
LanguageLand: A Multimodal Conversational

Spoken Language Learning System

by

Vivienne C. Lee

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

August 2004

© Vivienne C. Lee, MMIV. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author...
 Department of Electrical Engineering and Computer Science
 August 18, 2004

Certified by...
 Stephanie Seneff
 Principal Research Scientist
 Thesis Supervisor

Certified by...
 Chao Wang
 Research Scientist
 Thesis Supervisor

Accepted by..
 Arthur C. Smith
 Chairman, Department Committee on Graduate Theses

This work is sponsored in part by the Cambridge MIT Institute, and in
part by the Defense Language Institute under Air Force contract F19628-
00-C-0002. Opinions, interpretations, conclusions and recommendations
are those of the author and are not necessarily endorsed by the United
States Government.

 2

LanguageLand: A Multimodal Conversational

Spoken Language Learning System
by

Vivienne C. Lee

Submitted to the
Department of Electrical Engineering and Computer Science

August 18, 2004

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

LanguageLand is a multimodal conversational spoken language learning system whose
purpose is to help native English users learn Mandarin Chinese. The system is centered
on a game that involves navigation on a simulated map. It consists of an edit and play
mode. In edit mode, users can set up the street map with whichever objects (such as a
house, a church, a policeman) they see in the toolbar. This can be done through spoken
conversation over the telephone or typed text along with mouse clicks. In play mode,
users are given a start and end corner and the goal is to get from the start to the end on the
map. While the system only responds actively to accurate Mandarin phrases, the user can
speak or type in English to obtain Mandarin translations of those English words or
phrases. The LanguageLand application is built using Java and Swing. The overall
system is constructed using the Galaxy Communicator architecture and existing SLS
technologies including Summit for speech recognition, Tina for NL understanding,
Genesis for NL generation, and Envoice for speech synthesis.

Thesis Supervisor: Stephanie Seneff
Title: Principal Research Scientist, MIT Spoken Language Systems Group

Thesis Co-Supervisor: Chao Wang
Title: Research Scientist, MIT Spoken Language Systems Group

 3

Acknowledgments

Working on this thesis for the past year has been a pleasure. First of all, I would like to

extend my gratitude to Stephanie Seneff, my thesis advisor, for guiding me all along the

way and spending countless hours helping me create and debug the natural language

component, both with me sitting in her office and even on her spare time at home. I find

it hard to catch up sometimes to her fast typing and talking, but it made every work

session efficient and worthwhile. I would like to thank her for her patience with my

endless stream of emails (which sometimes contained trivial questions), all of which were

replied to promptly and fully. I truly did not expect a thesis advisor to be able to spend so

much time with her students, but Stephanie has surprised me with her effort to commit

time and energy to students like myself.

I would also like to thank Chao Wang, my co-advisor, who has been available for help

whenever I needed her. She is one of the few people who have smaller hands than mine,

but they are also one of the fastest and most agile pair of hands I have ever encountered.

She also spent many hours helping to pull my system together. I am especially grateful

to her for putting together my bilingual recognizer for English and Chinese, and for

teaching me how to record my own Chinese sentences. Her meticulous notes were an

invaluable resource and helped me navigate the SLS systems with little prior knowledge

about them. One thing I will always remember is the day when she was on a time

constraint to pick up her son from daycare, but nevertheless stayed and helped me until

the very last minute.

 4

I could not have gotten a better mentor than Scott Cyphers. He wrote a thorough

Communicator Tutorial which served as my orientation to SLS and helped me understand

the Galaxy structure and message passing interface. I recall having a lot of problems

early on with connecting my Java application to the natural language components, and

Scott was always more than willing to let go of whatever he was doing and help me with

my questions. In my early stages, I must have asked him for help at least a few times a

day. Scott is truly the Java king. I thank him for writing the script to start all servers,

which has saved me a lot of time in the past year. I also thank him for spending hours

helping me set up a second laptop with the Galaxy system.

I would like to thank Rob Miller and Michael Collins, professors for my User Interface

and Machine Learning Approaches for Natural Language Processing classes,

respectively, for providing guidance and allowing me to incorporate my thesis into the

final projects. I would also like to thank Janet Lai, my partner for the final project in the

User Interface class, who helped me build the user interface for LanguageLand from the

ground up.

Of course, I would like to thank all the people who have used and tested my system,

including students from the User Interface class, my past Chinese and Japanese language

professors, and friends. Special thanks to Danwen Chen, a current high school intern at

SLS, who helped me test the final phase of LanguageLand.

 5

Thanks also to Jim Glass for responding to my initial email seeking a thesis project, for

directing me to Stephanie and Chao, and for giving me this invaluable opportunity.

Marcia Davidson has been wonderful and helped me get acqua inted with SLS. I am

grateful to those who have contributed to the system either directly or indirectly,

including Jonathan Lau, Julia Zhang, Jon Yi, John Lee, Lee Hetherington, Mitchell

Peabody, and the vast array of past SLS members who helped build the components that I

used in the system.

I am extremely thankful to my parents and brothers for giving me constant opportunities,

confidence, and encouragement throughout my life and especially during the past five

years. Without them, I may not even be a Computer Science major nor a student at MIT,

so a Master’s thesis would totally be out of the question. They never restricted me from

choosing my own major, and just urged me to do what I enjoy.

I would also like to thank Michael Cheng for being by my side day and night during the

past year and a half, even if it was from 800 miles away most of the time. Whenever I

was stressed out or needed someone to talk to, or just wanted to procrastinate and chat, he

was always there for me.

Lastly, I would like to thank the friends that I have made over the years. It is a little sad

that so many of them are spread all over the world, but that also means that I will

probably have a friend to visit wherever I travel to in the future.

 6

Contents

1 Introduction 13

1.1 Motivation.. 13

1.2 Goals .. 15

1.3 Outline.. 15

2 Background 16

2.1 Related Work ... 16

2.1.1 Language Adventure ... 16

2.1.2 DARPA Tactical Language Training Project ... 17

2.1.3 Japanese: The Spoken Language, Multimedia Collection.............................. 18

2.1.4 SLLS ... 19

2.1.5 How LanguageLand is Different ... 20

2.2 Galaxy Architecture ... 21

2.3 Recognition and Understanding... 22

2.3.1 Summit .. 22

2.3.2 Tina ... 25

2.3.3 Grammar Induction... 28

2.4 Generation and Synthesis... 28

2.4.1 Genesis .. 28

2.4.2 Dectalk & Envoice .. 31

3 Usage Scenarios 32

3.1 Student ... 32

3.2 Teacher... 35

 7

4 Natural Language Technology Development 37

4.1 Recognition and Understanding... 37

4.1.1 Summit .. 37

4.1.2 Tina ... 39

4.1.3 Grammar Induction... 42

4.2 Generation and Synthesis... 46

4.2.1 Genesis .. 46

4.2.2 Dectalk & Envoice .. 50

5 LanguageLand Application Development 52

5.1 Help Structure .. 52

5.2 Getting Started ... 54

5.3 Edit Mode... 62

5.4 Play Mode .. 69

5.5 Teacher Progress View .. 76

5.6 Student Progress View... 82

5.7 System Integration and Communication.. 83

5.7.1 Connection Manager... 84

5.7.2 Sending Dynamic Vocabulary.. 84

5.7.3 Sending Messages ... 84

5.7.4 Receiving Messages .. 85

6 Evaluation 86

6.1 User Interface ... 86

6.2 Natural Language Component ... 88

 8

7 Conclusion 91

7.1 Summary.. 91

7.2 Future Work .. 91

7.2.1 Extending Application Development.. 91

7.2.2 Extending Natural Language Development .. 94

 9

List of Figures

1: Screenshot of a simulated session in the DARPA Tactical Language Training Project

(Johnson [8]). .. 18

2: Screenshot of a core conversation of “Japanese: The Spoken Language, Multimedia

Collection” (The University of Maryland University College [16]). 19

3: Architecture of Galaxy (Seneff et al. [15]). .. 21

4: Bilingual (English/Japanese) recognition results for the weather domain comparing

parallel recognizers to a single recognizer which knows the language beforehand (Hazen

et al. [7]) .. 24

5: Parse Tree for "go straight.".. 26

6: Semantic meaning representation frame for "go straight."... 27

7: System architecture for Genesis (Baptist et al. [2]). ... 30

8: Eform for the phrase, “go straight.”.. 30

9: A training sentence with landmark and street name dynamic markers. 38

10: Parse tree for the phrase, “park rd.”.. 41

11: Modified rule for direction. ... 43

12: Modified rule for direction. ... 44

13: Parse tree for “zhi2 zou3 rang2 hou4 zai4 bei3 jie1 you4 zhuan3.”........................... 44

14: Semantic frame for “fang4 zhe4 ge5 zai4 gong1 yuan2 lu4 he2 shan1 hu2 jie1 de5

jie1 tou2” with modification to the “and” rule.. 45

15: Semantic frame for “fang4 zhe4 ge5 zai4 gong1 yuan2 lu4 he2 shan1 hu2 jie1 de5

jie1 tou2” without modification to the “and” rule. ... 46

16: Semantic frame for “go north until you reach prince street.”..................................... 47

 10

17: Generation rule for “street_name” topic in English paraphrasing. 47

18: Login screen. .. 54

19: Instructions for getting started. ... 55

20: Welcome screen for teachers. ... 55

21: Welcome screen for students. ... 56

22: Game name screen. ... 57

23: Game selection screen. .. 57

24: File menu in logged- in state.. 58

25: Change Password option in logged-in state. ... 59

26: Help menu in logged- in state. ... 60

27: “About” screen in logged-in state. .. 60

28: File menu in logged-out state.. 61

29: Help menu in logged-out state. ... 62

30: Instructions screen in edit mode. .. 62

31: Change game name screen in edit mode... 63

32: Placing item on map in edit mode. ... 64

33: Asking the system “zhe4 shi4 shen2 me5” when the bowling alley is selected in edit

mode.. 65

34: Edit menu in edit mode. .. 65

35: Help menu in edit mode. ... 66

36: Examples screen in edit mode... 67

37: Instructions screen in play mode. ... 69

38: Play mode at startup.. 70

 11

39: After typing “walk straight for 2 blocks and then turn left” in play mode. 71

40: After typing “zhi2 zou3 liang3 ge5 lu4 kou3 rang2 hou4 zuo3 zhuan3” in play mode.

... 72

41: Advanced hint in play mode. .. 73

42: Edit menu in play mode. ... 73

43: Examples screen in play mode.. 74

44: Instructions screen in teacher progress view. ... 76

45: Michael Cheng’s data in teacher progress view. .. 77

46: Adding a new student in teacher progress view. .. 78

47: Deleting a student in teacher progress view. .. 78

48: Viewing feedback to student in teacher progress view. .. 79

49: File menu in teacher progress view. ... 80

50: Edit menu in teacher progress view. ... 81

51: Help menu in teacher progress view. .. 81

52: Instructions screen in student progress view. ... 82

53: Michael Cheng’s student progress view. .. 83

54: Edit mode in paper prototype.. 87

55: Teacher progress view in paper prototype. ... 87

 12

List of Tables

1: Key-value bindings. .. 48

2: Key-value bindings in edit mode. ... 67

3: Key-value bindings in play mode. .. 75

 13

Chapter 1

Introduction

The Spoken Language Systems (SLS) group at MIT’s Computer Science and Artificial

Intelligence Laboratory was formed in 1989 with the goal of enabling communication

between people and computers via natural spoken language. Its objective has been to

enable computers to communicate like people, to people, through the mediums of

speaking and listening. Over the years, the SLS group has developed useful technology

to understand and generate sentences. In recent years, the group has also started

exploring foreign languages with an emphasis on Mandarin Chinese. For example,

MuXing is a telephone-access Mandarin conversational system which enables a user to

access weather information (Wang et al. [17]). Furthermore, the spoken language

learning system (SLLS) is an interactive, online application which allows teachers to plan

language curriculums and students to practice and learn Mandarin Chinese (Lau [10]).

The focus of this thesis is to use existing SLS technologies to further enhance the

language learning domain. Specifically, the goal is to build an interactive map

application called LanguageLand that will engage both teachers and students to learn

Mandarin Chinese. LanguageLand differs from SLLS in its extension to the notion of

game playing within a more engaging multimodal environment.

1.1 Motivation

The problem to be addressed by this thesis is that users who want to learn foreign

languages are bound by human resources and conventional classroom settings.

 14

Interactive and entertaining ways of learning a language are lacking. Although there are

computer applications for language learning, most of them are not intelligent—the

computer does not actually understand what the user is saying. For example, the

“Japanese: The Spoken Language, Multimedia Collection” computer application

converses with the user following a preset template synchronized with its corresponding

textbook (The University of Maryland University College [16]). The computer speaks a

phrase and the user replies. The problem is that there is no indication when the user’s

pronunciation is wrong, as the user’s recording is not checked for accuracy. In fact, even

if the user remains silent during his allotted recording time, the computer still continues

with its role in the conversation. It becomes quite monotonous when the computer

application is just repeating material presented in a textbook, without providing any

useful feedback to the user.

The purpose of this thesis is to use existing SLS technologies to build LanguageLand, a

multimodal spoken conversational system for language learning. LanguageLand is a

sister application to SLLS, an SLS language learning system already in place (Lau [10]).

This new system will accept spoken, typed, and mouse inputs, so as to capture the user’s

attention and to be able to react in a timely and intelligent manner. Instead of following a

preset template, it allows the user to roam freely within the constraints of the domain, and

will react accordingly by expressing understanding or confusion. Its game-oriented

nature engages the user in a real- life map environment similar in concept to a game of

Simon Says or of guiding a mouse through a maze.

 15

1.2 Goals

The goals for this thesis project are to create a spoken conversational system for language

learning that is more engaging and intelligent than present applications. In particular, it

should:

1. Allow users to engage in dynamic conversations

2. Both allow students to learn languages using the system and teachers to track

students’ progress

3. Be significantly different from SLLS in terms of presentation and usage

4. Incorporate existing SLS technologies seamlessly

5. Have multimodal capabilities with spoken, typed, and mouse inputs

6. Present a dynamic set of vocabulary for continued learning

7. Provide seamless language switching and bilingual spoken input

1.3 Outline

The rest of the thesis is structured as follows. Chapter 2 discusses related work, the

Galaxy architecture, and existing SLS technologies for recognition, understanding,

generation, and synthesis. Chapter 3 introduces the LanguageLand system by describing

in detail a couple of usage scenarios. Chapter 4 explains how the different natural

language components were augmented for this thesis. Chapter 5 discusses the

LanguageLand application component. Chapter 6 then talks about the evaluation of the

system on real users. Finally, Chapter 7 gives a summary of this thesis and presents

future work.

 16

Chapter 2

Background

This chapter outlines the precursor applications and components of SLS technology

which have been crucial in the formation and usage of LanguageLand. The first section

introduces some related projects and describes in more detail the inner workings of SLLS

(Spoken Language Learning System), a sister application to LanguageLand. The second

part presents the Galaxy architecture, which ties together all the separate technology

components. The third section discusses the technology built to recognize and

understand sentences in different languages. The final piece explains how new sentences

or paraphrases are generated in response to analyzed sentences.

2.1 Related Work

There are currently a number of different interactive language learning applications,

including Language Adventure, the DARPA Tactical Language Training Project, and

“Japanese: The Spoken Language, Multimedia Collection,” as well as SLLS, a system

built using SLS technology.

2.1.1 Language Adventure

Language Adventure, a system developed by Instinct, is aimed at teaching a foreign

language to children aged six to twelve (Instinct Corporation [5]). It makes children

interested by involving them in a story. Some of the exercises involve having children

listen to phrases and then record and listen to their own voices speaking the same phrases.

 17

Another exercise has children click on specific things mentioned by the system. The

reverse is also true in that users can click on things and find out what they are. Finally,

children are also able to create their own animated movie in the foreign language.

Language Adventure is also referred to as “tracing paper for speech,” because of the way

in which children learn and try to copy things in the program.

2.1.2 DARPA Tactical Language Training Project

The DARPA Tactical Language Training Project is led by Lewis Johnson and is focused

on helping military personnel learn subsets of linguistic, gestural, and cultural knowledge

that are required to be able to successfully complete missions (Johnson [8]). Its approach

involves users learning vocabulary and gestures and then applying them to simulated

computer sessions, where they interact with virtual characters using speech. Figure 1

illustrates a screenshot of a simulated session.

 18

Figure 1: Screenshot of a simulated session in the DARPA Tactical Language Training Project
(Johnson [8]).

2.1.3 Japanese: The Spoken Language, Multimedia Collection

“Japanese: The Spoken Language, Multimedia Collection” is a set of CD-ROMs

produced by the University of Maryland University College in 1998 and is based on the

popular textbook, Japanese: The Spoken Language, Part I by Eleanor Harz Jorden with

Mari Noda (The University of Maryland University College [16]). It follows the

textbook very closely and has a vocabulary for each lesson. A user goes through a set of

grammar and vocabulary words and learns their pronunciations along with their

meanings. Then, the user repeatedly listens to a scripted video known as a core

 19

conversation until he feels prepared to participate in it. Taking on the role of one of the

characters, the user can record and listen to his own voice along with the computer’s in

the opposite role. Figure 2 shows a screenshot of a core conversation.

Figure 2: Screenshot of a core conversation of “Japanese: The Spoken Language, Multimedia
Collection” (The University of Maryland University College [16]).

2.1.4 SLLS

Using the Galaxy architecture, Jonathan Lau has developed SLLS, an online

conversational spoken language learning system which is a predecessor to LanguageLand

(Lau [10]). Presented as a Web interface, it allows users wishing to learn Mandarin

Chinese to converse using a telephone. The system is broken up into three stages:

preparation, conversation, and review. In the preparation stage, users can listen to

practice phrases and simulated conversations to get practice and a sense of what types of

answers are expected. When they are ready to proceed with the actual conversation, they

 20

can instruct the system to call them. The telephone conversation is closely tied to the

practice phrases and its content would in theory be generated by a teacher or

administrator. While the structure is set, certain words which fall into the same

categories are interchangeable and randomly selected by the system. The final stage is

review, in which the user can listen to the recorded conversation and see which words the

system was able to recognize correctly.

2.1.5 How LanguageLand is Different

LanguageLand is different from the first three systems in one fundamental way. While

those systems have set lesson plans, LanguageLand is flexible and allows the user to

freely explore his opportunities. Instead of letting the user listen to his own voice,

recognition quality is judged by whether the system interprets the user’s phrase correctly.

Even though LanguageLand is based on the same core technologies as SLLS, it is

different from it in three main aspects: domain, system response, and modality. While

typical SLLS conversations are focused on everyday topics such as family relationships

and sports, LanguageLand’s domain is specific to building maps consisting of landmarks

and of getting from one place to another on the map. Secondly, LanguageLand not only

offers spoken system responses like SLLS, but there is also on-screen feedback, such as

movement from one location to another on a map. Finally, LanguageLand is multimodal,

allowing users not only to speak to the system but also to be able to blend typing and

mouse clicks with speech in conveying an instruction. We anticipate that this will be a

more rewarding and engaging exercise for the student.

 21

2.2 Galaxy Architecture

Figure 3: Architecture of Galaxy (Seneff et al. [15]).

LanguageLand uses the SLS group’s extensive technology built into the Galaxy

architecture (Seneff et al. [15]). As shown in Figure 3, Galaxy is based on an architecture

where a central hub mediates communication among a number of specialized servers

(Cyphers [4]). This mediation is performed according to a hub script which consists of a

set of rules that coordinate the communication.

The servers in the Galaxy architecture generally interact in the following manner. When

the user speaks to the system over the telephone, the audio server records the user’s

sentence and constructs a digital waveform for it. Then, the speech recognition server

(Summit) component determines a set of hypothesized sentences and passes them to the

frame construction (Tina) server, which selects the most plausible hypothesis and creates

a semantic frame representation encoding the meaning. The context tracking server

 22

alleviates any ambiguity in accordance with the appropriate context. The application

backend then receives the frame and in some cases passes back out information as a

response frame. This semantic frame is sent to the language generation (Genesis) server,

which generates a sentence accordingly. Finally, the text-to-speech conversion server

(Dectalk or Envoice) converts the sentence into speech.

Of special importance to LanguageLand are the audio server (telephone), speech

recognition (Summit), frame construction (Tina), application backend (LanguageLand),

language generation (Genesis), and text-to-speech conversion (Dectalk and Envoice)

server components of Galaxy. Several of these servers are described in the following

sections.

2.3 Recognition and Understanding

2.3.1 Summit

The Summit server is the speech recognizer component of the Galaxy architecture. Its

basic approach to recognition is to use acoustic-phonetic knowledge to detect landmarks

as critical points in time for feature extraction, and to score the regions around the

landmarks against a set of diphone acoustic models (Zue et al. [20]). There are three

main components to Summit: the first one takes the speech signal as input and outputs an

acoustic-phonetic representation, the second one takes a set of baseform pronunciations

and transforms it into an expanded lexical network based on a set of phonological rules,

and the last one matches the expanded lexicon against the acoustic-phonetic

 23

representation to produce a set of hypothesized sentences, guided by a statistical language

model.

This thesis exploits two special capabilities of Summit: 1) dynamic adjustment of the

vocabulary on-the-fly, and 2) combining recognizers for two different languages within a

single search space.

The first of these capabilities can be utilized when there is a need to specialize the

vocabulary in order to improve recognition quality (Chung et al. [3]). For example, the

restaurant domain for Massachusetts alone has thousands of restaurant names. If Summit

were licensed to recognize all of those names, there would be a lot of ambiguity and a

higher error in figuring out which restaurant a user actually means to say. By

representing restaurant names in a dynamic class in the speech recognizer and the natural

language grammar, the system can appropriately swap in different sets of names

depending on context. For example, if the city of Cambridge is of interest, then the set of

restaurants in Cambridge is swapped in, while restaurants in all other cities of

Massachusetts are voided from recognition. As a result, confusion between similar-

sounding restaurants located in different cities is avoided, and search results are vastly

improved.

Summit’s second capability is in creating a multi- lingual recognizer by combining

recognizers for different languages (Hazen et al. [7]). This allows the recognizer to

automatically switch between different languages without the user having to specify in

 24

advance which one they are speaking. The way Summit performs this is by running each

language’s recognizer component in parallel, thus outputting potentially a mixed

language N-best list. The only issue is that, since each recognizer uses its own set of

acoustic models, there may be a bias in the scores, causing those languages that produce

higher scores on average to be inappropriately favored. This problem is alleviated by

normalizing the acoustic model scores using a mathematical equation (Zue et al. [20]).

Tests for a bilingual recognizer for the weather domain that handles both English and

Japanese have shown that the accuracy level for the multi- lingual recognizer is only

slightly lower than that of separate recognizers. The results are reproduced here in Figure

4, which show an average error rate degradation of 4% (Hazen et al. [7]).

Figure 4: Bilingual (English/Japanese) recognition results for the weather domain comparing parallel
recognizers to a single recognizer which knows the language beforehand (Hazen et al. [7]).

 25

Further analysis has shown that this accuracy degradation is mainly due to errors in

identifying the appropriate language, which in this experiment occurred at a rate of

1.25%. These errors usually stemmed from spoken phrases which consisted of only one

or two words.

2.3.2 Tina

Tina, the frame construction module, serves as an interpretive interface in the Galaxy

architecture to interpret the recognizer outputs and/or typed inputs at a GUI interface

(Seneff [14]). In terms of speech input, because of the uncertainty and variation in

speech, a number of different possibilities are given by the recognizer. Tina scores the

N-best hypotheses from the recognizer by parsing them into a meaning representation,

and chooses the highest scoring hypothesis to represent the utterance in future processing.

With Tina, one can specify syntactic and semantic rules for the parse tree generation. In

the parse tree for a sentence, most of the syntactic rules are contained in the upper nodes

while the semantic rules are associated with nodes near the leaves. For instance, a

sample sentence “go straight” parsed with the LanguageLand MapGame domain version

of Tina is shown in Figure 5.

 26

Figure 5: Parse Tree for "go straight."

A novelty of Tina’s interpretation of the rules is that it decomposes all rules into sibling-

sibling transition probabilities, such that the entire parse space can be viewed as a

hierarchy of bigrams. Thus, in forming a parse tree, the relationships of importance are

parents, children, and siblings. Sibling pair probabilities are generated through frequency

counts on parse trees in a training corpus. When the Tina system is used with a

recognizer counterpart for speech input, the recognizer will give it multiple input

possibilities. A word graph is constructed from the N-best list and a Viterbi search

derives N-best parse trees, taking into account both acoustic and linguistic scores.

 27

Once a successful sentence is generated, the parse tree is also already created. The next

step is to derive the meaning representation from this tree. This is encoded as a special

object type in Galaxy known as a semantic frame. There are three types of semantic

frames: clauses, predicates, and topics. Frames can also contain other frames in a

recursive manner, and there is only one frame associated with a particular sentence. The

way it is generated is by passing a frame under construction along from node to node, top

down and left-to-right, in the completed parse tree for that sentence. Each node then has

the opportunity to modify the frame according to the specifications based on that node’s

class-wide identity. The path of traversal is identical to that when the parse tree was

generated. For example, the semantic frame generated for the parse tree of “go straight”

in Figure 5 is located in Figure 6.

{c request
 :domain "MapGame"
 :sro "go straight"
 :pred {p go
 :pred {p direction
 :topic "straight" } } }

Figure 6: Semantic meaning representation frame for "go straight."

LanguageLand’s domain, called MapGame, deals specifically with parsing sentences

relating to directions on getting from one location to another, as well as on placing

different landmarks on the map. The English grammar for LanguageLand was built on

top of a pre-existing generic syntax-based grammar specific to database-query domains.

Once a small set of semantic rules was written for the LanguageLand domain, they were

automatically incorporated into the probabilistic networks of the whole system.

 28

Phrasebook and Restaurants are examples of other domains that have been built on top of

the generic grammar (Chung et al. [3]).

2.3.3 Grammar Induction

A resource that was important for preparing the Chinese grammar LanguageLand is a

grammar induction system that is able to induce a grammar for a new language given a

pre-existing translation system from English to that language (Lee [11]). This module

was previously used for an English-French system in which the French grammar was

induced. The user provided a set of English training sentences, grammar rules to create

the semantic frames, and generation rules to translate the sentences into French, and the

system was able to work backwards and create a set of grammar rules to construct

semantic frames from the French sentences. Because English and French have very

similar grammar structures, the simulation was close to perfect and only needed minor

modifications.

2.4 Generation and Synthesis

2.4.1 Genesis

Genesis is the language generation component of the Galaxy dialogue system (Baptist [1]

and Baptist et al. [2]). The first version of this system was developed in the 1990s.

However, over the years, as domain experts and other users requested more features, it

became increasingly clear that the system was insufficient. In response, the SLS group at

MIT revamped the generation component with three key goals in mind: generality,

consistency, and simplicity—core values reflected in the components and structure of the

current version of Genesis.

 29

Genesis assumes many different roles as the language generation component; it can

perform paraphrase generation, formal- language generation, and response generation.

(The first two are of most relevance to the LanguageLand system.) Additionally, Genesis

can take in a number of different types of meaning representations. One such meaning

representation was previously discussed in the Tina section: the hierarchical linguistic

structure, also known as a semantic frame. Genesis can also receive simpler structures

made up of key-value bindings, much like SQL entries.

This generation component has been designed to work for a number of different domains.

(As an example, the LanguageLand application domain is MapGame.) Each domain

must specify parameters for Genesis to be able to use and generate domain-specific

sentences. The architecture is comprised of a code kernel written in C and a linguistic

catalog, as shown in Figure 7 (Baptist et al. [2]). This code kernel takes in a meaning

representation as input, along with domain-specific information such as the language in

which to translate. Such languages include natural languages (i.e. English, Chinese,

Japanese, Spanish) as well as formal languages (i.e. SQL, html). Then, using the

particular domain’s linguistic catalog, the kernel system is able to generate and output an

appropriate string.

There are three main parameter files in each domain’s linguistic catalog: the grammar

file, the vocabulary file (aka lexicon), and the rewrite rules file. The grammar file

specifies the rules that the kernel will use to generate, for example, the paraphrase string.

 30

The vocabulary file specifies semantic and contextually relevant replacements for

substrings. The rules file specifies syntax replacements like spaces and contractions.

These three files are used together for sentence generation.

Figure 7: System architecture for Genesis (Baptist et al. [2]).

Once the paraphrase string is formed and returned by the kernel, the hub script for the

LanguageLand MapGame domain then issues a command to generate an eform of the

paraphrase string. An eform is basically a simplified encoding of the same information,

providing key-value bindings to be retrieved by the programmer using a common API.

After parsing the eform, the LanguageLand system performs an action or displays the

reply string provided. Figure 8 depicts a simple eform constructed for the phrase “go

straight,” with “direction” being the key and “straight” being the value.

{c eform :direction "straight"}

Figure 8: Eform for the phrase, “go straight.”

 31

2.4.2 Dectalk & Envoice

For the text-to-speech conversion required to enable system responses to spoken user

input, Dectalk is used for English and Envoice is used for Chinese in the LanguageLand

system. Dectalk is an off-the-shelf commercial product whereas Envoice, a

concatenative speech synthesizer, was developed by the SLS group (Yi et al. [19]).

Envoice is used in conjunction with Genesis to convert meaning representations into

speech waveforms (Yi et al. [18]). Its primary goal is to concatenate different segments

of waveforms from a set of pre-recorded utterances. Its knowledge/search space is

represented as a finite-state transducer (FST) such that, given an input sequence, a graph

of output sequences can be generated (Yi et al. [19]). The generation rules follow the

FST topology, directed by its states, arcs, and corresponding weights. Because using

longer- length units provides better synthesis quality, the system carefully tries to

maximize the size and contiguity of different segments. When deemed necessary, it will

backoff to shorter units (Yi et al. [18]).

 32

Chapter 3

Usage Scenarios

In this chapter, the LanguageLand system is introduced from two different perspectives.

The first section presents a detailed experience of how a student might use the system,

while the second section approaches it from a teacher’s point of view.

3.1 Student

LanguageLand can be used by anyone who has the Java Virtual Machine installed on

their OS and has the appropriate connection settings to the SLS servers. The following

section describes the interaction between Michael, a fictitious first year student learning

Mandarin Chinese, and LanguageLand, to illustrate how a normal student user might use

the system.

Michael is in his second term of Chinese and has recently started learning about real- life

applications such as navigating the streets of China and shopping for groceries. Though

having already learned a lot of vocabulary in the past, he has not had much experience

stringing them into real sentences. His teacher introduces his whole class to

LanguageLand, a multi-modal application that will supposedly apply their current

knowledge to real- life situations and also allow them to learn new vocabulary. A bit

hesitant about his speaking skills, Michael decides to give it a try anyway. He

understands that everything he performs may possibly be monitored by his teacher, as the

application supports teacher feedback.

 33

Michael gets help from an administrator in downloading the application and setting up

appropriate server connections to SLS. He then opens an email from his teacher which

contains his password. His username is just his school email address. He starts up the

application and inputs this information into the login screen. After clicking OK, a

“LanguageLand Instructions” screen pops up. He reads it briefly then clicks OK,

unveiling the welcome screen that shows three options. He decides to create a new game

and names it “My first game.”

An “Edit Game Instructions” screen then pops up describing how to edit the game. A bit

impatient, he closes it after a quick glance and decides to venture on his own. He sees

that there are a collection of pictures on the left and a map on the right. Since the

instructions mentioned “Edit Game,” he assumes he should be doing some sort of editing.

He left-clicks on what looks like lab flasks and then clicks on one of the map tiles,

causing a red outline to appear around the tile. He clicks it again and the flasks appear in

that tile. Things are starting to make sense. After placing a couple more items onto the

map, he notices an “Instruction” text area, where presumably he can enter text. He clicks

on the animal on the left which looks like either a hamster or a mouse and then types in,

“What is this?,” clicks enter, and notices that in the “System Interpretation:” text area

right below, it says “zhe4 shi4 shen2 me5.” Since Michael is a whiz at pinyin and is also

a quick learner, he immediately realizes that the system just did a translation for him into

Chinese pinyin. Michael then types in “zhe4 shi4 shen2 me5” and the system responds

with "lao3 shu3." One of his guesses was right--it is indeed a mouse. Michael decides to

 34

explore more on his own. He clicks on another tile on the map and types in "fang4 lao3

shu3 zai4 zhe4 li3." A picture of the mouse immediately shows up on that tile. After

playing around with the edit mode a little more, he decides to try to play a game.

Michael clicks on the Play item in the Edit menu, which pulls up a new screen along with

instructions for the play mode. After a minute he closes the “help” screen, noticing a

human stick figure on the corner of the map. He suddenly remembers that his teacher

had mentioned he could have the system call him by typing "call me at” followed by the

phone number. He types in "call me at 7707676578.” After a few seconds, his phone

rings and he picks up right away. The system says “Wecome” followed by a beep.

Michael tries his luck with “go south.” The system responds with “nan2 zou3,” which

also shows up on his screen in the “System interpretation” text area. He then says “nan2

zou3” and again he hears and sees “nan2 zou3.” This time, he also sees a red line and a

green arrow on the screen, mapping his movement from the starting position down one

block. Michael says “you4 zhuan3,” hears and sees “you4 zhuan3,” and notices that the

green arrow rotated clockwise 90 degrees, indicating a right turn. Having had enough for

the time being, he says “good-bye” and hangs up the phone.

He checks out the menu items for fun and notices a “View My Progress” item in the

“File” menu. When he clicks it, a new screen pops up and he notices a log of his

utterances. He also notices a Feedback area at the bottom, where presumably his teacher

might leave him comments. Having had enough for one session, he exits out of the

application.

 35

3.2 Teacher

Like Michael, Zhang Laoshi is also a fictitious character, but she plays the role of a

language professor teaching Level 1 Mandarin Chinese. Having recently acquired this

application from the SLS group, Zhang Laoshi has already tried it out once and is

familiar with its features.

She logs in with her password and chooses “View Students Progress” from the welcome

menu. While teachers also have the ability to create and play games, her main goal today

is to set up accounts for the remaining students and also to check progress on some of her

existing students. The Students’ Progress screen pops up, showing the list of students on

the left, including Michael Cheng, an excellent Level 1 student. She clicks on his name

and the right panel shows his game statistics. She notices that there are some English

phrases followed by their direct Chinese counterparts, and then some stand-alone Chinese

phrases, and realizes Michael probably typed some sentences in English initially to test

out the system. Pleased by his grasp of the grammar shown by the sentences, she types

“good job on the first try!” in the subject field and the following in the comment field:

“Try to limit the English only to when absolutely necessary. I also encourage you to try

out different expressions and see how the system responds to them.” She then clicks on

“Submit Feedback” and receives a “Feedback Submitted” confirmation window. To

make sure it got put in correctly, she clicks on the “View My Feedback to Student” link

and sees the message she just typed in.

 36

Zhang Laoshi now attempts to add the remaining students into the system. She clicks on

the “Add New Student” button on the left and fills out the First name, Last name, and

Email address fields before clicking OK. She proceeds in repeating that routine for the

rest of the students. Knowing that the default password is always just the first letter of

the first name and the first letter of the last name, she sends out emails to those students

informing them of that. Zhang Laoshi then exits out of the application and begins

preparing material for her language class the following day.

 37

Chapter 4

Natural Language Technology Development

This chapter explains how each of the different SLS technologies was used in the system

and how they had to be modified to be compatible with the LanguageLand domain. The

first section describes components which were used for recognition and understanding.

The second part discusses the work done for generation and synthesis.

The main usage of these components is to parse and create meaning representations for

both English and Chinese sentences, and then either paraphrase or generate key-value

bindings from the meaning representations. Our first step was creating the grammar rules

for paraphrasing English into Chinese. Using those rules, we were able make use of

grammar induction to expedite the process of constructing a grammar to parse Chinese

inputs (Lee [11]). The final step was writing rules to paraphrase Chinese back into

Chinese and also to create key-value bindings for Chinese sentences.

4.1 Recognition and Understanding

4.1.1 Summit

As mentioned in Chapter 2, Section 3, Part 3, Summit is the speech recognizer that is

used by the LanguageLand system (Zue et al. [20]). To configure a recognizer for

Summit, one needs to provide it with a lexicon, a statistical language model (i.e., a class

n-gram), and training sentences. Both the lexicon and language model were derived

 38

automatically from the grammar, but we had to manually prepare training sentences. One

of the subgoals of this thesis is to explore the use of two recently introduced features of

Summit: dynamic vocabulary and multilingual recognizer configurations.

In the English-only version of the LanguageLand system, a dynamic vocabulary

recognizer has been configured in order to improve recognition performance while

permitting variety in the number of different street names and landmarks that are

supported (Chung et al. [3]). Every time a user enters a new game, a pseudorandom

subset of the available landmarks and street names is selected, and these become

immediately accessible to the recognizer. In this version, the language to be learned is

English, which is also the only language the system is equipped to respond to. To

implement this capability we established two dynamic classes: landmarks and street

names. To incorporate these classes, we created a set of training sentences with special

dynamic markers which serve as placeholders for words that fall within those classes.

Figure 9 is an example of a sentence with dynamic markers in place.

turn right when you pass the <dynlandmark> pig </dynlandmark> and then turn left when
you reach <dynstreet> prince </dynstreet> street.

Figure 9: A training sentence with landmark and street name dynamic markers.

These dynamic markers ensure that the sentences are not specifically training the words

“pig” and “prince.” Instead, their respective landmark and street classes are stand- ins.

Correspondingly, the natural language grammar was modified to include these two

dynamic classes. The system is flexible to swap in different sets of words for both

 39

landmarks and street names, thus decreasing the number of words active at any given

time and improving recognition performance.

The other feature we exploited in Summit is the ability to support seamless language-

switching by packaging up both a Chinese and an English recognizer within a common

search space (Hazen et al. [7]). The process to construct the Chinese recognizer was

essentially identical to that of building the English one. We created a set of Chinese

sentences and trained the language model from them. Then, we fused those two

recognizers by configuring them in parallel. Summit automatically determines an N-best

list of the most probable hypotheses generated by both the English and Chinese

recognizers, which thus compete in a common search.

It turns out that combining dynamic classes with multilinguality has additional issues

with respect to distinguishing the phonological rule applications with respect to language.

Due to this complication, we were unable to combine dynamic vocabulary with seamless

language switching. Thus, the multilingual system does not swap in different sets of

words for the “landmark” and “street_name” classes, but instead always licenses the full

set, for both English and Chinese. While recognition precision is sacrificed, we felt that

it was more important for the system to be bilingual.

4.1.2 Tina

Once the NL System, Tina, receives an N-best list from the Summit speech recognizer or

a typed sentence from the LanguageLand GUI interface, it creates a parse tree and a

corresponding semantic frame (Seneff [14]). For the English-only LanguageLand

 40

MapGame domain, only a few changes were made to the pre-existing generic grammar.

These changes were necessary for generating the parse trees, though rules for creating the

semantic frames were not modified.

An example of a modification for the English-only version of the LanguageLand system

is that new rules were added to the existing generic grammar in order to support the

dynamic street name and dynamic landmark markers. Also, additions were made to some

of the rules like “street_name.” There, we added about 113 street names. We made sure

to pick words that have clear translations in Chinese, so that the user can benefit from

learning new street name vocabulary in the foreign language. Examples of some street

names used are “Prince,” “Bridge,” and “Coral.” The “street_type” rule had to be

augmented as well. Most of the existing terminal nodes, including “parkway,”

“highway,” and “boulevard,” are not needed for the LanguageLand domain because we

decided to shrink the vocabulary in order not to overwhelm the language student. But it

was not necessary to remove them from the rules because our system is not hindered by

their existence. We did, however, add new terminal nodes for the “street_type” rule such

as “rd,” which serves as shorthand for road. Thus, if a user types in “park rd,” “rd” will

be identified as a “street_type.” Figure 10 shows the parse tree which results from the

phrase, “park rd.” The dynamic markers are automatically inserted in a pre-processing

step.

 41

Figure 10: Parse tree for the phrase, “park rd.”

The “a_street_name” rule is exercised here, as can be seen from the “dynstreet” and

“street_type” children nodes. The terminal nodes for “dynstreet” includes the markers

for dynamic classes, which is yet another rule that was added. Also, the “rd” terminal

node is a result of the new rule for “street_type.”

An interesting problem we ran into was the misinterpretations of conjunctions in

sentences. For example, the sentence “go north until you pass the pig and then turn right”

can be interpreted as either “go north until you pass the pig and then turn right” or “go

north until you pass the pig and then turn right.” The second interpretation is what we

wanted, but the system would sometimes misparse ambiguously as the first option. The

problem was that the phrase after the “and” would try to hide under the adverbial clause

that begins with “until,” thus resulting in the first parse. We tried to fix this problem by

 42

adding markers in training sentences to explicitly end the adverbial clauses before the

“and.” We also tried populating the training sentences with lots of marker-augmented

examples, hoping that the system would learn to correct itself. Although this method

worked for some novel inputs, it did not work for all of them. We eventually resorted to

restructuring the semantic frames such that the compound predicate is only possible in

the main clause, thus avoiding the confusion of multiple parses and the resulting selection

of a wrong parse.

4.1.3 Grammar Induction

While the English grammar for LanguageLand was built simply by extending the existing

generic grammar, the Chinese grammar was created using a software package that was

the product of a recent thesis written by John Lee in the SLS group (Lee [11]). For that

work, we provided a set of English training sentences and used the software to induce a

preliminary set of grammar rules for the Chinese domain. The system uses the existing

English grammars to obtain semantic frames for the English sentences, and then the

Chinese translations. Throughout the whole process of translating and reordering words,

the system keeps track of where each Chinese word came from in the frame and aligns it

with its counterpart translation from the English sentence. It is thus able to recreate

semantic frames from the Chinese phrases and form the preliminary Chinese grammar.

While the rules produced were not comprehensive, they provided a good starting ground

and made it a lot easier to extend and modify the rules. The program had previously been

tested successfully with inducing French, which is very similar to English. However, we

 43

ran into some interesting difficulties because the grammar structure for Chinese is quite

different from that of English.

One of the problems was recursion. Some of the rules generated were left recursive such

that they would loop around and revisit the same rule in an infinite cycle. The system

was able to recognize such recursion and identify the offending rules, which allowed us

to reconfigure the grammar to avoid it.

Another problem was that, similar to the aforementioned English grammar rules, the

Chinese grammar rules generated by the training sentences did not include all possible

terminal nodes, and thus we had to manually add them. For example, the direction rule

shown in Figure 11 was modified to include all the possible directions (in pinyin) that

were not included in the training sentences.

.direction
#zhi2
#xi1
#dong1
#zuo3
#nan2
#you4
#bei3
#hou4
#shang4
#xia4
#yi1 #ge5 #quan1
#qian2
#guo4 #lai2

Figure 11: Modified rule for direction.

 44

Other examples of changes include fixing incorrect rules such as the following in Figure

12.

.at
;;#rang2 #hou4
#zhi2 #dao4
#zai4

Figure 12: Modified rule for direction.

The first line in the “at” rule, “#rang2 #hou4” (which means “and then”) was commented

out because the program had mistaken it as being a child of the “at” node. In fact,

“#rang2 #hou4” already exists under the “and” rule. This correction fixed the following

sentence and many others, which previously had faulty parse trees: “zhi2 zou3 rang2

hou4 zai4 bei3 jie1 you4 zhuan3.” Figure 13 depicts the parse tree for this sentence. As

can be seen, the “and” node contains the terminal nodes “rang2” and “hou4.”

Figure 13: Parse tree for “zhi2 zou3 rang2 hou4 zai4 bei3 jie1 you4 zhuan3.”

 45

For the Chinese grammar, modifications also needed to be made to the “action lists” file

for creating semantic frames from the parse trees. One such example was adding

“and_street” to the “and” rule, which made it possible to have sentences like “fang4 zhe4

ge5 zai4 gong1 yuan2 lu4 he2 shan1 hu2 jie1 de5 jie1 tou2.” The meaning representation

is shown in Figure 14.

{c request
 :domain "MapGame"
 :pred {p place
 :topic {q pronoun
 :quantifier "this" }
 :pred {p at
 :topic {q a_location
 :name "corner"
 :pred {p of
 :topic {q street_name
 :name "gong1 yuan2"
 :street_type "road"
 :and {q street_name
 :name "coral"
 :street_type "street" } } } } } } }

Figure 14: Semantic frame for “fang4 zhe4 ge5 zai4 gong1 yuan2 lu4 he2 shan1 hu2 jie1 de5 jie1
tou2” with modification to the “and” rule.

Without that modification to the “and” rule, the semantic frame would look like the one

in Figure 15. As can be seen, the “street_name” topic in Figure 15 contains only one of

the two streets.

{c request
 :domain "MapGame"
 :pred {p place
 :topic {q pronoun
 :quantifier "this" }

 46

 :pred {p at
 :topic {q a_location
 :name "corner"
 :pred {p of
 :topic {q street_name
 :name "coral"
 :street_type "lu4_jie1" } } } } } }

Figure 15: Semantic frame for “fang4 zhe4 ge5 zai4 gong1 yuan2 lu4 he2 shan1 hu2 jie1 de5 jie1
tou2” without modification to the “and” rule.

4.2 Generation and Synthesis

4.2.1 Genesis

From the semantic frame constructed by Tina, the language generation system can

assemble a paraphrase, a set of key-value bindings, or a response (Baptist [1] and Baptist

et al. [2]). Of special significance to the LanguageLand system are the first two, in

constructing both the English-only as well as the bilingual version of the system. Genesis

requires a linguistic catalog comprised of a grammar file, vocabulary file, and rewrite

rules file, which we created for the LanguageLand MapGame domain separately for each

of the generation languages.

For the English-only version of the LanguageLand system, we were interested in

performing English-to-English paraphrasing as well as English-to-key-value bindings.

The English-to-English paraphrasing we wanted was basically just a mirror copy of the

input sentence. For example, for the sentence “go north until you reach prince street,”

Tina generates a parse tree and a corresponding semantic frame. The resulting frame is

shown in Figure 16.

 47

{c request
 :domain "MapGame"
 :pred {p go
 :pred {p direction
 :topic "north" }
 :adv_clause {c statement
 :conjn "until"
 :topic {q pronoun
 :name "you" }
 :pred {p reach
 :topic {q street_name
 :name "prince"
 :street_type "street" } } } } }

Figure 16: Semantic frame for “go north until you reach prince street.”

The Genesis English paraphrase rules then reconstruct an English paraphrase from this

semantic frame. For example, Figure 17 shows the “street_name” rule, which strips out

the “name” and “street_type” bindings from the “street_name” topic frame, thus

completing the “prince street” portion of the English paraphrase. The “:pred” rule covers

any subpredicates within “street_name,” such as “in Boston,” and the “>do_and” rule will

handle any compound NPs.

street_name :name :street_type :pred >do_and

Figure 17: Generation rule for “street_name” topic in English paraphrasing.

Because the generic rules covered ground for most of our domain’s English sentences,

little modification was necessary. Rules for key-value bindings, however, did not exist

and had to be created from scratch. After careful consideration of the LanguageLand

 48

application and how it would interface with the natural language components, we decided

to have key-value pairings such as the ones shown in Table 1.

Key Value

Direction North, south, east, west, special, straight,

back

Block 1, 2, 3, …

When Reach, pass

Turn Right, left, around

Clear This, that, history, map

What This

Landmark <landmark>

Put This, that, <landmark>

Location Here, there

Street_name <street_name>

Street_type Street, avenue, road

Street1 <street_name>

Street2 <street_name>

Street_type1 Street, avenue, road

Street_type2 Street, avenue, road

Table 1: Key-value bindings.

 49

If the input is “go north until you reach prince street,” the corresponding set of key-value

bindings is: “direction: north when: reach street_name: prince street_type: street,”

whereas if the input is “go north until you pass prince street,” the set of key-value

bindings is: “direction: north when: pass street_name: prince street_type: street.” In both

cases, the direction is “north” and the street of interest is “prince street.” The difference

is that, in the first case, the “when” key is bound to “reach” whereas in the latter case it is

bound to “pass.” An example of another sentence is “put the pig at the corner of prince

and south street,” which results in “put: pig street1: prince street2: south street_type2:

street.” This key-value binding informs the system to put the pig at the corner of the two

specified streets. We also added the capability of having multiple instructions. For

example, if the user says “go north for a block and then turn right,” we want a sequence

of two different sets of key-value bindings. The following is the template we came up

with: “seq: <start> direction: north block: 1 <and> turn: right <end>.” A more in-depth

explanation of these key-value bindings and how they are dealt with in the

LanguageLand application is discussed in Chapter 5.

In moving from the English-only system to the bilingual system, a few changes came into

play. We no longer cared about the English-to-key-value bindings or English-to-English

paraphrases. If a user speaks/types English, the paraphrase is in Chinese. If a user

speaks/types Chinese, we want both the key-value bindings and the paraphrase in

Chinese. It was pretty easy to make the modifications for the key-value bindings because

for the most part they were identical to those in the English language. Since the key-

value bindings are just used for backend purposes, we could have “direction” as a key

 50

instead of requiring “fang1 xiang4,” the Chinese translation of “direction.” Therefore, as

long as we have the semantic frames from a Chinese phrase, we can use the same rules in

creating the key-value bindings from English. We just had to add a couple of new rules

because of slight differences in the semantic frame structure for Chinese.

In terms of the Chinese paraphrasing from both English and Chinese, we wrote one set of

rules that was shared by both languages. It was somewhat tricky because of occasional

differences in structures of the semantic frames.

4.2.2 Dectalk & Envoice

As mentioned in the Background section, the LanguageLand system uses Dectalk, an off-

the-shelf product, for English synthesis. However, for Chinese synthesis, LanguageLand

uses Envoice, which is more flexible and is specifically personalized for the Chinese

LanguageLand domain (Yi et al. [18] and Yi et al. [19]). As a preparation for Envoice to

be used, a large number of Chinese sentences and phrases were recorded. The longer the

sentences are, the better, but due to the variation of word classes not all sentence

combinations were recorded. For example, LanguageLand has about a hundred street

names, and it is virtually impossible to create sentences for each of those street names.

Thus, street names were recorded separately. However, phrases like “go north” and “go

south” were recorded fully since there are not that many different directions (north, south,

west, east, straight, backwards, etc.), and there is only one appropriate way to say “go” in

Chinese. Envoice selects and concatenates different waveform segments that are

prerecorded, giving preference to larger recorded sections. Concatenation can occur at

 51

the phrase, word, or sub-word level, chosen in that hierarchy in accordance to what is

available.

The beauty with Envoice is that even if a sentence cannot be perfectly constructed from

existing phrases, as long as phonetic recordings exist for each sub-word, Envoice can pull

pieces from different phrases. For example, “gong1 yuan2 jie1” (Park Street) and “shan1

hu2 da4 dao4” (Coral Avenue) were recorded. If we want the system to say “Park

Avenue” in Chinese, Envoice can simply pull “gong1 yuan2” from the first recording and

“da4 dao4” from the second recording, in order to produce “gong1 yuan2 da4 dao4.” Of

course, if “gong1 yuan2 da4 dao4” was itself a recorded phrase, then that would be used

instead, because Envoice favors longer recordings.

 52

Chapter 5

LanguageLand Application Development

This chapter covers the meat of the thesis work and focuses purely on the Java and Swing

application end (Lai et al. [9]). It is broken up into seven subsections. The first section

talks about the help structure for both using the application and helping a student learn

the language. The second section describes the process in getting started. The third and

fourth parts describe the edit and play modes, respectively. The fifth and sixth sections

detail how the teacher views his students’ progress as well as how students view their

own progress. The last section discusses system integration with the natural language

components and the communication that takes place.

5.1 Help Structure

There are three different ways teachers and students can get help in this application. The

first way is through the instructions screen. The first time a user comes across a crucial

component of the application in a particular user session, an instructions screen pops up

explaining how to get started and what everything in this stage stands for. There is a

checkbox called “Do not show this message again” on that screen. If the user checks this

box, then for all subsequent sessions this particular instructions screen will never pop up

again. The user can always change this setting by toggling the checkbox in the Help

menu under the item called “Show Instructions on Start.” This is the same structure used

for all instructions screens. Even if the user opts not to have one instructions screen

show, all other instruction screens will still pop up unless the user checks those as well.

 53

If a user does not want the instruction screen to pop up automatically but still wants to

view it, or if a user closes the screen but wants to view it again, he can click on the

“Instructions” menu item under the “Help” menu, which will pop up the instructions

screen. Note that the toggle button setup for the instructions screen is customized

individually so one user’s settings will have no effect on someone else’s.

Another way the user, and in particular a student, can get help is by clicking on the

“Examples” menu item in the “Help” menu for both the “Play” and “Edit” modes. Since

these two modes are where the user will be learning the foreign language, we felt it was

important to let the user know what types of sentences can be said. This screen does not

pop up automatically upon startup because we know there are students who may want to

brave the system without getting any clues. Plus, the user can actively open it when

necessary.

The last way a user can get help while using the application exists only in the “Play”

mode, the reason being this is the mode in which users may need hints to proceed in the

game. There is a “HINT” button in the play mode which users can click on if they are

stuck in the game. The hints are staggered into two tiers. The first time the user clicks it,

the hint is rather vague. If the user clicks it again without having made any progress in

the game, the hint is more explicit. This format urges users to try their best attempt

before asking for help again.

 54

The different help mechanisms mentioned will be elaborated in subsequent sections of

this chapter.

5.2 Getting Started

The first step in getting started is logging in. Users can do so by entering their email

addresses and assigned passwords, as shown in Figure 18.

Figure 18: Login screen.

After successfully logging in, a set of instructions pop up that describe the LanguageLand

system and what features are available. This screen is shown in Figure 19.

 55

Figure 19: Instructions for getting started.

As described in the “Help Structure” section, the user can opt not to have this instructions

screen show again. After closing the screen, the user sees the welcome screen. For

teachers, the screen is as shown in Figure 20, while for students it is like Figure 21.

Figure 20: Welcome screen for teachers.

 56

Figure 21: Welcome screen for students.

In the welcome screen, there are three options: create new game, open existing game, and

view students’ progress (for teachers) or view my progress (for students). If the user

selects “Create New Game,” a new screen opens up that allows the user to either specify

a game name or accept the default name. The default game name is labeled “New Game

(#),” where the “#” is incremented from 0 upwards so that all game names are unique.

Figure 22 shows the game name screen.

 57

Figure 22: Game name screen.

Clicking “OK” on this screen leads to a new game in edit mode, which will be described

in the “Edit Mode” section. If instead of choosing to create a new game, the user opens

an existing game, a game selection screen pops up, as depicted in Figure 23

Figure 23: Game selection screen.

 58

In the game selection screen, the user can choose to open any existing game. Since all

game names are required to be unique, there is no room for ambiguity here. If instead of

opening an existing game, the user had chosen to view progress, the corresponding

progress screen would open up. This screen is described in the teacher and student

progress view sections.

Finally, if the user closed the welcome screen without selecting any of the three options,

all that is left are the “File” and “Help” menus. The “File” menu, as revealed in Figure

24, has all three options that were available in the welcome screen.

Figure 24: File menu in logged-in state.

The “Log in” option is disabled since the user is already logged in. It also has options to

log out and to exit the application. If the user clicks on “Exit,” the whole application

closes. If the user clicks “Log Out,” the user is logged out of the current session. Menu

items in the logged-out state are described below. If the user clicks on “Change

 59

Password,” the screen in Figure 25 shows. The user just has to type in his old password

once and new password twice in order to change it.

Figure 25: Change Password option in logged-in state.

The “Help” menu in the logged- in state has options to show the “About” and

“Instructions” screens, as well as a toggle checkbox for showing the instructions on start.

This is shown in Figure 26.

 60

Figure 26: Help menu in logged-in state.

If the user clicks on “About,” the screen in Figure 27 pops up.

Figure 27: “About” screen in logged-in state.

 61

As described in the “Help Structure” section, if the user clicks on “Instructions” the

instructions screen pops up. There is also the option to have the instructions screen

always or never pop up when the user logs in.

In the logged-out state, most of the items in the “File” menu are disabled. In fact, the

only available options are to log in or to exit the application, as can be seen in Figure 28.

Figure 28: File menu in logged-out state.

The “Help” menu, shown in Figure 29, is the same as in the logged- in state except there

is no option to check the box for whether or not the instructions screen should show on

start. This is because no one is logged in yet and there would be no one to associate that

setting with.

 62

Figure 29: Help menu in logged-out state.

5.3 Edit Mode

When a user creates a new game, it automatically opens up in edit mode with the default

instructions, which looks like the screenshot in Figure 30.

Figure 30: Instructions screen in edit mode.

 63

On the left is an “Edit Name” button with the current game’s name next to it. Users can

click on it to change the game name, as shown in Figure 31.

Figure 31: Change game name screen in edit mode.

Underneath the “Edit Name” button are a series of eight buttons which contain the

landmarks pertinent to the current game. Note that this dynamic set of landmarks is

randomly picked for each game, so that the user can learn more vocabulary words. There

are a total of 68 different landmarks. A few were drawn using Adobe Photoshop, but the

rest were stripped from various Web pages offering free pictures. We tried to pick

pictures that would resemble a venue, object, or something of learning value. Some

examples are: washer, volleyball, and bowling alley. On the right is the game map, with

dynamic street names which are also randomly picked. As mentioned in Chapter 4, there

are a total of 113 streets, all of which have translations in both English and Chinese. In

the edit mode, users can get by with just their mouse by clicking on landmarks on the left

and then double-clicking on map blocks on the right. One click on a block causes a red

 64

outline to appear around that block, while another click places the currently selected

landmark onto the block. A right-click on a block erases the current landmark on it, if

there exists one. Or, users can choose to place new landmarks over old ones directly.

Figure 32 shows an example of a volleyball being placed on a block.

Figure 32: Placing item on map in edit mode.

On the left, below the landmarks, is the “Instruction” textbox, in which users can type in

commands. Right below that is the button to submit commands, and below that is the

“System Interpretation” window, in which translations and responses are shown. If, for

example, the user types in “what is this?” and submits it, the “System Interpretation”

window will have the Chinese translation, “zhe4 shi4 shen2 me5.” If the user then types

in “zhe4 shi4 shen2 me5,” the “System Interpretation” will show the Chinese name of the

landmark currently selected. Figure 33 shows an example of asking the system “zhe4

shi4 shen2 me5” when the bowling alley is selected. The “System Interpretation”

window shows “bao3 ling2 qiu2 di4,” the Chinese name for bowling alley.

 65

Figure 33: Asking the system “zhe4 shi4 shen2 me5” when the bowling alley is selected in edit mode.

The “File” menu for the edit mode is the same as that of the welcome screen. The “Edit”

menu has only one item, “Play.” Clicking on it will transfer the user to the play mode of

this game, but only if there exists at least one item on the map. Otherwise, there is no

game to play. This “Edit” menu is shown in Figure 34.

Figure 34: Edit menu in edit mode.

 66

The “Help” menu, shown in Figure 35, has the “Instructions” item and “Show

Instructions on Start” checkbox, which function just like those in the welcome screen.

Figure 35: Help menu in edi t mode.

There is also an “Examples” item, which opens up a dialogue box that shows examples of

the types of sentences the user can try. This is shown in Figure 36.

 67

Figure 36: Examples screen in edit mode.

The key-value bindings table in Chapter 4 is condensed in Table 2 into just the entries

which are pertinent to the edit mode.

Key Value

Clear This, that, history, map

What This

Landmark <landmark>

Put This, that, <landmark>

Location Here, there

Street1 <street_name>

Street2 <street_name>

Street_type1 Street, avenue, road

Street_type2 Street, avenue, road

Table 2: Key-value bindings in edit mode.

 68

Sentences like “ca1 diao4 zhe4 ge5” (clear this) give the key “clear” and the value “this,”

causing the currently selected block on the map to be erased. The multimodal nature of

this and other commands allows the user to both type and click with the mouse. If the

value is “history” or “map,” all blocks on the map are erased. If a user says “zhe4 shi4

shen2 me5” (what is this?), the key is “what” and the value is “this.” The system

determines which of the landmarks on the left are selected and sends a message with the

landmark’s English name to the natural language backend, which then passes back out

the Chinese translation to be shown in the “System Interpretation” text area. If the user

types the landmark’s English name into the window directly, the system will also pass

back out the Chinese trans lation of the landmark.

A “fang4 zhe4 ge5 zai4 zhe4 li3” (put this here) sentence will give the key “put” and the

value “this,” along with the key “where” and the value “here.” The system responds by

placing the currently selected landmark onto the currently selected map block. The user

could also say “fang4 zhu1 zai4 shan1 hu2 jie1 he2 gong1 yuan2 da4 dao4 de5 jie1 tou2”

(put the pig at the corner of coral street and park avenue), and the corresponding key-

value pairs are: “put” and “pig,” “street1” and “coral,” “street_type1” and “street,”

“street2” and “park,” “street_type2” and “avenue.” The system places the landmark pig

at the specified corner block on the map.

Note that not only can the user type to the system, but she can also speak to it on the

telephone. By typing “call me at #” (where “#” stands for a 10-digit phone number

 69

including the area code), the user prompts the system to call that number. With both

typing and speaking, if the user communicates in English, the system responds with a

Chinese translation, both in the “System Interpretation” window and also over the phone,

if spoken. If the user communicates in Chinese, the system performs the command and

also repeats what the user says as confirmation.

5.4 Play Mode

The play mode for a game can be accessed either via the edit mode (after a user has set

up the map) or by opening an existing game that is already in play mode. The first time it

is opened in a specific session, the instructions screen pops up as in Figure 37.

Figure 37: Instructions screen in play mode.

Like in all other stages, the user can choose to not have this instruction screen show up

anymore in subsequent sessions. Figure 38 shows the play mode right after a game starts

up.

 70

Figure 38: Play mode at startup.

In play mode, one of the landmarks on the map (in this case, the pool hall) is randomly

chosen and its corner block becomes the goal, as marked by the red, filled- in circle with

the word “GOAL” written across it. The text area on the upper left part of the screen

details the task at hand. The starting point, marked by the human stick figure and the

green direction arrow, is somewhat randomized but not completely. There are nine

corner blocks on the map. If the goal is on one of the corner blocks on the top- left, top-

right, bottom-left, or bottom-right, then the starting point is always the opposite corner

block. But, for example, if the goal is in the center corner block of the map, then the

starting point is any corner block but the middle one. A similar algorithm holds for the

other corner blocks. The key motives are to have randomization and to make sure the

starting point and goal are not too close to each other, if possible. Also note that the

direction for the green arrow (marked by the tip of the triangle) on the starting point is

randomized with uniform probability of facing north, south, east, or west. The reason we

 71

wanted this probability is so students can practice reorienting themselves at the beginning

of a game.

The structure for typing and speaking is the same as in edit mode. That is, if a user

communicates in English, the system responds with the Chinese translation of the

sentence. If the user communicates in Chinese, the system paraphrases the same sentence

in Chinese and also performs the command. For example, if the user submits “walk

straight for 2 blocks and then turn left,” the “System Interpretation” text area will present

“zhi2 zou3 liang3 ge5 lu4 kou3 rang2 hou4 zuo3 zhuan3,” as shown in Figure 39.

Figure 39: After typing “walk straight for 2 blocks and then turn left” in play mode.

If the user then submits the translated Chinese sentence, the system paraphrases the

sentence in Chinese and performs the action of going straight for two blocks and turning

left. In Figure 40, the red line shows the walking and the green arrow shows the left turn.

 72

While the green arrow is allowed to rotate freely without leaving a trail, red lines drawn

on the screen are never erased, thus showing a user’s history.

Figure 40: After typing “zhi2 zou3 liang3 ge5 lu4 kou3 rang2 hou4 zuo3 zhuan3” in play mode.

If the user is stuck, she can click on the “HINT” button which will give a vague hint as to

which direction to proceed in. If the user clicks on the button again without having made

any progress, the hint becomes a little more detailed. Currently, there are only two hint

levels. Figure 41 shows an example of an advanced (second level) hint.

 73

Figure 41: Advanced hint in play mode.

The “File” menu for the play mode is the same as in the edit mode. The “Edit” menu

shown in Figure 42 has an “Edit Map” item. Clicking on it brings the user back to the

edit mode of the current game, from which the user can make changes to the existing

map.

Figure 42: Edit menu in play mode.

 74

The “Help” menu in the play mode is the same as that of the edit mode, except that

clicking on the “Examples” item brings up a different screen. This screen for the play

mode is depicted in Figure 43.

Figure 43: Examples screen in play mode.

The key-value bindings table in Chapter 4 is reduced to entries relating to the play mode,

as shown in Table 3.

Key Value

Direction North, south, east, west, special, straight,

back

Block 1, 2, 3, …

When Reach, pass

 75

Turn Right, left, around

Landmark <landmark>

Street_name <street_name>

Street_type Street, avenue, road

Table 3: Key-value bindings in play mode.

Sentences such as “wang3 nan2 zou3” (go south) have the key “direction” and value

“south,” and instructs the system to go south for a block. If the user says “zai4 wang2 zi3

jie1 shang4 zou3” (go down Prince Street), the bindings are: key “direction” and value

“special,” key “street_name” and value “prince,” and key “street_type” and value

“street.” Assuming that one of the current cross streets is Prince Street, the system walks

one block on Prince Street. The direction of traversal depends on the green arrow. If it is

already aligned along Prince Street, it goes in that direction. Otherwise, the direction is

randomly picked to align with Prince Street. A sentence like “xia4 zou3 liang3 ge5 lu4

kou3” (walk down for two blocks) provides key “direction” and value “south,” and key

“block” and value “2.” The sentence “zuo3 zhuan3” (turn left) gives key “turn” and

value “left,” which causes a left turn. The user can also combine instructions such as

asking the system to walk in a certain direction until it reaches a landmark and then turn

right at a particular cross street. For example, the sentence “wang3 xi1 zou3 zhi2 dao4

zhu1 rang2 hou4 zai4 wang2 zi3 jie1 you4 zhuan3” results in the following key-value

frame: “seq: <start> direction: west when: reach landmark: pig <and> turn: right when:

reach street_name: prince street_type: street <end>.” Notice the sequence “<start>,”

“<and>,” and “<end>” markers separating the two instructions. The key “when” and

 76

value “reach” tell the system to wait until the corresponding landmark or street is reached

before stopping or turning.

Synonymous to the edit mode, the play mode also supports both typed and spoken input,

and the user can submit a “call me at #” phrase in order to be called by the system at a

specific number.

5.5 Teacher Progress View

Teachers can examine their students’ performance via the teacher progress view portion

of the system. The first time a teacher opens it, an instructions dialogue opens up. Just

like in all other cases, the user can choose to not have this open up in future sessions.

This screen is shown in Figure 44.

Figure 44: Instructions screen in teacher progress view.

 77

To the left of the teacher progress view is a list of existing students, ordered

alphabetically by first name. The student at the top of the list is selected by default when

this screen is opened. Clicking on a particular student will pull up that student’s data on

the right. In Figure 45, Michael Cheng’s data is shown on the right.

Figure 45: Michael Cheng’s data in teacher progress view.

The teacher can add new students to the database at any time. The only requirement is

that each student’s email address is unique, as that becomes the login ID. It is okay to

have students with the same first and last names. The dialogue for adding a new student

is depicted in Figure 46.

 78

Figure 46: Adding a new student in teacher progress view.

The teacher can also delete students from the database. To ensure that the user actually

wants to perform the deletion, there is a confirmation dialogue which is shown in Figure

47. By default, “No” is selected to further prevent unwanted deletions.

Figure 47: Deleting a student in teacher progress view.

 79

To the right of the screen is a “Progress” text area which shows progress made by a

particular student in all his games. Since students don’t have an option to delete the

history of their actions, this list is comprehensive and allows the teacher to view students’

mistakes as well as accomplishments. There is also a form underneath where teachers

can write and submit feedback to the student. If the teacher clicks on the “View My

Feedback to Student” link (which can be viewed in Figure 45) on the right of the screen,

the feedback dialogue pops up with all written entries. Feedback entries are ordered

alphabetically by the subject title, thus requiring that all feedbacks have unique subjects.

Teachers may want to include dates or game names at the beginning of subject titles for

easier identification. The feedback at the top of the list is selected by default. Clicking

on one will pull up that feedback’s body on the right. Note that there is no option to

delete feedback as they are meant to be comprehensive. This feedback dialogue is shown

in Figure 48.

Figure 48: Viewing feedback to student in teacher progress view.

 80

The “File” menu is similar to the ones in the other screens, except that the third menu

item, “View Progress,” is replaced by “Open Current Game.” Clicking on it just pulls up

the most recently opened game, regardless of whether it is in edit or play mode. Figure

49 shows the “File” menu.

Figure 49: File menu in teacher progress view.

The “Edit” menu, as shown in Figure 50, contains two items: “Add New Student” and

“Delete Student.” These items correspond to the two buttons on the lower left of the

screen.

 81

Figure 50: Edit menu in teacher progress view.

The “Help” menu, as shown in Figure 51, is similar to the ones in the edit and play

modes. The only difference is that the “Examples” menu item is removed, since there is

no language learning component in the progress view.

Figure 51: Help menu in teacher progress view.

 82

5.6 Student Progress View

Students have a similar progress view, except that they can only view their own data.

When it is first opened, the instructions screen depicted in Figure 52 pops up as usual.

There is an option to have it never show upon startup again.

Figure 52: Instructions screen in student progress view.

The main progress view, shown in Figure 53, contains the student’s data. At the top is a

list of all progress made so far in all games. There is no option for a student to erase

history of past actions because we do not want students to erase mistakes and simply

show the good parts. On the bottom of the screen is the feedback area where a student

can view everything a teacher has written to him. The feedback entries are ordered

alphabetically by subject title, with the one at the top of the list selected by default.

Clicking on an entry opens up its feedback body to the right.

 83

Figure 53: Michael Cheng’s student progress view.

The “File” and “Help” menus are identical to the ones in the teacher progress view. They

can be viewed in Figure 49 and Figure 51, respectively.

5.7 System Integration and Communication

A crucial part of the LanguageLand application is its connection to and communication

with the natural language components (Cyphers [4]). This communication is facilitated

by a central hub. We wrote a script to run a hub and the following servers in the

backend: NL, Discourse, MapGame Recognizer, Waveform, and Envoice. The hub

communicates with each of the servers on a different port. It also leaves a port open for

communication with the LanguageLand application and waits for a connection to be

established. The following sections describe the Connection Manager’s role in the

LanguageLand application, sending dynamic vocabulary, sending messages, and

receiving messages.

 84

5.7.1 Connection Manager

When the LanguageLand application first starts up, it creates a hub client server, the

Connection Manager, which connects with the hub and waits for messages on the

specified port. It also establishes a unique session ID (based on the system time in

milliseconds) and an increment ID that starts off at 0 and is manually incremented by 1

every time the application sends a message to the hub. This ensures that messages do not

get mixed up.

5.7.2 Sending Dynamic Vocabulary

The dynamic vocabulary only applies for the English-only version of the system. Every

time a new game is opened, the application creates a new frame that contains a list of two

clauses. The clauses contain the list of landmarks and street names, respectively, for the

current game. The system then sends the frame to the hub, thus ensuring that the

recognizer only deals with this subset of landmarks and street names.

5.7.3 Sending Messages

Normal messages are sent similarly. When the user is in edit or play mode and submits a

message, a new frame is created which contains the input string and utterance ID. The

system then increments the utterance ID before sending off the message to the hub. This

process is asynchronous in that the system will not wait for a reply message. Thus, a user

could potentially submit two strings before receiving a reply for the first one. This

ensures that the system is not blocked by slow network connectivity.

 85

5.7.4 Receiving Messages

The process of receiving messages is also asynchronous. When the system receives a

message through the Connection Manager, it first looks for two string properties in the

message frame: “hub_session_language” and “hub_session_learn_language.” The first

one specifies the language the user typed or spoke in (either English or Chinese). The

second one is the language to be learned (Chinese). If the first language is English but

the second language is Chinese, then our system just displays the translated phrase (from

English to Chinese) on the screen. If both languages are Chinese, however, then our

system also performs the command, which is stripped from the key-value bindings in the

eform. The reason we have both the “hub_session_language” and the

“hub_session_learn_language” parameters is for flexibility in extending the system, in

case we want to change things such as having the learned language be English instead of

Chinese. It is important to note that our system distinguishes between receiving

messages in the edit versus play mode, since the set of recognized key-value bindings is

different. This division occurs right after the message is received.

 86

Chapter 6

Evaluation

This chapter discusses evaluation of the LanguageLand system, both for its user interface

and for its natural language component.

6.1 User Interface

The user interface of the LanguageLand system went through several iterations,

following the waterfall model, which is a software development model introduced by W.

W. Royce in 1970 (Royce [13]). During each iteration, multiple users tested the interface

based on several sets of standard criteria, such as Jakob Nielsen’s ten usability heuristics

(Molich et al. [12]). The system started out as a paper prototype. The edit mode for the

prototype is shown in Figure 54.

 87

Figure 54: Edit mode in paper prototype.

Figure 55 shows the prototype for the teacher progress view.

Figure 55: Teacher progress view in paper prototype.

Creating a paper prototype before delving into the coding process proved helpful because

the prototype takes less time to make and we were able to adapt to and fix things on the

fly during user testing. Also, users see that the system is still in the “draft” stage and are

more willing to offer suggestions and criticism. After gathering results from the paper

prototype, we proceeded in building an initial version of the system using Visual Basic,

which is mostly used for storybook applications because it does not require extensive

coding. This version of the system had a horizontal look and feel, meaning most of the

screens looked complete but there was not much depth to the available actions. After

 88

completing another round of usability testing, we began to develop the actual system

using Java.

The Java version of the system also went through user testing, and we incorporated many

of the changes suggested by users. Some of these changes include providing help to the

user. In response, we added instruction dialogues, examples, and a hint function. There

were also a lot of minor suggestions such as choosing colors that blend well and also

stand out. Another addition is the green arrow, which we added to show users their

current orientation. Overall, we believe the extensive testing and redesigning of the user

interface makes the system comprehensive and easy to use.

6.2 Natural Language Component

Though not as formally, the natural language component went through several iterations

as well. The system started with a simple, hardwired artificial intelligence which only

understood the four cardinal directions: north, south, west, and east. We then attempted

to add other simple commands such as “go north” and “turn left.” Eventually, we

incorporated the natural language components to form an actual “intelligent” system

which understands and processes user input. We built the grammar for the natural

language bit by bit. After creating an initial version, we continued testing the system and

writing grammar rules for new sentences to include. In fact, we currently have about 189

English training sentences and 245 Chinese training sentences. The process was

somewhat challenging because rules for new sentences would sometimes break old ones,

requiring us to come up with inventive ways to incorporate both old and new sentences.

 89

The actual testing of the complete system was bound by time constraints and we were

only able to test with one user. Another setback was that because of the removed

dynamic capability of the bilingual recognizer, the system had to be able to recognize all

113 streets and 68 landmarks. As a result, the recognizer is not very robust. For

example, one time the system heard “Boston” when the user did not say anything

resembling that. Thus, we decided that, because the recognizer was still premature, for

evaluation purposes we would only test typed input. Spoken input is extremely important

as well, but it will have to wait until a version of the multilingual recognizer is created

that supports dynamic vocabulary.

Our test involved a native Chinese speaker. Because of her strong ability in Chinese, she

attempted most of her sentences in Chinese (typed pinyin). This proved to be somewhat

of a setback because some phrases have variations in Chinese that we had not accounted

for. That is, if she had communicated in English, there would have been a higher

probability of a successful parse, during which the system would respond with the correct

Chinese translation that she could then type to the system. However, because she often

wrote in Chinese directly, a lot of the sentences failed to parse properly. In fact, we

learned that our system does not adequately support slang and shortcuts. For example,

our tester informed us that in a real- life situation, she would never say “zhi2 zou3 zhi2

dao4 gao1 jie1” (go straight until you reach High Street), a sentence which is supported

by the LanguageLand system. Instead, she would probably say something like “gao1 jie1

zhi2 zou3,” which is not quite grammatically correct but makes sense to native speakers.

A tradeoff we made with our system was to avoid supporting informal language,

 90

understanding that it would limit the robustness of the system but would work better with

our grammar structure and would allow students to learn proper Chinese. But in dealing

with proper sentences, our system still allows some variability. For example, the

sentence “zhi2 zou3 dao4 gao1 jie1” works, even though the “zhi2” in front of “dao4” is

stripped out. While this sentence is comparatively not as grammatically complete as the

initial version, “zhi2 zou3 zhi2 dao4 gao1 jie1,” our system still supports it. However,

we choose not to support sentences which have completely incorrect grammar structures,

a decision which may change in a future version of the system. Overall, the evaluation

helped us understand the limits of the system and why it failed for particular sentences.

Fortunately, we were able to incorporate many of the suggestions raised by the tester.

For example, we learned that “cha1 kou3” is another way of saying “corner,” and “zuo3

guai3” is another way of saying “turn left.”

Due to time constraints, we were unable to subject the system to the series of data

collection/system expansion cycles that will be necessary before it can actually be fielded

in the classroom.

 91

Chapter 7

Conclusion

This chapter summarizes the thesis and discusses future work covering both natural

language and application development.

7.1 Summary

The goal of this thesis is to develop an intelligent, multimodal, and bilingual language

learning system in the map game domain which allows English-speaking students to learn

Mandarin Chinese. We have accomplished this goal in three phases. The first phase was

building the application user interface with a stand- in artificial intelligence component.

The second phase was creating and augmenting grammar rules and catalogs using SLS’s

extensive set of natural language components. The third phase was replacing the limited

AI with the natural language components and providing an appropriate communication

structure. All three phases were based on an iterative approach in which we repeatedly

gathered feedback and suggestions and rolled them into the next version of the system.

Overall, we feel that we have accomplished the goals we set out for ourselves in the

beginning, although a lot of new work remains for the future.

7.2 Future Work

7.2.1 Extending Application Development

In the process of building this first version of the LanguageLand application, we came

across a variety of different ideas for extending the application in the future. For

 92

example, it is currently limited in its scope of commands. While the user can ask the

system to erase a particular map block or even all the blocks on the map, there is no way

to selectively erase items. A user cannot ask the system to erase all mice on the map, or

to erase a particular house which is on the corner of two specified streets. The system

can deal with commands such as turning right at or after a specific landmark or street;

but, the system cannot deal with more general objects such as a “corner” or a “building.”

For example, a user cannot ask to turn left at the “next corner.” It is our hopes that future

development can include expanding the system command grasp.

Another suggestion is to make the map bigger so that street corners are not at most two

blocks from each other horizontally and vertically. If it will not fit on the screen,

scrollbars could be implemented to allow the user to navigate the map. A bigger map

would allow the user to form more elaborate sentences, perhaps involving conjunctions

or traveling multiple blocks, without reaching the goal too soon.

A problem with streets right now is that the vertical streets have to have shorter names

because otherwise their names are blocked from view. We have temporarily solved the

problem by naming those streets things like “1st Ave,” but a new graphical user interface

replacing the street interface could remove this requirement.

While the application currently takes English and Chinese pinyin as typed input, it cannot

accept actual Chinese characters. Due to time constraints, we did not explore whether

 93

Java applications can support Chinese characters such as Big 5, but hopefully it can be

added in the future.

Some more high- level suggestions include things like providing simulated conversations

as examples to follow and allowing users to record, listen to, and get ratings on their own

spoken sentences, similar to what SLLS provides. This may allow students to compare

their own voices to those of the system, thus having a better idea of how good their

pronunciations are.

At present, the LanguageLand system is limited to the map game domain. However, we

see potential for eventually extending it to other real- life situations such as buying items

from a store. In that scenario, setting up the store shelves with products might be the edit

mode while purchasing items would be the actual play mode, the task being to buy a

specific number of different things.

It would be nice to make it easier for teachers and administrators to add new vocabulary.

Currently, landmark pictures are hand-picked and are all resized to fit within the buttons.

Moreover, each picture has to be labeled with the actual vocabulary name because that is

how the application extracts the picture. The name of the picture also has to be added to

a global list of landmarks. The same goes for new streets, although it is a little easier

since streets do not have corresponding pictures. If we can automate this process and

minimize the number of steps it takes to build new vocabulary, the system would be

easier to maintain and expand.

 94

Finally, a nice feature would be to allow teachers to choose and modify different sets of

vocabulary. While vocabulary can still be chosen randomly, there may be some which

are more fitting for a particular lesson plan.

7.2.2 Extending Natural Language Development

As for the natural language components, the most important feature we need is for

Summit to allow both a bilingual recognizer as well as dynamic vocabulary. Once that

feature is enabled and our system can handle both things, the recognizer should be robust

enough for evaluation and usage.

The second improvement, just like for the application deve lopment, is expanding the

domain and writing grammar to support a lot more sentences. This work is somewhat

coupled with extending the application’s capability to deal with more complicated

sentences, because we have to come up with a common interface for the key-value

bindings.

Aside from adding new sentences, we would also like to figure out a reliable way to fix

misparsed sentences. For some of our previously misparsed sentences, we had tried but

later gave up implementing markers to explicitly end adverbial clauses. We ended up

changing the structures of the parse trees instead. It would certainly be ideal to figure out

why those markers worked for some but not all sentences, and to get it to work in case we

run into similar misparses in the future.

 95

As mentioned in the section on application improvements, the system does not support

Chinese characters yet. The same goes for the natural language components. We

currently have rules for pinyin but not Big 5 Chinese. This feature should not be hard to

implement, once we know for sure that the application can support typed input in Big 5.

Furthermore, we’d like to make the system bilingual in all senses of the word. Not only

should it let English-speaking students learn Mandarin Chinese, but it should also let

Mandarin speakers learn English. We already have rules that retrieve key-value bindings

from English sentences and also perform English-to-English paraphrasing, although they

may need some minor modifications. The only major missing piece is the grammar rules

which translate Chinese phrases back into English. Once we have that, the system should

be fully reversible between English and Chinese.

Finally, if we are ambitious enough to add other domains to the LanguageLand system,

such as buying items in a store, we would have to create new grammar from the ground

up, just as we did for the map game domain.

 96

Bibliography

[1] L. Baptist, "GENESIS-II: A Language Generation Module for Conversational

Systems," SM. Thesis, MIT, 2000.

[2] L. Baptist and S. Seneff, “GENESIS-II: A Versatile System for Language Generation

in Conversational System Applications,” in Proc. ICSLP, Beijing, China, 2000.

[3] G. Chung, S. Seneff, C. Wang and I. Hetherington, "A Dynamic Vocabulary Spoken

Dialogue Interface," submitted to Proc. ICSLP, Jeju Island, Korea, October, 2004.

[4] S. Cyphers, “Communicator Tutorial,” Spoken Language Systems, Computer

Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,

October 30, 2003.

[5] Instinct Corporation with Stanford University researchers, Language Adventure CD-

ROM, http://www.magictheatre.com/la-products.htm, 2003.

[6] Google, Google search for spoken computer-aided language learning systems,

http://www.google.com/, search terms: computer-aided, language, learning.

[7] T. J. Hazen, I. L. Hetherington, and A. Park, “FST-Based Recognition Techniques

for Multi-Lingual and Multi-Domain Spontaneous Speech,” in Proc. EUROSPEECH, pp.

1591—1594, 2001.

 97

[8] L. Johnson, The DARPA Tactical Language Training Project,

http://www.isi.edu/isd/carte/proj_tactlang/tactical_lang_overview.pdf.

[9] J. Lai, V. Lee, “LanguageLand: A Foreign Language Teaching Application,” MIT

6.893 Final Project Report, 2003.

[10] T. J. Lau, “SLLS: An Online Conversational Spoken Language Learning System,”

M.Eng. thesis, MIT Department of Electrical Engineering and Computer Science, May

2003.

[11] J. Lee, “Translingual Understanding Grammar Induction,” MIT Computer Science

and Artificial Intelligence Laboratory, 2004.

[12] R. Molich and J. Nielsen (1990), Ed. J. Nielsen (1994), “Ten Usability Heuristics.”

[13] W. W. Royce, “Managing the Development of Large Software Systems,” IEEE,

1970.

[14] S. Seneff, “TINA: A Natural Language System for Spoken Language Applications,”

in Computational Linguistics, vol. 18, no. 1, pp. 61--86, 1992.

 98

[15] S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue, “Galaxy-II: A

Reference Architecture for Conversational System Development,” in Proc. ICSLP,

Sydney, Australia, November 1998.

[16] The University of Maryland University College, Japanese: The Spoken Language,

Multimedia Collection, http://www.learner.org/resources/series149.html, 1998.

[17] C. Wang, S. Cyphers, X. Mou, J. Polifroni, S. Seneff, J. Yi and V. Zue, "Muxing: A

Telephone-Access Mandarin Conversational System," in Proc. 6th International

Conference on Spoken Language Processing, Beijing, China October 2000.

[18] J. Yi and J. Glass, "Natural-Sounding Speech Synthesis Using Variable-Length

Units," in Proc. ICSLP, Sydney, Australia, November 1998.

[19] J. Yi, J. Glass and L. Hetherington, "A Flexible, Scalable Finite-State Transducer

Architecture for Corpus-Based Concatenative Speech Synthesis," in Proc. ICSLP,

Beijing, China, October 2000.

[20] V. Zue, J. Glass, D. Goodine, M. Phillips, and S. Seneff, “The SUMMIT Speech

Recognition System: Phonological Modelling and Lexical Access,” in Proc. ICASSP,

Albuquerque, NM, April, 1990.

