.

Because states in layers 1 and 4 are labelled by transitions, they can be directly connected on a one-
to-one basis with only P 2 arcs. Between states in layers 2 and 4 are labelled by one-sided classed
transitions, there is an expansionary factor of C̄lC̄r. Between layers 1 and 3 and between layers 2
and 4, there are only expansionary factors of C̄l and C̄r, respectively, because one side of context
matches.

When M , the number of units in the corpus, is large, using the constraint kernel to

organize the costs may be preferable for two reasons: 1) (P (C̄+1))2 arcs is far less than

M2 arcs, 2) adding new units incrementally does not entail additional computation

- (P (C̄ + 1))2 is independent of M . The constraint kernel trades off precision for

small size and fast incremental speed. For every utterance with M phones, there are

2M connections made to the constraint kernel: M arcs connecting from the end of
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every phone to the matching transition state in layer 1, and M arcs connecting from

the outgoing transition states of layer 4, to the start of the matching phone in the

utterance.

In real terms, using rough estimates for the number of phones and classes for any given

language, P = 100 and C = 9, the number of arcs is 10002. The constraint kernel

begins to pay dividends when M > 1000: when more than 1000 units are present in

the corpus, using the proposed constraint kernel greatly reduces the number of arcs.

Given a typical syllabic speaking rate of 4Hz and 2.5 phones per syllable, the typical

phonetic speaking rate is 10Hz. In other words, the constraint kernel begins to pay

dividends after 100s of speech - roughly a minute and a half - is recorded.

Although this estimate may be somewhat of an oversell for the constraint kernel -

as phonotactics, the set of all possibly allowed arrangements of speech sounds in a

given language, would imply that not necessarily each of the M2 phone pairs would

be actually be instantiated - this ballpark figure of 100s demonstrates the spoils of

using a framework motivated by parameter reduction wherein instance-to-instance

costs are replaced by cluster-to-cluster costs. Of course, the presupposition is that

inter-cluster costs indexed by symbolic context are sufficient for a first-pass, coarse

search possibly followed up by a second-pass, fine search. As alluded to earlier,

generalization (from layer 1 to layer 2) and specialization (from layer 3 to layer 4)

costs should be targeted for future studies. Arcs arriving at layer 1 and departing

layer 4 can have intra-cluster costs that explain how well exemplar speech transitions

are fit by the transition models.

5.7 Design considerations for search

As mentioned earlier, the constraint kernel enumerates all possible substitutions of

transitions and associated penalties. In Figure 5-8 the arc between state, O|dental, in
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layer 2 and state, sonorant|s, in layer 3 contains the transition symbol, O|s, and an

associated penalty consisting of concatenation and left and right substitution costs.

With only ‘Bosnia’ and ‘Austin’, the corpus lacks an O|s transition, the constraint

kernel provides that very missing transition. This is, however, not the only O|s tran-

sition the constraint kernel is capable of supplying. Depending on class definitions,

it could supply an O|s transition between, for example, state, O|velar, in layer 2 and

state, sonorant|s. If O has C̄r such right classes in layer 2 and if s has C̄l such left

classes in layer 3, there will be C̄lC̄r arcs between layers 2 and 3 bearing the transition

symbol, O|s. Table 5.3 displays similar analyses for arcs between other layers when

context is partially matched.

Layers Left match Right match Number of transitions
2 → 3 No No C̄lC̄r

1 → 3 No Yes C̄l

2 → 4 Yes No C̄r

1 → 4 Yes Yes 1
Total C̄lC̄r + C̄l + C̄r + 1

Table 5.3: Expansionary factors between layers that impact search.

When the search traverses between layers across arcs which contain transition symbols, there are
expansionary factors which quantify the replication of identical transition symbols. These numbers
can be calculated by dividing the numbers in Table 5.2 by P 2.

Notice that the number of transitions enumerated in Table 5.3 is the result of analysis

for O|s. Repeating the analysis for all P 2 transitions would scale these numbers by

P 2 and result in numbers identical to those in Table 5.2. The numbers here are,

in fact, expansionary factors for the increase in simultaneous search paths when the

constraint kernel is entered. The constraint kernel is, to use a monetary metaphor,

a lender of last resort and provides liquidity where there is none. To the extent that

the corpus covers all the units at least once, those transitions that are missing from

the corpus are manufactured by the constraint kernel.

It should be noted that the cross-connections between layers 2 and 3, 1 and 3, 2 and 4,

and 1 and 4, absorb the transition labels which are inserted between phones via the T

FST described earlier. The use of the transition labels in this manner adds significant
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constraint to the topology of S, greatly reducing the number of active search nodes,

and enabling real-time synthesis. Without transition symbols to identify the arcs, all

arcs in the constraint kernel would have an ε label and would have to be expanded

during the search.

Besides being, metaphorically speaking, a lender of last resort, the constraint kernel

also produces transition symbols that break the chronology of the recorded utter-

ances; non-contiguous segments of speech can be mixed and matched to produce

novel speech sequences. The search will find low-cost transition points where non-

contiguous segments can be joined to form a new, contiguous sequence. To the extent

that speech requested by the input specification lies in a contiguous sequence in the

corpus, the search algorithm is encouraged to pick up contiguous sequences, because

the finite-state phone chains have zero weight and can be walked indefinitely barring

mismatch with respect to the input specification; once a mismatch in the transition

symbol is encountered, the search path is diverted off into the constraint kernel. Sub-

sequences of the finite-state phone chains can be traversed without penalty and the

search is therefore greedy. A side benefit of the constraint kernel bearing arcs with

transition symbols (as opposed to none) is that the search will avoid infinite looping

through the constraint kernel, because a transition symbol must be paired with a

matching transition symbol in the input specification.

5.8 Search

The role of the search is to find the least-cost sequence of speech utterance seg-

ments for a given input specification. Specifically, the search finds the least-cost path

through the composition of (W ◦ (L ◦ P ) ◦ T ) with S. If this composition were to

be performed in its entirety, an exponentially large search trellis would be created as

explained in Chapter 2. The need for expanding this trellis incrementally one slice

at a time and for making decisions sequentially is obvious. Fortunately, a well-known
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dynamic programming technique called the Viterbi search fits the bill perfectly.

The input specification, W ◦ (L◦P )◦T , is optimized and topologically sorted so that

the states are numbered in increasing order from the initial state to final state. To

perform the composition on the fly, the Viterbi search algorithm walks through the

states of the first transducer, the input specification, in topological order exploring

compatible arcs in the second transducer, S, in tandem. Arcs in the first transducer

which emit output labels that match input labels absorbed by the second transducer

are deemed to be compatible. Valid end points of the search when the first and second

transducer both transition to final states.

As previously described, the search algorithm proceeds to pick up phonetic units

and output corresponding waveform segment descriptors from an utterance until a

transition mismatch is detected. Then, it is forced off the current utterance path into

the constraint kernel to gather the missing transition. Finally, it is off once again in

search of another portion of the corpus containing the subsequent phonetic unit. The

search path will contain a sequence of waveform segments that best reconstitute the

speech symbols in the input specification.

At each state in the first transducer, the second transducer may be in a multitude of

states, because of the expansion in search paths. Call this set of states a slice. The

dynamic programming heuristic is that for each state or node in the slice, only the

best path up to that node needs to be stored in the form of a back pointer. Once the

final state in the first transducer is reached, a backtrace is constructed by starting at

the node with the best score in the final slice. Then, the trellis is traversed backwards

in time, one slice at a time, following the trail of back pointers which represent local

decisions.

The dynamic programming algorithm as described above will find the best path with

the lowest score as if the entire composition was fully performed. This guarantee exists

even when weights on the arcs are negative - the path score may not be monotonically
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increasing. This guarantee does not necessarily hold true when the larger cost savings

afforded by the Viterbi search are realized - when the slice at each state in the first

transducer is pruned of poorly scoring nodes. Not only does this speed up the search

by discarding paths from the search, it also saves memory for storing the paths.

Pruning works by eliminating nodes from a slice in two ways: score-based and count-

based pruning. Score-based pruning only keeps nodes whose scores lie within a given

threshold from the best scoring node in the slice. Count-based pruning only keeps a

certain maximum number of nodes in each slice. Nodes which survive the pruning

process are referred to as being in the pruning beam. The larger the thresholds are,

the wider the beam is. When pruning is used, accuracy is traded off for speed and

the best path is not guaranteed to be found.

The score threshold and maximum count are parameters which can be tuned for real-

time operation. The effects of pruning on speed and accuracy are examined next in

an empirical fashion. In the special case when a slice is pruned down to a single node,

the Viterbi backtrace can be initiated early and a binding decision for the best sub-

sequence of waveform segment descriptors up to that point can be made. This can be

used to pipeline synthesis and reduce the latency in response time and is described

in a following section.

5.9 Pruning

The purpose of the experiments performed in this section is to illustrate the effects of

pruning on search accuracy and speed. The task used in these pruning experiments,

training and test sets consisting of 1,496 and 22 utterances taken from an air-travel

domain, respectively, is described in more detail in the next chapter. The score and

count pruning thresholds are swept through different settings, while the accuracy and

speed are measured.
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To calculate accuracy, a reference path is first obtained by running the search without

pruning. This path will contain a sequence of N waveform segment descriptors for

subsequent waveform generation. A segment error rate (SER) is then defined as the

degradation from this reference path in terms of descriptors that are substituted,

inserted, or deleted: SER = S+I+D
N

. With pruning activated, the more faithful the

answer is to the reference path, the lower the segment error rate is.

Speed is defined as a real-time ratio (RTR) which is the search time divided by the

speaking time of the synthesized waveform. A real-time ratio of less than unity means

that the search produces an answer faster than the answer can be spoken. The real-

time ratio acts somewhat as a measure like bandwidth does in data communications.

However, this is not the only component that determines interactive response time.

Not measured here is latency, which is defined as the time from the start of the search

to the first output of waveform segment descriptors, which also plays an important

role. This will be addressed in the next section.

Figure 5-9 shows the segment error rates and real-time ratios measured over the test

set as the score threshold is swept from 0 to 7 in increments of 0.1. As the beam is

tightened, the best path under pruning conditions deviates from the reference path

and SER rises as indicated by the ‘x’ symbols. As the beam is relaxed, SER tends

towards zero. In contrast, the real-time ratio indicated by the ‘o’ symbols decreases

(the search speeds up) as pruning is stricter and more nodes are discarded in each

slice from the trellis. The SER and RTR curves appear to be fairly smooth.

Figure 5-10 shows the segment error rates and real-time ratios measured over the

same test set, but this time count threshold is swept from 0 to 5000 in increments of

100. As the search progresses and a new slice is expanded, that slice is referred to

as the active frontier in this plot. As more nodes are retained on the active frontier,

the more accurate , but slower the search is. This time, the SER and RTR curves do

not appear to be smooth. The SER curve appears to contain tipping points when the

SER rises quickly only to fall to lower lows as the count threshold is increased. When
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Figure 5-9: Tradeoff between search speed and accuracy as pruning beam varies.

This figure depicts the tradeoff between search speed indicated by the ‘o’ symbols and accuracy
indicated by the ‘x’ symbols as the width of the pruning beam is varied. Searching can be sped
up (falling real-time ratio) as the pruning beam is tightened to the detriment of search accuracy
as evidenced by a falling segment error rate (SER is an error rate calculated with respect to the
no-pruning best path).

tipping points are reached, a new portion of the search space is suddenly included

that does not necessarily decrease SER. The RTR curve is fairly smooth until around

3500 when the ultimate tipping point is reached as also evidenced by the drastic drop

in SER. Now, a sufficient number of nodes is included in the active frontier and the

reference path is within reach of the search. After slight bump in the RTR curve, the

real-time ratio levels off as the reference path always stays inside the search beam to

ward off false, would-be competitors.

5.9.1 Pushed weights

In working with finite-state transducers, when weights can be pushed outside so that

they can be assessed earlier, the effectiveness of pruning may be further enhanced. By
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Figure 5-10: Tradeoff between search speed and accuracy as number of nodes varies.

This figure depicts the tradeoff between search speed and accuracy as the number of nodes on the
Viterbi frontier is varied. Searching can be sped up (falling real-time ratio) as the number of nodes
is reduced to the detriment of search accuracy as evidenced by a falling SER. In contrast to Figure
5-9 which shows a smooth drop in SER to zero percent, this chart shows that SER abruptly drops
to zero past a certain number of nodes. This is due to the correct answer remaining in the Viterbi
frontier after surviving the pruning process.

observing that the concatenation cost depends only on the transition, its associated

cost can be pushed out of the constraint kernel in S and into the transition FST, T .

The transition FST, T , can be modified to output two types of transition symbols to

distinguish between transitions that occur between contiguous (e.g., α|β) and non-

contiguous (e.g., α]|[β) units. The brackets, ][, around the | delimiter create another

type transition symbol which signifies that the units are not contiguous. Figure 5-11

illustrates a possible input specification. The concatenation cost, c, can be assessed

ahead of entering the constraint kernel and used to prioritize and prune paths which

are considering a non-contiguous transition. What is also required and not shown here

is that concatenation costs need to be removed from the constraint kernel leaving only

left and right substitution costs. In S, transition symbols in the constraint kernel

would be purely non-contiguous (e.g., α]|[β) and transition symbols in the corpus
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utterances would be purely contiguous (e.g., α|β) and zero cost.

0 1 2 3
α βα|β

α]|[β / c

Figure 5-11: Example of pushing weights from S to T .

Because the concatenation cost is a parameter that is effectively tied across many states in the
constraint kernel, it can be pushed outside of the constraint kernel for (possibly) better pruning
behavior. An alternate way of generating transitions would involve the explicit generation of symbols
pertaining to contiguous and non-contiguous transitions. The latter would contain a weight for the
concatenation cost.

Figure 5-12 shows SER and RTR curves calculated with the same setup as the plots

shown earlier in Figures 5-9 and 5-10 except that concatenation costs have been

pushed from S to T . By themselves they are rather unremarkable as they bear a great

resemblance to the curves obtained in the original setup. Figure 5-12(a) corresponds

to 5-9 and Figure 5-12(b) corresponds to 5-10.
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(a) Tradeoff between search speed and accu-
racy as pruning beam is varied for pushed
weights configuration.
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(b) Tradeoff between search speed and accu-
racy as number of nodes is varied for pushed
weights configuration.

Figure 5-12: Tradeoff between search speed and accuracy as score-based and count-
based thresholds are varied for pushed weights configuration.

This figure reports similar segment error rate and real-time ratio curves as those illustrated in Figures
5-9 and 5-10 except that the weights are pushed.

Figures 5-13 and 5-14 overlay the SER and RTR curves for the original setup and the
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setup with pushed weights (marked by the ‘+’ and ‘*’ symbols, respectively). Differ-

ences in RTR are clearly revealed, whereas differences in accuracy are not conclusive.

The real-time ratio for the setup with pushed weights is higher, because the search is

slowed down. The additional arc bearing a non-contiguous transition symbol and a

weight requires additional path exploration in the search. It is not clear why accuracy

does not always benefit from pushed weights from S into T . For example, for a given

level of accuracy, sometimes it can be achieved with less nodes in the original setup

than in the setup with pushed weights, or vice versa. When the score threshold is

adjusted, the original setup appears to be more accurate most of the time. Further

studies should examine weighting the concatenation costs which reside in T versus

the substitution costs which reside in S and its impact on accuracy.
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Figure 5-13: Overlay of tradeoff between speed and accuracy when pruning beam is
varied for original and pushed weights configurations.

This figure overlays the plot from the left side of Figures 5-12 with Figure 5-9. The ‘+’ and ‘*’
symbols indicate the SER and RTR for the configuration with pushed weights.
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Figure 5-14: Overlay of tradeoff between speed and accuracy when number of nodes
is varied for original and pushed weights configurations.

This figure overlays the plot from the right side of Figures 5-12 with Figure 5-10

5.10 Pipelined search

The two determinants of responsiveness are latency and bandwidth. To the extent

that the search is real-time (i.e., RTR < 1) and can keep up, the synthesizer will be

maximally responsive when the latency is zero. In practice, whatever can be effected

to minimize the wait time until the first waveform segment descriptor will greatly

enhance responsiveness. The guiding principle is to divide the search into multiple

sub-searches which can be pipelined.

When an entire paragraph is to be synthesized, the first step is to divide it into

separate sentences. Then, for each sentence, frequently used phrases can be identified

for which the search can be computed once and cached for later use. This was

the strategy used by the author in previous works [162, 163]. Common phrases

called “shortcuts” were determined manually and were used to cut short the search
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latency. While a “shortcut” is being played back, the search can proceed in parallel

to determine sub-paths on the fly for the less commonly used words and phrases.

Because the phonetic units at the start and end of a “shortcut” are known, transition

symbols into and out of the “shortcut” can be used to gird or seed the sub-searches

surrounding the “shortcut”.

This process of determining commonly used phrases was manual, involved a fair

amount of knowledge engineering, and represented significant development time. Pre-

liminary studies presented show the path to a, perhaps, more disciplined approach to

pipelining the search. Figure 5-15 tracks the growth of the Viterbi trellis by plotting

the size of each slice along a logarithmic axis versus states in the input specification in

topological order. Different growth curves are shown for score-based pruning beams

of 1, 3, and ∞ (i.e., no pruning.) and are marked with ‘x’, ‘o’, and ‘+’ symbols,

respectively. The top curve marked with ‘+’ symbols corresponds to no pruning and

as the pruning beam narrows, the curve is pushed down and fewer nodes survive

pruning in each slice. Ultimately, in the bottom curve marked with ‘x’ symbols, some

slices are pruned down to just one node. While the general trend described here can

be gathered from this figure, another closer look can be taken at a smaller time scale.

Figure 5-16 zooms in to the range of states from 200 to 400. The bottom curve touches

the horizontal axis on more than one occasion revealing the presence of multiple search

islands of reliability [164]. These islands are bordered by bottlenecks in the search

space where the graph has been pinched down to one node. The best path must

traverse these bottlenecks and so a partial backtrace can be initiated from the single

node. The bottlenecks appear to occur regularly and each island can be considered

as a sub-search. By tracing back whenever a bottleneck is reached, the search can

be pipelined and the latency can be reduced down to the time when the search

hops off the first island. To the extent that islands are hopped at a sufficient rate,

the search can keep up with playback. Finding the optimal tradeoff between the

score-based pruning threshold and latency is crucial for the deployment of real-time

systems and is a topic for future studies. Parallel approaches to speech recognition
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Figure 5-15: Growth of Viterbi trellis as pruning beam varies

The top curve marked with ‘+’ symbols tracks the number of nodes per slice at each state in the
Viterbi trellis. As the pruning beam narrows, the curve is pushed down until some slices are pruned
down to a single node. A partial Viterbi backtrace may be initiated immediately at this point for
pipelined search with reduced latency.

by hardware [42], Markov random fields [101], and finite-state machines [108] may

also offer alternative ways of achieving real-time performance.

5.11 Rescoring

The foregoing has discussed the representation of the search space with a cascade of

finite-state transducers and the Viterbi search which carries out unit selection with

units defined as symbols and symbolically defined costs. Because of parameter re-

duction arguments made in Chapter 2, instance-to-instance costs were approximated

by a significantly smaller set of cluster-to-cluster costs. The first Viterbi pass can be

regarded as a coarse search which reasonably prunes the search space with symbolic

guidance only.
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Figure 5-16: Growth of Viterbi trellis as pruning beam varies (zoomed view).

This is a zoomed-in portion of Figure 5-15 between states 200 and 400.

This section discusses a second pass which incorporates numeric information for a

finer, more detailed search. The A∗ algorithm, a best-first search with a priority

queue, is used to generate a short list of top scoring paths. Then, scores on the

paths in the short list can be replaced with numerical measurements made on the

path. Finally, the A∗ algorithm is used again to re-sort the short list and output the

final top scoring path which incorporates both symbolic and numeric information.

Pipelining which entails incremental Viterbi and A∗ sweeps on sub-sections is not

investigated here, but has been previously explored elsewhere for speech recognition

[75].

Figure 5-17 describes the flow of a two-stage unit selection search. The Viterbi search

in the first step is identical to previous discussions except that it is modified to output

information beyond the best path. In fact, after the forward pass of the Viterbi search

is complete and nodes are pruned at each slice, the entire trellis is wired up; that is,
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instead of retaining only a single, back pointer to the incoming path with the best

score, all possible incoming paths are kept with an associated score. This populated

or connected Viterbi trellis is a graph which can be walked by an A∗ search. Without

pruning, the Viterbi scores can be used as the underestimate in the A∗ search and the

search is admissible. Otherwise, with pruning the Viterbi scores may not be accurate

underestimates and the A∗ search is not admissible. However, this, in practice, may

not be important. Complete paths are repeatedly popped from the priority queue

until a short list of N top hypotheses is accumulated.

Words RescoreA* searchViterbi search A* resorting

Connected

Trelli s

N−best list N−best list

Path

Figure 5-17: Process flow for generation, rescoring and resorting of N -best lists.

This figure depicts the process by which finer models can be used to refine search results in a
subsequent pass. The interface is an N -best list which is extracted from a fully-connected Viterbi
trellis by an A∗ search. After the hypotheses are rescored, a second A∗ search is performed to
(cheaply) resort the list. At this point, the best-scoring path is kept as the result.

The N -best list produced by the first A∗ search is ordered by scores determined purely

by symbolic information. By adjusting the scores with numeric information in situ,

it is possible to perform a second A∗ search to re-order or re-sort the list. This is

the point at which instance-to-instance costs can be integrated for finer modelling

of, for example, acoustic and pitch continuity. One possible model for rescoring is

displayed in Figure 5-18. Where two non-contiguous units, α and β, are proposed for

concatenation, the model also takes into account the following context of α, α+, and

the preceding context of β, β−.

Besides considering the continuity between α and β at the point of their join, the

rescoring model considers whether α+ bears any similarity to β and whether β−

bears any similarity to α. If the left portion of α+ is fairly predictable from the right

portion of α, then the left portion of β had better be similar of the left portion of

α+ to avoid the prospective perception (going forwards) that a concatenation has

taken place. Likewise, if the left portion of β is fairly predictable from the right
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α α+

β− β

Figure 5-18: Model for rescoring of concatenations.

When a segment α is considered to be concatenated with segment β (as denoted by the diagonal
arrow), the model for rescoring concatenations considers predictability of α+ from α and of β from
β−. Also considered is the similarity of α+ to β and of β− to α.

portion of β−, then the right portion of α had better be similar to the right portion

of β− to avoid the retrospective perception (looking backwards) that a concatenation

has taken place. Such a rescoring model is fairly general and does not make any

assumptions on how predictability and similarity are defined. However, this rescoring

model only takes into account segmental continuity, or, more precisely, continuity

at the boundary between segments and does not take into account longer-distance

constraints such as supra-segmentals. Experiments with narrow-band spectrographic

features are described in Chapter 6.

5.12 Extensions

5.12.1 Hierarchical unit selection

The examples of unit selection provided in this chapter have dealt mainly with pho-

netic units. Incorporating spatial information (e.g., syllable boundaries) was previ-

ously relegated to a pre-selection phase detailed in Chapter 2 wherein an optimal

spatio-temporal segmentation of speech units was determined prior to unit selection

search. In that case, a hard decision is made as to the hierarchical organization of

input specification. While this conveniently transfers spatial analysis to a separate

135



component, it complicates unit selection, because substitutions and concatenations

need to be modelled at all levels between all levels leading to many expansionary fac-

tors for the number of parameters. By deferring the decision of spatial organization

to the search, hierarchical information can be incorporated in a scalable approach

across as many desired spatial levels.

Spatial information is incorporated by splitting transition symbols into transitions

across different boundaries such as phonetic boundaries, syllabic boundaries, and

word boundaries. Whereas transitions symbols previously described only encoded

the identity of the units to either side of the boundary, the level-dependent transition

symbols depicted in Figure 5-19 also encode the nature of the boundary using different

delimiters for different boundaries (e.g., ˆ and # for syllable and word boundaries,

respectively.) The finite-state phone chain for corpus utterances are modified too. At

the boundary between the syllables of ‘Boston’, a transition symbol, sˆtcl, denotes

that a syllable boundary lies between the phonetic unit, s, and the phonetic unit,

tcl. After the arc bearing the phonetic unit, s, which lies to the left of a syllable

boundary, another arc departs the corpus utterance for the syllable-level constraint

kernel, which brokers connections to phonetic units which lie to the right of a syllable

boundary. Connections are made to and from the word-level constraint kernel at the

end and the beginning of the word, ‘Boston’, respectively.

By encoding spatial information into the transition unit and not the speech units,

multiple levels of hierarchical organization can be modelled in a scalable fashion.

There are a total LP 2 transition symbols, where L represents the number of spatial

levels. The only possible drawback is that context at all boundaries is effectively only

one phonetic unit. While this may not matter much in practice, one workaround is

to temporally merge units to capture more contextual information near boundaries

of import. However, this will increase the number of substitution and concatenation

costs as temporally merging introduces new units.
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Figure 5-19: Hierarchical configuration for synthesis FST, S.

Hierarchical information can be encoded into the transitions by introducing extra transition symbols
for level-dependent variants. If the transition symbols are perfectly matched, so will the hierarchy
be matched without the necessity to introduce extra unit symbols. Concatenations at different levels
are managed by separate kernels which generate level-dependent transition symbols. Examples of
level-dependent transition symbols are illustrated within each level-dependent kernel here.
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5.12.2 Segmental diacritics

Speech segments in the corpus can be optionally annotated with diacritics, which

might describe, for example, quantized levels of pitch. By placing the diacritics on

self loops, as shown in Figure 5-20, it is possible to include additional search costs

while entering and leaving a segment. In this simple example, the segment α has

attribute L3 at its beginning and attribute R2 at its end.

When the input does not specify attributes, the diacritic information is ignored and

normal unit selection proceeds with only substitution and concatenation costs in-

cluded in the total path cost. If the input specifies attributes, starting and ending

costs can be incorporated at the segment level. Figure 5-21 depicts an input specify-

ing L1 and R3 at the start and end of segment α. Because there is a mismatch with

the corpus utterance in Figure 5-20, the backoff costs accumulate to a total of 3: the

mismatch between L1 and L3 has a cost of 2 and the mismatch between R3 and R2

has a cost of 1.

The costs of mismatch in diacritics are similar to substitution costs and can be auto-

matically learned from data in a similar fashion by computing inter-cluster distances.

These costs are not stored in the corpus (only the true underlying diacritic is), but

are inserted by a modified T into the input specification.

Diacritics representing additional sources of information can be chained in series. For

example, duration or lexical stress could be another diacritic to be matched by the

unit selection search along with pitch. An independence assumption underlies this

additive chaining of costs. In work by Bulyko [21, 20], simplified ToBI [131] prosodic

markers as part of unit selection.
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0 1 2 3
α βα|β

L3 R2

Figure 5-20: FST of corpus utterance in S incorporating diacritics.

In S, diacritics can be added around units to describe intonational or paralinguistic attributes. In this example, the unit, α, belongs to classes of 3
and 1 on the left and right, respectively. It is backwards compatible with input specifications without diacritics, because the diacritics are added on
self loops; these self loops can have weights describing the fit of the model (i.e., how well L3 describes the attributes for the left portion of α.)

0 1 2 3 4 5
α : α β : βα|β : α|β

L1 : L1

L1 : L2/1

L1 : L3/2

R3 : R1/2

R3 : R2/1

R3 : R3

Figure 5-21: FST of input specification incorporating diacritics.

This input specifies a unit, α, with left and right attributes of L1 and R3, respectively. However, it can back off to other attributes with associated
costs (e.g., inter-cluster distances.) When composed with Figure 5-20, the mismatch between L1 and L3 has a cost of 2 and the mismatch between
R3 and R2 has a cost of 1.
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5.12.3 Dynamic determination of location of concatenation

The discussion thus far has assumed that the boundary of speech units are determined

and reliably so. However, if the location of the boundary is imprecise, an additional

stage of boundary setting can be conducted in parallel with the rescoring stage. As

described in Chapter 3 the boundary between a vowel and a semivowel is less simple

to define and is highly variable to conditions and context. When joining a vowel

with a semivowel, the best point of hand-off can be determined by examining the

spectral information at the boundary and shifting the boundaries of the vowel and

semivowel until the spectral information aligns [139]. This notion of a soft, malleable

boundary defers the precise determination of the (phonetic) boundary to run-time

when concatenating with another unit.

5.13 Summary

This chapter has outlined the implementation of a multi-pass unit selection search

using finite-state transducers. A first pass is made with a dynamic programming

search which produces a fully connected Viterbi trellis with scores. Without pruning

the trellis scores are admissible for an A∗ search that generates a shortlist of N

hypotheses. With pruning accuracy is traded off for speed and real-time pipelining

is possible. The N -best list can be rescored and re-sorted with a subsequent A∗

pass. Many extensions are possible including hierarchical unit selection, segmental

diacritics, and dynamic determination of the location of concatenation.

The search is factored as a cascade of transducers, the last of which, S, is a highly

compact structure called the constraint kernel that encodes all concatenation and

substitution costs for a particular language. Only a linear number of connections is

made between the utterances in the corpus - as represented in the form of finite-state

phone chains - and the constraint kernel; the size of S grows linearly with the size of
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the corpus. Once the size of the corpus surpasses the order of magnitude of a minute

or more of speech, the constraint kernel begins to pay for itself. The constraint kernel

has a number of properties which also make the expansion of search paths efficient.

In the unit selection literature, many works describe making hard decisions in a

pre-selection phase to limit the size of the search space. In the AT&T’s NextGen

synthesizer [7], over 99% of the transitions are determined to be rarely used after

profiling over a training set and are simply omitted to make their unit selection

algorithm tractable [9]. In other works that make explicit use of decision trees [13,

148, 38], only the exemplars at the leaf nodes are licensed to populate the trellis in

the Viterbi search. Although a decision tree could be incorporated into L - decision

trees can be represented by FST’s [134] - the benefit of using the proposed constraint

kernel is that soft decisions are employed and all possibilities are considered at search

time. In fact, the states corresponding to equivalence classes in the constraint kernel

compose a one-level decision tree.

Recent work on lexical and pronunciation modelling in an FST-based speech recog-

nizer has investigated reductions and contractions [55] and learning pronunciation

weights with an Expectation-Maximization algorithm [130]. In theory, these could be

incorporated into L and P as mentioned before to control speaking style (i.e., casual

versus formal). Out-of-vocabulary words could be spliced into dynamic FST’s on the

fly [120] with pronunciations generated by stochastic letter-to-sound rules [30].
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Chapter 6

Design and evaluation

The frameworks and notions presented thus far have addressed certain technical chal-

lenges presented by the desire for efficient unit selection concatenative speech synthe-

sis. At each step, computational arguments have been made for the design choices

at each stage and claims have been mathematically backed by objective reasoning.

Lacking at this point is an assessment of system performance and subjective evalu-

ation of the speech synthesis. This chapter presents a set of processes that organize

a set of speech synthesis components for use in an end-to-end conversational system.

With real data taken from human users conversing with the system to solve tasks

in a given scenario, the speech synthesis framework, envoice, can be empirically

evaluated.

An underlying theme in this chapter is the goal of relating objective and subjective

measures. Objective measures can be made by the machine from, for example, the

model and parameter settings of synthesizer. On the other hand, subjective measures

can only be made by humans. Discovering any relationship between the two would

greatly advance our knowledge of how to tune a system for maximum perceived

benefit. Figure 6-1 summarizes the difficulty of doing so with a simple example of

where the mapping does not preserve local distances. Points close in one space do
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not correspond to points that lie close in the other space.

Psycho−acousticAcoustic

Figure 6-1: Mapping of objective distances to subjective distances.

A challenge in building speech synthesizers is understanding and discovering the mapping between
objective measures and subjective opinion. If such a relationship exists, then objective measures can
be automatically optimized to maximize subjective opinion.

6.1 Related work

Speech synthesis can be evaluated along many subjective dimensions including in-

telligibility (is the speech understandable?), naturalness (does the speech sound like

a human?), and quality (does the voice sound smooth?) [71]. Flexibility can be an

important determining factor for practical applications (what is the input vocabulary

size? does it read free-form text?). As described by Pols in [32] speech synthesis can

be diagnosed on both modular and global levels. Recent evaluations of synthesizers

have been performed both independently of an application [160, 111, 28, 70, 106] and

as part of a spoken dialogue system [156, 157]. Chu et al was able to correlate Mean

Opinion Scores (MOS) taken from human subjects with objective concatenation cost

functions [28, 106]. When the cost function is used as the metric in unit selection, the

MOS of the resulting synthesis can be predictable. Syrdal et al examined acoustic

correlates of voice quality and was able to predict which human voices are more suit-

able for concatenative speech synthesis [142, 141]. Psychoacoustic experiments at a
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smaller time scale have investigated whether discontinuities at concatenation bound-

aries are perceptible and what measures can be used to predict signal discontinuities

[39, 69, 160, 137].

6.2 Processes

Crucial to designing and building systems is an understanding of the underlying

processes. This section is devoted to delineating the steps taken to rapidly prototype

a system from scratch, including how to train a synthesizer for a new language and

how to determine the set of prompts to record for a new domain. Once a prototype

is designed, it can be deployed and tuned. The tuning can be automatic if a desired

objective function to optimize (e.g., minimizing word error rate) is provided. A

common theme of the processes presented here is that minimal interaction is required

once properly configured. The processes are semi-automatic, because once the proper

set of information is provided by a speech expert, the process is entirely automatic.

Figure 6-2 illustrates the steps involved in preparing synthesis costs for a new lan-

guage. This process is entirely automatic given a corpus and clustering questions.

Starting with a representative corpus of speech utterances, clustering questions are

used to group exemplars into categories. These clustering questions are provided by

a speech expert and example questions for the acoustic clustering procedure are given

in Appendix B as described in Chapter 4. The categorization step produces a set of

substitution and concatenation classes which group the exemplars into clusters of ex-

amples. The characterization step involves training models for each cluster distilling

the characteristics of the cluster into a statistical model. These models are compared

by information-theoretic metrics to calculate synthesis costs. Inter-model distances

between substitution models are used to form substitution costs and concatenation

costs are formed by distances between joint and marginal models. These substitu-

tion and concatenation costs are efficiently encoded into a constraints finite-state
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transducer as described in Chapter 5. All the speech knowledge contained within

the representative corpus as clustered by expert guidance is captured within this

language-dependent constraints FST that can be re-used across different domains.

+ Classes

+ Models

Distance calculation

+ Inter−model distances

Example Clustering
Corpus

Questions
Model training

Constraints CreationFST

Figure 6-2: Process for adapting synthesizer to new language.

Porting the envoice framework to a new language requires the analysis of a representative corpus
of speech utterances and the distillation of synthesis costs into a constraints FST. A speech expert
provides speech knowledge in the form of phonological rules and questions which are used to cate-
gorize exemplars into equivalence classes for subsequent model training. Inter-model distances are
then used to define connection costs in the constraints FST.

Figure 6-3 illustrates the process for building a new domain. Once again, only the ini-

tial step requires human attention and the remaining steps are fully automated. The

first step is prompt generation and produces a set of prompts to record given the re-

sponse requirements of the conversational system. The system designer will assemble

a list of typical system responses. Prompt generation takes this list and produces an-

other list, possibly disjoint, of utterances to record. After recording these utterances

in quiet conditions, the corpus of speech is automatically transcribed by, typically, an

automatic speech recognizer configured to locate, for example, phonetic boundaries

given only the word sequence. These phonetic transcriptions are instrumented for

search by connecting them in a topologically linear fashion to the constraint kernel

as described in Chapter 5 producing the full synthesis FST, S. The waveforms are

placed into a binary large object (BLOB) which is memory mapped at run-time for

efficient access. Because systems are typically deployed over the telephone, the size of

the BLOB is just under 30 megabytes per hour of speech when using an 8-bit u-law

sample encoding and a 16-kHz sampling rate.

Prompt generation is defined as the process of selecting a set of prompts to provide

unit coverage over the expected set of system responses [40]. The pathological case
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Figure 6-3: Process for adapting synthesizer to new domain.

Porting the envoice to a new domain requires the analysis of a representative corpus of typical
system responses and selective recording of these responses as uttered by a human speaker. A prompt
generation phase selects a compact, domain-specific corpus to cover the response requirements. Once
the recordings are transcribed, the waveforms and their transcription are instrumented into final
forms for use by envoice.

is straight recording, where everything that is needed is recorded once. It is, of

course, desirable to record less and some measure is required to ascertain to what

extent the prompts can be compacted. The measure can be made in two ways:

static and dynamic analysis. In static analysis, the units in the expected system

responses are tabulated and prompts are iteratively selected to maximize coverage of

the required units. The description of the units can be, for example, phonological

and/or intonational. Previous work by the author [162] examined static analysis.

In dynamic analysis, prompts are iteratively selected in a closed loop to minimize

unit selection cost over the expected set of system responses. It is dynamic, because

it actually considers the concatenation of units and their associated costs over the

expected set. The iterations occur in a closed loop by a greedy selection of the prompt

at each step expected to best minimize total cost. Figure 6-4 illustrates this process.

Regardless of whether the analysis is static or dynamic in prompt generation, to

counter the possibility of over-fitting, it is possible to divide the input set into train-

ing and development sets and to achieve coverage on the training set while monitoring

coverage of the development set. Over-fitting to the training set occurs when cov-

erage continues to improve on the training set with no benefit on the development

set. Cross-validation is a way to insure generalization of the prompts to unseen data.

Corpus selection for creating voices from scratch [40] or domain adaptation for incre-

mentally adding domain-specific utterances [27] remain to be active areas of research.
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Figure 6-4: Process for selecting generating prompts.

Prompt generation entails iterative selection of prompts guided by dynamic analysis of how the units
in a selected prompt benefit the overall unit selection cost over a expected set of system responses.
It is a closed loop which at each step minimizes the total cost by greedy selection of the next best
prompt. To avoid data mining biases, cross-validation can be accomplished by leaving out utterances
into a development set over which generalization to unseen data can be measured.

After the system is initially prototyped, it can be immediately deployed as shown

in Figure 6-5. This figure illustrates the process flow in our galaxy conversational

system framework, in which meaning is converted into speech. After a language gen-

eration component, genesis [5], generates well-formed sentences from the semantics

or meaning, the word sequences are used in a unit selection search as described in

Chapter 2. The optimal sequence of speech segments that result from the search are

reconstituted into fluent speech by waveform concatenation, for which a frame-based

method was described in Chapter 3.

SpeechMeaning

Words Segments

SearchGenerate Concatenate

Figure 6-5: Process for meaning-to-speech conversion.

In our spoken dialogue systems, speech is synthesized directly from a meaning representation. gen-
esis generates a response, for which the words are fetched from a corpus by an efficient FST-based
unit selection search. The resulting speech segments are concatenated by a waveform processor.
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Because the operation of the conversational components is scripted in the galaxy

framework, it is rather straightforward to define the (low-bandwidth) communica-

tions flow between the language generation, unit selection, and waveform generation

components. A short-circuit loop can also be created around the unit selection search

to directly play a waveform to the user. This functionality is used, for example, in the

orion system [125] where users can record reminder messages for later playback. It is

also possible to transmit word boundaries to the audio server for multi-modal applica-

tions. Multi-modal support was added to galaxy by Doreteo Torre Toledano. This

functionality is found in the Spoken Language Learning System [74] for word-level

playback of what language learners speak in foreign language lessons.

In displayless systems deployed over the telephone, the search and concatenation

components are located in the back-end abstracted away from the user. Because

the search is compute intensive, the search engine may reside on a computer where

compute and power concerns are non-existent. The speech segment descriptors (i.e.,

waveform tag and start/end times) are handed to the waveform generator which

assembles the synthetic waveform for transmission over the Public Switched Telephone

Network (PSTN). The computation needs for the waveform generator are far less,

while bandwidth - between where the BLOB is stored and where the interface to the

PSTN begins - is more of an issue.

If the conversational system is deployed over mobile, handheld devices, it is beneficial

to locate the waveform generator on the device end. If the concatenation corpus, the

BLOB, can be determined a priori, it can reside on the handheld device and only the

speech segment descriptors need to be received for synthesis to occur. This consider-

ably lessens the bandwidth requirements for wireless communications to the mobile

device. With the search engine located in the “cloud”, this setup may be referred to

as distributed speech synthesis (DSS). This is a direct analogue of distributed speech

recognition (DSR), in which front-end processing lessens the bandwidth requirement

for transmitting speech waveforms or parameters to the recognizer located in the

“cloud”.
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The task of evaluating speech synthesizers is one of a rather subjective nature. In

the final analysis, humans are the consumers of speech synthesis and as end users

their opinions are important. However, for developmental purposes it is convenient

to have an automatic process by which the effects of small incremental changes in

synthesizer configurations on quality, intelligibility, and naturalness can be measured.

Similar in spirit to prompt generation, Figure 6-6 illustrates a process for tuning

synthesizer models. The premise is that a change is for the better if it improves the

understanding of synthetically generated speech. This ultimately needs to be verified

by correlating the results to human opinion. A speech recognizer is used to measure

the word error rate on synthetic speech. A model built from training data can be

tuned on development data to minimize word error rate as automatically measured by

a speech recognizer. A later section will report some preliminary results from using

this evaluation framework.

Synthesis

Waveform

TranscriptionModel Recognition

Adjustment

Development setTraining set

Figure 6-6: Process for tuning synthesis parameters.

In automatic evaluation by machine, initial synthesis models built from a training set are tuned and
adjusted with feedback obtained from utterances synthesized from a development set. Synthesized
waveforms are fed into a speech recognizer which delivers a sentence hypothesis. This is compared
with the input to the synthesizer and forms the basis for model adjustment.
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6.3 Empirical evaluation

An initial step towards evaluating a synthesizer is establishing a baseline with which

modifications can be compared. This section describes a baseline system and qualita-

tive assessments by a fairly large user base. envoice was evaluated within a conver-

sational system deployed over the telephone for making air travel plans [126]. Flights

could be browsed by asking for airline, city, and date. After narrowing down the flight

choices by a series of negotiations between the user and system, flexible itineraries

could be planned including one-way, round-trip, and other more complex (open-jaw)

specifications. Evaluations of the DARPA Communicator took place over a 9-day

period in 2000 [156] and over a 6-month period in 2001 [157]. A total of nine sites

participated in the first evaluation: American Telephone and Telegraph (AT&T),

Bolt Beranek and Newman Inc. (BBN), University of Colorado, Carnegie Mellon

University (CMU), International Business Machines (IBM), Lucent Bell Laborato-

ries, Massachusetts Institute of Technology (MIT), MITRE, and Stanford Research

Institute International (SRI); MITRE did not participate in the 2001 evaluation.

In the 2001 DARPA Communicator Evaluation, näive users were recruited from across

the country and asked to call a flight travel system deployed by one of the above eight

different participating sites. Approximately 20 subjects called each system four times

each, and another 15-16 subjects called each system eight or more times. After

each call, users were asked to fill out a Likert scale questionnaire [77] in which they

were asked to rate, among other things, the degree to which they agreed with the

statement, “I found the system easy to understand in this conversation.” Each of the

eight participating sites used some form of concatenative synthesis in their deployed

systems. Among the eight, the MIT system, which used the envoice synthesizer,

was ranked the highest (4.07/5) in user agreement with that statement. It is unknown

whether what factors played a role in this ranking. To be fair, it could be the case

that language generation or corpus design is better for the MIT system.
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The qualitative assessment of how easy the system is to understand encompasses many

different factors, such as dialogue management (i.e., does the system response make

sense in the context of the sequence of interactions?), language generation (i.e., are

the sentences individually well-formed?), and speech synthesis (i.e., does the synthetic

speech sound natural and is it intelligible?). Because this assessment is wholistic,

rather than reductionistic, it may not follow that the speech synthesis is natural-

sounding. Furthermore, this particular configuration of envoice concatenated words

and phrases and used unit selection search (with manual weights) more sparingly. As

such, the performance of the unit selection search may also be difficult to separate

out. Nonetheless, the 2001 DARPA Commmunicator Evaluation provides a reference

point for naturalness for the baseline system used in these experiments.

As an example of how the system may ask for confirmation of a negotiated flight

itinerary, Figure 6-7 shows a synthetic utterance with concatenation boundaries de-

noted by apostrophes. Selected units of varying lengths are seen to occur ranging

from sub-word syllabic units to long phrases. The last sentence is extracted from the

corpus in its entirety. Flight numbers and times are composed of smaller pieces.

US Airways’ flight’ 11’45’ leaves at’ 4:’54’ pm’ from’ Charleston’ and arri’ves’ in’ Charlotte’
at’ 5:’45’ am.’ After’ that,’ you depart’ on’ US Airways’ flight’ 7’9’7’ at’ 7:’0’5’ pm’ and
arrive in’ Boston’ at’ 9:0’7’ am.’ The total flight time including stops and connections is’
4’ hours’ and’ 15’ minutes.’ Shall I add this flight to your itinerary?

Figure 6-7: Sample system response for air travel domain.

6.4 Automatically determined costs

This section describes a listening evaluation for testing the efficacy of using automati-

cally determined costs in the synthesis FST. A small test set of twenty-two utterances

shown in Table 6.1 in an air travel domain is re-synthesized on a leave-one-out basis

from a training set consisting of around 100 minutes of in-house recordings of typ-

ical system responses in weather information, flight status, and air travel domains.
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Twelve of the utterances are system responses describing flights from a source to a

destination cities, while the ten remaining utterances describe returning flights. The

sentence structure is very rigid and the changing content includes times and dates,

airline and city names, and flight numbers.

01) On Monday, January 1st at 1:23am you fly on Northwest flight 401 from Boston, Massachusetts to Atlanta arriving at 12:59pm.
02) On Wednesday, March 3rd at 3:21am you fly on Taiwan Airlines flight 408 from Ontario, California to Albuquerque arriving at 10:37pm.
03) On Thursday, April 4th at 4:20am you fly on Tower Air flight 201 from Ottawa, Canada to Washington arriving at 9:26pm.
04) On Friday, May 5th at 5:19am you fly on Vanguard Airlines flight 208 from London, England to Anchorage arriving at 8:19pm.
05) On Saturday, June 6th at 6:18am you fly on Virgin Atlantic flight 101 from Frankfurt, Germany, to Aspen arriving at 7:18pm.
06) On Sunday, July 7th at 7:17am you fly on Sun World International flight 108 from Yokohama, Japan to Atlantic City arriving at 6:17pm.
07) On Monday, August 8th at 8:16am you fly on Sun Country Air flight 309 from Augusta, Georgia to Austin arriving at 5:16pm.
08) On Tuesday, September 9th at 9:15am you fly on Alitalia flight 409 from Augusta, Maine to Ottawa arriving at 4:15pm.
09) On Wednesday, October 10th at 10:14am you fly on US Airways flight 109 from Charleston, West Virginia to Amsterdam arriving at 3:14pm.
10) On Thursday, November 11th at 11:13am you fly on TWA flight 209 from Bali to Athens arriving at 2:13pm.
11) On Friday, December 12th at 12:12pm you fly on Reno Air flight 501 from Dubai to Auckland arriving at 1:12pm.
12) On Saturday, January 13th at 11:11pm you fly on Sabena flight 508 from Hollywood to Osaka arriving at 12:11pm.
13) On Tuesday, April 16th at 4:08pm you return on Nordic East Airways flight 808 arriving in Kalispell at 9:08pm.
14) On Wednesday, May 17th at 5:07pm you return on Midwest Express flight 809 arriving in Midland at 8:07pm.
15) On Thursday, June 18th at 6:06pm you return on Midway Airlines flight 888 arriving in Ontario at 7:05pm.
16) On Friday, July 19th at 7:05pm you return on America West flight 281 arriving in Orange County at 6:01pm.
17) On Saturday, August 20th at 8:04pm you return on KLM Airlines flight 382 arriving in Paris Orly Airport at 5:58pm.
18) On Sunday, September 21st at 9:03pm you return on Air New Zealand flight 483 arriving in St. Martin at 4:48pm
19) On Monday, October 28th at 10:02pm you return on British Airways flight 584 arriving in Singapore at 3:38pm.
20) On Tuesday, November 29th at 11:01pm you return on Alaska Airlines flight 785 arriving in Tokyo Narita airport at 2:28pm.
21) On Wednesday, December 30th at noon you return on Air Lingus flight 886 arriving in Washington National at midnight.
22) On Thursday, January 31st at midnight you return on Delta flight 987 arriving in Shenzhen at noon.

Table 6.1: Twenty-two utterances form the test set for synthesis evaluations.

These utterances are sample responses taken from an air travel conversational system. The first
twelve describe flights from city X to city Y , while the second ten describe flights returning from
city X . The sentence structures are rigid and the changing content only includes times and dates,
airline and city names, and flight numbers.

In order to evaluate the information-theoretic measures, it is necessary to isolate all

other factors and to keep them constant. For example, the input specification must

be a single path, or otherwise different costs could encourage the search down other

paths. For this reason, the phonetic sequence of the original utterance, and not the

word sequence, is used for the input specification in experiments testing automatically

determined costs. In other words, the specific phonetic realization of the phonemic se-

quence implied by the word sequence is constrained and the phonological information

for the synthesizer is provided by an oracle.

After unit selection is complete, the segments are concatenated by a waveform pro-

cessor. Concatenation boundaries are smoothed with windowed overlap-and-add pro-

cessing using constant-frame rate analysis and variable-frame rate synthesis. The

shift corresponding to maximum correlation between abutting short-time spectral

frames is used to appropriately offset the windows at the concatenation boundary.
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Since window shifts at boundaries introduce variable timing of the window centers,

normalization is required to preserve energy relations.

In comparing synthesizers using manually tuned and automatically derived synthesis

costs, eleven subjects participated in a listening evaluation and performed A/B com-

parisons [79] on an utterance-by-utterance basis. The utterances were presented in

random order and, for each utterance, the presentation of A and B systems was also

randomized. As seen from Figure 6-8(a), only five of the eleven subjects found the

second system preferable as noted by an opinion score greater than one-half that was

obtained by averaging over all twenty-two utterances. Pooling votes the other way,

Figure 6-8(b) shows that the second system was found to be preferable (opinion >

0.5) for twelve of the twenty-two utterances, or 55% of the time. The opinion score

was obtained by forming a voting committee from the eleven subjects and averaging

numerical values, 0 for A, and 1 for B, representing their votes.

A 50% preference level suggests that subjects are indifferent and that one system

is indistinguishable from the other. Since the baseline system is considered quite

natural, this result can be viewed positively as it reduces the amount of manual

heuristics necessary to tune a synthesizer. However, what is somewhat worrisome is

how averaging and thresholding can mask extreme values. Utterances #6 and #14

received only one vote, while utterance #15 received none. It may be worthwhile to

investigate min-max criteria, in which the magnitude of the worst case is minimized.

This can be likened to the saying that rising waters raise the level of all the boats,

except just the opposite. Utterances #4 and #5 received high votes - for #4, the

airline and city names sound more natural, whereas for #5 it was the weekday.

For the three utterances mentioned above where the second system received one vote

or less, spurious pitch and irregular durations were detracting factors. On the other

end of the spectrum, three utterances received nine votes or more. The automatically

determined costs reduces the concatenation rate (i.e., number of concatenations per

second of speech) from 2.14 to 1.81, a 15.3% relative reduction. It is not clear whether
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this observed effect can be causally related to the automatic learning procedure,

although in general, concatenation rate can be directly controlled by the weighting

between concatenation and substitution costs. However, it suggests that reducing the

concatenation is preferable, a hypothesis to be examined in greater detail next.
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Figure 6-8: Results of listening evaluation of automatically determined costs.

This evaluation compares system, A, using manually determined costs with system, B, using auto-
matically determined costs. Eleven subjects were asked to listen to twenty-two utterances in random
order and the system order was also presented in random order for each utterance. Although only
five of the eleven subjects found the automatically determined costs preferable, using the subjects
as a voting committee found the new system to be preferable for twelve out of the twenty-two
utterances.

Figure 6-9 shows a panel of plots of opinion of automatically determined costs against

several measures. Subjective opinion is shown on the abscissa against various ob-

jective measures on the ordinate. The measures are extracted from the synthetic

waveforms of system B. Correlation coefficients are shown as well as associated p-

values for statistical significance testing using α = 0.05. Regression lines are shown

for significant correlations. Concatenation rate of waveforms synthesized with auto-

matically determined costs did not appear to be a significant predictor of opinion.

However, the concatenation rate spread, obtained by subtracting the concatenation

rate of baseline waveforms synthesized with manually determined costs, did appear

to be a significant predictor of opinion. The result is somewhat counter-intuitive,
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because the correlation coefficient, ρ = 0.46, is positive, suggesting that a positive

increase in concatenation rate is related to a higher opinion score. Not all concate-

nations have the same cost, and so, another plot relates opinion to the cost of the

concatenation divided by the length of the concatenated segment. This rate in time of

concatenation costs appears to be positively correlated with opinion, another counter-

intuitive result. On the other hand, the total cost of concatenations over the entire

utterance does not see to be correlated with opinion.
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Figure 6-9: Detailed analysis of evaluation of automatically determined costs.

This panel of plots examines correlation between subjective opinion of the voting committee and var-
ious objective measures extracted from the system using automatically determined costs and whether
the measures are significant predictors. An increase in concatenation rate over the baseline system
and a high absolute rate of concatenation cost per unit time were found to be, counter-intuitively,
significantly correlated to high opinion scores. Since intonation was not explicitly modelled, perhaps
the high concatenation rate precludes settling locally on intonation from any particular segment of
speech.

The obvious question from looking at the plots in Figure 6-9 is why an increase in
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concatenation rate and a high rate of concatenation cost per unit time are signifi-

cantly correlated with high opinion scores. Because intonation is not modelled here,

transitioning between waveforms at a higher rate, perhaps, avoids settling for too

long on the local intonation of any particular segment. This would explain why an

increase of concatenation rate might be preferable as well as a high concatenation

rate in absolute terms.

An explicit intonation model would help to address this issue. Taylor modelled rise

and fall of local F0 contours in [146, 147]. The Boston University radio news corpus

[105] is often used in intonation studies in concatenative synthesis [12], because it has

hand-labelled ToBI [131] markers, a system based on the Pierrehumbert annotation

system [109]. Another popular model is the Fujisaki convolution model which gen-

erates F0 contours with phrase and accent impulse response functions [49]. Linear

and non-linear regression models have also been used to generate F0 contours as well

[12, 140].
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6.5 Intonation modelling

A simple intonation model was assembled in an unsupervised fashion by bottom-up

clustering of feature vectors. The features extracted including prosodic factors such

as pitch, duration, and energy. For all sonorant segments (i.e., vowel, semivowel, and

nasal), F0 was extracted as average over the entire segment and also over the first

and last third (30%) of the segment. The energy and duration of the segment was

also included on a logarithmic scale. These five dimensions constituted the feature

vector.

After extracting feature vectors from the 100-minute training set mentioned above,

a principal component analysis was performed to whiten the data into decorrelated,

unit-variance dimensions. Because no intonation symbols were pre-ordained, the op-

timal number of intonation symbols was learned using a mixture of Gaussian statisti-

cal model. Training a mixture involves an initial step of K-means clustering [52] and

subsequent refinement via iterations of Expectation-Maximization (EM) [36]. The

number of clusters, 10, was chosen using the Bayesian Information Criterion (BIC)

[122] measured over a mixture model of full-covariance Gaussian components: addi-

tional mixture components were added until the BIC no longer increased. When the

BIC levels off, it indicates overfitting, or that the number of parameters suggests a

model more complex than can be supported by the number of data points.

Figure 6.2 shows the class size and model means for each of the 10 intonation clusters.

The five dimensions of the mean correspond to average pitch, start pitch, end pitch,

duration, and energy. The dimensionality for pitch is in Hertz, and for duration,

milliseconds. The clusters have all types of pitch contours: rising, falling, and flat.

Clusters with rising pitch include 1 and 7, while clusters with falling pitch include 0

and 3. However, the remaining clusters with “flat” pitch still retain a downward bias.

The pitch contours are visually displayed in Figure 6-10(a) where the downward trends

become apparent. Also, the flatter pitch contours appear to spaced in quantized steps
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attributable, perhaps, to the clustering procedure. Note that clusters, 8, 4, and 2 have

short durations, whereas clusters, 6, 0, and 3 are longer in duration. Clusters 8 and

9 have low energy.

0 1 2 3 4 5 6 7 8 9
# 983 1,045 2,433 1,923 4,052 4,538 5,109 2,120 3,666 3,553
P̄ 212.48 225.08 271.20 187.40 206.52 185.21 224.49 229.31 217.89 197.10
Ps 232.70 213.23 274.05 201.15 207.43 187.84 226.30 217.90 218.87 196.73
Pe 187.70 231.40 268.05 181.54 205.54 183.28 222.69 243.73 217.00 197.51
D 158.57 100.40 57.24 146.15 36.15 100.56 76.58 139.47 32.24 67.08
E 86.78 81.42 83.03 84.44 85.44 85.14 86.67 87.81 77.65 72.70

∆P -45.00 +18.17 -6.00 -19.61 -1.89 -4.56 -3.61 +25.83 -1.87 +0.78

Table 6.2: Makeup of automatically acquired intonation classes.

These ten intonation classes were automatically acquired by iteratively fitting a mixture model of
increasing complexity until stopped by the Bayesian Information Criterion (BIC). The training of
mixtures at each step from pre-whitened intonation (pitch, duration, and energy) feature vectors
is done by Expectation Maximization (EM). Interesting clusters are formed by this process: for
example, rising pitch is seen in clusters 1 and 7, while falling pitch is seen in 0 and 3.

Figure 6-10(b) shows the makeup of each intonation class in terms of vowels, semivow-

els, and nasals. Clusters 8 and 9 are mostly represented by nasal segments, while

clusters 3 through 7 are composed predominantly of vowels and semivowels. Interest-

ingly enough, the pitch in nasals, as represented by clusters 8 and 9, is fairly steady

- the start and end pitch is close to the average pitch. In cluster 8, the pitch is high

(217.89 Hz) and duration is short (32.24 ms), while in cluster 9, the pitch is low

(197.10 Hz) and duration is long (67.08 ms). It is likely that cluster 9 occurs most

often in the final position of an utterance. With clusters 8 and 9 also possessing the

lowest energy, it may be worthwhile to model intonation for nasals separately. Other

clusters with steady or flat pitch are 4 (206.52 Hz), 5 (185.21 Hz), and 6 (224.49 Hz),

which are dominated by vowels and semivowels and are spaced in approximately 20

Hz steps.

The set of 10 intonation clusters derived above represents a quantization of the entire

space represented by the five dimensions of average pitch, start pitch, end pitch,

log duration, and log energy. By using Maximum Likelihood classification, sonorant

segments can be assigned to one of the 10 quantized clusters given their feature
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Figure 6-10: Breakup of intonation classes by pitch contour and sonorant composition.

When the intonation classes are viewed by pitch contour, they are either rising, falling, or flat (with
slight downward bias). The flat contours apparently span the pitch space equal intervals. When
viewed by sonorant composition, clusters 8 and 9 are predominated by nasals, whereas clusters 4
through 6 are mostly vowels and semivowels.

vector by picking the most likely model. Note that this procedure discards any prior

information on the model such as the number of training tokens per model. To handle

data sparseness, back-off inter-cluster distances are computed by the Kullback-Leibler

distance between intonation models.

Figure 6-11(a) displays the back-off costs in the form of a bubble plot in which rows

and columns represent the true and approximating intonation clusters and the area

of the bubble represents the magnitude of the approximation cost. There are large

costs down columns 4 and 8, because intonation clusters 4 and 8 (high, flat pitch

and short duration) are poor substitutes for clusters 0, 1, 3, and 7 (changing pitch

and long duration). One reason for the large costs is the mismatch in intonation

attributes between the two cohorts. Another reason is seen from the correlation plot

in Figure 6-11(b) in which there is direct relation (high correlation, zero p-value)

between the back-off cost averaged across the column of the bubble plot and inverse-

variance, or precision, of the intonation cluster averaged across the five dimensions of
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its observation space. This is a direct consequence of the definition of the Kullback-

Leibler distance which includes determinant terms of the variance-covariance matrix.

Interestingly enough, the first cohort (4 and 8) has the lowest precision, whereas the

second cohort (0, 1, 3, and 7) has the highest precision.
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Figure 6-11: Results of listening evaluation of automatically determined costs.

In the bubble plot, the rows and columns correspond to the true and approximating intonation
classes and the area of the bubble denotes the magnitude of the approximation cost. Clusters 4 and
8 (high, flat pitch and short duration) are poor substitutes for clusters 0, 1, 3, and 7 (changing pitch
and long duration). A reasonable explanation for this overwhelming trend in back-off cost lies in
the variance of the clusters as shown in the correlation plot. Cluster 0, 1, 3, and 7 have high backoff
costs, because of their high precision or low variance. Clusters 4 and 8 have low precision or high
variance and are poor approximations.

Intonation classes assigned by classification to each sonorant segment are encoded

symbolically into the search as segmental diacritics in the synthesis FST, S, described

in Chapter 5. The back-off costs incurred when intonation diacritics can not be

matched are encoded into the input specification. The testing set of twenty-two

utterances is synthesized by jackkniving each utterance out of the corpus one at a

time and using its phonological and intonation sequence as oracle information for the

search.
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To measure the subjective performance, nine of the previous eleven subjects judged

the synthesizer using an intonation model against the synthesizer using automatically

determined costs. In other words, the better of the two systems in the previously

described listening evaluation is used here as the baseline system. On average, use

of the intonation model increased concatenation rate from 1.81 from 1.85, a relative

increase of 2.4%. Because this is far less than the 15.3% reduction in the previously

described evaluation, this may not be as significant. Figure 6-12 shows opinion scores

for the new system profiled by subject and utterance. Only two of the nine subjects

found the new system indifferent or preferable. Nine of the twenty-two utterances

using the intonation model were deemed preferable.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
pi

ni
on

A/B preference by subject

Subject

(a) Evaluation results by subject.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
O

pi
ni

on
A/B preference by utterance

Utterance

(b) Evaluation results by utterance.

Figure 6-12: Results of listening evaluation of automatically acquired intonation
model.

This evaluation compares system, A, using automatically determined costs with system, B, using an
automatically acquired intonation model. Although the new system was not found to be preferable
on average (two out of nine subjects, nine out of twenty-two utterances), it received complete
approval for utterance #3 in which naturalness was considerably improved by proper matching
of the intonation.

Even though the new system did not fare as well on average, what was surprising

was the unequivocal vote for utterance #3 under the new intonation model. With

the intonation model in place, the search found a final syllable, [d{], for “Canada”
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with better duration and pitch by correctly matching the intonation class. In the

natural utterance, the final syllable was assigned to cluster 3. Without the intonation

model, the search blindly chose a [d{] of cluster 5. With the intonation model, the

search correctly chose a final [{] from Georgia in the phrase “from Augusta, Georgia

to Austin.” The phrase structure has been implicitly matched with only quantized

information about intonation! This single utterance gives an existence proof for the

ability to automatically mine a large corpus for matching intonation.

Figure 6-13 shows a panel of plots repeating analysis similar to the previous evalu-

ation. None of the correlations are significant from which it can be concluded that

other factors must be at play. By incorporating intonation into the search, concate-

nations may be made at different places in order to satisfy the additional intonation

constraint. Because the search path has changed, the effect of the intonation model

can not be adequately isolated by these plots. Also, the total cost includes both

intonation and acoustic-phonetic costs which should be separated.

Figure 6-14 shows additional correlation plots against measures more directly related

to the newly added intonation model. Intonation match rate is the proportion of

sonorant segments for which intonation is correctly matched. Although a higher

match rate should obviously correspond to higher naturalness, the trend does not

appear in the data. Though the concatenation decisions made by the search algorithm

change when intonation costs are introduced, the second plot indicates that there is

no significant correlation between the opinion and the change in the acoustic-phonetic

costs. Looking at intonation cost normalized by the length of the utterance in the

third plot, intonation cost rate does not seem to be an important factor. Finally,

total intonation cost shown in the fourth plot is not correlated with opinion either.

If an intonation model is effective, the costs it generates should be (negatively) cor-

related with opinion. When intonation is accurately modelled, increasing intonation

mismatch/cost, ceteris paribus, should correspond to decreasing naturalness. In the

intonation modelling experiments described here, the actual search path changes when
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Figure 6-13: Detailed analysis of evaluation of automatically acquired intonation
model.

This panel of plots examines correlation between subjective opinion of the voting committee and
various objective measures extracted from the system using an automatically acquired intonation
model and whether the measures are significant predictors. Unlike the previous evaluation of auto-
matically determined costs, none of the correlation coefficients here are significant which suggests
other factors are at play.

the costs change and so the experimental setup fails in keeping other experimental

conditions constant. One possible workaround would be to use the intonation model

to score the utterances produced by the system with automatically determined costs.

The opinion could then be regressed against the acoustic-phonetic cost and intona-

tion score. Notice in this setup that the intonation model is not directly used in the

search, but as part of a two-factor regression model for predicting human opinion.

Future work should investigate a more sophisticated application of the intonation

model developed in this section by also using intra-cluster distances. A mere match of
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Figure 6-14: More detailed analysis of evaluation of automatically acquired intonation
model.

This panel of plots examines correlation between subjective opinion of the voting committee and
various objective measures extracted from the system using an automatically acquired intonation
model and whether the measures are significant predictors. Unlike the previous evaluation of auto-
matically determined costs, none of the correlation coefficients here are significant which suggests
other factors are at play.

intonation cluster identity says nothing about the distance of the intonation exemplar

to the cluster centroid. A more accurate measure of the true underlying cost should

help to discern between multiple exemplars from the same cluster and to improve

intonation matching. Some other necessary procedural changes would include the

incorporation of prior information for Maximum A Posteriori (MAP) classification

and the balancing of intonation costs with acoustic-phonetic costs. Finally, objective

measures for intonation such as pitch continuity of the synthetic utterance can be

formulated for predicting human opinion.
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6.6 Evaluation by recognition

The experiments described thus far in this chapter are aimed at gathering evidence

of a link between the path of costs generated by the unit selection search and human

opinion in listening evaluations. Because the costs are inter-model distances and do

not include intra-model distances, they may not be sufficiently descriptive to serve

as a proxy of opinion for the resulting synthetic utterances. Direct measurements

taken from the synthetic waveforms ala speech recognition are described and their

correlation to human opinion is studied as well.

In this section techniques taken from speech recognition are used to extract acoustic

measurements and calculate recognition features directly from the synthetic waveform

and to score the features with pre-specified acoustic models. The model scores or

likelihoods are examined in conjunction with human opinions obtained from listening

evaluations to determine whether human opinion is predictable from a measure like

acoustic likelihood. The goal is to move towards a more automatic framework for

evaluating synthesis.

Because the synthesizer produces a time-aligned transcription of the speech along

with the synthetic waveform, the locations of the phonetic boundaries are known and

the boundaries can be scored by a boundary model. The use of segment models to

score the phonetic segments could also apply in this evaluation framework, but is not

described here. As in summit, telescoping averages of MFCCs form a feature vector

whose likelihood is evaluated by an acoustic model. For a synthetic utterance with

N phones, there are N − 1 boundaries and likelihoods. These boundary likelihoods

are used in regression analyses as independent variables to predict human opinion,

the dependent variable.

Figure 6-15 shows plots of relative change in likelihood between experimental con-

ditions, A and B, versus opinion or preference between the two systems. Relative

change in likelihood from system A to system B, ∆LA→B, is defined as the change
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in likelihood normalized by the starting likelihood, LB−LA

LA
. This relative change is

computed for each boundary and is averaged across each boundary to produce a sin-

gle number per utterance. This utterance-level relative change in likelihood is paired

with the human opinion for each utterance to produce the correlation plots shown

here. The hypothesis is that a relative increase in likelihood should correspond to an

increase in preference.
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Figure 6-15: Regression of results of listening evaluation and likelihood.

This correlation plot regresses the average relative change of likelihood with human opinion. Sig-
nificant correlation was observed for the comparison of synthesis with and without an intonation
model. This suggests that an increase in likelihood predicts an increase in human opinion.

Figure 6-15(a) shows the correlation plot for moving from manually determined costs

to automatically determined costs. The correlation is not quite significant, but is pos-

itive as hypothesized. Figure 6-15(b) shows the correlation plot for adding intonation

modelling to a system with automatically determined costs. The correlation, 0.47, is

positive and significant which supports the hypothesis that an increase in likelihood

produces better synthesis.

Because speech recognition is typically based on a maximum likelihood framework,

a natural extension of this work is to engage the remainder of the speech recognizer,
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lexical decoding. If the word sequence encoded in a speech waveform by a synthesizer

can be decoded by a recognizer, then a round trip of conversion would be complete and

the synthesizer can be deemed intelligible and understandable. Because the speech

recognizer used here does not incorporate a prosody model, future work should study

automatic evaluation of naturalness.

Table 6.3 shows recognition performance for various synthesis configurations: natural

speech spoken by human, manually determined costs (baseline), automatically deter-

mined costs, costs and automatically acquired intonation model, costs and automat-

ically determined classes, costs and classes and pronunciation. The last condition,

pronunciation, uses the orthographic, not the phonetic, transcription as the input

specification for the synthesizer, and can model phonological variation to gain access

to additional units in the synthesis corpus. Word error rate (WER) is calculated as
S+I+D

N
, where N = 631 is the number of reference words. The language model for the

recognizer is a bigram trained on approximately 6,000 in-domain sentences. There

is for these sentences, however, mismatch between the representation of numbers in

the language model and the lexicon which accounts for the high substitution rate.

Although the insertions and deletions are not balanced, the figure of primary concern

is the word error rate. Interestingly, word error rates for the artificial systems do not

approach that of the natural system (i.e., human).

Configuration/% Substitutions Insertions Deletions WER
1) Natural 13.8 4.6 0.3 18.7
2) Baseline 14.6 9.2 0.5 24.2
3) Costs 13.5 9.2 0.6 23.3
4) Costs + intonation 13.3 11.1 1.1 25.5
5) Costs + classes 13.0 7.4 0.8 21.2
6) Costs + classes + pronunciation 14.1 10.1 0.2 24.4
7) Costs + classes + pronunciation - smoothing 14.3 5.2 0.3 19.8

Table 6.3: Recognition error analysis for different synthesis configurations.

Recognition errors are shown for seven different synthesis configurations, the first of which being
human. Although the substitution rate is high and insertions and deletions are not balanced, primary
focus should be placed on the aggregate word error rate.

Word error rate is plotted against average likelihood in Figure 6-16. The average
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likelihood for each synthesizer configuration is obtained by averaging utterance-level

likelihoods which themselves are produced by averaging over all phonetic boundary

likelihoods per utterance. What is revealed in this plot is a statistically significant,

negative correlation, -0.87, between likelihood and word error rate. That is to say, as

likelihood worsens, word error rate increases.
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Figure 6-16: Regression of average utterance likelihood and word error rate.

An utterance-level likelihood is calculated by averaging over all phonetic boundary likelihoods. These
likelihoods are averaged over all utterance to produce an average likelihood for each synthesizer con-
figuration. The regression of these likelihoods against word error rate shows a statistically significant
negative correlation, -0.87. This suggests that as likelihood worsens, the word error rate increases.

An apparent shortcoming in the implementation of the smoothing is seen from the

high WER decrease between system 6 and system 7 in Figure 6.3. The high insertion

rate of 10.1% in system 6 is caused by zero padding at the start of the synthetic wave-

form. The segmentation algorithm in summit triggers a segment boundary at the end

of the zero padding. That the frame rate of synthesis is variable is not compensated

for in the time alignments of the phonetic transcription. As a result, the accuracy of

the phonetic boundaries in the transcription becomes progressively worse towards the

end of the utterance as the offsets from the variable frame rate accumulate. This is

reflected in a significant negative bias of likelihood seen in Figure 6-16. Although the

correlations appear to be strongly positive and statistically significant, the analysis

would benefit from improving the smoothing algorithm.
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A weak link hinging on likelihood can now be established between word error rate and

human opinion. Relative increases in likelihood produced increases in preferences.

Increases in average likelihood produced decreases in word error rates. The weak

link is that decreases in word error rate suggest increases in preference. If this is

true, a closed feedback loop such as the one depicted in Figure 6-6 can be used to

evaluate synthesis by recognition. Whether or not this link exists does not detract

from the validity of these two independent results. The foregoing examines likelihood

increases given the true phonetic transcription. In recognition, the phonetic sequence

is unknown and models compete in the maximum likelihood decoding process. Future

work should examine whether the likelihoods of competing models also increase with

human opinion. This issue can also be approached by examining rank-order statistics,

or whether the correct model retains a high rank.

Relative increase in likelihood can serve as a measure for tuning synthesis configura-

tions. It could also be used as a re-scoring component in a two-stage unit selection

search. However, as described here, likelihood computation requires access to a local

section of the waveform (e.g., ±75ms in summit) at each phonetic boundary. Instead,

rescoring is performed as described in Chapter 5 and its effectiveness is evaluated by

a speech recognizer. Figure 6.4 presents preliminary results of rescoring. Rescoring

with 10,000 top hypotheses reduces WER down to 17.9, below that of natural speech,

18.7. While word error rates are seen to improve beyond that of the case for natural

speech, listening reveals that rescoring does not necessarily sound natural. What

makes synthetic speech more understandable for a machine may not correspond to

what makes more natural sounding for a human.

Configuration/N -rescoring 1 100 500 1000 5000 10000
1) Natural 18.7 NA NA NA NA NA
7) Costs + classes + pronunciation - smoothing 19.8 19.0 19.8 20.0 18.4 17.9

Table 6.4: Word error rates for speech synthesized with rescoring.

Word error rates are seen to decrease as larger N -best lists are rescored. Beyond N = 5000 the
WER is better than the WER obtained on natural speech. However, listening reveals that synthetic
utterances produced by rescoring do not necessarily sound better. Clearly, what improves word error
rate may not improve naturalness.
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6.7 Summary

This chapter has presented the embodiment of ideas presented in this thesis as tools.

When the tools are applied in a disciplined process, synthesis systems can be de-

signed, built, and evaluated. Human subjects participate in listening evaluations by

auditioning synthetic utterances and providing opinion and preference scores. Once

their subjective opinion can be correlated to an objective measure, the objective mea-

sure can be incorporated into the search to select more natural sounding units. An

additional benefit is that humans could be freed from the loop and a machine can

take over the time consuming task of tuning a synthesizer.
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Chapter 7

Conclusions and future work

This thesis presents frameworks for formulating, parameterizing, and representing a

unit selection search for concatenative speech synthesis. Values for all parameters

can be derived on either a semi-automatic or fully automatic basis from theoretical

guiding principles. The choice of a finite-state transducer representation makes the

implementation both efficient and expressive. This entire speech synthesis framework,

envoice, is compliant with the galaxy architecture for conversational systems and

operates in a distributed fashion. That it has been deployed in a wide variety of

systems across multiple voices, domains, and languages is a testament to its flexibility.

Feedback from users trying to accomplish tasks in given scenarios through interactions

with spoken dialogue systems indicates that the output responses synthesized by

envoice are easy to understand. Subjective opinions gathered from further listening

evaluations of various finer aspects of synthesis configuration correlate with objective

measures which the machine can automatically assess.

The key contributions of this work can be briefly listed as the following:

1. Communication-theoretic formulation and approximation framework for general
unit selection.

2. Analysis of sonorant speech segments with regard to their distributional prop-
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erties and conduciveness to concatenation.

3. Finite-state transducer architecture for efficient and expressive implementation
of unit selection search.

4. Automatic learning and acquisition of equivalence classes and synthesis costs
via construction of acoustical models.

5. Processes for designing, adapting, building, deploying, tuning, and evaluating
speech synthesizers.

Practical implementation of the processes has provided validation and even moti-

vation for the technical aspects addressed in this work. The envoice framework

has been used across many domains and languages. At current count, it is found in

an air travel planning system in English [126, 124], weather information systems in

Mandarin Chinese [158] and Japanese [100], task delegation systems in English [125]

and Mandarin [31], and a bi-lingual spoken language learning system in Mandarin

and English [74]. Although these are research systems, they are often kept running

for on-going data collection and contemporaneous demonstrations. An autonomous

agent capable of speaking to these systems by way of speech synthesis could take over

the tedious task of making sure the systems are up.

Integrating video-realistic facial animation [46] with speech synthesis would be a nat-

ural next step towards multimodal speech synthesis [121]. Moving from developing

unit selection synthesizers for separate domains to perfecting unit selection for generic

use is challenging and requires much more research, but techniques such as blending

domains into a single voice and tiering different voices across domains may be appro-

priate solutions in the meantime [11]. Voice transformation techniques may enable

the creation of new voices from existing voices [145, 66, 67]. System back-channel

while the user is still speaking would increase the naturalness of the interactions ex-

tending previous work on intelligent barge-in [136]. The question remains whether

expressive or emotional speech synthesis [23, 96] can be achieved with concatenative

methods [58, 113, 18]. Although speech synthesis has considerably improved in the

past century or so, it is difficult to predict whether synthetic speech will ever equal
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or surpass human speech in naturalness. If it indeed does become indistinguishable

or preferable to human speech, it will have then passed the Turing test [150].

The power of expression offered by the FST representation clears the path to future

research. The hierarchical transition units and intonation diacritics described earlier

are just two examples of extensions that can be handled by the FST framework. The

constraint kernel topology can be further refined by generalization and specialization

costs between layers of exemplars and categories. More sophisticated second-pass

search and rescoring algorithms should be investigated along with practical features

such as low-latency, island-based pipelining. A completely orthogonal approach to

real-time processing would be to adopt a parallel distributed processing paradigm

(e.g., neural networks) [117]. Recurrent neural networks (i.e., output feeds back

into the input) have been constructed to map single sequences of equal length from

an input language to an output language [48, 103]. This idea of encoding finite-

state automata into an RNN has recently been refined into what is called neural

transducers [135]. To complete the transformation of a linear architecture into a

parallel architecture, it would be necessary to introduce multiple paths and associated

weights in both the input and output.

The experiments performed on sonorant speech segments reveal a new source of con-

catenation boundaries located at extrema of spectral prominences that can be ex-

ploited for creating more compact synthesis corpora. Decomposition of sub-phonetic

spectral frames into spectral magnitude and excitation phase functions at a small

time scale has the potential of producing natural-sounding speech synthesis. Full

automation could be achieved by a set of parallel searches for the optimal magni-

tude and excitation functions that re-combine to reconstitute speech. Preliminary

implementation of this setup has been done for small corpora with exact calculations.

Moving to larger corpora would require approximations.

There are some shortcomings in the development of the acoustic model. The very

divide-and-conquer nature of a decision tree introduces a requisite for a large data
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set to avoid sparse data issues. Perhaps Maximum Entropy methods [6] which do not

“split the data” could be applied to learn clusters for smaller data sets. The substi-

tution and concatenation costs are currently derived from plug-in entropy estimates,

a process that involves initial density estimation and subsequent closed-form entropy

calculation from the parametric density (e.g., Gaussian.) Empirical estimators based

on order statistics and spacings [91] offer a direct path for deriving entropies from

a set of data. Better methods are needed for the proper interpretation of the auto-

matically acquired equivalence classes and synthesis costs as it is always important

to relate results of engineering back to well understood principles in speech science.

Finally, further work in understanding the perceptual artifacts caused by concatena-

tion will ultimately benefit the naturalness of concatenative speech synthesis. From a

dynamical system viewpoint, concatenating speech is like concatenating observations

without paying attention to, or, not even to mention, smoothing the underlying state

sequence. Also, anecdotal evidence seems to point to the existence of a “chasing ef-

fect” [129] in which rapidly occurring concatenations cause a reversal of the perceived

temporal order of speech segments with respect to the actual order of presentation.

Perhaps work in auditory scene analysis [15] would have an explanation for this.

One interesting bit offered here in parting concerns itself with the, possibly, split

perception of linguistic and intonation information. Figure 7-1 shows the waveform

and spectrogram of the sentence, “There are 49 Honda Civics.” Sinewave analysis

and resynthesis [4, 114, 45] replaces each formant with a frequency-modulated oscilla-

tor and produces a waveform bereft of intonation with most of the acoustic-phonetic

content intact, albeit sounding somewhat inhuman. The dual of sinewave analysis

is mumble synthesis, in which individual pitch periods are replaced by a sine wave

of the proper magnitude and length (i.e., T = 1
F0

). The percept is that of muffled

speech in which the acoustic-phonetic content is virtually impossible to ascertain,

whereas the intonation is remarkably preserved. This is an absolutely startling exam-

ple that simply highlights the need for a better understanding of speech production

and perception in humans that should benefit speech synthesis as well.
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Figure 7-1: Sinewave and mumble resynthesis: There are 49 Honda Civics.

A waveform, its sinewave resynthesis, and its mumble resynthesis is displayed in matlab. The sinewave resynthesis was performed using scripts
written by Dan Ellis. The mumble resynthesis was performed by replacing individual pitch periods with sinewaves of appropriate magnitude and
length. Upon listening the acoustic-phonetics and intonation appear to be well isolated in the sinewave and mumble waveforms, respectively.
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Appendix A

Finite-state transducer (FST)

composition

When mapping from one representation to another, it is often times easier to divide

the task into a series of mappings whose composition achieves the desired transfor-

mation. This is witnessed in, for example, function theory where functions map a

domain, the set of possible inputs, into a range, the set of possible outputs, and where

functions can be successively composed. Consider an example where y = f(x) defines

a function, f , mapping x to y and where z = g(y) defines a function, g, mapping y to

z. A new function, h, mapping x to z can be created by the successive application of

f and g: z = h(x) = g(f(x)). This can also be written as h(x) = (g ◦f)(x) = g(f(x))

or, more compactly, as h = g ◦ f . The ◦ operator can itself be thought of as a func-

tion - a higher-order function, in fact, whose domain and range are sets of functions -

which maps the two functions on its left and right side to a third composite function.
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In more general terms where the range of f is a subset of the domain of g:

f : X → Y

g : W → Z, Y ⊂ W

◦ : (X → Y ) × (W → Z) → (X → Z)

h : X → Z

An example application of the functions would be:

x ∈ X, y ∈ Y : y = f(x)

w ∈ W, z ∈ Z : z = g(w)

x ∈ X, z ∈ Z : z = h(x) = (g ◦ f)(x) = g(f(x))

The above discussion applies to FST’s in similar terms. If an FST, F , maps an

input regular language, X, to an output regular language, Y , and an FST, G, maps

an input regular language, W (a superset of Y ), to an output regular language, Z,

the composition of F and G, H , maps X to Z. H may now be used to directly

effect mappings from X to Z. This composition represents a benefit, because it has

simplified the mapping process. The set of all symbols of a language is referred to as

the alphabet. For example, the set of all x ∈ X is the input alphabet of F .

In practice where computation time affects system performance, additional benefit

may be gained by optimizing H , which will minimize the number of states and arcs,

by subjecting the transducer to determinization, minimization, and ε-removal. For

example, if there exists replication of substructures in F due to internal tracking of

state and if the mapping performed by G is not sensitive or indifferent to the state,

the replication can be compacted in H .
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A.1 Example of composition

Consider a toy language, Ltoy, where the only phones are /b/ and /a/. An example

utterance would be /ba/ as shown in Figure A-1. This transducer, call it U , consists

of three states and two arcs. The initial state is 0 and the final state is 2 as marked by

the double circle. The first arc connects states 0 and 1 and the second arc connects

states 1 and 2. U happens to also be a finite-state acceptor (FSA), because all arcs

perform identity mappings (i.e., absorb input label and emit identical output label.)

FSA’s are usually rendered without the colon and the redundant label. Note that

the phonetic symbols are rendered in an ASCII version of the International Phonetic

Alphabet (IPA) [73].

0 1
b:b

2
aa:aa

Figure A-1: FST for example utterance in toy language.

An example utterance, /ba/, is represented by an FST, U , with a trivial chain topology containing
one arc per phonetic symbol. The transducer performs an identity mapping by absorbing and
emitting the identical label displayed on either side of the colon.

A common task in speech recognition is the evaluation of context-dependent models,

which requires the mapping from context-independent labels to context-dependent

labels. A transducer, called D for diphones, that performs this task for the toy

language is shown in Figure A-2. It is applied or composed on the right side of the

above utterance FST and outputs left-sensitive context-dependent labels.

Continuing the example, applying D on the right side produces the FST in Figure

A-3. The phonetic sequence, ba, has been mapped to the diphone sequence, <> |b
b|a, where <> represents nil context.

Because mapping to context-dependent labels is not a lossless process (it actually

adds redundancy), further composition with the inverse of D, D−1, would restore

context-independent labels and produce the original utterance. In other words, U =
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0

<>:<>|<>
2

aa:<>|aa

1b:<>|b

<>:aa|<>

aa:aa|aa
b:aa|b

<>:b|<>

aa:b|aa b:b|b

Figure A-2: FST for diphone rewriting in toy language.

An FST, D, rewrites a sequence of phones into a sequence of left-sensitive context-dependent labels
by maintaining internal state which tracks the previous phone. The states, 0, 1, and 2, correspond
to a previous phone whose identity is <> (nil context), b, and a, respectively. The transducer starts
in the initial state, 0, because there is nil context at the start of a sequence. After entering the
transducer, for example, absorbing an a symbol will emit a <> |a symbol, while making a transition
from state 0 to state 2. Arcs departing state 2, which encodes a previous context of a, will emit
labels containing a| concatenated with the next phonetic symbol.

0 1
b:<>|b

2
aa:b|aa

Figure A-3: FST for previous example utterance as rewritten with diphones.

The result of composing U with D creates an FST with a trivial chain topology mapping from
phonetic symbols to diphone symbols. Specifically, this composition maps the phonetic sequence,
ba, to the diphone sequence, <> |b b|a.

(U ◦D)◦D−1 or U = U ◦ (D ◦D−1) by associativity of composition. The second term

on the right side of the second equation would suggest that D ◦ D−1, as displayed

in Figure A-4, is an identity mapping, ILtoy , Although this is confirmed in Figure,

D ◦ D−1 contains triplication of substructure and can be optimized. Subsequent use

of optimized transducers translates directly into reduced computation as redundant

sub-structures are not wastefully explored. Note that the input and output alphabets

of the optimized identity transducer are augmented with the nil context symbol, <>,

because it was present in the input alphabet of D.

A.2 Two-sided composition
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D ◦ D−1 −→ opt(D ◦ D−1)

0

<>:<>
1

aa:aa

2b:b
<>:<>

aa:aa

b:b

<>:<>

aa:aa
b:b −→

0

<>:<>
aa:aa
b:b

Figure A-4: FST for D ◦ D−1 before and after optimization.

The FST resulting from the composition of D and D−1 should be an identity mapping over the input
alphabet of D. The transducer on the left contains triplicate substructure, because D maintains
state based on the previous phonetic input. The optimized version on the right has undergone
minimization which removes the redundant substructure.
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Appendix B

Clustering questions
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LEFT: aa ah ah_fp ao aw ax ow uh uw ae ay eh ey ih ix iy oy ux w ww y yy el -l l ll er -r r rr axr
LEFT: aa ah ah_fp ao aw ax ow uh uw ae ay eh ey ih ix iy oy ux w ww y yy
LEFT: aa ao ah ah_fp ax uh aw ow uw w ww
LEFT: ae eh ih ix ux ay oy ey iy y yy
LEFT: aa ao ah ah_fp ax uh
LEFT: aw ow uw w ww
LEFT: ay oy ey iy y yy
LEFT: ae eh ih ix ux
LEFT: ah ah_fp ax uh
LEFT: ey iy y yy
LEFT: ih ix ux
LEFT: aa ao
LEFT: aw ow uw
LEFT: w ww
LEFT: aw ow
LEFT: ae eh
LEFT: ay oy
LEFT: ey iy
LEFT: y yy
LEFT: ih ix
LEFT: b p p- d dr t t- tr g k k- jh zh ch sh z s dh th v f dx hh m em n en ng nx
LEFT: b p p- d dr t t- tr g k k-
LEFT: m b p p-
LEFT: b p p-
LEFT: b p-
LEFT: s z n d t t- dr tr
LEFT: d t t- dr tr
LEFT: dr tr
LEFT: d t t-
LEFT: d t-
LEFT: ng g k k-
LEFT: g k k-
LEFT: g k-
LEFT: bcl dcl gcl epi kcl pcl tcl tq - _
LEFT: bcl dcl gcl
LEFT: epi kcl pcl tcl tq - _
LEFT: epi kcl pcl tcl tq
LEFT: epi tcl tq
LEFT: tcl tq
LEFT: - _
LEFT: jh zh ch sh z s dh th v f dx hh
LEFT: jh zh ch sh z s
LEFT: jh zh ch sh
LEFT: ch sh
LEFT: jh zh
LEFT: z s
LEFT: dh th v f dx hh
LEFT: dh th v f
LEFT: dh th
LEFT: v f
LEFT: dx hh
LEFT: el -l l ll
LEFT: el -l
LEFT: l ll
LEFT: er -r r rr axr
LEFT: er axr -r
LEFT: er axr
LEFT: r rr
LEFT: m em
LEFT: m em n en ng nx
LEFT: n en nx ng
LEFT: n en nx
LEFT: n en

Figure B-1: Left-sided triphone questions.
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RIGHT: aa ah ah_fp ao aw ax ow uh uw ae ay eh ey ih ix iy oy ux w ww y yy el -l l ll er -r r rr axr
RIGHT: aa ah ah_fp ao aw ax ow uh uw ae ay eh ey ih ix iy oy ux w ww y yy
RIGHT: aa ah ah_fp ao ax ay ow oy uh uw w ww
RIGHT: ae aw eh ey ih ix iy ux y yy
RIGHT: aa ah ah_fp ao ax ay ow oy uh
RIGHT: uw w ww
RIGHT: aa ay
RIGHT: ah ah_fp ax
RIGHT: ao oy
RIGHT: ow uh
RIGHT: ah ax
RIGHT: w ww
RIGHT: ae aw eh ey
RIGHT: ih ix ux
RIGHT: iy y yy
RIGHT: ae aw eh
RIGHT: ae eh
RIGHT: ih ix
RIGHT: y yy
RIGHT: b p p- d dr t tr t- g k k- ch jh s z sh zh dh th v f dx hh
RIGHT: b p p- d dr t tr t- g k k-
RIGHT: b p p-
RIGHT: b p-
RIGHT: d dr t tr t-
RIGHT: d t t-
RIGHT: dr tr
RIGHT: d t-
RIGHT: g k k-
RIGHT: g k-
RIGHT: bcl dcl gcl epi kcl pcl tcl tq - _ em en m n ng nx
RIGHT: bcl dcl gcl epi kcl pcl tcl tq - _
RIGHT: bcl dcl gcl em en m n ng nx
RIGHT: bcl em m
RIGHT: dcl en n nx
RIGHT: gcl ng
RIGHT: epi kcl pcl tcl tq - _
RIGHT: epi kcl pcl tcl tq
RIGHT: - _
RIGHT: epi tcl tq
RIGHT: tcl tq
RIGHT: ch jh s z sh zh dh th v f dx hh
RIGHT: ch jh s z sh zh
RIGHT: ch jh
RIGHT: sh zh
RIGHT: s z
RIGHT: dh th v f dx hh
RIGHT: dh th v f
RIGHT: dh th
RIGHT: v f
RIGHT: dx hh
RIGHT: em m
RIGHT: em en m n ng nx
RIGHT: n en nx ng
RIGHT: n en nx
RIGHT: n en
RIGHT: er axr r rr -r
RIGHT: er axr rr -r
RIGHT: er axr
RIGHT: rr -r
RIGHT: l ll -l el
RIGHT: ll -l el
RIGHT: ll -l

Figure B-2: Right-sided triphone questions.
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LEFT: aa ao ah ah_fp ax uh aw ow uw w ww
LEFT: ae eh ih ix ux ay oy ey iy y yy
LEFT: aa ao ah ah_fp ax uh
LEFT: aw ow uw w ww
LEFT: ay oy ey iy y yy
LEFT: ae eh ih ix ux
LEFT: ah ah_fp ax uh
LEFT: ey iy y yy
LEFT: ih ix ux
LEFT: aa ao
LEFT: aw ow uw
LEFT: w ww
LEFT: aw ow
LEFT: ae eh
LEFT: ay oy
LEFT: ey iy
LEFT: y yy
LEFT: ih ix
LEFT: b p p-
LEFT: b p-
LEFT: d t t- dr tr
LEFT: dr tr
LEFT: d t t-
LEFT: d t-
LEFT: g k k-
LEFT: g k-
LEFT: bcl dcl gcl
LEFT: epi kcl pcl tcl tq - _
LEFT: epi kcl pcl tcl tq
LEFT: epi tcl tq
LEFT: tcl tq
LEFT: - _
LEFT: jh zh ch sh
LEFT: ch sh
LEFT: jh zh
LEFT: z s
LEFT: dh th v f
LEFT: dh th
LEFT: v f
LEFT: dx hh
LEFT: el -l
LEFT: l ll
LEFT: er axr -r
LEFT: er axr
LEFT: r rr
LEFT: m em
LEFT: n en nx ng
LEFT: n en nx
LEFT: n en

Figure B-3: Left-sided diphone questions.
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RIGHT: aa ah ah_fp ao ax ay ow oy uh uw w ww
RIGHT: ae aw eh ey ih ix iy ux y yy
RIGHT: aa ah ah_fp ao ax ay ow oy uh
RIGHT: uw w ww
RIGHT: aa ay
RIGHT: ah ah_fp ax
RIGHT: ao oy
RIGHT: ow uh
RIGHT: ah ax
RIGHT: w ww
RIGHT: ae aw eh ey
RIGHT: ih ix ux
RIGHT: iy y yy
RIGHT: ae aw eh
RIGHT: ae eh
RIGHT: ih ix
RIGHT: y yy
RIGHT: b p p-
RIGHT: b p-
RIGHT: d dr t tr t-
RIGHT: d t t-
RIGHT: dr tr
RIGHT: d t-
RIGHT: g k k-
RIGHT: g k-
RIGHT: bcl dcl gcl
RIGHT: epi kcl pcl tcl tq - _
RIGHT: epi kcl pcl tcl tq
RIGHT: - _
RIGHT: epi tcl tq
RIGHT: tcl tq
RIGHT: ch jh
RIGHT: sh zh
RIGHT: s z
RIGHT: dh th v f
RIGHT: dh th
RIGHT: v f
RIGHT: dx hh
RIGHT: em m
RIGHT: n en nx ng
RIGHT: n en nx
RIGHT: n en
RIGHT: er axr rr -r
RIGHT: er axr
RIGHT: rr -r
RIGHT: ll -l el
RIGHT: ll -l

Figure B-4: Right-sided diphone questions.
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LEFT: aa ah ah_fp ao aw ax ow uh uw ae ay eh ey ih ix iy oy ux w ww y yy
LEFT: b p p- d dr t t- tr g k k-
LEFT: bcl dcl gcl epi kcl pcl tcl tq - _
LEFT: jh zh ch sh z s
LEFT: dh th v f dx hh
LEFT: el -l l ll
LEFT: er -r r rr axr
LEFT: m em n en ng nx
LEFT: <>
RIGHT: aa ah ah_fp ao ax ay ow oy uh uw ae aw eh ey ih ix iy ux w ww y yy
RIGHT: b p p- d dr t tr t- g k k-
RIGHT: bcl dcl gcl epi kcl pcl tcl tq - _
RIGHT: ch jh s z sh zh
RIGHT: dh th v f dx hh
RIGHT: em en m n ng nx
RIGHT: er axr r rr -r
RIGHT: l ll -l el
RIGHT: <>

Figure B-5: Initial diphone questions.

208



Appendix C

Gaussian random variables

Consider a multivariate Gaussian random variable, x, whose distribution can be writ-

ten as:

p(x) =
1

(2π)N/2|Σ|1/2 e− 1
2 (x−µ)T Σ−1(x−µ) ∼ N (µ, Σ)

where N is the number of dimensions, x and µ are 1 x N vectors, and Σ is a N x N

matrix. A Gaussian probability density is completely specified by its mean and co-

variance, µ and Σ, respectively. They can be estimated in a maximum likelihood

sense from a corpus of data by collecting first- and second-order statistics. In other

words, the estimates of µ and Σ are just the sample mean and covariance:

µ̂ =
1
M

M∑
i=1

xi, Σ̂ =
1

M − 1

M∑
i=1

(xi − µ)(xi − µ)T .

The following identity is very useful in identifying closed-form expressions for quadratic

products under a Gaussian expectation.

EX∼N (m,S)

[
(x − µ)T Σ−1 (x − µ)

]
=

∫
X

(x − µ)T Σ−1 (x − µ)N (m, S)dx

= (m − µ)T Σ−1 (m − µ) + Tr [Σ−1S]
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Appendix D

Information theory

D.1 Introduction

This section describes an information-theoretic framework in which synthesis classes

and costs can be automatically derived from data. Scalar metrics quantify how much

two arbitrary probability distribution functions differ. Gaussian distribution are as-

sumed below since closed-form expressions exist for Kullback-Leibler divergence and

mutual information. The costs can be interpreted as Minimum Description Length

(MDL) costs which quantify the amount of information (measured in bits) required to

describe a distribution. In the context of unit selection search, the total path length

is the total number of bits required to describe deviations - due to corpus limitations

- from the ideal input specification.
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D.2 Information-theoretic metrics

The Kullback-Leibler distance for two probability densities, P ∼ p(x) and Q ∼ q(x),

is defined to be:

D(P || Q) =
∫

p(x) log
p(x)
q(x)

dx = −
∫

p(x) log q(x) dx − H(P )

where the first term is cross entropy, HP (Q) = EP

[
log 1

q(x)

]
, and the second term,

−H(P ), is negative differential entropy, H(P ) = EP

[
log 1

p(x)

]
= − ∫

p(x) log p(x) dx.

Kullback-Leibler distance describes additional information the transmitter must sup-

ply about q given that the receiver already has p.

Mutual information is defined as:

I(P ; Q) = H(P ) − H(P | Q)

= H(Q) − H(Q | P )

= H(P ) + H(Q) − H(P, Q)

≤ min(H(P ), H(Q))

and it describes how much information is known about one random variable given

knowledge of the other. While it can be expressed in terms of conditional entropy,

H(P | Q) = − ∫
pP |Q(x) log pP |Q(x) dx ≤ H(P ), and joint entropy, H(P, Q) =

− ∫ ∫
pP,Q(x) log pP,Q(x) dx dy = H(P ) + H(Q|P ) = H(Q) + H(P |Q), an alter-

native form involves the Kullback-Leibler distance between a joint distribution and

its factored marginals:

I(P ; Q) = D(pP,Q(x, y) || pP (x) ∗ pQ(y)).
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Jensen’s Inequality can be used to derive an upper bound for KL distance, D(P || Q) ≤∑
i µiD(P || Qi), when the approximating distribution is a mixture:

HP (
∑

i µiqi(x)) = −EP [log (
∑

i µiqi(x))] ,
∑

i µiqi(x) = 1

≤ −EP [
∑

i µi log qi(x)]

= −∑
i µiEP [log qi(x)]

=
∑

i µiHP (Qi)

D.2.1 Expressions for Gaussian condition

For multivariate Gaussian random variables, entropy, mutual information, and Kullback-

Leibler distance are:

H(N (µ, Σ)) = 1
2 log

(
(2πe)N |Σ|)

I(P ; Q) = 1
2 log

(
|Σpp| |Σqq|

|Σ|

)
, Σ =


 Σpp Σpq

Σqp Σqq




D(P || Q) = 1
2

[
(µQ − µP )TΣ−1

Q (µQ − µP ) + Tr
[
ΣPΣ−1

Q − I
] − log |ΣPΣ−1

Q |] .

Note that entropy or uncertainty is only dependent on the spread of the distribution.

Mutual information involves joint statistics between two distributions which can be

written in a block matrix of variances and co-variances. The Kullback-Leibler distance

involves (half of) the Mahalanobis distance of µP in the context of Q. Note that I

is the identity matrix and the logarithmic term can be regarded as the ratio of two

volumes, log |ΣP |
|ΣQ| . In fact, when ΣP = ΣQ, the trace and logarithmic terms disappear,

leaving only the Mahalanobis distance. For this reason, the Kullback-Leibler distance

can be regarded as a generalized version of the Mahalanobis distance.
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D.2.2 Derivations

H(N (µ, Σ)) = E
[

1
2 log

(
(2π)N |Σ|) + 1

2(x − µ)TΣ−1(x − µ)
]

= 1
2 log

(
(2π)N |Σ|) + 1

2(µ − µ)TΣ−1(µ − µ) + Tr [Σ−1Σ]

= 1
2 log

(
(2π)N |Σ|) + N

= 1
2 log

(
(2πe)N |Σ|)

I(P ; Q) = H(P ) + H(Q) − H(P, Q)

= 1
2 log

(
(2πe)

N
2 |Σpp|

)
+ 1

2 log
(
(2πe)

N
2 |Σqq|

)
− 1

2 log
(
(2πe)N |Σ|)

= 1
2 log

(
|Σpp| |Σqq|

|Σ|

)
+ 1

2 log
(

(2πe)N

(2πe)N

)

= 1
2 log

(
|Σpp| |Σqq|

|Σ|

)

D(P || Q) = EP

[
log p(x)

q(x)

]
= EP

[
log 1

q(x)

]
− H(P )

= EP

[
1
2 log

(
(2π)N |ΣQ|) + 1

2(x − µQ)TΣ−1
Q (x − µQ)

] − 1
2 log

(
(2πe)N |ΣP |)

= 1
2 log

(
(2π)N |ΣQ|) + EP

[
1
2(x − µQ)TΣ−1

Q (x − µQ)
] − 1

2 log
(
(2πe)N |ΣP |)

= 1
2(µP − µQ)TΣ−1

Q (µP − µQ) + 1
2Tr

[
Σ−1
Q ΣP

] − 1
2 log

(
(2πe)N |ΣP |
(2π)N |ΣQ|

)

= 1
2(µQ − µP )TΣ−1

Q (µQ − µP ) + 1
2Tr

[
ΣPΣ−1

Q

] − N
2 − 1

2 log |ΣPΣ−1
Q |

= 1
2

[
(µQ − µP )TΣ−1

Q (µQ − µP ) + Tr
[
ΣPΣ−1

Q − I
] − log |ΣPΣ−1

Q |]

D.3 Automatic determination of synthesis costs

The framework for automatically determining synthesis costs from given classes in-

volve the above information-theoretic metrics. Substitution costs are based on Kullback-

Leibler divergence which describes the penalty of using q in lieu of p. For concatena-

tion costs, it is hypothesized that concatenations are least discernible at boundaries

of greatest spectral change. Since mutual information is low when knowledge of one

random variable provides little knowledge of the other, mutual information of spectral

observations across boundaries is used for deriving concatenation costs.
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