PLUTO: A Preprocessor for
Multilingual Spoken Language Generation
by
Brooke A. Cowan

B.A., American Studies
Stanford University (1994)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2004

(©Massachusetts Institute of Technology 2004. All rights reserved.

AUt hOr . o
Department of Electrical Engineering and Computer Science
December 22, 2003

Certified Dy
Stephanie Seneff

Principal Research Scientist

Thesis Supervisor

Accepted Dy ..o
Arthur C. Smith

Chairman, Department Committee on Graduate Students

PLUTO: A Preprocessor for
Multilingual Spoken Language Generation
by

Brooke A. Cowan

Submitted to the Department of Electrical Engineering and Computer Science
on December 22, 2003, in partial fulfillment of the
requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Surface realization, a subtask of natural language generation, maps a meaning represen-
tation to a natural language string. This thesis presents an architecture for a surface
realization component in a spoken dialogue system. The architecture divides the surface
realization task in two: (1) modification of the meaning representation to adhere to the
constraints of the target language, and (2) string production. Each subtask is handled by
a separate module. PLUTO is a new module, responsible for meaning representation modi-
fication, that has been added to the Spoken Language Systems group’s surface realization
component. PLUTO acts as a preprocessor to the main processor, GENESIS, which is respon-
sible for string production. We show how this new, decoupled architecture is amenable to
a hybrid approach to machine translation that combines transfer and interlingua. We also
present a policy for generation that specifies the roles of PLUTO, GENESIS, and the lexicon
they share. This policy formalizes a way of writing robust, reusable grammars. The primary
contribution of this work is to simplify the development of such grammars in multilingual
speech-based applications.

Thesis Supervisor: Stephanie Seneff
Title: Principal Research Scientist

Acknowledgments

Pluto’s symbolism 1is about change and transformation
through the painful process of finding truth and meaning.

—Annabel Burton

In the spring of 2000, I went to have a reading with an astrologer. He told me that I
was approaching my Saturn return: within the next couple of years, I would embark on a
journey; I would not return until I had found myself. In the spring of 2001, I received an
email informing me that my application to graduate school in computer science at MIT had
been accepted. My journey was to commence in September.

This master’s thesis commemorates the completion of the first stage of the journey.

%k k

To my best friend, Matto Marjanovi¢: Thank you. Thank you. Thank you. You have made
the process so much easier. You have helped translate the language I have had to learn at
MIT in the past two and a half years into language I can understand. You have been my
guide through tangled forests, my light in darkened recesses. You have challenged me and

listened to me and discussed with me. The journey is much richer for you. Ja volim tebe.
*okk
To my advisor, Stephanie Seneff: It is because of the opportunity that you gave me that I
have reached this place. Thank you for shepherding me here.
*okk
To my friends from MIT: You are so amazing — so curious, hard-working, talented, and
kind — my kin, you are my family: Rodney Daughtrey, Ed Filisko, Tracy Hammond, Dave

Huynh, Sayan Mitra, Louis-Philippe Morency, Mike Oltmans, Ali Rahimi, Luke Zettle-

moyer. Thank you for making it fun.
k%
To the Spoken Language Systems group: I have learned so much from the exposure I have

had to the work that you do. Thank you especially to Jim Glass (for making me take 6.345,

which I loved), TJ Hazen (for helping me with my project on automatic speech recognition

for women and children), Karen Livescu (for authoring the master’s thesis I read on-line
while applying to MIT), Chao Wang (for explaining Chinese and GENESIS), Lauren Baptist,
whom I would really like to meet (for writing a really helpful master’s thesis), Scott Cyphers
(for disentangling my CVS updates), Shinsuke Sakai (for making helpful suggestions about

how to present this work), and Victor Zue (for supporting me from, and before, the start).
*okk

To Regina Barzilay: Thank you for thinking with me about generation. You helped me see

what this work could be.

%k %

A Eduardo Torres-Jara: Muchisimas gracias por revisar las traducciones que el sistema

producia. Deberiamos hablar més en espafiol. Me encanta el espaiiol, y lo extrano mucho.
*kk
To my friends from home, Lisa Rapoport and Jocelyn Sperling: I miss you. Thank you for

being like sisters and for never letting our friendship die, even when deserts and mountains

and hours of air travel separate us.

%k k

To Momma Johanna: Thank you for feeding me both yummy food and wise stories.

*okok
To my family: Zach Cowan, my brother, born on Friday the 13th during a meteor shower,
half man, half river. Yes, this is a wonderful place for me. And yes, that sounds like a
wonderful place for you. Come see me play hockey; I will swing down your way next winter.

Papa, my mentor, my inspiration: I know why you love MIT. Being here makes me even

more like you. But no less like you, Mama (thank God). You are THE ARTIST. Thank

%k %k

May the journey continue.

Contents

1 Introduction
1.1 A New Module Called PLUTO
1.1.1 Feature Selection
1.1.2 Structural Transformation
1.2 Related Work L L
1.2.1 Natural Language Generation
1.2.2 Templates, Linguistics, Statistics, and Hybrids
1.2.3 Machine Translation,
1.3 Outline e
2 A New Module for Generation
2.1 The New Architecture o
2.2 The Inner Workings of PLUTO
2.3 Frame Modification Examples oo
2.3.1 Feature Selection
2.3.2 Structural Transformation
2.4 Advantages of Decoupling the Generation Tasks
25 Summary L e e e e e e e e e
3 A Hybrid Approach to Translation
3.1 Structural and Lexical Transfer
3.2 An Interlingual Meaning Representation
3.3 Case Study: Using PLUTO for Structural Transfer

3.3.1 Word-Sense Disambiguation and Lexical Selection

3.3.2 Filling in Function Words,

17
18
19
20
22
24
25
29
30

31
31
32
36
36
40
41
44

3.3.3 Inflecting Root Forms and Choosing Forms for Modifiers.

3.4 Summary e e e e e e e e e e e e

A Policy for Multilingual Generation

4.1 The Partnership e

4.2 How to Use the New System: Examples
421 French e
422 Chinese o i e e e
423 English

Conclusions

5.1 Evaluation. e
51.1 Timing e e
5.1.2 Coverage and Quality
5.1.3 Informal Evaluation

5.2 Summary L e e e e e e

5.3 Future Work L e

PLUTO Reference Manual

A1 cALAXxy Frame Usage and Terminology
A.1.1 Introduction to Linguistic Frames

A2 The pLUTO Rule-Template File and the Lexicon

A.3 The PLUTO Scripting Language
A31 Selector
A32 Keyword
A33 Info-Key.
A3.4 Single Predicate oo
A35 AnyPredicate
A36 Lexical Lookup
A37 Core
A3.8 Child
A39 Tug e e
A310 Yank

61
61
63
63
66
70

75
75
76
7
78
79
80

A.3.11 Yanked Child L 93

A312 Goto oL 93
A3.13 Special Forms 94
A314 0r . . . o e 95
A3.15 Set and Softset Lo 95
A .3.16 Clone and Softclone 96
A317 Del. . . oo e 97
ABIA8TIE. . o o e 97
A319 If/Elseif 99
A3.20 Suspend 99
A4 Examples L e e e e 100
A 4.1 Example Keyword, :pred, and Core Commands 100
A .42 Example Keyword and Child Commands 101
A 43 Example Tug, If, and Yank Commands 101
A .44 Example Keyword, Goto, and Core Commands 104
A.45 Example Goto, Or, Clone, and Softset Commands 105
A.4.6 Example Del and If Commands 107

10

List of Figures

1-1
1-2
1-3
1-4
1-5
1-6

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18

The new architecture of the surface realizer. 19
Feature selection in PLUTO: adding features. 21
Feature selection in PLUTO: deleting features. 23
The gustar transformation. L0 oL 23
Structural transformation in PLUTO. 24
The MT pyramid. o o 29
The Spoken Language Systems group’s GALAXY architecture. 32
The surface realization module’s new architecture. 33
The basic architecture of the PLUTO system. 34
A linguistic frame derived from analysis by TINA. 35
A parse tree produced by TINA. Lo 35
Pseudocode for PLUTO processing algorithm. 38
An input linguistic frame prior to feature insertion. 38
PLUTO rule-templates for feature insertion. 38
Linguistic frame output after feature insertion has been performed. 39
Linguistic frame input prior to feature deletion. 39
PLUTO rule-templates for feature deletion. 39
Linguistic frame output after feature deletion has been performed. 40
Linguistic frame input prior to structural transformation. 40
PLUTO rule-templates for structural transformation. 41
Linguistic frame output after structural transformation has been performed. 41
An example of a rule-template file in the old architecture. 42
Rule-templates in the new architecture. 43
A linguistic frame input. oo 43

2-19

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8

4-10
4-11
4-12
4-13
4-14
4-15

Linguistic frame output from PLUTO. 44

Interlingua and transfer approaches to MT 48
A hybrid approach to MT. L L L 49
An interlingual frame from Chinese. 49
An interlingual frame from English.. 000 50
Many-to-many mappings between Spanish and English verbs. 51
Spanish lexicon: linking verbs example. 54
PLUTO rule templates: linking verbs example. 54
Input frame: linking verbs example. 54
Output frame: linking verbs example. 55
PLUTO rule-templates: definite article example. 55
An imaginary lexicon. oL oL oL L 56
PLUTO rule-templates: number and gender example. 57
Input frame: number and gender example. 58
Spanish lexicon: number and gender example. 58
Output frame: number and gender example. 59
The partnership between PLUTO, GENESIS, and the lexicon. 62
An input frame for French. oL 64
An excerpt from a French PLUTO rule-template file. 64
An excerpt from a French lexicon. 65
Frame output by PLUTO for realization in French. 65
GENESIS rule-templates for French. 66
Another input frame for French. 66
Another output frame from PLUTO for French. 67
Rewrite rules for French. oo o 67
An input frame for Chinese. oL 68
An excerpt from a Chinese PLUTO rule-template file. 68
An excerpt from a Chinese lexicon. 68
An output frame from PLUTO for Chinese. 69
An excerpt from a Chinese GENESIS rule-template file. 69
Another input frame for Chinese., 70

4-16 Another output frame from PLUTO for Chinese. 70

4-17 An input frame for English. 0o o000 71
4-18 An excerpt from an English PLUTO rule-template file. 71
4-19 An excerpt from an English lexicon. 72
4-20 An output from from pLUTO for English. 72
4-21 An excerpt from a GENESIS rule-template file. 72
4-22 Another input frame for English. 000, 72
4-23 Another output frame from pPLUTO for English. 72
5-1 Log ratio of times (new:old) in the new vs. the old system. 7
A-1 Linguistic frame. oL L e 84
A-2 Linguistic frame as a hierarchical tree. 85
A-3 Basic frame types. oL 86
A-4 Syntactic and semantic information in linguistic frame names. 86
A-5 Syntactic and semantic information in linguistic frame keys. 86
A-6 Syntactic information in linguistic frame hierarchy. 87
A-7 Aninfo-frame. 87
A-8 Frame before keyword and predicate commands have been executed. . . 100
A-9 Keyword and predicate commands. 100
A-10 Lexicon entries matching “i” and “understand”. 101
A-11 Frame after keyword and predicate commands have been executed. . . . 101
A-12 Frame before child command has been executed. 102
A-13Child command. Lo e e e 102
A-14 Lexicon entry matching “fish”. L0 102
A-15Frame after child command has been executed. 102
A-16 Frame before yank and tug commands have been executed. 102
A-17Yank and tug commands.o oL Lo 103
A-18 Lexicon entries matching topics and predicates in Figure A-16. 103
A-19 Frame after yank and tug commands have been executed. 104
A-20 Frame before goto commands have been executed. 105
A-21 Goto commands. e 105
A-22 Lexicon entries matching topics and predicates in Figure A-20. 106

13

A-23 Frame after goto commands have been executed. 106

A-24 Frame before or, clone, and softset commands have been executed. 106
A-25 Or, set, and softset commands. 106
A-26 Lexicon entries matching topics in Figure A-24. 107
A-27 Frame after or, clone, and softset commands have been executed. 108
A-28 Frame before del and if commands have been executed. 108
A-29 Del and if commands. Lo L 108
A-30 Frame after del and if commands have been executed. 109

14

List of Tables

3.1 Spanish verbs used to translate the English verb to be. .

3.2 Nine tense/mood combinations in PHRASEBOOK.

A.1 The PLUTO scripting language commands in a nutshell.

15

16

Chapter 1

Introduction

This thesis focuses on recent changes to the Spoken Language System Group’s surface
realization component. Surface realization is a subtask of natural language generation
(NLG), and NLG is, in turn, a subtask of many language-based computer systems. For
example, in a dialogue system, NLG can be used to produce the system’s response in the
form of a string. NLG is also used to produce large quantities of computer-generated text,
for instance a technical manual or a summary of news articles.

NLG is commonly decomposed into three subtasks: text planning, sentence planning,

and surface realization [31]:

e the role of the text planner is to produce a structured set of communicative goals

for the output;

e the sentence planner takes this structured set and groups the goals into sentence-

size chunks, ordering them for coherence;

e the surface (or string) realizer maps each subset of communicative goals to a single

sentence.

The output of the NLG system is a set of one or more language strings.

NLG systems are often characterized by the approach they take to generation. Our
surface realization component blends two prominent approaches used in NLG: templates
and linguistics. Templates are abstractions over strings; they contain variables that can be
instantiated with particular values. Linguistics-based systems use formal representations

of linguistic theories to represent a wide range of linguistic phenomena. The rules that

17

we create to produce strings in our systems are template-like in that they abstract over
strings; however, they also resemble the rules of a linguistic approach in that they exploit
knowledge about syntactic structure and require the system to compute the correct forms
of words (e.g., conjugations of verbs and inflections of nouns). For this reason, we call them
rule-templates, emphasizing the hybrid nature of our surface realizer.

While the basic character of our surface realizer has not changed, we have made signifi-
cant modifications to its structure. Specifically, we have added a new module, PLUTO, that
acts as a preprocessor for the main processing engine, the string producer GENESIS (see [4]
[5] [37] for more details on GENESIS). We aim to show in this thesis that the addition of
PLUTO, and the major architectural changes it represents, greatly facilitate our ability to
develop robust and reusable multilingual grammars for speech applications. We focus in
particular on a machine translation (MT) application as we develop our argument.

This chapter first gives an overview of PLUTO and its role in the surface realizer. We
then present related work in NLG and MT that will be important background information

for the remainder of this thesis.

1.1 A New Module Called PLUTO

PLUTO is a new module in our surface realization subsystem, born of a desire to facilitate
the development of multilingual grammars in speech-based applications. The input to our
surface realizer is a meaning representation: a structure that captures the content of the sys-
tem’s output. The output of the surface realizer is a grammatically-correct language string
that conveys this content. Within the surface realizer, PLUTO preprocesses the meaning
representation before it is passed to the main processor, GENESIS, which turns the modified
meaning representation into a string.

PLUTO is used primarily for two purposes, the first of which is to infer what features in
the input meaning representation are (1) necessary for string production but missing and
(2) superfluous but present. Because the new component both inserts and deletes features,
we refer to this capability as feature selection. PLUTO can also be used to reorganize the
structure of a meaning representation to better reflect a natural mode of expressing a
concept in the target language. That is, PLUTO is also capable of structural transformation.

Previously, GENESIS performed all surface realization tasks (i.e., feature selection, structural

18

PLUTO GENESIS

Meaning Meaning)
Representation Frame Representation String String
™ Modification ™ Production >
i \/ A
PLUTO GENESIS
Rule-Template Lexicon Rule-Template
File File

Figure 1-1: The new incarnation of the surface realizer includes two components instead of
one: one is responsible for feature selection and structural transformation (frame modifica-
tion) while the other performs word inflection, choice, and ordering (string production).

transformation, and string production, which involves the inflection, choice, and ordering of
words). Figure 1-1 depicts the new architecture of the system.

The division of realization tasks in the system’s new architecture has several advantages.
First, the assumption that exactly the information necessary for string production exists
in the meaning representation makes it easier to write rules-templates for GENESIS. Also,
performing inference in a separate stage means that PLUTO can explore the meaning repre-
sentation without actually having to generate strings. Finally, the decoupling allows us to
define a policy for the surface realization components that brings us closer to the ideal of
developing domain-independent language resources. These advantages make it much easier
for us to develop multilingual generation grammars and will be elaborated on throughout

this thesis.

1.1.1 Feature Selection

One aspect of NLG that can be particularly difficult is the production of missing features
in the target language. In MT, which can be viewed as a special case of NLG in which the
meaning representation input to the surface realizer is derived directly from the source text,
some features may need to be ignored in the input meaning representation. Alternatively,
some features may need to be hallucinated from the input meaning representation. This is
because it is unlikely that the features in the source and target languages are identical. For
example, English requires articles in places where Chinese does not. (In fact, Chinese does

not use articles at all.)

19

In our system, two utterances e and f with the same meaning, where e is in language
L1 and f is in language L2, will have similar but not necessarily identical meaning repre-
sentations. They will be similar because, when parsed, they will be mapped to a common
ontology and grammar. However, features like articles that exist in L1 but not L2 will, if
present in e, appear in the meaning representation corresponding to e but not f. Figure 1-2
shows an example of a meaning representation derived from Chinese input that is lacking
information needed to produce a string in English. In this case, these features need to be
inserted in the meaning representation.

Alternatively, features sometimes need to be deleted from a meaning representation. If
language L1 has a feature that language L2 does not ever exhibit, then there is no danger
in allowing that feature to persist in the frame. Such is the case with English and Chinese
with respect to articles: English uses them, whereas Chinese does not. If translating from
English to Chinese, it may be acceptable to leave articular information in the meaning
representation because Chinese string production rules will never name this feature, and it
will not be spuriously generated.

However, it may be the case that L1 and L2 both exhibit some feature but use it
differently. For example, both English and Spanish use articles. However, in Spanish
the definite article is used before a noun to refer to something in a general way (mass or
uncountable nouns) or to refer to all the members of a class. Thus, in Spanish, the sentence
I like fish would be expressed roughly as I like the fish, since fish is used here to refer to
all the members of its class. Figure 1-3 shows a meaning representation derived from the
Spanish sentence Me gusta el pescado (I like fish, in English) and the transformation that
produces the correct English translation.

Making appropriate insertions and deletions of features at the level of the meaning
representation allows us to write simpler rule-templates in GENESIS. For instance, if a
GENESIS rule-template says that an article should be produced in a noun phrase, that
article will appear in the output only if it actually exists in the meaning representation.
In other words, it is PLUTO’s responsibility to define and assure correct usage. We present

concrete examples of feature selection rule-templates in Chapter 2.

1.1.2 Structural Transformation

PLUTO can also alter the structure of a meaning representation to make it conform to the

20

CHINESE INPUT: fang2 jianl (dian4 hua4)

(room) (have) (telephone) (<question—particle>)

produces a frame with paraphrase
" There telephonein room?"

{c yn_question
‘rhet "there"
:topic {q telephone
:pred {p in_loc
‘topic{groom}}}}

frame enhanced with English features

{c yn_question

:rhet “there"

*:aux "link"
:topic {q telephone
*:quantifier "indef"
:pred {p in_loc
:topic {g room
*:quantifier "def" }}}}

ENGLISH OUTPUT: s there a telephone in the room?

Figure 1-2: The Chinese sentence Fang2 jianl youd diand hua4 mabd generates a meaning
representation that is lacking definite and indefinite articles as well as auxiliary verb in-
formation. As is, this meaning representation would produce a paraphrase such as There
telephone in room? Adding appropriate articles where needed in the meaning representa-
tion yields a new meaning representation which can be paraphrased as Is there a telephone
in the room? In this example, the portions of the meaning representation that have been
modified during processing by PLUTO are prepended with an asterisk (*). This syntax is
used throughout the thesis to highlight changes to the meaning representation.

21

rules of the target language. Again, we use MT by way of example: in English, the verb
to like is used to express a person’s preference for something. In Spanish, the same idea is
conveyed with the verb gustar, corresponding most closely to the verb to please. Thus, a
sentence such as I like Indian food becomes Me gusta la comida india, where the Spanish

words have roughly the following English correspondences:

Me gusta la comida india.

to me is pleasing Indian food

Figure 1-4 shows how the subject and object of the Spanish sentence are reversed with
respect to the English equivalent.

Figure 1-5 shows that, given a frame derived from English input, it is possible to perform
a simple structural transformation that swaps the subject and the object so that the mean-
ing representation better reflects the structure of the Spanish translation. In our system, it
is possible to write target-language-specific rule-templates to perform structural transfor-
mations in a manner independent of the source language. We give a concrete example of
this in Chapter 2.

Like feature selection, we perform structural transformations in a preprocessing stage
because it makes the string production rules simpler to write: when writing rule-templates
for GENESIS, the developer can assume that the meaning representation has been structured

appropriately with respect to the target language.

1.2 Related Work

At the most general level, PLUTO is a module for modifying meaning representations in
the surface realization component of a spoken dialogue system. The work described in
this thesis focuses in particular on using PLUTO and the new decoupled architecture it
represents to develop high-quality multilingual grammars for limited domains. Because the
context of this work is a dialogue system with an emphasis on multilingual applications,
we explore here both spoken language generation and multilingual generation, subfields of
natural language generation.

By way of example and so as to show how our new architecture facilitates the devel-

opment of multilingual grammars and applications, this thesis describes a speech-to-speech

22

SPANISH INPUT: (Megusta)(el pescado.)

produces a frame with paraphrase

"1 like the fish"
{c statement
‘topic { g pronoun
:name"i" }
:pred {p like
:topic { g food
:name "fish"
*:quantifier "def" }}}
frame with features inappropriate
for English deleted
{c statement
‘topic { g pronoun
‘name"i" }
:pred {p like
:topic { g food

:name"fish"} } }

ENGLISH OUTPUT: | likefish.

Figure 1-3: The Spanish sentence Me gusta el pescado generates a meaning representation
with a superfluous definite article with respect to English. This input meaning represen-
tation would produce a paraphrase such as [like the fish. Deleting the article during
preprocessing yields a new meaning representation which can be paraphrased correctly as
1 like fish.

obj ect verb subj ect
Me gusta la comidaindia.
I like Indian food.
subj ect verb obj ect

Figure 1-4: The gustar transformation reverses the roles (subject/object) of corresponding
words. The lines in the figure connect words with roughly the same meaning and depict
these correspondences.

23

ENGLISH INPUT: | like Indian food.

produces a frame
{ c statement
‘topic { g pronoun subject
:pred {p like)
topic { q food object

:pred {p cuisine
:topic "indian"

frame restructured for generation into Spanish

{c statement
;topic { g food subject
:préd {p cuisine
:topic "indian" ¥ }
:pred {p like

‘topic { g pronoun object
e)

SPANISH OUTPUT: Me gusta la comida india.

Figure 1-5: The English input I like Indian food is analyzed to produce a frame with subject
“I” and object “Indian food.” The frame then undergoes a structural transformation for
generation into Spanish, and the subject and object are swapped.

translation system. For this reason, we also touch on some relevant ideas in MT that will

prove useful in describing our approach.

1.2.1 Natural Language Generation

The task of natural language generation (NLG) is commonly formulated as the mapping
from a representation that embodies the meaning of some information to a grammatical
natural language string or set of strings that conveys the same information. In general, the
string output may be either written or spoken text.

Reiter [28] surveys several prominent NLG systems and describes a common underly-
ing “consensus architecture” among systems representing a wide range of linguistic and
methodological theories. This modularized, pipeline architecture is broken into five stages.

Reiter and Dale [31] later consolidate these five stages into three: content determination,

24

sentence planning, and surface realization. The NLG literature since these articles appeared

generally assumes this tripartite architecture. In this thesis, we focus on surface realization.

1.2.2 Templates, Linguistics, Statistics, and Hybrids

In general, researchers have used shallow methods (e.g., canned text and templates), deep
methods (e.g., linguistic theories), and statistical methods to implement natural language
generation in spoken dialogue systems. We review each of these approaches here and then

describe some hybrid approaches.

Shallow Methods

Using canned tert for NLG means outputting pre-composed strings. Canned text is guar-
anteed to be grammatically correct; however, it implies highly-constrained dialogue be-
cause the computer’s language mechanism is static. Templates abstract away from canned
text: they are patterns of strings containing variables that can be instantiated with values
from the specific meaning representation being processed. For instance, the sentence There
are three Chinese restaurants on Massachusetts Avenue can be abstracted as a template,
with variables replacing actual values: There are $NUMBER $CUISINE restaurants on
$STREET-NAME.

Most commercially-available systems use templates for NLG. Among the advantages of
templates that Reiter [29] lists are simplicity and ease of debugging. Templates are simple
to implement because they do not require syntactic or semantic analysis in the generation
process. For example, the system need not be endowed with any linguistic knowledge for
computing verb conjugations or number agreement phenomena. Templates are easy to
debug because the developer can simply add new templates to handle ungrammatical cases
(e.g., There is one $CUISINE restaurant on $STREET-NAME).

Most spoken language dialogue systems initially used or continue to use templates in
some way (e.g., [26] [1] [40] [27]). There are at least two possible explanations for why
templates have been so common in such systems: (1) the real-time requirement of spoken
dialogue systems (templates are in general very computationally efficient), and (2) the
constrained nature of spoken dialogue domains (a small number of templates is sufficient
to cover the scope of system output).

In spite of the advantages of templates, researchers have generally not been content

25

with them. Reiter [29] points out that they are inflexible and difficult to maintain and
reuse; furthermore, he considers them insufficient for sophisticated tasks such as multilingual
translation. Axelrod [1] and Oh and Rudnicky [26] mention the problem of combinatorial
explosion in the number of templates: a “simple template” with n variables can actually
require 2" templates to ensure correct output when certain variables are not present in the
input. Axelrod [1] circumvents this difficulty with a mechanism that causes subphrases to
be generated solely when the variables they contain are to be instantiated and included in
the output string. Our system uses branching mechanisms embodied in scripting languages

to achieve a similar effect.

Deep Methods

Deep methods are theoretically-grounded and rule-based. For instance, linguistic approaches
draw on linguistic theories to generate natural language: the system uses encoded rules to
compute appropriate forms of words in grammatically-correct strings. Among the most com-
mon theories used are systemic-functional grammars [18] and meaning-text theory (MTT)
grammars [25].

SURGE [13], based on the Functional Unification Formalism (FUF), is one system that
has drawn heavily on systemic-functional linguistics; two others are the KPML (Komet-
Penman MultiLingual) system [6] and PENMAN [17], both based on the NIGEL grammar
[24]. Meaning-text theory defines seven canonical representation strata (one semantic, two
syntactic, two morphological, and two phonological) and provides mappings between them.
Systems that have drawn on the latter include REALPRO [23] and FoG [16].

Linguistic techniques are appealing because they seem to come closer to building the
ability to produce language into the computer. Practically speaking, they produce high-
quality output and are easier to maintain than templates. However, they also require a deep
understanding of the linguistic theories employed and handcrafting of extensive knowledge
bases to develop [32].

While many off-the-shelf linguistic generators are available, a common complaint is that
they “...require inputs with a daunting amount of linguistic detail” (Langkilde and Knight
[21]). Also, for spoken dialogue systems, the generality inherent in linguistically-based
systems can be a disadvantage: “...the quality of the output for a particular domain, or

a particular situation in a dialogue, may be inferior to that of a template-based system

26

without considerable investment in domain-specific rules or domain-tuning of general rules”
(Walker et al. [40]). Notably, no spoken dialogue system that I know of has used a pure
linguistic approach in the NLG component. Perhaps this is because, in addition to requiring
substantial expertise, they are computationally expensive and generally do not work in real-

time.

Statistical Methods

Many researchers believe that statistics promise to alleviate the burdens associated with
the handcrafting of rules and templates. Recently, there have been many investigations into
systems that integrate statistical methods into NLG. For instance, Knight and Hatzivas-
siloglou [20] present a surface realization system that uses rules to overgenerate candidate
output strings. Their system searches the candidates for the highest probability string using
a bigram model.! In a different approach, Ratnaparkhi [27] uses a large corpus of templates

to build systems that learn to choose and order words appropriately.

Bangalore and Rambow [2] also develop a statistical surface realization component, using
a wide-coverage tree-adjoining grammar and a probability model to annotate dependency
trees and generate strings from them. Finally, Oh and Rudnicky [26] use corpus-based
methods for surface realization, breaking utterances into classes and building 5-gram lan-
guage models for each utterance class. These models are then used to predict the next word

when creating a string from a meaning representation.

While the first foray into statistical NLG (Knight and Hatzivassiloglou [20]) was moti-
vated by large-scale text-based MT, recently a lot of work in this area has been with spoken
dialogue systems (e.g., [27] [2] [9] [26]). This may be due to the fact that off-the-shelf lin-
guistic systems (1) cannot be used without extensive domain tuning and (2) compromise
real-time requirements, while templates are too inflexible for modeling realistic dialogues.

Statistical methods may be able to generate a wider range of output efficiently.

! A bigram model is based on conditional probabilities, where the probability of a particular word w in a
sentence is simplified such that it depends only on the previous word in the sentence: P(w;|w_1)...w1) =
P(w,|w(,,1))

27

Hybrid

There has been some suggestion in the history of NLG that hybrid approaches could be
effective. In 1999, for instance, there was a workshop on templates and linguistics (or
free choice) held at the German Annual Conference on Al entitled Between Templates and
Free Choice in Natural Language Generation: What is the Right NLG Technology for my
Application? Many of the papers from this workshop note that using a pure linguistics-
based system is impractical for a limited domain that does not need a full-coverage grammar.
They suggest ways in which the relative merits of both shallow and deep approaches can
be exploited.

For example, Reiter [30] describes the ways in which templates and linguistics are used
in the STOP system,? noting that linguistic methods are often superior to templates but
that lack of documentation can make existing linguistic systems prohibitively difficult to
use. Hence, linguistics and other deep methods are applied in STOP solely to phenomena
that can be explained using simple, easily-coded rules (e.g., constraining the length of the
text).

van Deemter et al. [38] take a different approach to hybridization, folding linguistics
into the templates themselves to fabricate “syntactically structured templates” which draw
on well-known linguistic theories in the formulation of strings. The authors find that when
developing a new domain, they are able to re-use much of the code for producing strings
from templates, but that they have to restructure the templates themselves.

The Spoken Language Systems Group’s generation system has been described as “...a set
of fine-grained recursive templates, which represent general linguistic abstracts and domain-
independent facts about language” by Walker and Rambow [41]. As a hybrid system, ours
most resembles the type described by van Deemter et al. The rule-templates that we create
compute the appropriate forms of most words that are included in a string. Hence, they are
like abstractions of templates. For example, the template There are $NUMBER $CUISINE
restaurants on $STREET-NAME can be abstracted as a rule that generates the appropriate
form of the linking verb (is or are) and the head noun (e.g., restaurant or restaurants)
according to the value of SNUMBER. Using this approach, many generalizations about

language can be encapsulated in template-like rules.

2STOP is a system that automatically produces personalized smoking-cessation pamphlets.

28

interlingua

direct trandation

source text target text

Figure 1-6: The MT pyramid.

1.2.3 Machine Translation

Approaches to MT are commonly summarized by a pyramid such as the one in Figure 1-6
(from [19]). At the bottom of the pyramid is direct translation, devoid of any intermediate
analysis. For example, the following algorithm describes one possible manifestation of direct
translation: the words in the source text are mapped to some root form, searched for in a

bilingual dictionary, translated, and reordered.

The other two approaches represented by the pyramid, transfer and interlingua, depend
on an increasing amount of analysis of the source text. Transfer imposes a language-
dependent analysis of the source at the syntactic and/or semantic level. The resulting
structure is then manipulated and rearranged to represent a structure conforming to the
constraints of the target language. Verbmobil is a well-known MT system that has its roots
in transfer [39]. An interlingual representation, in contrast, is language-independent and
represents syntactic and semantic universals. Interlingual analyses of the source and target
result in the same representation, based on these universals. Translation occurs immediately

following the interlingual analysis. Dorr [12] describes an interlingual approach.

A common criticism of transfer-based systems is that the number of generation rule sets
is n(n — 1), where n is the number of languages supported. This is because a separate
rule set has to be developed for each source/target language pair. Using an interlingua
reduces rule-set complexity to O(n), where n is the number of target languages. This is
because all source languages are mapped to a language-independent representation during
analysis. Because an actual interlingua can be difficult to design, hybrid approaches have

been suggested [8].

The approach to MT described in this paper is also hybrid, combining the transfer and

29

interlingual approaches. However, in our approach we are able to successfully construct an
interlingua because we are working within constrained domains. The analysis of the source
(see Seneff [34] for more details on the analysis component, TINA) results in an interlingual
representation we call source-biased because it preserves source-language features. That
is, two sentences in different languages L1 and L2 that share the same meaning will also
share the same meaning representation, with the following exception: if feature ¢ exists in
language L1 but not in L2, ¢ will occur in the meaning representation derived from the
sentence in L1 but not that derived from the sentence in L2. Hence, generation rule sets
need only be developed for the n target languages supported in the translation application.
PLUTO’s role in translation can be viewed as a transfer step: feature selection and structural
transformation modify the interlingua such that it conforms to the constraints of the target
language. Finally, GENESIS decides which words to use to express the concepts in the
meaning representation, computes their correct forms, and finds an appropriate ordering

for them. We describe this hybrid approach to MT in detail in Chapter 3.

1.3 Outline
The remainder of this thesis is divided into four chapters:

e Chapter 2 focuses on the new architecture of the surface realization component,

e Chapter 3 shows how the new architecture can be used to implement a hybrid approach
to MT in a constrained domain, and in particular how PLUTO may be used to meet

many of the challenges of MT within this framework;

e Chapter 4 develops a policy for the use of the Spoken Language Systems group’s

generation subsystem in natural language applications;

e Chapter 5 discusses formal evaluation, conclusions, and future work.

30

Chapter 2

A New Module for Generation

PLUTO is a new module in the surface realization system used by the Spoken Language
Systems group. Designed to carry out the tasks of feature selection and structural trans-
formation, PLUTO represents a decoupling of the generation subtasks: previously, all such

subtasks were relegated to GENESIS; now, GENESIS is responsible solely for string production.

2.1 The New Architecture

PLUTO has been designed in the context of the Spoken Language Systems group’s GALAXY
architecture [35] in which modules communicate with one another via a central hub. Fig-
ure 2-1 depicts an instantiation of GALAXY in which basic speech applications are broken
into eight primary modules. The audio component captures audio information from the
raw input signal (for example, from a telephone or a microphone). Audio information is
then passed to the speech recognizer, which produces a set of textual utterance hypothe-
ses. These hypotheses become the input to the language understanding component, which
decides which hypothesis is the best and constructs a meaning representation for it. A dia-
logue management module receives this meaning representation and interprets it in relation
to the dialogue history, calling on the context resolution component if necessary (to resolve
referring expressions, for instance). The main task of the dialogue manager is to construct
the system’s response in an abstract form (i.e., meaning representation). In order to do so,
it might also make use of the database (and even of the surface realization component, to
form a database query). This meaning representation is then passed to the surface realiza-

tion component, whose job is to produce a language string. Finally, the string is passed to

31

Figure 2-1: In the GALAXY architecture, modules communicate with one another via a
central hub. The dashed arrow represents the flow of information through the system fol-
lowing a user query or utterance: first, the speech is processed by the audio/GUI and
speech recognition modules. Next, the language understanding module constructs a mean-
ing representation. The context resolution server and dialogue manager interpret the user
utterance and produce an abstract response in the form of a meaning representation with
information from the database. The surface realization component produces a string from
the meaning representation, and the speech synthesizer outputs the string in spoken form.

the speech synthesis component and output in spoken form.

Figure 2-2 depicts the new architecture of the surface realization module. The role of
the surface realization component is to map a meaning representation to a string. PLUTO
takes a meaning representation and performs feature selection and structural transforma-
tion, producing a new meaning representation. GENESIS takes the preprocessed meaning
representation and performs lexical selection, morphological inflection, and word ordering
to produce a string. Both PLUTO and GENESIS have access to external rule-template files

and a lexicon, resources that enable the processing of a meaning representation.

2.2 The Inner Workings of PLUTO

PLUTO carries out the tasks of feature selection and structural transformation via two mech-
anisms: (1) rule-templates specified with a scripting language in an external file and (2)
algorithms for choosing appropriate rule-templates and for processing meaning representa-
tions.

PLUTO’s core resembles that of a general-purpose interpreter and consists of three com-

32

Surface Realization

e 7
PLUTO GENESIS
Meaning Feature) .
Representation Selection & Lexical Choice, String
» Structural » Inflection, & >
Transformation Word Order

ARSI AN

PLUTO GENESIS
Rule-Template Lexicon Rule-Template
File File
o J

Figure 2-2: The surface realization module’s new architecture. Surface realization is the
process of mapping from a meaning representation to a string. In the new architecture,
realization is conceived of as a two-stage process in which subtasks are divided between
PLUTO (feature selection and structural transformation) and GENESIS (lexical selection,
morphological inflection, and word ordering).

ponents: a parser, a command processor, and a lexical accessor (see Figure 2-3). The parser
maps linguistic rule-templates written in the scripting language to an internal representa-
tion; the rule-templates are stored in a library that the command processor has access to
while processing a meaning representation. The command processor also has access to the

lexicon via the lexical accessor.

A pLUTO rule-template file is a hand-crafted set of rule-templates that dictate the specific
feature selection and frame transformation actions to perform on meaning representations.
Each instance of such a file may be tailored to the needs of a particular application and/or
target language. The configurable nature of PLUTO makes it a flexible component for use

in many settings.

The lezicon is also hand-crafted. It contains entries for the domain vocabulary items
with their part-of-speech and default generation string. Particular entries may also have
alternative generation strings and other linguistic information such as features of the target
language (e.g., number and gender). PLUTO uses the lexicon to populate a meaning rep-
resentation with features associated with relevant lexical entries. PLUTO can also use the
values of these features to make other decisions concerning modifications to the meaning

representation.

Meaning representations are implemented in our systems with hierarchical frames of

attribute:value pairs. The meaning representations used throughout this thesis contain both

33

PLUTO
Rule-Template Lexicon
File
Y \ 4
. Parser .
meaning meaning
representation representation
— Command .
Processor
Lexical
Accessor
PLUTO Core

Figure 2-3: The basic architecture of the PLUTO system. PLUTO’s core consists of a parser
for parsing the syntax of the rule-template file, a command processor for choosing rule-
templates and interpreting commands when processing frames, and a lexical accessor for
moving information from the lexicon into frames.

semantic and syntactic information and are referred to as linguistic frames. The linguistic
frame in Figure 2-4 was produced by the language understanding component TINA (Seneff
[34]), a probabilistic natural language understanding component that builds parse trees
using context-free grammar rules, a semantic network, and a training corpus. Linguistic
frames are derived from parse trees. The parse tree from which the linguistic frame in the
example was derived is shown in Figure 2-5.1

There are two principal algorithms that drive PLUTO’s behavior in general: a processing
algorithm and a rule-template-choosing algorithm. The processing algorithm may be char-
acterized as top-down, recursive, and deterministic.? It is top-down because PLUTO always
begins processing a frame at its top level and works down. It is recursive because the result
of processing a frame f is a new frame f’ that is the result of processing f’s constituents
(which may themselves be frames). It is deterministic because there is exactly one rule that
3

will match and be used to process any frame.

The pseudocode in Figure 2-6 gives an idea for how processing proceeds. The input to

'For more information on basic frame terminology, as well as the structure of linguistic frames, see
Appendix A. Appendix A also describes the scripting language used to write rule-templates and PLUTO’s
use of the lexicon in more detail.

2The overall structure of the processing algorithm is very similar to the one used in GENESIS (see [5], pp.
52-57). This kinship makes system maintenance easier. It also makes it easier to become familiar with how
the surface realization system operates.

3Tt would be relatively simple to modify this behavior. GENESIS actually has the capability to deal with
rule “alternates” (see [5], pp. 80-81); defining a probability distribution over alternates in the context of
PLUTO could allow the system to produce multiple strings from the set of all possible strings mapped to by
a particular linguistic frame.

34

{c statement
:topic {q pronoun
:name "we" }
:mode "past"
raux "link"
:pred {p unable
:aux "to_inf"
:v_complement {p get
:topic {q ticket
:number "pl"
:pred {p for
:topic {q event
:quantifier "def"

:name "show" } } } } } }

Figure 2-4: A linguistic frame representing an English string such as We were unable to get
tickets for the show. This linguistic frame was derived from the parse tree in Figure 2-5.

sentence
statement
self link vp_attempt
unable to_inf v_complement
predicate
vp_service
get transaction
a ticket
ﬂcﬁi/////A\\\\\\ﬂf}th
for the_event
the event
we were unable to get tickets for the show

Figure 2-5: A parse tree for the string We were unable to get tickets for the show, produced
by TINA. This parse tree forms the basis for the linguistic frame in Figure 2-4.

35

PLUTO is a linguistic frame. PLUTO first copies the linguistic frame and creates an empty
info-frame. The info-frame is a structure used to propagate global frame information and
to record information as it is learned.* Then, PLUTO finds a rule-template with which to
process the frame, searching a library of rule-templates. Once an appropriate rule-template
has been identified, each of its commands is examined for its type, and the frame, info-frame,
and command are passed to an appropriate command-processing subroutine.

The pseudocode for the function find rule template for frame() in Figure 2-6 cap-
tures the essence of the rule-template-finding algorithm used by PLUTO. The algorithm
looks first for a specific rule for a frame, then, failing that, backs off to progressively more
general rule-templates. Specifically, given a frame, PLUTO looks in the rule-template library
for a rule-template whose name matches the name of the frame. If there is none, then PLUTO
checks to see if the frame name is in a group. If it is, PLUTO uses the group rule-template to
process the frame. Finally, if there is no specific rule-template and no group rule-template
for the frame, then PLUTO finds the default rule-template for the frame type.> The use of
binary search to locate specific rule-templates in the library helps make the processing more

efficient.

2.3 Frame Modification Examples

We demonstrate how PLUTO carries out frame modification tasks with three examples.
The first two focus on feature selection (both adding and deleting features), while the
third focuses on structural transformation. The three examples were first introduced in
Section 1.1. Here we discuss how PLUTO chooses and interprets rule-templates to effect the

desired changes.

2.3.1 Feature Selection

The first feature selection example involves the input linguistic frame in Figure 2-7. Using
the rule-templates in Figure 2-8, PLUTO produces the frame in Figure 2-9, ready for string
production in English. The rule-templates handle cases of the general form There is/are

a/some $NOUNI in the $NOUNZ2. The strategy embodied by the rule-templates is to (1)

4For more information on the info-frame, see Appendix A.
®Our linguistic framework currently distinguishes three frame types: clause, topic, and predicate, where
predicate represents verb phrases, adjective phrases, and prepositional phrases.

36

add a linking verb to the top-level clause frame and an indefinite article to the topic frame
based on the presence of the rhetorical there, and (2) add a definite article to the in_loc
predicate.

The processing algorithm dictates that PLUTO begin processing the input at the top
level. The name of the top-level frame is yn_question and its type is clause: since there is
neither a specific rule-template named yn_question nor a group containing yn_question
as a member, the generic rule-template clause_template is selected to process the frame.

The first command in the clause_template rule-template tests for the existence of a
keyword called :rhet. This test succeeds and so the consequent is performed. The two
commands of the set_rhet_features rule-template cause (1) an indefinite article to be set in
the topic, and (2) an auxiliary verb with value link to be set in the top level of the frame.

The second command of the clause_template causes the processing of the telephone
topic. The best rule-template is the generic topic_template with just one command that
indicates that the in_loc predicate should be processed. There is a specific rule-template
called in_loc, so this is selected. This rule-template sets a definite article in the in_loc
frame.

Because the commands of all rule-templates selected to process the input have all been
executed, processing is now complete, and PLUTO outputs the modified meaning represen-
tation in Figure 2-9. This meaning representation might be realized by GENESIS as the
English string Is there a telephone in the room?

The second example of feature selection demonstrates that features may also be deleted
from a linguistic frame. The frame in Figure 2-10 is processed by PLUTO using the rule-
templates in Figure 2-11. The effect of the rule-templates is to delete the definite quantifier
in the food topic frame. This alteration is based on the assumption that, in the domain
for which these rule-templates have been written, statements of the form I like the $NOUN
will never occur. The target language is, again, English.

PLUTO begins processing the frame at the top level and, as in the first example, selects
the clause_template. The first command of this rule-template sets the mode in the info-
frame to present_indicative. The details of this rule-template are omitted for brevity. The
:pred command initiates the processing of the 1ike predicate. Because 1ike is a member of
the clause group like_preds, the like_preds_template rule-template is selected. The single if

command contained in this rule-template has two tests, both of which succeed. The goto

37

fill_in_features(orig_frame)
frame <-- copy(orig_frame)
info-frame <-- create_info_frame(frame)
find_rule_template_for_frame (frame)
process_with_rule_template(frame, info-frame, rule-template)
return frame

find_rule_template_for_frame(frame)

if there is a rule-template T for name(frame)
return T

else if there is a rule-template T’ for group G and

G contains name(frame)

return T’

t <-- type(frame)

T" <-- generic rule-template for t

return T"

process_with_rule_template(frame, info-frame, rule-template)
for each command ¢ in rule-template
t <-- type(c)
if t = goto
return process_goto(frame, info-frame, c)
else if t = if
return process_if (frame, info-frame, c)

;;; there is a processing subroutine for each command type

else error(unknown command type)

Figure 2-6: Pseudocode for PLUTO processing algorithm.

{c yn_question
:rhet "there"
:topic {q telephone
:pred {p in_loc
:topic {q room } } } }

Figure 2-7: This linguistic frame is input to PLUTO. The target language, English, requires
that three features (an auxiliary verb and two articles) be added to the frame.

clause_template ($if :rhet >set_rhet features) :topic
set_rhet features >softset_quant >soft_link
softset_quant ($softset :quantifier[:topic] "indef")
soft_link ($softset :aux "link")

topic_template :pred

in_loc ($softset :quantifier[:topic] "def")

Figure 2-8: PLUTO rule-templates for effecting the necessary modifications to the linguistic
frame in Figure 2-7.

38

{c yn_question
:rhet "there"
*:aux "link"
:topic {q telephone
*:quantifier "indef"
:pred {p in_loc
:topic {q room
*:quantifier "def" } } } }

Figure 2-9: The linguistic frame output now contains an auxiliary verb as well as two
articles, one definite and the other indefinite. This frame might be realized as the English
string Is there a telephone in the room?

{c statement
:topic {q pronoun
:name "i" }
:pred {p like
:topic {q food
:name "fish"
:quantifier "def" } } }

Figure 2-10: This input linguistic frame, which is to be realized in English, contains a
superfluous definite article. It is assumed that in this domain statements of the form I like
the $NOUN never occur.

clause_template >set_mode :pred

set_mode ;; this command sets the mode in the info-frame
;3 to present_indicative

predicate_groups like preds

like preds like interest love

like preds_template ($if ~:mode == "present_indicative" && \
:quantifier[:topic] == "def" >del_def_quant)

del def_quant ($del :quantifier[:topic])

Figure 2-11: The rule-templates effecting the deletion of the definite article.

39

{c statement
:topic {q pronoun
:name "i" }
:pred {p like
:topic {q food
:name "fish" } } }

Figure 2-12: The output linguistic frame, ready for string production. This frame might be
realized with the English string I like fish. The definite article has been removed.

{c statement
:topic {q pronoun
:name "i" }
:pred {p like
:topic {q food
:pred {p cuisine
:topic "indian" } } } }

Figure 2-13: This linguistic frame is structurally unsatisfactory for output in Spanish. In
Spanish, the subject and object of the sentence I like Indian food are swapped.

consequent causes the quantifier to be deleted from the food topic frame.

2.3.2 Structural Transformation

The final example demonstrates how PLUTO can be used to carry out structural trans-
formations on linguistic frames. The target language is Spanish, and the rule-templates
in Figure 2-14 embody the principles related to the verb gustar (to please), introduced in
Section 1.1.2. When applied to the linguistic frame in Figure 2-13, these rule-templates
produce the frame in Figure 2-15, in which the subject and the object have been swapped.
The strategy of the rule-templates is to process all predicates that are structurally similar
to the Spanish verb gustar (to please) by swapping the predicate’s topic and the top-level
topic.

The clause_template rule-template initiates the processing of the frame. Its first com-
mand, a goto, executes because there exists a member of the group list like_preds in the
frame (the predicate 1ike). The like_preds_template stores the topic of the 1ike frame in the
info-frame. The second command of the clause_template tests for the existence of a “:topic
info-key, which was just set in the info-frame. The swap_subject_object2 rule-template ex-

ecutes next, carrying out the actual swapping of the top-level topic and the topic of the

40

clause_template >like preds ($if ":topic >swap_subject_object2)
predicate_groups like preds

like_preds like interest love

like preds_template >swap_subject_objectl

swap_subject objectl ($set “:topic :topic)

swap_subject object2 ($set :topic[:pred] :topic) ($set :topic ":topic)

Figure 2-14: These rule-templates embody the necessary modifications to swap the subject
and object of any verb like the Spanish gustar, (to please).

{c statement
:topic {q food
:pred {p cuisine
:topic "indian" } }
:pred {p like
:topic {q pronoun
:name "i" } } }

Figure 2-15: The output frame has the original subject and object swapped.

predicate.

2.4 Advantages of Decoupling the Generation Tasks

Introducing a decoupled architecture in the surface realization component has allowed de-
velopers working with our system to write cleaner rule-templates that are easier to read and
debug. For example, the decoupled architecture has greatly simplified the development of
PHRASEBOOK, a multilingual travel-domain translation system. The goal of PHRASEBOOK
is to allow users to speak an utterance in a source language and have the system translate
and repeat the utterance in a target language. We have developed rule-template sets for
three languages (English, Spanish, and Mandarin) and are in the process of adding support
for French. In PHRASEBOOK, PLUTO’s frame modification capability is used to tailor the lin-
guistic frame produced by the understanding component, TINA, to the syntactic constraints
and appropriate word senses of the target language.

An example within this domain shows how the decoupled architecture has simplified the
rule-templates for translation into Spanish. Figure 2-16 shows the single rule-template file
and lexicon used to generate a string by GENESIS prior to the decoupling, while Figure 2-17
shows the two rule-template files used by PLUTO and GENESIS in addition to the shared

lexicon. The rule-templates and lexica in both figures have been written to achieve the

41

;5 GENESIS RULE-TEMPLATE FILE

;; clause frame rules

wh_question <==:trace > ——vwh_topic >set_aux \
:aux ——wh_topic

;; topic frame rules
topic_template :name

;; auxiliary rules

——wh_topic :topic

set_aux ($if :aux == "1link" >set_link)

set_link ($if at_age >set_link tener)

set_link tener ($set :aux "link tener")

; ;3 LEXICON

; ; morphology

N PL "s"

;; entries

you N T'usted" NUM "third"

how_old 0 '"cuantos afios"

link _tener X "tiene" ROOT "tener" FIRST "tengo" THIRD "tiene" \
PL_FIRST "tenemos" PL_THIRD "tienen"

Figure 2-16: Single rule-template file and lexicon used to generate the string ; Cudntos afnios
tiene usted? from the frame in Figure 2-18.

same goal: generate a Spanish string from the meaning representation in Figure 2-18.
The words contained in the target Spanish string in this example have roughly the
following English correspondences:
;,Cudntos afhos tiene usted?

how many years have you

The main verb of this sentence, tener, is conjugated in the third person singular, in agree-
ment with the subject usted. In order to produce the Spanish string ;Cudntos anos tiene
usted?, the number information from the subject has to be made available to the auxiliary
verb so that the appropriate verb form can be chosen.

In the old system, the only way to learn information such as the number of the subject
was to pregenerate the string. The command > ——wh_topic in Figure 2-16 executes this
pregeneration. The result of this command is that the word wusted is stored in the info-frame
for later inclusion in the target string. The side effect is that the number information from
the lexical entry for you in Figure 2-16 is also stored in the info-frame, where it can be

accessed when the string tiene is produced. The command ——wh_gquestion discharges the

42

; ; PLUTO RULE-TEMPLATE FILE

;; clause frame rules
clause_template :topic >set_clause number >set_aux

;; topic frame rules
topic_template :name

;5 auxiliary rules

set_clause number ($clone :number[:topic])
set_aux ($if :aux == "1link" >set_link)
set_link ($if at_age >set_link tener)
set_link_tener ($set :aux "link tener")

;5 LEXICON

; ; morphology

N PL Ilsll

;; entries

you N '"usted" :number "third"

how_old 0 '"cuantos afios"

link_tener X "tiene" ROOT "tener" FIRST "tengo" THIRD "tiene" \

PL_FIRST "tenemos" PL_THIRD "tienen"

;5 GENESIS RULE-TEMPLATE FILE
;; clause frame rules
wh_question <==:trace :aux :topic

;; topic frame rules
topic_template :name

Figure 2-17: Two rule-template files and lexicon used to generate the string ; Cudntos anos
tiene usted? from the frame in Figure 2-18.

{c wh_question
:aux "link"
:topic {q pronoun
:name "you" }
:pred {p at_age
:trace "how old" } }

Figure 2-18: Linguistic frame serving as input to the surface realizer. This frame represents,
in English, a string such as How old are you?

43

{c wh_question
:aux "have"
:number "third"
:topic {q pronoun
:name "you"

:number "third" }
:pred {p at_age

:trace "how old" } }

Figure 2-19: Linguistic frame serving as input to the surface realizer. This frame represents,
in English, a string such as How old are you?

stored string usted at the moment it should be concatenated to the output string. The
rule-templates in Figure 2-16 also set the value of the auxiliary verb, changing it from link
to have based on the presence of the at_age predicate. This is because in Spanish the verb
tener (to have) is used to talk about age, whereas English uses the verb to be.
Rule-templates carrying out tasks such these, now relegated to PLUTO, cluttered the
GENESIS rule-template file in the old system, making it difficult to tell when constituents
were actually being added to the target string. In contrast, the new system adds a stage in
which this kind of processing is completed prior to generation of the target string. The rule-
template files and lexicon in Figure 2-17 show the three files that realize the same string,
¢ Cudntos arios tiene usted?, given the same frame as input, in the decoupled model. The
PLUTO rule-templates, in conjunction with the lexicon, are used to preprocess the frame.
Then, the GENESIS rule-templates, also with the lexicon, are used to generate the string.
The GENESIS rule-template for generating the constituents of the wh_question frame is in
particular much more transparent with respect to word ordering. The frame resulting from

the PLUTO processing stage is shown in Figure 2-19.

2.5 Summary

Simplifying development is important in rule- and template-based systems, valued for the
control they offer in the production of linguistically-sound output, but often associated with
high development costs. In this chapter, we have shown how a decoupled architecture can
help simplify development by making rule-templates easier to understand. We have also
shown how PLUTO can be used to make changes to frame features and structure. In the

next chapter, we develop a hybrid approach to MT that exploits the new architecture of

44

the surface realization component and the capabilities of PLUTO.

45

46

Chapter 3

A Hybrid Approach to Translation

We have developed a hybrid approach to speech-based MT in a constrained domain that
takes advantage of the new architecture of the surface realization component. The technique
combines two prominent MT approaches: interlingua and transfer. The former converts the
source string into a language-independent meaning representation before producing a target
string (Figure 3-1a); the latter restructures a syntactic parse of the source string to make
it conform to the constraints of the target language, producing a target string from the

modified parse (Figure 3-1b).

The appeal of the interlingual approach is that, in theory, because source strings from
any language are mapped to a canonical form, all that is needed to produce a target string
is a mapping from the interlingua to the target language. Hence, only O(n) mappings are
needed — one from each source language to the interlingua, and one from the interlingua
to each target language. However, it can be difficult to design an interlingua sufficiently
universal to accommodate all languages. The appeal of the transfer approach is that it
obviates the need to design an interlingua. The disadvantage is that O(n?) mappings are
needed to support n languages: for each target language, mappings from parse trees of

every possible source language to parse trees in the target language are needed.

Our hybrid approach to MT takes an interlingual meaning representation and manip-
ulates it to conform to the requirements of the target language. We call the interlingual
representation source-biased because it retains some source-language information (e.g., ar-
ticles) while discarding other information (e.g., word order). We have utilized the natural

language subsystem of GALAXY, comprising the language understanding and surface real-

47

L1

@ } ®) o1 /@
000 -0 F’g]
" %@R@

W0 G .- Ps
Target Languages @

Figure 3-1: (a) In the interlingual approach to MT, all source inputs are mapped to a
language independent meaning representation. To produce output in a target language, a
mapping from the interlingua to the target language must be provided. (b) In the transfer
approach, all source inputs pass through an analysis stage resulting in a source-specific parse
(P1..P8). To produce output in a target language, a mapping from all possible source parses
to a target parse must be provided.

ization components, to implement our hybrid technique.

3.1 Structural and Lexical Transfer

The components of the surface realization module perform three tasks: to modify the inter-
lingual representation to adhere to the constraints of the target language, to choose appro-
priate words in the target language, and to place the words in a syntactically-appropriate
order. PLUTO is responsible for the first task (structural transfer),! while GENESIS is re-
sponsible for the second two (lezical transfer and word ordering).

The goal of structural transfer is to map a source-biased interlingual representation to
a target-specific one ready for generation into the target language. Most language-feature
information is encoded in the lexicon, which PLUTO visits to populate the interlingual frame.
PLUTO may also alter the structure of the frame, moving frame elements to positions more
amenable to target string production. In this model, the string production component
assumes that all words that are to appear in the final string exist in the frame. It also
assumes that there is sufficient information in the frame to make lexical choices (i.e., to carry

out lexical transfer). That is, all information necessary for contextual decision-making about

!The structural transfer stage is essentially what has been referred to as frame modification throughout
this thesis.

48

source interlingual language-specific target
TINA g guage—sp! g

language meaning PLUTO meaning GENESIS language
strin representation representation strin
_ e PARSING P » STRUCTURAL | P »| LEXICALTRANSFER | "0
TRANSFER WORD ORDERING
A ? \ / ?
TINA Rules: PLUTO) GENESIS
Domain Rule- Lexicon Rule-
Semantics Templates Templates

Figure 3-2: A hybrid approach to MT implemented using the Spoken Language Systems
group’s natural language subsystem. This approach combines the principles of interlingua
and transfer.

{c yn_question
:rhet "there"
:topic {q telephone }
:pred {p in_loc
:topic {q room } } } }

Figure 3-3: An interlingual linguistic frame derived from a parse of the Chinese string Fang2
jianl youd diang huad mab, or, in English, Is there a telephone in the room?

the words to include in the target string should already be explicitly manifest in the frame
prior to string production. Figure 3-2 summarizes how our hybrid approach is implemented

in the natural language subsystem.

3.2 An Interlingual Meaning Representation

In our model, the linguistic frame output from the language understanding module TINA (see
Seneff [34]) serves as an interlingual representation. Our interlingual meaning representation
is source-biased, meaning that it preserves source-specific language features. However, its
core is language-independent because the analysis leading to its creation is guided by a
language-independent ontology and grammar. Developing the interlingual ontology and
grammar is made easier by working within constrained domains.

Figures 3-3 and 3-4 depict two interlingual frames that our system could produce. They
represent the same concept; however, the first interlingual frame (Figure 3-3) is derived
from a parse of the Chinese sentence Fang?2 jianl you8 dianj huaj mab, whereas the second
is derived from a parse of the English sentence Is there a telephone in the room? The core
structure is identical in both frames, but the interlingual frame produced from Chinese is
lacking some of the features in the interlingual frame produced from English. Specifically,

the English frame contains auxiliary, number, person, and quantifier information.

49

{c yn_question
raux "link"
:rhet "there"
:number "sing_third"
:topic {q telephone
:number "sing"
:quantifier "indef" }
:pred {p in_loc
:topic {q room
:number "sing"
:quantifier "def" } } } }

Figure 3-4: An interlingual linguistic frame derived from a parse of the English string Is
there a telephone in the room?

3.3 Case Study: Using PLUTO for Structural Transfer

We now illustrate the phenomena in an MT task that can be handled by PLUTO in a
structural transfer stage via rule-templates. The examples are drawn from a case study
performed in the PHRASEBOOK domain for translation into Spanish.? The goal of this
section is two-fold: first, to give examples of challenges particular to MT, and second, to
demonstrate how PLUTO may be used to meet these challenges. Thus, this section also
serves as an informal means of evaluating the power of the PLUTO scripting language and
of the tool itself.

PHRASEBOOK is a travel-domain multilingual spoken-language translation system. The
goal is to allow a traveler to speak an utterance in a source language and have the system
translate and repeat the utterance in a target language. The domain comprises many
contexts, including giving and getting directions, renting a hotel room, and ordering in a
restaurant.

There are many challenges of MT that are manifest in the PHRASEBOOK domain. For
example, it is important to structure sentences appropriately for the target language. We
saw how PLUTO can be used to effect such structural transformations in the gustar example

of Section 2.3.2. Here, we focus on other challenges:

e word-sense disambiguation and lexical selection,

e filling in function words, and

2The Spanish used is mostly Mexican Spanish, which is the Spanish I know. However, being a native
speaker of English, not Spanish, I also had extensive help from Eduardo Torres-Jara, a native speaker of
Ecuadorian Spanish, who provided, in many instances, alternative paraphrases for English source strings.

50

Figure 3-5: Many-to-many mappings between Spanish and English verbs.

¢ inflecting root forms and choosing appropriate forms for nominal modifiers.

PLUTO may be used in partnership with the lexicon to annotate the interlingual meaning
representation with information that can help GENESIS make word choice and word ordering

decisions. We explore each of these challenges in turn, focusing on PLUTO’s role.

3.3.1 Word-Sense Disambiguation and Lexical Selection

It is a well-known characteristic of natural-language translation that the mappings between
lexical items in different languages may be many-to-many. Figure 3-5 shows how two
common English verbs — make and take — each map to several Spanish verbs depending
on the context, while the same may be said of two common Spanish verbs — llevar and
tomar — and their mappings to English.

The existence of such mappings leads to a dual problem in MT: word-sense disambigua-
tion and lexical selection. Whenever a word from the source language may take on several
meanings, it must be resolved, from the context, which meaning is being employed (word-
sense disambiguation); similarly, whenever a concept may be expressed in several ways by
the target language, it must be determined which way is most appropriate, again given the
context (lezical selection). While it is, in theory, ideal to handle all word-sense disambigua-
tion during analysis (i.e., while mapping to the interlingual form), in practice it may be the

case that the semantic ontology is not sufficiently fine-grained to fully disambiguate every

51

Verb | Use Examples

ser origin, possession, material I am from Canada.
Soy de Canadd.
inherent qualities: nationality, age, etc. I am American.
Soy estadounidense.
profession I am a doctor.
Soy doctora.
time, date, days of the week What time is it?
& Qué hora es?
estar | location or position Where is the hotel?

;Ddnde esta el hotel?
temporary qualities, subjective impressions | The soup is cold.
La sopa esta fria.

tener | hunger, thirst, age, etc. I am 23.

Tengo 23 anos.
hacer | weather It is cold.

Hace frio.
haber | rhetorical Is there a television?

;Hay un televisor?

Table 3.1: Spanish verbs used to translate the English verb to be.

language supported by the system.

For example, in our semantic ontology, any verb like the English verb to be is generalized
as a linking verb. However, Spanish has at least four verbs that can be mapped to to be, and
the auxiliary value link is not alone sufficient to decide which Spanish form to use. Table
3.1 presents some of the differences between five Spanish verbs used to translate to be: ser,
estar, tener, hacer, and haber.

PLUTO can be used in partnership with the lexicon to set the linking verb appropriately
in linguistic frames to be realized in Spanish. Figure 3-6 shows an excerpt from the Spanish
PHRASEBOOK lexicon containing entries with pertinent linking verb information. The frame
in Figure 3-8 shows a meaning representation that might be paraphrased as You are right
in English. The interlingua represents the concept to be as a linking verb (the key:value
pair <aux:1link> in the frame). In Spanish, a translation of You are right is Tiene razdn.
Tiene is the third-person singular conjugation of the verb tener, or to have, and tener razon
is the expression used in Spanish to say that a person is right. PLUTO has to examine the
context of the meaning representation globally to decide which of the five possible linking

verbs to use in this case.

52

The PLUTO rule-templates in Figure 3-7 are used to process the frame in Figure 3-8 and
effect the changes in Figure 3-9. Processing begins with the first goto command of the
clause_template rule-template. The handle_link rule-template checks to see if the auxiliary
has the value link, which it does. Processing then proceeds to the del link rule, which
remembers the value of the auxiliary in the info-frame and deletes the auxiliary from the
linguistic frame. The second command of the clause_template processes the topic with the
topic_template rule-template. This causes number information to be set in the pronoun
topic; it also causes a selector to be set in the info-frame. Processing of the quality
predicate is next, handled by the predicate_template rule-template. The $core command
causes an :aux key to be set in the predicate with value 1ink _estar (from the quality entry
in the lexicon). Then, the topic of the predicate is processed. The string value right causes
PLUTO to visit the lexical entry with the same name, and since the selector $:subj_person
was previously set in the info-frame, PLUTO looks up the person_right entry. This entry
overwrites the auxiliary previously set in the frame by the quality entry, and now the value
of the auxiliary becomes link tener. Finally, the <==:auz command pulls the :aux key
from the predicate up to the top level of the frame.

We have chosen in this example to place domain-specific information in the lexicon as
opposed to in the PLUTO rule-templates. An alternative approach, which would put domain-
specific information in the rule-templates, is to create a case-based rule-template for setting

an appropriate auxiliary verb such as

set_aux_link ($if at_age >set_link tener \

$else_if estar preds >set_link estar ...)

where estar_preds would explicitly list domain predicates taking the verb estar. We choose
to avoid this alternative implementation. Doing so allows us to write PLUTO rule-templates
that are as domain-independent as possible. Because we keep domain-specific information
isolated in the lexicon, this example also illustrates the policy for generation that we outline

in Chapter 4.

3.3.2 Filling in Function Words

PLUTO may be used to explicitly annotate a linguistic frame with function words, such as

articles. For example, in Spanish, the definite article is required when the meaning of a

53

at_age 0 :aux "link tener"

at_loc 0 "en" :aux "link estar"

available A1 "disponible" :aux "link estar"

body_view g " :aux "link estar"

directionright N "derecha" :gender "f" :aux "link estar"

how_far 0 '"cuan lejos" :aux "link estar"

included A "incluid" :aux "link estar"

left N "izquierda" :gender "f" :aux "link estar"

lost A '"perdid" :aux "link estar"

on 0 "en" raux "link estar"

over_there 0 "alla" :aux "link estar"

person_right N ‘"razémn" :aux "link_tener"

quality g " :aux "link estar"

ready A "list" :aux "link estar"

rhetorical there 0 "" :aux "link haber"

right 0 ‘"correcto" $:direction "!directionright" \
$:subj_person "!person right"

state_of_being g " :aux "link estar"

straight 0 '"derecho" :aux "link estar"

there 0 "alla“ $:rhetorical "!rhetorical there"

where 0 "dénde" :aux "link estar"

you N "t :number "third" ; $:subj_person

Figure 3-6: This excerpt from the Spanish lexicon shows entries with information about the
kind of linking verb to set in the linguistic frame.

clause_template >handle link :topic :pred <==:aux

handle_link ($if :aux == "link" >del_link)
del_link ($set ~“:aux "link") ($del :aux)
topic_template :name

predicate_template $core :topic

Figure 3-7: These PLUTO rule-templates set a linking verb in partnership with the lexicon.

{c statement
:topic {q pronoun
:name "you" }
:mood "finite"
:number "pl"
:aux "link"
:pred {p quality
:topic "right" } }

Figure 3-8: The input frame to PLUTO contains an underspecified auxiliary verb with respect
to Spanish.

54

{c statement
:topic {q pronoun
:name "you"
* :number "third" }
:mood "finite"
:number "pl"
*:aux "link_tener"
:pred {p quality
:topic "right" } }

Figure 3-9: The output frame from PLUTO contains a more specific auxiliary verb, appro-
priate for output in Spanish.

like preds like interest love
like preds_template ... >set_topic_quant._def ...
set_topic_quant def ($set :quantifier[:topic] "def")

Figure 3-10: Excerpt from rule-templates for setting a definite article for use with a noun
in the general sense in Spanish.

sentence implies a general use of the noun.? Thus, the Spanish translation of the English
phrase I like fish is Me gusta el pescado. The definite article el appears in the Spanish but
not in the English sentence, although the sentences are equivalent in meaning. The rule-
templates in Figure 3-10 implement this use of the definite article for verbs expressing like,
interest, or love by setting a definite article in the predicate’s topic. These rule-templates

assume that in the PHRASEBOOK domain we will only encounter statements of general liking.

The essence of the approach embodied by these rules is to group predicates that exhibit
a particular behavior and then to annotate the frame with the features associated with
this group. Note that in this example, we allow lexical information to be expressed in the
PLUTO rule-templates. An alternative approach would be to set a definite quantifier feature
in the lexicon for each verb expressing like. However, if we did that, the quantifier would
be set in the predicate frame as opposed to its topic. This introduces an added complexity
that we choose to avoid. An alternative that would also be compatible with the policy of
maintaining domain-specific information in the lexicon would be to implement more specific
feature-placement mechanisms directly in the lexicon, i.e., to allow lexical entries such as

those in Figure 3-11.

3This example is the inverse of the example from Section 2.3.1, in which the target was English and we
wanted to delete a definite article.

55

interest V1 ‘"interes" :quantifier[:topic] "def"
like Vi ‘*“gust" :quantifier[:topic] "def"
love V1 *"encant" :quantifier[:topic] "def"

Figure 3-11: An imaginary lexicon with more specific feature-placement mechanisms. This
would set a definite quantifier directly in a topic frame contained in any one of the three
predicates listed, whenever PLUTO visited their lexical entry.

3.3.3 Inflecting Root Forms and Choosing Forms for Modifiers

PLUTO may also be used to set information, like gender and number, for inflecting root forms
of verbs and choosing appropriate forms for the modifiers of nouns. In Spanish, there are
many different tenses and moods. In PHRASEBOOK, unlike other domains we have developed,
many of these tense/mood combinations occur in the kinds of sentences we would like to
be able to support. For example, in our JUPITER weather information domain, the tense is
generally either present indicative or future indicative. In contrast, PHRASEBOOK thus far
(in the development phase) exhibits nine different tense/mood combinations, summarized
in Table 3.2. Although the majority (72%) of the sentences in our development phase are
in the present indicative tense, we want to be able to support inflection for a wide range of

possible tenses and moods.

In Spanish, conjugated verbs agree in number with the subject of the sentence: there

4

are six” conjugations for each tense/mood combination. Also, adjectives agree in number

(singular or plural) and gender (male or female) with the nouns they modify.

The rule-templates in Figure 3-12 set number and gender information in a linguistic
frame in a way appropriate to Spanish. The two basic strategies of the rule-templates are
(1) get number and gender information from the top-level topic and propagate it to the top
level of the frame and its predicate(s), and (2) set number and gender information in all

topics and propagate that information to their modifier children.

An example will help elucidate these rules. Figure 3-13 depicts an input frame to PLUTO,
and Figure 3-15 shows the same frame after being processed using the rule-templates in
Figure 3-12 and the lexicon excerpt in Figure 3-14. Number and gender information is set

in the pronoun topic by the keyword command :topic in the clause_template rule. This

41st person, 2nd person, and 3rd person, both singular and plural.

56

Mood Tense

Examples from PHRASEBOOK

Indicative

Present Simple

Can we have the check please?
Nos trae la cuenta, por favor?

Present Progressive

What are you trying to buy?
Qué estd tratando de comprar?

Future: Ir + a

Is it going to rain today?
Va a llover hoy?

Future Simple

Hang on I’ll ask someone.
Un momento preguntaré a alguien.

Preterite

I already reserved a room.
Ya reservé una habitacion.

Perfect

My wallet has been stolen.
M billetera ha sido robada.

Perfect Progressive

We have been waiting for a long time.
Hemos estado esperando por mucho tiempo.

Imperative

Please give it to me.
Démelo, por favor.

Conditional

I would like to go to a Greek restaurant.

Me gustaria ir a un restaurante griego.

Table 3.2: There are nine different tense/mood combinations manifest so far in our PHRASE-
BOOK domain.

clause_template

cls_propagate num

cls_propagate_gen

topic_template

top_propagate num
top_propagate_gen

set_child num
set_child gen

predicate_template

. :topic >cls_propagate num >cls propagate gen \
:pred ...

($clone :number[:topic]l) \

($softset :number "third") >set_child num
($clone :gender[:topicl) ($softset :gender "m") \
>set_child_gen

... (:name $core) \
>top_propagate num >top_propagate gen ...

($softset :number "third") \
>set_child num
($softset :gender "m") >set child gen

($set :number[:pred] :number)
($set :gender[:pred] :gender)

. :topic ...

Figure 3-12: PLUTO rule-templates for setting number and gender features in Spanish.

57

{c yn_question
:aux "do"
:topic {q pronoun
:name "you" }
:pred {p possess
:topic {q size
:quantifier "indef™
:pred {p sized
:topic "smaller" } } } }

Figure 3-13: Frame representing a string such as Do you have a smaller size?, before being
processed by PLUTO.

size N "talla" :gender "f"
you N "" :number "third"

Figure 3-14: Lexicon entries size and you.

rule looks up the entry for you in the lexicon and finds its number is third.® Next, the
rule-template cls_propagate_num clones this information and places it in the top-level frame
of the possess predicate. The rule-template cls_propagate_gen first sets a default value for
gender (since there was no gender information set from the lexicon) and then propagates
that information to the predicate.

When the size topic frame inside the possess predicate frame is processed by the
topic_template, the lexicon is again visited, this time retrieving gender information from
the size entry. Default number information (i.e., third, which is interpreted as singular)
is set by the top_propagate_num rule, which also sets number information in the predicate
sized. Finally, the gender information gleaned from the lexicon is propagated to the child

predicate as well.

3.4 Summary

In this chapter, we have shown that our new architecture for the surface realization compo-
nent may be used to establish a framework for MT that draws on two prominent approaches:
interlingua and transfer. Furthermore, we have presented some in-depth examples of how
PLUTO can be used to carry out structural transfer on source-biased interlingual frames.

As we implied throughout the presentation of these examples, we have in mind a particular

SThis is adhering to a convention that, unless otherwise indicated, number is singular.

58

{c yn_question
:topic {q pronoun
:name "you"
*:number "third" }
*:number "third"
*:gender "m"
:pred {p possess
:topic {q size
:quantifier "indef"
*:gender "f"
*:number "third"
:pred {p sized
:topic "smaller"
*:gender "f"
*:number "third" } }
* :number "third"
*x:gender "m" } }

Figure 3-15: Frame representing a string such as Do you have a smaller size?, ready for
generation in Spanish. A possible output string is ;Tiene una talla mds pequeria? The
indicative verb form tener has been conjugated using the number (i.e., third information,
and the adjective pequeria (small) is in the feminine singular form, like the noun (i.e., talla,
or size) it modifies.

partnership between PLUTO, GENESIS, and the lexicon they share. The policy we develop
in Chapter 4 advocates the localization of as much domain-specific information as possi-
ble in the lexicon, using PLUTO only to put that information into linguistic frames in the
appropriate position. Our experimentation with PLUTO thus far has gradually led us to
this use of the components of the surface realization subsystem. We find this approach
beneficial because it allows for more general, domain-independent use of the PLUTO and
GENESIS rule-templates. Thus, we find that the new architecture of the system helps bring
us closer to one of our most important goals: making our rule- and template-based system

more manageable from the point of view of development.

59

60

Chapter 4

A Policy for Multilingual

(Generation

There are many ways of utilizing the components of the NLG subsystem of the Spoken
Language Systems group to build multilingual natural language applications. For instance,
it is possible to imagine the PLUTO rule-templates encoding structural decision-making by
directly testing for the existence of specific semantic entities. We saw an example of such an
approach in Section 3.3.2: the presence of certain predicates (e.g., like and interest) triggered
the setting of a quantifier in the topic from the PLUTO rule-templates. In general, however,
we advocate a policy in which domain-dependent semantic information is contained entirely
within the lexicon. Section 3.3.1, with its example for choosing an appropriate Spanish
linking verb, adhered to this approach, as did the example for setting gender and number
in Section 3.3.3. In this chapter, we develop a policy for generation that embodies this

approach using PLUTO, GENESIS, and the lexicon in partnership.

4.1 The Partnership

The partnership we advocate between PLUTO, GENESIS, and the lexicon establishes a con-
tract: the role of the lexicon is to encode domain-specific lexical information; the role of
PLUTO is to populate meaning representations with this information; and the role of GEN-
ESIS is to form a string from the meaning representation in the context of domain-specific
lexical information. This partnership is summarized in Figure 4-1.

An ever-present goal driving our language generation research is to enable the devel-

61

. PLUTO GENESIS
meaning
representation‘ Frame | String string _
Modification Production
‘ PLUTO 1 ‘ Lexi 1 GENESIS 1
Rule-Templates exicon Rule-Templates

domain—dependent
information

domain—independent
information

Figure 4-1: PLUTO, GENESIS, and the lexicon are partners in a contract: the lexicon encodes
domain-specific information that PLUTO uses to perform frame modification; GENESIS uses
the enhanced frame to produce an appropriate string.

opment of domain-independent linguistic resources. The ability to encode such resources
allows for reuse across disparate domains. Research in spoken dialogue systems is often
carried out in multiple constrained domains. For example, the Spoken Language Systems
group has built systems in the weather information domain (JUPITER) [43], the air-travel
reservation domain (MERCURY) [33] [36], the flight status domain (PEGASUS) [45], and the
urban navigation domain (VOYAGER) [14], among many others. One reason for working in
limited domains is to restrict the vocabulary to a reasonable subset of all possible words in
a given natural language: automatic speech recognition relies heavily on statistical models,
and its performance degrades rapidly in the presence of out-of-vocabulary words [7] (i.e.,
words seen in testing but not in training). Developing new systems in novel domains helps
push our research forward because it encourages us to test new ideas and introduces new
challenges. It also links our research to practical problems. If the surface realization sub-

system is easy to develop, this facilitates the rapid deployment of systems in new domains.

Research in multilingual spoken dialogue systems also benefits greatly from domain-
independent linguistic resources. The Spoken Language Systems group has traditionally
been very interested in multilingual research (e.g., [22] [10] [42] [44] [15]). The more domain-
independent our linguistic resources can be, the easier it is to make new systems multilingual

by adapting the existing resources. The combination of the new architecture of our surface

62

realization subsystem and the policy we define helps to make our linguistic resources more

domain-independent, thereby facilitating the development of multilingual systems.

4.2 How to Use the New System: Examples

We present three examples — from French, Chinese, and English — to demonstrate the policy
we wish to enforce. In contrast to the examples from Chapter 3, the examples in this chapter

showcase the workings of the whole generation subsystem and not only PLUTO.

4.2.1 French

In this example, we demonstrate how our policy works with a translation of the phrases
there is or there are, and is there or are there into French. We start with the statement
forms (there is and there are) and show how a simple modification to the word ordering
rules in GENESIS is sufficient to translate the interrogative forms. In French, the translation
of both there is and there are is il y a, where the French words have roughly the following

English correspondences:

il y a
he there has

Figure 4-2 shows an input frame to the surface realization system. In English, this frame
might be paraphrased with the sentence There is a telephone in the room. However, for
output in French, this frame is incomplete: it is missing explicit subject information (the
word il, or he); its auxiliary verb link is underspecified; and it is missing number and gender
information. In this example, we focus on the first two problems and assume that other
rules in the PLUTO rule-template file fill in the number and gender features shown in the
PLUTO output frame of Figure 4-5.

The role of PLUTO in this example is simply to visit the lexicon and insert linguistic
information into the frame. The rule-template file in Figure 4-3 shows a clause_template
rule that processes the input frame of type clause from Figure 4-2. Among its commands
is a keyword command that causes PLUTO to visit the lexical entry for there, the value
of the :rhet key. This entry, shown in Figure 4-4, contains four pieces of information: the

default generation string, an alternative generation string, a pronoun, and a selector. The

63

{c statement

:rhet "there"
raux "link"
:topic {q telephone

:quantifier "indef"

:pred {p in

:topic {q room
:quantifier "def" } } }

Figure 4-2: An input frame to the surface realization system. A possible paraphrase, in
English, is There is a telephone in the room. This frame is underspecified with respect to
output in French.

| clause_template ... :rhet ... |

Figure 4-3: An excerpt from a French PLUTO rule-template file.

first two pieces of information have no effect on PLUTO’s behavior, but the third piece causes
PLUTO to add the key:value pair <:pro, il> to the input frame, and the fourth piece of
information causes PLUTO to set a vocabulary selector in the info-frame.!

The frame in Figure 4-5 is now ready for processing by GENESIS.2 The statement rule-
template in the GENESIS file in Figure 4-6 is responsible for generating the phrase il y a
from the frame. First, it generates the value of the keyword :pro, which is il. Since
there is no lexical entry for this word, the sub-string il is inserted into the target string.
Next, GENESIS looks up the lexical entry for there, the value of the keyword :rhet. It
chooses the default string y to add to the target string because there is no selector called
$:prepobj that has been set; it also sets the selector at the end of the entry ($:have) in
the info-frame.? Finally, it goes to the lexical entry for 1ink, where it is redirected to the

“p»

have entry by the syntax. This redirection is due to the $:have selector. The number
information set in the top level of the frame causes GENESIS to select the correct conjugated
form (a) to add to the target string. We assume other rules in the GENESIS rule-template
file that generate the remainder of the target string: Il y a une téléphone dans la chambre.

Note that all lexical information in this example is contained in the lexicon, delegating to

PLUTO the role of inserting features into the frame, and to GENESIS the role of using this

LThis last bit of information is not used by PLUTO in this example; rather, it is used in the string
production stage by GENESIS.

2We assume the existence of PLUTO rule-templates that visit the lexical entries for the words ke, telephone,
and room to supply appropriate number and gender information.

3Note that the info-frame used by GENESIS is distinct from the one used by PLUTO.

64

have X "avoir" FIRST "ai" SECOND "as" THIRD "a" \
PL_FIST "avons" PL_SECOND "avez" PL_THIRD "ont" \
FUTURE_FIRST "aurai" FUTURE_SECOND "aura"

link X "&tre" $:money "!cost" $:have "'have" \
FIRST "suis" SECOND "es" THIRD "est" PL_FIRST "sommes" \
PL_SECOND" "étes" PL_THIRD "sont"

there 0 "y" $:prepobj "la bas" :pro "il" ; $:have

Figure 4-4: An excerpt from a French lexicon.

{c statement
:rhet "there"
*:pro "il"
:aux "link"
* :number "third"
:topic {q telephone
:quantifier "indef"
*:gender "f"
:pred {p in
:topic {q room
:quantifier "def"
*:gender "f" } } } }

Figure 4-5: The frame from Figure 4-2 after processing by PLUTO. The new information in
the frame is the (:pro, il) key:value pair and number information at the top-level, and the
gender of telephone and room in nested frames.

information to produce a string.

A reordering of the commands in the GENESIS rule-template file allows the system to
produce the interrogative forms is there and are there, translated into French as y a-t¢-il.
The ¢ that appears between the verb (a) and subject (il) reflects the pronunciation of the
phrase and is linguistically non-functional. We will see how a postprocessing stage is used
to make this superficial modification to the target string.

The frame in Figure 4-7 is the input to the system. This frame is like the one in
Figure 4-2 except that it represents a yes-no question, rather than a statement. An English
paraphrase of this frame could be Is there a telephone in the room? Like the first frame, this
frame is lacking a subject pronoun, sufficient auxiliary information, and number and gender
information. It also undergoes processing by PLUTO, which uses the same rule-template
(from Figure 4-3) to produce the modified frame of Figure 4-8.

The GENESIS rule-templates of Figure 4-6 handle the frame in Figure 4-8; this time, the

rule-template named yn_question, matching the frame name, is selected to generate a string.

65

yn_question ... :rhet :aux :pro ...
statement ... :pro :rhet :aux ...

Figure 4-6: GENESIS rule-templates for producing strings il y a (there is and there are) and
y a-t-il (is there and are there).

{c yn_question

:aux "link"
:rhet "there"
:topic {q telephone

:quantifier "indef"

:pred {p in

:topic {q room
:quantifier "def" } } } }

Figure 4-7: This frame, input to PLUTO, is underspecified with respect to French. PLUTO
uses its rule-templates and the lexicon to add a subject pronoun as well as number and
gender information.

The word ordering specified by this rule-template causes the production of the target string
y a 4. The rewrite rules of Figure 4-9 cause this output to be rewritten with the correct
surface form (y a-t-il). These rules are contained in a separate file and are executed in a
separate postprocessing stage, following GENESIS string production. The final target string

is Y a-t-il une téléphone dans la chambre?

4.2.2 Chinese

Our previous example showed how we could produce French phrases using the lexicon to
encode linguistic information. Our next example uses the lexicon to encode word-class
information for surface realization of predicates in Chinese. In Chinese, noun phrases may
be associated with a particular word-class context which depends on the main noun being
modified. For example, in the noun phrase Yil bend shul, or a book in English, the main
noun shul (book) sets the word-class context for the phrase. This word-class determines the
form of the particle ben3. More generally, the word-class context can determine the form of
certain other words within the scope of the noun phrase, such as predicates containing the
noun phrase. Here, we see how we can encode this information in our surface realization
system while adhering to our policy of isolating domain-specific information in the lexicon.

We use the frame in Figure 4-10 to show how we achieve our goal. In English, this

frame could be paraphrased as Please take me to the airport. However, the input frame

66

{c yn_question
:aux "link"
*:number "third"
:rhet "there"
*:pro "il"
:topic {q telephone
:quantifier "indef"
*:gender "f"
:pred {p in
:topic {q room
:quantifier "def"

*:gender "f" } } } }

Figure 4-8: The frame output by PLUTO contains a subject pronoun (il) as well as number
and gender information.

| ny a il" ny a-t-il" |

Figure 4-9: Rewrite rules executed in a postprocessing stage account for non-linguistic
surface phenomena.

does not contain any of the word-class context information necessary for string production
in Chinese. Specifically, the correct form of the predicate take, song4, needs to be chosen.
In this case, it is the direct object pronoun me that establishes the word-class context.
PLUTO’s role is to fill in this missing word-class contextual information. In the example,
we say that the word me establishes a person word class. It is the lexicon that stores this
information. The topic_template rule-template in Figure 4-11 tells PLUTO that, in each topic
frame, it should search the lexicon for an entry matching the value of the :name key, if it
exists, or the frame name, otherwise. Doing so sets the word-class context, if one exists, for
each noun phrase.

There are two nested topic frames in the input frame, both with a :name key. The
pronoun topic frame contains a :name key whose value is me; the corresponding lexical
entry (in Figure 4-12) causes PLUTO to insert a key:value pair <:word-class, *person*>
into the frame. This defines the word-class context for the pronoun frame; this word-
class context will be used by GENESIS (in conjunction with the lexicon) to produce an
appropriate string. The second topic frame, named a_ location, contains a :name key
whose value is airport. Since the lexical entry corresponding to airport does not contain
word-class information, none is added to this topic frame. The frame in Figure 4-13 shows

the modification made by PLUTO during the preprocessing stage.

67

{c request
:politeness '"please"
:pred {p take
:topic {q pronoun
:name "me" }
:pred {p to_place
:prep "to"
:topic {q a_location
:name "airport"
:quantifier "def" } } } }

Figure 4-10: The PLUTO input frame contains no word-class context information and is not
ready for string production in Chinese. PLUTO visits the head noun of each topic frame,
which results in the appropriate word-class context being filled in for each noun phrase.

| topic_template ... (:name $core) ... |

Figure 4-11: An excerpt from a Chinese PLUTO rule-template file.

;; word-class features

*personk 0 "" ; $:person

selfx 0 "" ; $:person $:self

money 0 "" ; $:money

*spacex 0 "" ; $:space

food 0 """ ; $:food

locx 0 ""; $:loc

weather 0 "" ; $:weather

utensil 0 "" ; $:utensil

vehiclex 0 "" ; $:vehicle

teax 0 ""; $:tea

move 0 "" ; $:move

actx 0 ""; $:act

item 0 "' ; $:item

;; lexical entries

airport N "jil _chang3"

credit_card 0 "xin4 yong4 ka3" :word-class '"*money*"

me 0 "wo3" :word-class "*person*"

take 0 "yao4" $:vehicle "zuo4" $:person "songd" \
$:money '"shoul" $:move ""

Figure 4-12: An excerpt from a Chinese lexicon. The key :word-class represents word-
class information for noun phrases.

68

{c request
:politeness '"please"
:pred {p take
:topic {q pronoun
:name "me"
*:word-class "*personx" }
:pred {p to_place
:prep "to"
:topic {q a_location
:name "airport"
:quantifier "def" } } } }

Figure 4-13: The modified output frame from the PLUTO preprocessing stage. Word-class
information has been added to the pronoun topic frame.

clause_template ... :pred ...
predicate_template :word-class <==:word-class $core

Figure 4-14: An excerpt from a Chinese GENESIS rule-template file.

The frame output by PLUTO is next processed by GENESIS, using the rule-templates in
Figure 4-14 and the lexicon (Figure 4-12). In each predicate, GENESIS pulls any word-class
context information in the predicate’s descendants up to the level of the predicate so that
it can be used there to select appropriate lexical forms. The important rule-template for
the purposes of this example is the predicate_template, which processes the take predicate.
The first two commands of this rule-template allow GENESIS to use the word-class context
set during preprocessing to select an appropriate realization of the verb take. Since there is
no :word-class key at the top level of the predicate frame, it is the second command that
accesses this information. The pull command reaches down into the topic frame to find the
:word-class key there and searches the lexicon for an entry matching its value (*personx).
GENESIS finds this entry among several such entries in the lexicon. The *person* entry
sets a selector $:person in the info-frame. Then, when the $core command executes and
GENESIS has to choose an appropriate realization of this word, the $:person selector causes
the selection of a form appropriate to the word-class context (song4), overriding the default
string, yao/.

One more example shows how the word-class contexts determined by noun phrases can
be used to produce appropriate Chinese strings in our surface realization system, using
the policy we have been advocating throughout this chapter. The PLUTO output frame in

Figure 4-16 is the modified version of the input frame in Figure 4-15 in which the word-

69

{c yn_question
:aux "do"
:topic {q pronoun
:name "you" }
:pred {p take
:topic {q credit_card
:number "pl" } } }

Figure 4-15: An input frame to PLUTO containing no word-class context information. This
frame can be paraphrased Do you take credit cards? in English.

{c yn_question
:aux "do"
:topic {q pronoun
:name "you"

*:word-class "*person*" }
:pred {p take

:topic {q credit_card

:number "pl"
*:word-class "*money*" } } }

Figure 4-16: The output frame contains word-class information sufficient for selecting a
form of the word take appropriate to a money word-class context.

class context for each topic frame has been filled in using the rule-template and lexicon
(Figures 4-11 and 4-12, respectively). This frame can be paraphrased in English with the
sentence Do you take credit cards? In this case, the form of take chosen by GENESIS in the

lexicon is shoul, appropriate in a money word-class context.

4.2.3 English

In Section 3.3.2, we presented an example for Spanish generation that deviated from our
policy of maintaining lexical information strictly in the lexicon. Here, we present an example
involving generation into English that is very similar to that example. We contrast these
examples to emphasize when it might be appropriate to break from the policy.

The example we develop here demonstrates how we can fill in missing auxiliary infor-
mation based on the value of the frame’s predicate, once again using the lexicon to encode
linguistic information. The frame in Figure 4-17 is missing auxiliary information with re-
spect to English and might produce the incorrect form When will it ready? We want to
write some general rules that will fill in a missing linking verb to be when the auxiliary will
is present and the predicate is an adjective that we know exists in the domain lexicon.

The rule-templates in Figure 4-18, use the lexicon to fill in the missing auxiliary infor-

70

{c wh_question
raux "will"
:topic {q pronoun
:name "it" }
:mode "root"
:pred {p ready
:trace '"when" } }

Figure 4-17: This PLUTO input frame is missing auxiliary information. PLUTO fills it in
using its rule-templates in conjunction with the lexicon.

clause_template ... :pred >soft_aux ...
predicate_template $core

soft_aux ($if :aux == "will" >set_aux2 >set_aux)
set_aux ($softset :aux ~:aux)

set_aux?2 ($softset :aux2 ~:aux)

Figure 4-18: An excerpt from an English PLUTO rule-template file.

mation appropriately. The clause_template triggers the processing of the ready predicate
frame, which in turn causes PLUTO to visit the lexical entry for ready. This entry, along
with other domain adjectives, causes an info-key to be set in the info-frame. The value of
this info-key is 1ink and suggests that a linking verb should be used, if needed, with such

adjectives.

The second command in the clause_template causes the rule-template soft_aux to execute.
Since the test of the single command contained in this rule-template succeeds, the rule-
template called set_auz2 is executed. This rule-template causes a key:value pair <:aux2,
link> to be set in the frame. It is now trivial for the GENESIS rule-template wh_question,

shown in Figure 4-21 to generate the string When will it be ready?

The frame in Figure 4-23 is the modified version of the frame in Figure 4-22, subsequent
to PLUTO processing. In this example, the same rules as before (i.e., the PLUTO rule-
templates in Figure 4-18) are used to fill in auxiliary information, only this time, because
there is no auxiliary will in the frame, the test in the soft_aux rule fails, and it is an :aux
key rather than an :aux2 key that is set in the frame with the information gleaned from
the lexicon. The frame, when processed by GENESIS, has paraphrase When is room 245

available?

This example contrasts with the example presented in Section 3.3.2. In that example,

we put lexical information into the PLUTO rule-template file because it was difficult to place

71

allergic A Mallergic" “:aux "link"
available A "available" “:aux "link"
closest A "closest" “raux "link"
ready A '"ready" ":aux "link"
vegetarian A ‘'"vegetarian" “:aux "link"

Figure 4-19: An excerpt from an English lexicon. Domain adjectives set an info-key in the
info-frame which then causes PLUTO to set a second auxiliary in the frame in the presence
of an auxiliary will.

{c wh_question
raux "will"
*:aux2 "link"
:topic {q pronoun
:name "it" }
:mode "root"
:number "third"
:pred {p ready
:trace "when" } }

Figure 4-20: The PLUTO output frame contains a second auxiliary. The frame can now
easily be paraphrased as When will it be ready?

| wh question <==:trace :aux :topic :aux2 :pred

Figure 4-21: An excerpt from a GENESIS rule-template file.

{c wh_question
:topic {q room
:pred {p post_number
:topic 245 } }
:pred {p available
:trace "when" } }

Figure 4-22: An input frame to PLUTO, missing auxiliary information.

{c wh_question
:topic {q room
:pred {p post_number
:topic 245 } }
*:aux "link"
:pred {p available
:trace "when" } }

Figure 4-23: PLUTO picks up the appropriate auxiliary information from the lexicon and
then uses it to fill in a missing auxiliary.

72

it from the predicate, which contained the semantically-relevant information, into the topic
directly from the lexicon. Hence, we resorted to grouping these predicates in PLUTO, where
we have more control over placement of keys. In the example we just developed, we also
could have grouped the domain adjectives in the PLUTO rule-template file. However, we
chose to put this information in the lexicon, thereby adhering to our stated principle of
encoding as much domain-specific lexical information as possible in the lexicon, leaving the
PLUTO and GENESIS rule-templates as domain-independent as possible.

In the next and final chapter, we give a formal evaluation of PLUTO and present our

conclusions and future directions for this work.

73

74

Chapter 5

Conclusions

5.1 Evaluation

The formal evaluation of NLG systems has been the subject of much discussion in the
literature. For instance, Mellish and Dale [11] offer an overview of the problem. First, they
note that NLG encompasses a wide range of subtasks, including content determination,
sentence planning, and surface realization. Hence, one of the most important decisions to be
made when evaluating NLG is whether to evaluate the entire system (black boz evaluation)
or the individual components (glass box evaluation). In the case of the Spoken Language
Systems group’s GALAXY architecture, a black box evaluation of the NLG system would
include the dialogue manager, context resolution server, and surface realization component.
But because this thesis focuses on the surface realization component, we have looked for
ways to formally evaluate this component alone.

According to Mellish and Dale, another important question to ask concerning evalua-
tion is What should be measured? We have decided to evaluate the speed of our surface
realization component. In a spoken dialogue system, it is essential that the surface real-
ization component work in a fraction of real time, since it is the system as a whole that
must operate in real time. In addition to attaining an absolute measure of the speed of
this component, we aim to measure the effect of the new architecture on the speed of the
system.

In the next three sections, we first report the results of our timing experiments. Next, we
discuss some remaining aspects of our system that we would like to evaluate more formally,

including the coverage of our grammars and the quality of the system’s output in unseen

75

circumstances. Finally, we give an informal evaluation of our new system, emphasizing the
ways in which PLUTO has already been employed in several applications including machine

translation and query-response.

5.1.1 Timing

Processing time is a valuable, shared commodity in any real-time system. Omne goal in
spoken dialogue systems is to minimize the time it takes for the system to respond to user
queries. Thus, it is important to analyze the effect on processing time when a change to the
system is introduced. Adding a new component to a system may increase the processing
time of that system. Our experiments reveal that this is the case in our new system: in
adding a second pass through the frame, processing time has increased.

One question to ask is By how much has it increased? To answer this question, we
gathered a set of 355 English sentences with adequate (as judged by the author) Spanish
translations in both the old and new systems. We then generated a linguistic frame for
each sentence and ran each frame through the surface realization subsystem to estimate the
processing time in each system configuration. Since the granularity of the system clock was
too coarse to measure the processing time of single frames, we measured the total time it
took the system to process each frame 100 times,! and then divided by 100 to estimate the
average time for each frame. The experiment was conducted on an 850-MHz Pentium III
machine.

Figure 5-1 shows the results of this experiment. The histogram plots the log of the
ratio (new:old) of the times for corresponding sentences in the new and old systems. The
median of this distribution is 0.2159, which, when exponentiated, is 1.2410. This indicates
that our current implementation of the new system takes about 1.24 times longer to process
sentences than our implementation of the old system.

Another question to ask about timing is Approzimately how much processing time does
the surface realization subsystem take in the new system? We use the same set of 355
sentence used in the first timing experiment to answer this question. On average, the
new system processes a sentence of between 1 and 13 words in length (an average length

of 5 words) in 10.8 ms. Our search of the literature has found only two other sources

1We used a call to clock(), a C function that estimates the processor time used by the program.

76

Number of Sentences

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 18

Log Ratio of Times (New:Old)

Figure 5-1: The graph plots the log ratio of times (in milliseconds) in the new system vs.
the old system against the number of sentences. The new system takes an average of 1.24
times longer than the old system.

of comparison. Oh and Rudnicky [26] report an average generation time in their hybrid
(template-stochastic) system of about 200 ms for utterances of around 10-20 words long
on a 400-MHz Pentium machine. Bangalore and Rambow [2] report an average time per
sentence of 517 ms in their stochastic tree-based generator FERGUS. The authors do not

state the type of machine they used to conduct their experiments.

5.1.2 Coverage and Quality

There are some remaining aspects of our system that we would like to evaluate more for-
mally, including the coverage of our grammars and the quality of the system’s output. One
way to test these aspects of the system is to run it on a set of novel test sentences and
evaluate the results. Mellish and Dale [11] suggest two metrics for measuring the quality
of such output: accuracy (how well the generated utterance conveys the desired meaning)
and fluency (the readability of the output). Bangalore, Rambow, and Whittaker [3] suggest

some automatically-derived metrics that correlate with human judgments of quality and

7

understandability. However, their metrics only work for generators with syntactic input,
and the linguistic frames used in this thesis are peppered with both syntactic and semantic
information.? Alternatively, it would be possible to ask human judges to rate the quality
of the output.

The reason we do not include a formal evaluation of these aspects of the system in this
work is that we have not yet implemented several comprehensive grammars that adhere
to the grammar-writing policy we developed in Chapter 4 for using our surface realization
component.? We advocate this policy because we believe it will lead to robust and reusable
grammars. Hence, any test of the coverage of our grammars and of the quality of the
system’s output should also test this approach to grammar-writing, since the system itself
does not sufficiently constrain grammar-writing. Also, it is important that when we do
formally evaluate the coverage and quality of the grammars, we have several grammars
available to us: one must keep in mind that an evaluation of our system via an evaluation
of the grammars is inherently subject to the idiosyncrasies of the grammar-writer. Having
several grammars written by different people all following the same principles of grammar

writing will help to normalize the results of such an evaluation.

5.1.3 Informal Evaluation

Although this work has not yet been fully evaluated in a formal manner, there is much
informal evidence that it has been and will continue to be useful in the context of the Spo-
ken Language Systems group’s GALAXY architecture. We have been using the new system
for several months now and are finding it very amenable to the development of multilin-
gual applications. Throughout this thesis, we have given several examples from our pilot
PHRASEBOOK application, a speech-based, travel-domain translation system. Several devel-
opers have used PLUTO to create multilingual grammars for this application. The Spanish
grammar I wrote can handle a set of 500 sentences that were solicited from colleagues,
prompted for phrases a traveler might want to say in a foreign language while abroad.

While this grammar does not adhere strictly to the policy we formulated in Chapter 4,% its

*We are currently in the process of moving toward a syntactic representation, so this may be a useful
metric in future work.

3This is in part due to the fact that we are also in the process of updating our linguistic representation
to be more syntactic, which impacts our grammars.

“In fact, it was in part the process of writing this grammar that helped us conceive of this policy: it made
us realize that there were many ways of using the surface realization components, some with more promise

78

existence is proof that the new incarnation of the surface realization system is at least as
powerful as the old one. Having written a Spanish grammar using the old system, I can
also say that the new system is much easier to use. In addition to Spanish, we have also
implemented grammars for both English and Chinese, having translated the same set of
500 sentences from English to Chinese and back to English.

The thrust of this thesis has been on the use of PLUTO for multilingual applications.
However, we have also employed PLUTO as a preprocessor in query-response applications.
For instance, in the last year, our group has developed new applications in the HOTEL
and RESTAURANT domains. In these domains, PLUTO has been used to annotate meaning
representations with information pertinent to summarization of a database lookup. For
example, PLUTO can process a long list of restaurants to figure out where the majority of
them are located. PLUTO can also decide when there are few enough entries in a list of
items to be explicitly enumerated. We have developed some special commands for using

PLUTO in query-response applications. These are explained further in Appendix A.

5.2 Summary

This work has presented an architecture and a grammar-writing policy for a surface re-
alization component embedded in a spoken dialogue system. The architecture decouples
two subtasks in surface realization: (1) the modification of meaning representations to per-
form feature selection and structural transformations, and (2) lexicalization, morphological
inflection, and word ordering in the production of strings. This decoupling has many advan-
tages. For instance, it simplifies the system’s rules, making them easier to read and develop.
Additionally, making two passes over the meaning representation allows the exploration and
analysis of the meaning representation without actually having to generate strings. Making
two passes has some potential disadvantages — forcing a developer to learn two distinct
formalisms, and increasing processing time. However, we have shown that the latter prob-
lem is negligible since the system is already quite fast, and we have mitigated the former:
by respecting the formalism previously developed in our realization system, we have devel-
oped a new grammar-scripting language that utilizes almost the same command names and

syntax, with an associated semantics appropriate to frame modification. Finally, we have

for domain independence than others.

79

showcased our decoupled architecture in a hybrid approach to MT combining structural
transfer and interlingua.

In spite of the fact that the decoupling imposes a logical division in the surface realization
component, the system is not sufficiently constrained by itself to achieve our goal of writing
robust, reusable, domain-independent grammars. To compensate for this, we have presented
a policy for grammar-writing. Our policy is to encode as much domain-dependent and
linguistic information as possible in the lexicon, allowing such information to spill into the
grammars only when doing so greatly simplifies the writing of the grammars. We have
offered several examples for generation into four languages that illustrate the partnership

among the components of the surface realization system.

5.3 Future Work

There are a few changes to the current implementation of the surface realization system
that will likely need to be made in the future. Most importantly, there exists functionality
in PLUTO and GENESIS that should be identical but is not. This is due in part to the fact
that I developed the PLUTO code largely independently of the GENESIS code.? While I
endeavored to adhere exactly to the descriptions of the system painstakingly supplied by
Lauren Baptist in her thesis [5], there were adjustments made to certain algorithms that
resulted in misalignments between the two components. For example, PLUTO and GENESIS
seem to have different policies for selectors set from the vocabulary. This may be confusing
to a developer and should be standardized in the future. Another source of misalignment
is functionality that was added to PLUTO but not to GENESIS. For example, the ability to
test the equality of values in if commands was not available in the native implementation
of GENESIS. This has been found to be very useful in PLUTO, and GENESIS needs to be
brought fully up-to-date. It would, I think, be very beneficial to re-work the realization
code to break down the component functions so that it is clearer what functionality PLUTO
and GENESIS share and where they diverge.

There are several project currently underway that will need and use the capability

for fast and easy, reusable generation grammars. For example, we are working toward

°I did not build a common library of functions shared by the two components because the GENESIS code
does not lend itself easily to such modularization.

80

the induction of parsing grammars from generation grammars. This work depends on
generation grammars that are simple to write, understand, and analyze. In addition, we
are developing a spoken language learning system that serves as a personal tutor for a
foreign language learner. The success of this application will also benefit from the ability
to create multilingual grammars quickly and easily. We are certain that in the future, as
world-wide communication continues to increase as ever, and as computers have a larger
and larger role in facilitating that communication, that our work will have an increasingly

important place.

81

82

Appendix A

PLUTO Reference Manual

PLUTO is a frame-manipulation component designed for use in a natural language generation
system. A developer can use PLUTO by creating a rule-template file using the commands
of the PLUTO scripting language. This reference manual provides information about these

commands in four sections:

e Frame usage and terminology: PLUTO has been developed in the context of the
Spoken Language Group’s GALAXY architecture which uses a linguistic frame consist-
ing of keywords and attributes to represent meaning. This section provides details
about GALAXY frames necessary for understanding the workings of the PLUTO script-

ing language.

e The PLUTO rule-template file and the lexicon: The second section describes
the format of the rule-template file and the lexicon. It also explains how PLUTO

rule-templates can be grouped to form classes.

e The PLUTO scripting language: The third section describes the syntax and

semantics of the scripting language commands.

e Examples: The last section provides examples of several of the commands. The
primary purpose of the examples is to illustrate the syntax and semantics of the
PLUTO scripting language. Although they are motivated by linguistic concerns, in

general they are insufficient for actual generation purposes.

This appendix adheres to the following typeface conventions: teletype is used for frame

83

{c yn_question
:aux "do"
:topic {q pronoun
:name "you" }
:pred {p possess
:topic {q food
:name '"apple"
:number "pl" } } }

Figure A-1: Linguistic frame representing a string such as Do you have any apples?

constituents, bold for general command names, and italics for rule-template and (specific)

command names.

A.1 cALAXY Frame Usage and Terminology

A.1.1 Introduction to Linguistic Frames

Linguistic frames are used to represent meaning in the GALAXY system. They are hierar-
chical, tree-like structures containing (keyword:attribute) pairs. Attributes can be strings,
integers, floats, frames, or lists. The recursive structure of frames allows for the encoding
of sentences of arbitrary length and complexity.

Figure A-1 depicts a linguistic frame. Any particular linguistic frame corresponds to a
set of language strings. For instance, two English strings in the set corresponding to the
frame in Figure A-1 are Do you have apples? and Do you have any apples? Similarly,
there may be more than one linguistic frame that represents the same language string. For
instance, a modified version of the frame in Figure A-1 that included a (quantifier:any) pair
in the food topic frame could also represent the string Do you have any apples? Hence,
there is a many-to-many mapping between linguistic frames and strings.

The frame from Figure A-1 is depicted in tree form in Figure A-2. In general, the
top level frame and its immediate constituents correspond to the root of the tree and its
children; nested frames and their immediate constituents correspond to the internal nodes
of the tree and their children; and the leaves of the tree are all strings, integers, or floats.

Frames come in three types, designed to be the major elements of linguistic structures:
clause, topic, and predicate (Figure A-3). Clause frames represent sentences and comple-
ments. Topic frames are primarily for noun phrases, while predicate frames are primarily

for prepositional, adjective, and verb phrases.

84

yn_questi on

\
aux topic predi cate
do pr onoun possess
name topi c
you f ood
/\
nane nunber
| |
appl e pl

Figure A-2: Linguistic frame as a hierarchical tree.

Linguistic frame names (Figure A-4) and keywords (Figure A-5) can relay semantic or
syntactic information. The hierarchical structure of a linguistic frame suggests syntactic
relationships among constituents. For instance, the frame in Figure A-6, with a topic,
auxiliary, and predicate at the top-level, and a topic frame nested in the top-level predicate

implies a subject-verb-object relationship among the frame constituents.

Frames as Generic Data Structures: The Info-Frame

Frames may also be used as generic data structures. For example, PLUTO uses frames to
encode information global to a linguistic frame in a structure called the info-frame. Because
child frames do not have access to their parents in GALAXY frames (i.e., there are no back-
pointers from children to parents), the info-frame also provides a mechanism for propagating

information from higher level frame constituents to lower-level ones.

Info-frames in PLUTO contain both keys (called info-keys) and selectors. The primary
difference between info-keys and selectors is that the former can take on string values and
the latter are binary flags. Both info-keys and selectors are set from either the PLUTO
rule-template file or the lexicon. Figure A-7 shows that there is a distinction between
selectors set from the rule-template file (rule selectors) and the lexicon (vocabulary selectors).
Vocabulary selectors are stronger than rule selectors because they persist in the info-frame
until explicitly removed, whereas rule selectors have an inherently limited lifetime. In

contrast, info-keys persist in the info-frame until explicitly deleted, whether set from the

85

cl ause frane

atemen topl c franmes

‘topic{{ ¢ pronoun
:name"i" }
:negate "not"

_ topl ythi 0

pred guality
: ‘topic"sweet"} } } }

pr edi cate frames

Figure A-3: Basic frame types correspond to the categories clause (denoted by a c), topic
(denoted by a g), and predicate (denoted by a p).

:name"i"
‘negate "not"
:aux "do"
:pred { p
topic{q @
:pred {

tOpIC"SNeet" 111}

Figure A-4: Linguistic frame names relay semantic and syntactic information. The frame
name pronoun provides syntactic information, while the other frame names provide semantic
information.

{ c statement

Ctopic}q pronoun
~Cname)

keywor ds ;:;j-' rrrrrrrrrrrrrrrrrr i

|
.‘: o "not”
. \lldou

pred { p want

>{ q anything

pred { p quality

~Ctopicsweet" } } } }

Figure A-5: Linguistic frame keys relay more semantic and syntactic information: the
keys :topic and :aux provide syntactic information, while :negate provides semantic
information.

86

‘negate "not"
:aux "do"
.pred { p want
fopic { g anything

pred { p quality
;topic "sweet"

Figure A-6: Linguistic frame hierarchy suggests syntactic relations. This linguistic frame
represents a string such as I do not want any sweets.

rule selectors

{ qinfo
-Selector { g selector
pred{p$ like}

vocabulary selectors

info—keys

Figure A-7: An info-frame contains info-keys that can take on values, as well as selectors,
set either from the vocabulary file or the rule-templates file, that act as flags.

rule-template file or the lexicon.

A.2 The pLuTO Rule-Template File and the Lexicon

The PLUTO rule-template file contains rule-template names and commands. Each rule-
template is associated with a set of commands that are executed when the rule-template

executes. The rule-template file has the following general format:!

rule-template-name commandy, commands ...commandy,

In general, every time PLUTO needs to process a frame (either the top-level frame or a
nested frame), it looks for a rule-template with which to process it. PLUTO adheres to the

following rule-template-finding algorithm to search for such a rule-template:

'"When a rule-template is too long to fit on a single line, a backslash character (’\’) may be used to
indicate that the rule-template continues onto the subsequent line.

87

1. if there is a rule-template that matches the frame name of the current frame, use

that rule-template;

2. if there is a group that contains the frame as a member (i.e., the name of the frame

is on its membership list), then use the group’s rule-template;

3. use a default template for the type of the current frame (i.e., clause, topic, or

predicate).

When a match is made in one of the steps in the algorithm, the rule-template executes.
An alternative way for a rule-template to execute is when control is explicitly transfered to

that rule-template via a goto command.

Groups

Groups serve two purposes: the first is to abstract over frames that have similar processing
requirements so as to avoid an explosion of rule-templates (see [5], pp. 81-87); the other
is to refer to a set of semantic concepts as a class and avoid having to name each member
separately.

Grouping rule-templates have the following format:

type_groups group-name; group-names ... group-name,
group-name; group-member-list

group-name; _template commands

group-name, group-member-list

group-name,_template commands

All of the members of a particular group are constrained to have the same frame type.
A special rule-template called type_groups lists the groups for each type. There is another
special rule-template for each group-name in this list. The body of each such rule-template
consists of a list of the members of the group. Members are identified by frame name.
Finally, there is a rule-template for each group, called group-name_template.

Once grouped, group names may be used as primitives in other commands. For instance,

88

an if command can test on the existence of a semantic class by referring to the group name.

Default Rule-Templates

To ensure that there is a rule-template that will handle every frame, it is possible to provide
a default rule-template for each frame type. If there is no rule-template matching the specific
frame name, and if the frame is not a member of any group, then the default rule-template

will be used to process the frame. Default rule-templates have the following format:

frame-type_template command; commands . ..command,

The Lexicon

The lexicon, shared by PLUTO and GENESIS, has the following general format:

entry-name part-of-speech “default” other-lexical-information

The part-of-speech can be anything but is typically one of N (noun), V (verb), A (adjective),
or O (other). The first quoted string following the part of speech is the default, although
there may be other possible realizations for the entry in other-lexical-information. other-
lezical-information may also include information such as number and gender, which PLUTO

can then make explicit in the frame when it visits the vocabulary file.

A.3 The pLUTO Scripting Language

Table A.1 gives a brief description of each command in the PLUTO scripting language. The
remainder of this section describes the syntax and semantics of each command in more

detail.

A.3.1 Selector

Lezical and Global Selectors

[$: selector-name]

Local Selectors

89

Command Name

Purpose

selector

Set a flag in the info-frame.

keyword

Process the value of a key in the current frame.

info-key

Process the value of an info-key in the current
info-frame.

single predicate

Process the value of a predicate in the current frame.

:pred

Process the values of all predicates in the current frame.

lexical lookup

Insert information from a particular lexical entry
into the frame.

core Insert information from the lexical entry associated
with the frame name into the frame.

child Process a key, a predicate, or all predicates in one
or more child frames.

tug Process a key, a predicate, or all predicates in
all child frames.

yank Process a key, a predicate, or all predicates in

all descendant frames.

yanked child

Process a key, a predicate, or all predicates in
the descendants of one of more child frames.

goto

Transfer control from the current rule-template to a new
rule-template.

special form

Perform some specific computation.

or

Execute a list of primitive commands from left to
right and stop upon the first success.

set

Set a (keyword:attribute) pair in the linguistic

frame or a non-empty set of its children, or set an
(info-key:attribute) pair in the info-frame, overwriting the
current value of the keyword or info-key, if it exists.

softset

Set a (keyword:attribute) pair in the linguistic

frame or a non-empty set of its children, or set an
(info-key:attribute) pair in the info-frame, if there is no
current value of the keyword or info-key.

clone, softclone

Syntactic sugar for a particular type of set and
softset command, respectively.

del

Delete a (keyword:attribute) pair from the linguistic
frame or a non-empty set of its children, or an
info-key:attribute pair or selector from the info-frame.

if, if/else_if

Execute a command based on the result of a test.

suspend

Conceal a set of info-keys for the duration of
the current rule-template.

Table A.1: The PLUTO scripting language commands in a nutshell.

90

{ ($:selector-name target) where target is a keyword or predicate command.]

Selector commands are used by PLUTO to set a binary flag in the info-frame. They may
be issued from either the PLUTO rule-template file (rule selector) or the lexicon (lezical
selector). There are two types of rule selectors: local selectors and global selectors.

The lifetime of a selector depends on its type:
e a lexical selector is set in the info-frame and remains there until explicitly deleted;

¢ a local selector appears with an associated target and remains in the info-frame only

as long as the target is being processed;

¢ a global selector is set in the info-frame while PLUTO is processing some frame and

remains in the info-frame as long as that frame is being processed.

A.3.2 Keyword

[:keyword-name J

Keyword commands are used to reference the value of a key in the current frame. The
value of a key is processed according to its type, assumed to be one of string, integer, frame,

or list:

e strings and integers: PLUTO searches the lexicon for an entry matching the string
or integer. If such an entry is found, PLUTO adds all keywords in the entry to the

frame and all info-keys and vocabulary selectors to the info-frame.

e frames: PLUTO searches for a rule-template with which to preprocess the frame using

the rule-template-finding algorithm of Section A.2.

e lists: each list element is processed according to its value (string, integer, frame, or

list).

A.3.3 Info-Key

[s info-key—name]

Info-key commands are used to reference the value of an info-key in the current info-frame.

The value of an info-key is assumed to be a string.

91

A.3.4 Single Predicate

[predicate-name]

Single predicate commands are used to reference the value of a predicate in the current
frame. The value of a predicate is always a frame, and it is processed in the same way as

in a keyword command.

A.3.5 Any Predicate

A :pred command is a wildcard used to reference the values of all of the predicates in the

current frame (in an arbitrary order).

A.3.6 Lexical Lookup

Lexical lookup commands are used to insert information from a particular lexical entry
into the current frame. PLUTO looks for a lexical entry that matches the lexical item and

adds all keywords in the entry to the frame and all info-keys and vocabulary selectors to

the info-frame.

A.3.7 Core

Core commands are used to insert information from the lexical entry associated with the

frame name into the frame (keywords) or info frame (info-keys and vocabulary selectors).

A.3.8 Child

[outer-ea:pr [inner-expr; inner-expry ... inner-expr, | J

Child commands are used to reference a key, a predicate, or all predicates in one or more
child frames. Each inner-erpression is a keyword name, a predicate name, or a :pred
command. Each outer expression is a keyword command, a single predicate command,
or a :pred command. PLUTO evaluates each inner-erpression and searches for matching
subframes of the current frame. Then, it executes the outer-erpression in the context of

each of these frames.

92

A.3.9 Tug

Tug commands are used to process a key, a predicate, or all predicates in all child frames.
In other words, the expression can be a keyword command, a single predicate command,

or a :pred command, which is executed in the context of all child frames.

A.3.10 Yank

Yank commands are used to process a key, a predicate, or all predicates in all descendant
frames. Again, the expression can be a keyword command, a single predicate command,
or a :pred command. This command is executed in the context of any descendant of the

current frame with a frame value.

A.3.11 Yanked Child

[<::outer—expr [inner-expr; inner-expry ... inner-expr, | J

Yanked child commands are used to process a key, a predicate, or all predicates in the
descendants of one of more child frames. PLUTO first finds the inner erpressions with a
frame value in the current frame. Then, the outer expression is executed in the context of

all frame descendants of these child frames.

A.3.12 Goto

[> expression]

Goto commands are used to transfer control from the current rule-template to a new rule-
template. When control is transferred, PLUTO continues working on whatever frame it was
working on before the transfer occurred. The ezpression can be a rule-template name or
a group name. PLUTO will search for a rule-template whose name matches the expression.
If there is one, PLUTO checks to see if it is a group list. If it is, PLUTO searches for frame
children that are members of the group and processes each one. If the rule-template is not

a group name, PLUTO simply executes its commands.

93

A.3.13 Special Forms

Special forms are used to perform some specific computation or inference related to the
current frame. For instance, there is a special form for determining the most commonly
occurring elements in a list of values (majority). It is appropriate for PLUTO to perform
this kind of computation because the resulting information can be inserted into the frame,
where it is available for components that receive the frame (such as GENESIS) to make use

of it.

Majority Command

A majority command causes PLUTO to create and insert into the frame a list of values that
constitute the majority of a list in the frame. It makes use of two arguments that can be set
in the rule-template or supplied by the dialogue manager: :mazn and percent. It will only
create a :majority list if fewer than :mazn elements of the list consume more than :percent

percent of the total number.

List Items Command

[$list_items J

A list_items command causes PLUTO to add a list to the frame only if that list does not

exceed some predetermined size, which can be specified directly in the rule-template.

Singleton Command

Given a list of values, the singleton command adds information to the frame to note
whether there is only a single value present (singleton) or whether there is only a single

value absent (singleton-out) in a list.

Time Command

A time command may be used to convert military time to a standard format. This is used

94

primarily in conjunction with a database that stores time in military format.

Filter Command

A filter command may be used to silence elements in a list not containing a designated

pattern.
A.3.14 Or
[(e:vprl exTprs eTpr3 ... exprn)]

Or commands are used to execute a list of primitive commands from left to right and stop

upon the first success, where success is considered a change to the linguistic or info-frame.

A.3.15 Set and Softset

($set target source)

($softset target source)

A set command is used to

e set a (keyword:attribute) pair in the linguistic frame or one or more of its children, or

e set an (info-key:attribute) pair in the info-frame,

overwriting the current value of the keyword or info-key, if it exists.

A softset command performs the same function unless the keyword or info-key already
exists.

The target of a set or softset command may take the form of a keyword, an info-key,

or a child command:

o if the target is a keyword, then a set inserts the keyword whose value is the value of
the source into the frame, and a softset makes the insertion only if the keyword does

not already exist;

e if the target is an info-key, then the results of set and softset are the same as for a
keyword, but instead of setting keys in the linguistic frame, PLUTO sets info-keys in

the info-frame;

95

o if the target has the form of a child command, then its inner-strings-list is constrained
to have a single value (which may be a key, predicate, or :pred command) and the
outer-string must name a key and may not be yanked or tugged. Thus, the target
will either be a single keyword in (1) a particular child frame (keyword or predicate)

or (2) every predicate child.

The source of a set or softset command may take the form of a string, keyword, info-key,

GENESIS lexical lookup command, a core command, or a child command:

o If the source of the set command is a string, PLUTO sets the target to that string.

e If the source of the set command is a keyword that exists in the linguistic frame,

PLUTO sets the target to the associated value (a string, integer, frame, or list).

o If the source of the set command is an info-key that exists in the info-frame, PLUTO

sets the target to the associated value (a string).

e If the source of the set command is a GENESIS lexical lookup command, PLUTO asks
GENESIS to find a string for the source (as described in [5], pp. 63-64) and sets the

target to the result.

o If the source of the set command is a core command, PLUTO sets the target to the

name of the current frame.

e When the source of the set command is a child command, PLUTO sets the target to

the value of the keyword or predicate of the child frame.

A.3.16 Clone and Softclone
[($clone child-statement) }

($softclone child-statement)

The clone and softclone commands are syntactic sugar for special cases of the set
and softset commands, respectively: when the source is a child command and the target
matches its outer-string, then the target may be dropped and clone or softclone used

instead. Hence, the following two commands are semantically equivalent:

($set :name :name[:topicl) = ($clone :name[:topicl)

96

A.3.17 Del

[($del target) J

Del commands are used to delete a (keyword:attribute) pair from the linguistic frame or a

non-empty set of its children, or an info-key:attribute pair or selector from the info-frame.

The target may take the form of a keyword, predicate, info-key, selector, or child com-
mand. In all cases, PLUTO searches for the target in the linguistic frame (keywords, predi-
cates, and child commands) or the info-frame (info-keys and selectors), and, if it is found,

deletes the target and its value from the frame.

A.3.18 If

[($if test then [else])J

If commands execute the then consequent if the test evaluates to true; otherwise, if there is
an else consequent, it is executed. The then consequent and else consequents may be any
command that contains no whitespace.

The if test may take any of the following forms:

a keyword, predicate, info-key, or selector

e a :pred command,

e a group name,

a child command,

a test of equality or inequality,

e or a combination of any of the above tests, connected by a logical and or a logical or.

The first items in the above list evaluate to true if they exist in the current frame
(keywords and predicates) or info-frame (info-keys and selectors). A test in the form of a
:pred command evaluates to true if there exists at least one predicate in the current frame.
A group name test evaluates to true if one of the group’s members exists in the current
frame. A test in the form of a child command evaluates to true if the outer-expression is

found in at least one member of the inner-erpression-list. A test of equality or inequality

97

compares the value of two string-valued operands.? A test of equality evaluates to true
if both operands are the same; a test of inequality evaluates to true if both operands are
different.

Any number of the aforementioned tests may be connected by logical and (using the
symbols “&&”) or logical or (using the symbols “||”). Any such agglomerated test may only
use one logical connective or the other. An and-connected test is true iff each constituent

test is true, while an or-connected test istrue iff at least one constituent test is true.

Tests of Equality and Inequality

Tests of equality or inequality have the following form:
¢ Equality: operandl == operand2
e Inequality: operandl '= operand2

Operandl may take the form of a keyword, an info-key, a predicate, a tug, a yank, a
yanked child, or a child command, while operand2 may be any of these or a string. Both

operands are reduced to strings or lists of strings so as to compare their values:

e A keyword is converted to a string according to the value of the keyword in the current
frame. If the keyword does not exist in the current frame, then the operand value is
null. Otherwise, if the value of the keyword is a string, then the operand value is that
string. If the value is an integer, then the operand value is that integer, converted to

a decimal string. If the value is a frame, then the operand value is the frame name.

e The string value of an info-key is its value in the info-frame, if such an info-key exists.

If the info-key does not exist, the operand value is null.

e The string value of a predicate is the frame name. If the predicate does not exist in

the frame, the operand value is null.

e An operand in the form of a tug (or yank) command is converted to a string by
searching for the target among child (or descendant) frames of the current frame.

The algorithm for converting keywords and predicates to strings is used to convert

2 All string comparisons are case sensitive.

98

the target to a string. If more than one instance of the target is found, then the

operand reduces to a list of strings.

e An operand in the form of a yanked child command is converted to a string by
searching for the target among descendants of the frames in the inner-erpressions-list.
The algorithm for converting keywords and predicates to string is used to convert the
target to a string. If more than one instance of the target is found, then the operand

reduces to a list of strings.

e An operand in the form of a child command is converted to a string by searching the
inner-expressions-list for frames, and searching those frames for the outer-ezpression.
The outer-ezpression, be it a keyword or predicate, is then converted to a string using

the algorithm for converting keywords and predicates.

Two single strings are compared to one another directly. A single string p is compared
to each member of a list of strings £. An equality test evaluates to true iff 3s € £ s.t. p = s.
An inequality test evaluates to true iff Vs € £ s.t. p # s. Two lists of strings £ and ¢ are
compared to one another by comparing each member of one list to all of the members of
the other list. An equality test evaluates to true iff 3s € £,s’ € ¢’ s.t. s = s’. An inequality

test evaluates to true iff Vs € £,s' € ¢! s.t. s £ §'.

A.3.19 If/Else.if

[($if test; then; $else_if testy theny ... $else_if test, then, [else])J

An if/else_if command allows chaining of if commands. A series of tests and then conse-
quents describe different conditions and associated then consequents to execute. Execution
of the if/else_if command stops when the first test evaluates to true. If all tests fail, a final

else consequent is executed, if it exists.

A.3.20 Suspend

$suspend

($suspend info-key—name)

A suspend command is used to conceal a particular info-key (when info-key-name is pro-

vided) or all info-keys for the duration of a command.

99

{c statement
:topic {q pronoun
:name "i" }
:pred {p understand } }

Figure A-8: Frame before keyword and predicate commands have been executed. An
English string realization of this frame might be I understand.

clause_template :topic :pred
pronoun ‘name
predicate_template $core

Figure A-9: Keyword and predicate commands.

A.4 Examples

In the following examples of the PLUTO scripting language commands, frame elements that
have been inserted or altered during processing are prepended with an asterisk in the output
to highlight any changes due to processing. All examples use a Spanish lexicon but should

be understandable to any English speaker.

A.4.1 Example Keyword, :pred, and Core Commands

Given the frame in Figure A-8, and using the rule-templates in Figure A-9, PLUTO selects
the clause_template (because it matches the type of the input frame) and begins executing
its commands. The first is the keyword command :topic. The value of the topic is a
frame, and so PLUTO searches for a rule-template with which to process it. The pronoun
rule-template is used because it matches the frame name.

The pronoun template has one keyword command, :name. The value of this keyword

7

is the string “i.” PLUTO next searches the lexicon for a matching entry (Figure A-10). The
entry found contains number information, expressed in the form of a (key:value) pair. PLUTO
sets this number information as a (key:value) pair in the frame, as show in Figure A-11.
Since the pronoun command has now terminated, control is transferred back to the
clause_template, where the all predicates command is processed. There is only one child
predicate, understand. The predicate_template is chosen to process the frame since the
frame type is predicate. The core command causes PLUTO to search the lexicon for an

entry matching the frame name, “understand.” The entry found in Figure A-10 contains

a lexical selector command, which causes PLUTO to insert the selector $stem_changing

100

i N "" :number "first"
understand V ‘"entender" ; $stem changing

153
1

Figure A-10: Lexicon entries matching and “understand”.

{c statement
:topic {q pronoun
:name "i"
*:number "first" }
:pred {p understand } }

Figure A-11: Frame after keyword and predicate commands have been executed. Number
information has been added to the pronoun frame. In Spanish, this frame might be realized
as Entiendo.

into the info frame.? Processing ends with the frame in Figure A-11.

A.4.2 Example Keyword and Child Commands

Given the frame in Figure A-12 and the rule-templates in Figure A-13, PLUTO selects the
clause_template and begins executing its child command.

It first looks one-by-one through the inner expressions in the list, which in this case are
all predicate names. It has no success with the first predicate name and moves on to the
second. This predicate does exist in the frame, and so PLUTO searches the like frame for
the outer expression, in this case the keyword :topic. Since there is a :topic keyword in the
like frame, and since its value is a frame, PLUTO finds a rule-template (topic_template) with
which to process it. This rule-template contains a single keyword command, :name. At
this point, PLUTO visits the lexicon and finds an entry for “fish” (Figure A-14), producing

the frame in Figure A-15.

A.4.3 Example Tug, If, and Yank Commands

Figure A-16 shows a frame before the rule-templates in Figure A-17 are applied.
The first command of the clause_template is a tug that tells PLUTO to process all pred-
icates found in the child frames of the current frame. There are two child frames: the value

of the :topic keyword and the awaken predicate frame. PLUTO then searches these frames

3Although this selector is not used by PLUTO in this example, it would be used by GENESIS to choose
an appropriate conjugation of the verb. This example thus illustrates the way in which the two surface
realization components share the lexicon.

101

{c statement
:topic {q pronoun
:name "i" }
:pred {p like
:topic {q food
:name "fish" } } }

Figure A-12: Frame before child command has been executed. A possible string realization
of this frame in English is I like fish.

clause _template :topic[love like interest]
topic_template :name

Figure A-13: Child command.

| fish N ‘'pescado" :number "third" :gender "m"

Figure A-14: Lexicon entry matching “fish”.

{c statement
:topic {q pronoun
:name "i" }
:pred {p like
:topic {q food
:name "fish"
*:gender "m"
*:number "third" } } }

Figure A-15: Frame after child command has been executed. Number and gender infor-
mation has been added to the food frame. A Spanish paraphrase of this frame is Me gusta

el pescado.

{c yn_question
:aux "can"
:topic {q pronoun
:name "you" }
:please "please"
:pred {p awaken
:topic {q pronoun
:name '"me" }
:pred {p at_time
:pred {p clock_hour
:topic 6 }
:pred {p minutes
:topic 30 } } } }

Figure A-16: Frame before yank and tug commands have been executed. In English, this
frame might represent the string Can you please wake me up at siz thirty?

102

clause_template < ——:pred ($if $:reflexive <==:topic)
predicate_template $core
topic_template :name

Figure A-17: Yank and tug commands.

6 0 '"seis" :number "pl"

30 0 "treinta" :number "pl"
at_time 0 "a" :quantifier "def"
awaken V "despertar" ; $:reflexive
clock hour N '"hora"

minutes N "minuto" :conj "and"

Figure A-18: Lexicon entries matching topics and predicates in Figure A-16.

for all predicates they contain. The pronoun frame contains no predicates; however, the

awaken frame contains one predicate, at_time.

This frame is processed using the predicate_template rule-template. Its single core com-
mand tells PLUTO to search for a lexical entry matching the frame name. The entry in
Figure A-18 causes PLUTO to insert the vocabulary selector $:reflexive into the info-

frame.

The tug command is now complete, and PLUTO continues with the if command. Since
the $reflexive selector was just set in the info-frame, the if test evaluates to true, and the

consequent is evaluated.

In order to process the yank command, PLUTO first finds all children whose value is a
frame, following the same protocol as with the tug command. Again, the only such children
are the top-level pronoun topic and the awaken predicate. However, this time PLUTO looks
for all :topic descendants. During the search, PLUTO finds three such descendants: the
pronoun topic inside the awaken predicate, and the 6 and 30 topics inside the at_time
predicate.

For the pronoun topic, PLUTO uses the topic_template to process the frame and looks up
the value of the keyword :name in the lexicon. For the 6 and 30 topics, since their values
are integers, PLUTO simply searches the lexicon for an entry that matches these values as
strings (Figure A-18). In each case, PLUTO inserts the appropriate information, producing

the frame in Figure A-19.

103

{c yn_question
:aux "can"
:topic {q pronoun
:name "you" }
:please '"please"
:pred {p awaken
:topic {q pronoun
:name "me" }
:mode "root"
:pred {p at_time
*:quantifier "def"
:pred {p clock_hour
:topic 6
*:number "pl" }
:pred {p minutes
:topic 30
*:number "pl" } } } }

Figure A-19: Frame after yank and tug commands have been executed. Quantifier infor-
mation has been added to the at_time frame, and number information to the clock_hour
and minutes frames. In Spanish, this frame could be realized as the string ;Puede Ud.
despertarme a las seis y media por favor?

A.4.4 Example Keyword, Goto, and Core Commands

PLUTO begins processing the frame in Figure A-20 with the clause_template (Figure A-21).
The first command is the :topic keyword command. Using the topic_template and the
lexicon in Figure A-22, PLUTO adds the number information for the “you” entry to the
pronoun frame? (as shown in Figure A-23).

The next command in the clause_template is a goto command. PLUTO finds a rule-
template that matches the target of the goto, “verb_preds”; it then checks the predi-
cate_groups list and discovers that “verb_preds” is the name of a group. It searches the
list contained in the verb_preds special membership list rule-template to see if there are any
child predicates on the list. Since the predicate know is on the list, PLUTO processes this
child frame, selecting the verb_preds_template to do so.

The first command of the verb_preds_template is a keyword command. PLUTO finds a
:rel_clause key in the know frame and processes its frame value (the exist frame) with
the clause_template. PLUTO processes the topic of the exist frame with the topic_template
(which, together with the lexicon, adds number and gender information to the bank machine

frame). The goto command of the clause_template in this case fails because there are no

*Note that in Spanish, the formal you (usted) is conjugated in the third person, singular form.

104

{c yn_question
raux "do"
:topic {q pronoun
:name "you" }
:pred {p know
:rel_clause {c exist
:rhet "there"
raux "link"
:trace "where"
:topic {q bank_machine
:quantifier "indef" } } } }

Figure A-20: Frame before goto commands have been executed. In English, this frame
could represent the string Do you know where there is a bank machine?

clause_template :topic >verb_preds
topic_template :name $core

predicate_groups verb_preds

verb_preds go listen know see understand
verb_preds_template :rel_clause

Figure A-21: Goto commands.

children in the exist frame that are members of the verb_preds group.

Having completed the :rel_clause rule-template, outputs the frame in Figure A-23.

A.4.5 Example Goto, Or, Clone, and Softset Commands

The frame in Figure A-24 is processed using the rule-templates in Figure A-25.

Processing begins using the clause_template rule-template and its first command, the
keyword command :topic. The :name command embedded in the first command — an or
command — of the topic_template executes successfully, setting the number information in
the lexical entry for “we” in the frame (see Figure A-27).

The next command in the topic_template is a goto command. The target is a rule-
template that is not a group name, so control is transferred to it. This rule-template,
set_default_gender, then causes default gender information (in this case the default is male)
to be set in the pronoun frame, due to its softset command. In contrast, the second goto
command of the topic_template transfers control to a command that has no effect since a
key called number information already exists in the frame.

Now finished with the :topic command of the clause_template, PLUTO proceeds to the

second command, another goto command. This command causes PLUTO to transfer control

105

bank machine N "ATM" :number "third" :gender "m"
where 0 "dénde"
you 0 "" :number "third"

Figure A-22: Lexicon entries matching topics and predicates in Figure A-20.

{c yn_question
:topic {q pronoun
:name "you"
*:number "third"}
:pred {p know
:rel_clause {c exist
*:aux "there_is"
:trace "where"
:topic {q bank_machine
:quantifier "indef"
* :number "third"
x:gender "m" } } }

Figure A-23: Frame after goto commands have been executed. Number information has
been added to the pronoun frame, while :rhet key has been deleted from the exist frame.
The :aux key in the same frame has been altered to reflect the fact that the auxiliary hay
in Spanish means there is in English. Finally, number and gender information have been
added to the bank machine frame. In Spanish, this frame might be realized as ;Sabe Ud.
donde hay un cajero automdtico?

{c statement
:topic {q pronoun
:name "we" }
:pred {p speak
:topic {q language
:name "chinese" } } }

Figure A-24: Frame before or, clone, and softset commands have been executed. This
frame might represent the English string We speak Chinese.

clause_template :topic >propagate number >propagate gender :pred
topic_template (:name $core) >set_default gender >set_default number
propagate number ($clone :number[:topicl) \

($softset :number[:pred] :number)
propagate_gender ($clone :gender[:topicl) \

($softset :gender[:pred] :gender)
set_default number ($softset :number "third")
set_default_gender ($softset :gender "m"
predicate_template :topic

Figure A-25: Or, set, and softset commands.

106

chinese N ‘'"chino" :gender "m"
we N "" :number "pl_third"

Figure A-26: Lexicon entries matching topics in Figure A-24.

to the propagate_number rule-template. This rule-template consists of a series of commands
from the set family that cause number information to be propagated to the top-level frame
and its children. The first of these commands, a clone command, causes the target keyword
(:number) to be set in the frame with the value taken from the number of the topic, recently
set in the pronoun frame. The second command propagates the number information in the
top-level frame to all predicates.

The next goto command in the clause_template causes PLUTO to transfer control to
the propagate_gender rule-template. Its commands behave similarly to those of the propa-
gate_number rule-template.

The last command in the clause_template causes PLUTO to process the predicate speak
with the predicate_template. The only command in this rule-template is the keyword
command :topic; PLUTO can once again use the topic_template to process the topic frame.
The first command of the or command is successful because PLUTO modifies the frame with
the gender information in the lexical entry for chinese. Finally, default number information
(in this case third person singular®) is set in the language frame. The set_default_gender

rule-template has no effect in this case.

A.4.6 Example Del and If Commands

PLUTO takes as input the frame in Figure A-28 and outputs the frame in Figure A-30 after
processing with the rule-templates in Figure A-29.

The first rule-template is the clause_template, and its first command says to go to a rule-
template called decide_del topic containing a single if command. Its test has two subparts
connected with a logical and. The first part of the test says that the topic must evaluate
to the string “thing.” Since the name of the :topic frame is “thing,” this test of equality
evaluates to true. The second part of the test says that the quantifier of the topic must

evaluate to the string “this.” Since it does, this equality test is also true, and the then

By convention, if number is not explicitly plural (e.g., “pl_third”), it is considered singular.

107

{c statement
:topic {q pronoun
:name "we'"
*:number "pl_first" }
*:number "pl_first"
*:gender "m"
:pred {p speak
:topic {q language
:name '"chinese"
*:gender "m"
*:number "third" }
*:number "pl_first"
x:gender "" } }

Figure A-27: Frame after or, clone, and softset commands have been executed. Number
and gender information has been acquired for the pronoun frame and then propagated from
there to the top-level frame and its predicate. Number and gender information has also been
added to the language frame. In Spanish, this frame might represent Hablamos chino.

{c statement

:topic {q thing
:quantifier "this" }

:number "third"

:gender "m"

:aux "link"

:pred {p quality
:topic "too salty"
:number "third"
:gender "m" } }

Figure A-28: Frame before del and if commands have been executed. In English this frame
might represent the string This is too salty.

clause_template >decide del_topic >set_aux

decide del topic $if :topic == "thing" && :quantifier[:topic] == "this" \
>del_topic
del _topic ($del :topic)
set_aux ($if :aux == "would" >set_conditional)\
$else if :aux == "link" || :aux == "will be" >set_link \
set_link ($if at_age >set_tener \
$else_if :trace == "where" || <==:trace == "where" \

>set_estar \

$else if estar preds >set_estar >set_ser)
predicate groups estar_preds
estar _preds on state_of being available lost ready quality over_there
set_estar ($set :aux "link estar")

Figure A-29: Del and if commands.

108

{c statement
:number "third"
:gender "m"
*:aux "link_estar"

:pred {p quality
:topic "too salty"
:number "third"
:gender "m" } }

Figure A-30: Frame after del and if commands have been executed. The topic frame thing
has been deleted, and the :aux key has been refined. In Spanish, there are several ways
to express the English verb to be. This frame might be realized in Spanish with the string
Estd demasiado salado.

consequent is executed. The then consequent is a goto command. Control is transferred to
the del_topic rule-template, which tells PLUTO to delete the topic (see Figure A-30).

The second command of the clause_template transfers control to a rule-template for
setting the auxiliary verb in the frame. The set_aux rule-template consists of a single
if/else_if command with two clauses. The test of the first clause fails because the value of
:aux in the frame is not equal to “would.” The test of the second clause succeeds because
one of the subtests (the first one) evaluates to true: :aux has the value “link.” The then
consequent of this clause transfers control to a different rule-template, set_link.

This rule-template also consists of a single if/else_if command, this time with three
clauses. The test of the first clause fails because the predicate at_age does not exist in the
frame. The test of the second clause asks two questions: first, if there is a key called :trace in
the current frame (i.e., the top level), and if so, if its value is the string “where;” and second,
if there is a key called :trace in any of the descendants of the current frame, and if so, if one
of these descendent’s value is the string “where.” Since the answer to both of these questions
is “no,” the second test fails. Finally, the test of the third clause asks whether there are any
members of the group estar_preds in the current frame. The members of the group are listed
in the rule-template file, and indeed there is such a member in the frame: the predicate
quality. Hence, this test succeeds, and its then consequent is executed. The consequent
is a goto rule-template that transfers control to a rule-template called set_link_estar that

causes the key :auz to be set in the frame with the value “link_estar.”

109

110

Bibliography

[1]

Scott Axelrod. Natural language generation in the IBM flight information system. In
Proceedings of First Language Technology Joint Conference of Applied Natural Lan-
guage Processing and the North American Chapter of the Association for Computa-

tional Linguistics, pages 21-26, Seattle, WA, May 2000.

Srinivas Bangalore and Owen Rambow. Exploiting a probabilistic hierarchical model
for generation. In Proceedings of the 18th International Conference on Computational

Linguistics, Saarbrucken, Germany, 2000.

Srinivas Bangalore, Owen Rambow, and Steve Whittaker. Evaluation metrics for gen-
eration. In Proceedings of the First International Natural Language Generation Con-

ference, Mitzpe Ramon, Israel, June 2000.

Lauren Baptist and Stephanie Seneff. GENESIS-1I: A versatile system for language
generation in conversational system applications. In Proceedings of the International
Conference on Spoken Language Processing, pages 271-274, Beijing, China, October
2000.

Lauren M. Baptist. GENESIS-1I: A language generation module for conversational sys-
tems. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA, Septem-
ber 2000.

John Bateman. KPML development environment — multilingual linguistic resource
development and sentence generation. Technical report, German Centre for Information
Technology, Institute for Integrated Information and Publication Systems, Darmstadt,

Germany, 1996.

111

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Issam Bazzi. Modelling Out-of- Vocabulary Words for Robust Speech Recognition. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, June 2002.

Jaime G. Carbonell, Teruko Mitamura, and Eric H. Nyberg. The KANT perspective:
A critique of pure transfer (and pure interlingua, pure statistics, ...). In Proceedings
of the Fourth International Conference on Theoretical and Methodological Issues in

Machine Translation, Montreal, Canada, June 1992.

John Chen, Srinivas Bangalore, Owen Rambow, and Marilyn A. Walker. Towards auto-
matic generation of natural language generation systems. In International Conference

on Computational Linguistics, Tapei, Taiwan, 2002.

Chian Chuu. LIESHOU: A Mandarin conversational task agent for the GALAXY-II
architecture. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA,
2003.

Robert Dale and Chris Mellish. Towards the evaluation of natural language genera-
tion. In Proceedings of the First International Conference on Language Resources and

Evaluation, pages 555-562, Granada, Spain, May 1998.

Bonnie Jean Dorr. Machine Translation: A View from the Lexicon. The MIT Press,

Cambridge, Massachusetts, 1993.

Michael Elhadad and Jacques Robin. An overview of SURGE: A reusable comprehen-
sive syntactic realization component. Technical Report 96-03, Department of Mathe-

matics and Computer Science, Ben Gurion University, Beer Sheva, Israel, 1996.

J. Glass, G. Flammia, D. Goodine, M. Phillips, J. Polifroni, S. Sakai, S. Seneff, and
V. Zue. Multilingual spoken-language understanding in the mit voyager system. Speech

Communication, 17:1-18, 1995.

James Glass, Joseph Polifroni, and Stephanie Seneff. Multilingual language generation
across multiple domains. In Proceedings of the International Conference on Spoken

Language Processing, pages 983-986, Yokohama, Japan, September 1994.

E. Goldberg and N. Driedger. Using natural-language processing to produce weather
forecasts. IEEE Expert, 9(2):45-53, 1994.

112

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Penman Natural Language Group. The PENMAN user guide. Technical report, Infor-

mation Sciences Institute, Marina Del Rey, CA, 1989.

Michael Halliday. System and Function in Language. Oxford University Press, 1976.

W. John Hutchins and Harold L. Somers. An Introduction to Machine Translation.
Academic Press, 1992.

Kevin Knight and Vasileios Hatzivassiloglou. Two-level, many-paths generation. In
Proceedings of the 33rd Annual Meeting of the Association for Computational Linguis-
tics, pages 252-260, 1995.

Irene Langkilde and Kevin Knight. Generation that exploits corpus-based statistical
knowledge. In Proceedings of the ACL/COLING-98, pages 704-710, Montréal, Québec,
Canada, 1998.

Tien-Lok Jonathan Lau. SLLS: An online conversational spoken language learning

system. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA, 2003.

B. Lavoie and O. Rambow. A fast and portable realizer for text generation systems.
In Proceedings of the Fifth Conference on Applied Natural Language Processing, pages
265-268, 1997.

William C. Mann. An overview of the Nigel text generation grammar. Technical Report

RR-83-113, USC Information Sciences Institute, Marina del Rey, CA, 1983.

Igor A. Mel'¢uk. Dependency Syntax: Theory and Practice. State University of New
York Press, Albany, NY, 1988.

Alice H. Oh and Alexander I. Rudnicky. Stochastic natural language generation for
spoken dialog systems. Computer Speech and Language, 16(3-4):387-407, July—October
2002.

A. Ratnaparkhi. Trainable approaches to surface natural language generation and
their application to conversational dialog systems. Computer Speech and Language,

16(3-4):435-455, Jul-Oct 2002.

113

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Ehud Reiter. Has a consensus NL generation architecture appeared, and is it psycholin-
guistically plausible? In Proceedings of the 7th International Workshop on Natural
Language Generation, pages 163—170, Kennebunkport, ME, 1994.

Ehud Reiter. NLG vs. templates. In Natural Language Generation, Leiden, The Nether-
lands, 1995.

Ehud Reiter. Shallow vs. deep techniques for handling linguistic constraints and optimi-
sations. In Proceedings of the Workshop on Natural Language Systems at the German

Annual Conference on Artificial Intelligence, Bonn, Germany, sep 1999.

Ehud Reiter and Robert Dale. Building applied natural language generation systems.

Natural Language Engineering, 3:57-87, 1997.

Ehud Reiter and Chris Mellish. Optimizing the costs and benefits of natural language
generation. In Proceedings of the International Joint Conference of Artificial Intelli-

gence, pages 1164-1171, 1993.

S. Seneff. Response planning and generation in the MERCURY flight reservation system.

Computer Speech and Language, 16(3-4):283-312, Jul-Oct 2002.

Stephanie Seneff. TINA: A natural language system for spoken language applications.

Computational Linguistics, 18(1):61-86, 1992.

Stephanie Seneff, Ed Hurley, Raymond Lau, Christine Pao, Philipp Schmid, and Victor
Zue. GALAXY-II: A reference architecture for conversational systems. In Proceedings

of the International Conference on Spoken Language Processing, Sydney, Australia,

September 1998.

Stephanie Seneff and Joseph Polifroni. Dialogue management in the mercury flight
reservation system. In Proceedings of the conference of Applied Natural Language Pro-
cessing and the North American Chapter of the Association for Computational Lin-

guistics, Seattle, WA, April 2000.

Stephanie Seneff and Joseph Polifroni. Formal and natural language generation in the
MERCURY conversational system. In Proceedings of the 6th International Conference

on Spoken Language Processing, Beijing, China, October 2000.

114

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

K. van Deemter, E. Krahmer, and M. Theune. Plan-based vs. template-based NLG:
A false opposition? In Proceedings of the Workshop on Natural Language Systems at
the German Annual Conference on Artificial Intelligence, Bonn, Germany, September

1999.

Wolfgang Wahlster. Verbmobil: Translation of face-to-face dialogs. In The Fourth
Machine Translation Summat: MT Summit IV, pages 127-135, Kobe, Japan, July
1993.

M. Walker, O. Rambow, and M. Rogati. Training a sentence planner for spoken dia-
logue using boosting. Computer Speech and Language, 16(3-4):409-433, Jul-Oct 2002.

Marilyn Walker and Owen Rambow. Spoken language generation. Computer Speech

and Language, 16(3—4):273-281, Jul-Oct 2002.

C. Wang, S. Cyphers, X. Mou, J. Polifroni, S. Seneff, J. Yi, and V. Zue. MUXING: A
telephone-access Mandarin conversational system. In Proceedings of the 6th Interna-

tional Conference on Spoken Language Processing, Beijing, China, October 2000.

V. Zue, S. Seneff, J. Glass, J. Polifroni, C. Pao, T. J. Hazen, and L. Hetherington.
Jupiter: A telephone-based conversational interface for weather information. IEEE

Transactions on Speech and Audio Processing, 8(1):85-96, 2000.

V. Zue, S. Seneff, J. Polifroni, M. Nakano, Y. Minami, T. Hazen, and J. Glass. From
JUPITER to MOKUSEIL: Multilingual conversational systems in the weather domain. In
Proceedings of the Workshop on Multilingual Speech Communications, Kyoto, Japan,
October 2000.

V. Zue, S. Seneff, J. Polifroni, M. Phillips, C. Pao, D. Goddeau, J. Glass, and E. Brill.
Pegasus: A spoken language interface for on-line air travel planning. Speech Commu-

nication, 15:331-340, 1994.

115

