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Abstract

The current method for phonetic landmark detection in the Spoken Language Systems
Group at MIT is performed by summit, a segment-based speech recognition system.
Under noisy conditions the system’s segmentation algorithm has difficulty distin-
guishing between noise and speech components and often produces a poor alignment
of sounds. Noise robustness in summit can be improved using a full segmentation
method, which allows landmarks at regularly spaced intervals. While this approach
is computationally more expensive than the original segmentation method, it is more
robust under noisy environments. In this thesis, we explore a landmark detection
and segmentation algorithm using the McAulay-Quatieri Sinusoidal Model, in hopes
of improving the performance of the recognizer in noisy conditions.

We first discuss the sinusoidal model representation, in which rapid changes in
spectral components are tracked using the concept of “birth” and “death” of under-
lying sinewaves. Next, we describe our method of landmark detection with respect
to the behavior of sinewave tracks generated from this model. These landmarks are
interconnected together to form a graph of hypothetical segments. Finally, we ex-
periment with different segmentation algorithms to reduce the size of the segment
graph.

We compare the performance of our approach with the full and original segmen-
tation methods under different noise environments. The word error rate of original
segmentation model degrades rapidly in the presence of noise, while the sinusoidal
and full segmentation models degrade more gracefully. However, the full segmenta-
tion method has the largest computation time compared to original and sinusoidal
methods. We find that our algorithm provides the best tradeoff between word ac-
curacy and computation time of the three methods. Furthermore, we find that our
model is robust when speech is contaminated by white noise, speech babble noise and
destroyer operations room noise.

Thesis Supervisor: Timothy J. Hazen
Title: Research Scientist, CSAIL
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Chapter 1

Introduction

Speech is subject to contamination from many different noise sources. Humans are

able to differentiate this speech from noise and comprehend the spoken words. While

speech recognition systems are able to successfully process human speech, their per-

formance degrades rapidly in the presence of background noise. The purpose of this

research is to explore a technique to improve the noise robustness of a segment-based

speech recognition system.

1.1 Problem Statement and Motivation

Most speech recognition systems represent a speech utterance by a temporal sequence

of frame-based feature vectors. To date, Hidden Markov Models (HMMs) have been

the most dominant frame-based acoustic modeling technique for automatic speech

recognition. Although HMMs have proven to be very successful in many tasks, alter-

native models have also been developed to address the limitations of HMMs [22].

One type of alternative model that has been developed is a segment-based speech

recognizer. The summit speech recognizer developed by the Spoken Language Sys-

tems group at MIT uses a segment-based framework for acoustic modeling [10]. Figure

1-1 shows a block diagram of the summit recognition system. Summit computes a

temporal sequence of frame-based feature vectors from the speech signal, but then hy-

pothesizes acoustic landmarks at regions of large change within these feature vectors

14
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Figure 1-1: Block diagram of a segment-based speech recognition system

[9]. These landmarks represent possible transitions between phones.

These landmarks are then connected together to form a graph of possible segmen-

tations of the utterance. To minimize the number of interconnections among land-

marks, an explicit set of segmentation rules is incorporated into summit to reduce

the size of the segment graph. This graph is passed to scoring and search components

which use frame and segment-based measurements to score phonetic hypotheses and

find the optimal path of phonetic elements through the segment graph. We will refer

to this baseline segmentation algorithm used by summit as the original segmentation

method in this thesis.

While summit is able to process human speech in noise-free environments, the sys-

tem’s segmentation algorithm performs poorly in the presence of strong background

noises and non-speech sounds. Specifically, the system has a difficult time distinguish-

ing between the noise and speech components and often produces a poor alignment

of sounds.

Noise robustness in summit can be improved using a full segmentation method.

This technique places landmarks at equally spaced intervals and outputs a segment

graph which fully interconnects all landmarks. While this approach is computation-

ally more expensive than the original segmentation method, it is more robust under

noisy environments.

In this thesis, we investigate a new segmentation algorithm to improve the per-

formance of the recognizer under contaminated speech. In addition, we explore alter-

native segmentation approaches to reduce computation time but still allow for noise

robustness.
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1.2 Noise Robust Speech Recognition

In recent years, improvements in speech recognition systems have resulted in high

performance of specific tasks under clean conditions. For example, digit recognition

has resulted in a less than a 0.5% word error rate. In addition, an error rate of less

than 1% has been achieved in an isolated word recognition task [12].

However, the performance of these systems rapidly degrades in noisy environ-

ments. For example, the performance of a recognizer in a clean speech environment

can drop by over 30% in accuracy when the same speech is corrupted over long-

distance telephone lines [20].

Various phenoma occur under noisy conditions which can explain the degradation

of these systems [16]. Additive noise alters the speech signal and hence the feature

vectors used by speech recognizers to represent this signal. For example, white noise

has been shown to reduce the variance of cepstral coefficients [31].

1.2.1 Previous Work

To date, it has not been possible to develop a universally successful and robust speech

recognition system for all environmental conditions. Systems which perform well in

one scenario can seriously degrade in performance under a different environmental

stress. Therefore, there have been numerous techniques studied to improve the ro-

bustness of speech systems under noisy conditions [12]. These techniques can be

divided into three main categories based on their objectives:

• Noise Resistant Features

• Speech and Feature Enhancement

• Noise Adaptation

Noise Resistant Features

Methods in this category attempt to use features which are less sensitive to noise and

distortion. These methods focus on identifying better speech recognition features or

16



estimating robust features in the presence of noise. While these techniques do not

make assumptions nor estimations about noise characteristics, this is sometimes a

disadvantage since it is impossible to fully utilize features which are specific to a

noise type.

Speech Enhancement

Speech enhancement can be used as a preprocessing step for recognition. These meth-

ods attempt to suppress the impact of noise on speech by extracting out clean speech

or feature vectors from a contaminated signal. Some approaches include parameter

mapping, spectral subtraction, noise masking, comb filtering, Bayesian estimation

and parametric spectral modeling. While these techniques are capable of improving

recognition performance, oftentimes while the estimated clean speech appears more

intelligible to humans it does not necessarily show improvement in the recognizer.

Furthermore, it is sometimes difficult to develop a speech enhancement technique

capable of suppressing a multitude of noise types.

Noise Adaptation

Instead of deriving an estimate of clean speech, noise adaptation techniques attempt

to adapt recognition models to noisy environments. This includes changes to the

recognizer formulation, such as changing model parameters of the recognizer, to ac-

commodate noisy speech. Parallel Model Combination [7] is one such method for

compensating model parameters under noisy conditions in a computationally efficient

manner. In addition, some techniques also explore designing noise models within the

recognizer itself. While this technique performs well at high SNRs, at low SNRs

compensated model signal parameters often show large variances, resulting in a rapid

degradation of performance.
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1.2.2 Proposed Noise Robust Technique

The previous noise robustness techniques all incorporate an extra stage into the recog-

nition process in an attempt to clean up contaminated speech and to improve the scor-

ing stage of the recognition process. In this thesis, we attack an orthogonal problem

of improving the segmentation phase of the summit recognition system under noisy

conditions. We do not address the problems posed by noise in the feature extraction

and acoustic modeling components of the system.

The McAulay-Quatieri Sinusoidal Modeling Algorithm, developed by Tom Quatieri

and Robert McAulay [19], models a periodic signal as a collection of sinusoidal com-

ponents. Representing a speech signal via this sinusoidal model can help to separate

out the harmonic speech components from residual aperiodic noise. Rapid changes

in spectral components are tracked using the concept of “birth” and “death” of the

underlying periodic sine waves.

We will detect landmarks by looking at the births and deaths of these sinusoids.

These landmarks are hypothesized from the sinusoidal behavior of the contaminated

speech itself, as opposed to detecting features after applying a speech enhancement

technique or using alternative noise resistant features. Landmarks are connected to

form a segment graph, an appropriate segmentation algorithm is applied to reduce

the size of the search space, and the optimal sequence of phonemes is found based on

segment-based measurements derived from the contaminated speech itself.

1.3 Thesis Goals

The overall goal in this thesis is to develop an appropriate landmark detection and

segmentation algorithm which provides a good tradeoff between word error rate and

computation time under different noise environments. More specifically, one goal of

this thesis is to develop a robust landmark detection method that will lead to an

improvement in word recognition accuracy over the original segmentation method.

Another goal is to develop an appropriate segmentation algorithm to provide faster

computation time over the full segmentation approach. In our approach, we detect
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landmarks and develop a segmentation algorithm based on the behavior of sinusoidal

tracks derived from noisy speech. We hope that our method will be robust to many

different noise conditions, a limitation of many previous noise robust techniques.

1.4 Overview

The remainder of this thesis is organized in the following manner. Chapter 2 describes

the speech corpora and segment-based system used used for recognition experiments

in this thesis. Sinusoidal modeling techniques, including the McAulay-Quatieri Sinu-

soidal Modeling Algorithm, will be discussed in Chapter 3. Hypothetical landmarks

are detected via a landmark detection method, which is described in Chapter 4. Chap-

ter 5 discusses numerous segmentation approaches for the full segmentation, original

segmentation and sinusoidal model methods. Chapter 6 compares the word error rate

and computation time of the three methods. Finally, Chapter 7 concludes the work

in this thesis and provides a few remarks about future work.
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Chapter 2

System Components

This chapter describes the speech corpora and segment-based system used used for

recognition experiments in this thesis.

2.1 Speech Recognition Corpora

Our recognition experiments use the AV-TIMIT corpus. This corpus contains pho-

netically rich and varied audio-visual recordings of read speech. Noisy speech is then

simulated by adding noises from the Noisex-92 corpus to the utterances from AV-

TIMIT. The following sections describe the corpora in more detail.

2.1.1 AV-TIMIT

The Audio-Visual TIMIT (AV-TIMIT) corpus [14] is a collection of speech recordings

developed at the Massachusetts Institute of Technology for research in audio-visual

speech recognition. The speech data in AV-TIMIT was recorded with a far-field

array microphone and video camcorder in a quiet, controlled office setting. Although

the full corpus contains both audio and visual data, the work in this thesis uses

only the audio data. One of the main design goals for the corpus was to create a

phonetically balanced collection of speech utterances. The TIMIT-SX collection was

used to provide a wide range of phonetic contexts of the English language [32]. In
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total, 23 different rounds of utterances were created. In each round, a set of 20

sentences is read by a speaker. The first sentence in each round is the same for all

speakers to adapt them to recording process, while the other 19 sentences for each

round differ. The final corpus contains 223 speakers, including 117 males and 106

females. The total database duration is approximately 4 hours. The sentences from

the corpus are divided into three sets:

• The train set consists of 3793 sentences. This is used to train various models

used by the recognizer.

• The dev set contains 399 sentences. We used 285 of these utterances to design

and develop the sinusoidal model.

• The test set includes 405 sentences. We used 299 of these utterances use to test

our developed model.

To create unbiased experimental conditions, the sentences in the train, dev and

test sets do not overlap.

2.1.2 Noisex-92

The Noisex-92 speech-in-noise database [30] was created by the Speech Research

Unit at the Defense Research Agency to study the effect of additive noise on speech

recognition systems. The database contains the following noises:

• White Noise, Pink Noise, High Frequency Radio Channel Noise

• Speech Babble

• Factory Noise

• Military Noises: fighter jets (Buccaneer, F16), destroyer noises (engine room,

operations room), tank noise (Leopard, M109), machine gun

• Volvo 340 Car Noise
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In this thesis we look at three specific types of noises, white-noise, speech babble

and destroyer operations room noise. The white noise was acquired by sampling a

high-quality analog noise generator. The speech babble was obtained by recording

samples of 100 people speaking in a canteen. Finally, the destroyer operations room

noise was obtained by recording noise samples in an operation room onto a digital

audio tape.

We simulate noisy speech by adding noise from the Noisex-92 set to clean AV-

TIMIT speech at signal-to-noise ratios in the range of -10db and 20db.

2.2 SUMMIT Speech Recognition System

Summit is a segment-based speech recognition system developed at the Spoken Lan-

guage Systems Group at MIT’s Computer Science and Artificial Intelligence Labo-

ratory [10]. In this section we will briefly discuss the different components of the

summit recognition system.

2.2.1 Mathematical Formulation

Given a set of acoustic observations A = {a1, a2, a3, . . . , an} associated with a speech

waveform, the goal of a speech recognition system is to find the corresponding se-

quence of words Ŵ = {w1w2...wn} which has the maximum a posteriori probability

P (W |A). This goal is expressed more formally by Equation 2.1:

Ŵ = arg max
W

P (W |A) (2.1)

In a segment-based recognition system, multiple segmentations, S, are associated

with the acoustic observations. For each segmentation, there is an associated sequence

of sub-word units U . Sequences of these sub-word units form a corresponding sequence

of words, W . Taking into account the segmentation and sub-word units, Equation
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2.1 can be rewritten as

Ŵ = arg max
W

∑

S

∑

U

P (W,U, S|A) (2.2)

To simplify computation, summit uses dynamic programming (e.g., Viterbi) or

graph-searches (e.g., A∗) to find a single optimal segmentation Ŝ, along with an

optimal unit sequence Û and words Ŵ . Equation 2.2 then simplifies to:

Ŵ , Û , Ŝ ≈ arg max
W,U,S

P (W,U, S|A) (2.3)

Applying Bayes rule to the above Equation gives:

P (W,U, S|A) =
P (A, S|U,W )P (U |W )P (W )

P (A)
(2.4)

Since P (A) is constant for a given utterance and does not affect the outcome of the

search, it is usually ignored. The remaining terms all constitute different components

of the summit recognizer, which will be discussed in the sub-sections below.

2.2.2 Acoustic Model

The term P (A, S|W,U) represents the probability of one specific segmentation and

its associated acoustic observations, given the words and sub-word units. In this

thesis, we will compute our acoustic observations given a particular segmentation S,

to be described in more detail in Chapter 5. Given a particular segmentation S,

P (A, S|W,U) reduces to P (A|S,W,U), which is known as the acoustic model. There

are two main types of acoustic modeling approaches used in speech recognition, frame-

based and segment-based.

Frame-based Modeling

In frame-based modeling, the acoustic observation space A, consists of a temporal

sequence of acoustic frames (e.g. Mel-frequency ceptral coefficients or MFCCs) which
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are computed at regular time intervals. To date, Hidden Markov Models (HMMs)

have been the most dominant frame-based acoustic modeling technique for automatic

speech recognition. However, HMMs have many limitations [22] which alternative

models, such as segment-based models, have tried to address.

Segment-based Modeling

In segment-based modeling, frame-level feature vectors (e.g. MFCCs) are computed

at regular time intervals, similar to the frame-based modeling approach. However,

there is an additional processing stage in segment-based modeling which converts

frame-level feature vectors to segmental feature vectors. Summit hypothesizes pho-

netic landmarks at regions of large spectral change in the frame-level feature vectors.

These variable-length landmarks are connected together to form a collection of possi-

ble segmentations of the speech utterance. For a given segmentation S, the acoustic

observation space represents the feature vectors associated with S, as well as the

feature vectors not associated with S, thus constituting the entire observation space

[10].

2.2.3 Pronounciation/Lexical Model

P (U |W ) is the pronunciation or lexical model which gives the likelihood that a se-

quence of sub-word units U , was generated from a given word sequence W . This is

achieved by a lexical lookup. Each word in the lexicon may have multiple pronunci-

ations to account for phonetic variability [13].

2.2.4 Language Model

The language model is denoted by P (W ). P (W ) represents the a priori probability of

a particular word sequence W = {w1, w2, . . . , wn}. Summit typically uses an n-gram

language model where the probability of each successive word depends only on the
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previous n− 1 words, as shown by Equation 2.5:

P (W ) = P (w1, w2, . . . , wn) =
N∏

i=1

P (wi|wi−1 . . . wn−1) (2.5)

In this thesis, the language model P (W ) is an unweighted word-grammar pair,

where a transition from one word to another can only occur if the word pair exists in

at least one of the AV-TIMIT sentences [14].

2.2.5 Recognition Phase

Recognition in the summit system is accomplished by searching a weighted finite-

state transducer (FST) [11], which is represented a cascade of smaller FSTs:

R = (S ◦ A) ◦ (C ◦ P ◦ L ◦G) (2.6)

In Equation 2.6:

• S represents the acoustic segmentation described in Section 2.2.2

• A represents the acoustic observation space

• C relabels context-dependent acoustic model labels as context-independent pho-

netic labels

• P applies phonological rules mapping phonetic sequences to phoneme sequences

• L represents the lexicon which maps phoneme sequences to words

• G is the language model that assigns probabilities to word sequences

Intuitively, the composition of (C ◦ P ◦ L ◦ G) represents a pronunciation graph

of all possible word sequences and their associated pronunciations. Similarly, the

composition of (S ◦ A) is the acoustic segmentation graph representing all possible

segmentations and acoustic model labelings of a speech signal. Finally, the compo-

sition of all terms in R represents an FST which takes acoustic feature vectors as
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input and assigns a probabilistic score to hypothetical word sequences. The single

best sentence is found by a Viterbi search through R. If n-best sentence hypotheses

are needed, an A* search is then applied.

The search space consists of all possible segmentations of the acoustic features.

In order to reduce the size of the search space and computation time of summit, an

explicit segmentation phase is incorporated into the recognizer [18]. The segmentation

phase will be discussed in more detail in Section 5.3.

26



Chapter 3

Sinusoidal Modeling of Speech

In this chapter we describe the acoustic theory behind speech production and the

representation of this speech as a collection of sinusoidal components.

3.1 Acoustic Theory of Speech Production

The acoustics of speech production occurs in three distinct stages. First, a source of

acoustic energy is created through interactions between airflow from the lungs and

the laryngeal and supraglottal structures. Next the source is filtered by the resonant

vocal tract cavities. Finally, speech is radiated from the lips [26].

Sources of sound in speech production are produced from three different sources,

turbulence noise, vocal fold vibration and transients. Turbulence occurs due to rapid

fluctuations in the velocity of airflow at a constriction. This causes the power spec-

trum of the noise source to be approximately flat. Turbulence noise can be produced

at a constriction at the glottis, creating aspiration noise, or a constriction above

the glottis, creating a frication noise. Unvoiced sounds are typically produced from

turbulence noise.

Voiced sounds are produced from vocal fold vibration, which is caused by the

opening and closing of the glottis. First, the glottis is closed off and pressure is built

up behind the constriction. Eventually the pressure will build up and cause the vocal

folds to push apart. The rapid airflow across the glottal opening then causes the
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pressure to decrease, allowing the vocal folds to close and the cycle to repeat. This

periodic opening and closing of the glottis is reflected in periodic glottal pressure and

glottal volume velocity.

Transient sounds occur when there is a high pressure buildup behind a glottal

constriction in the vocal tract. When the closure is opened, the pressure is sud-

denly released, resulting in a brief transient sound. Plosive bursts are an example of

transient sources.

3.2 The McAulay-Quatieri Algorithm

The McAulay-Quatieri (MQ) Algorithm [19] is often used as a sinusoidal representa-

tion for sounds. The algorithm assumes that a speech waveform can be represented a

collection of sinusoidal components of arbitrary amplitudes, frequencies and phases.

For this thesis, we use a MATLAB implementation of the MQ Sinusoidal Model de-

veloped by Dan Ellis, an Associate Professor at Columbia [5]. First in the analysis

stage, amplitude, phase and frequency parameters are extracted from the speech sig-

nal. Next in the peak-matching stage, tracks are formed among peaks which occur

at similar frequencies. Finally, in the synthesis stage, extracted parameters are inter-

polated together to generate the synthesized speech output. These three sections, as

well as extensions to the MQ model, will be discussed in more detail below.

3.2.1 Analysis

In the first step of the MQ Algorithm, amplitude, phase and frequency parameters are

extracted from a speech waveform, as shown in Figure 3-1. To extract out these para-

meters, first the sampled speech waveform is broken down into a contiguous sequence

of windowed frames each of length N, and an N -point short-time Fourier transform

(STFT) of each frame is taken. Next, peaks in each STFT frame are found by deter-

mining locations where the slope of the waveform changes from positive to negative

(concave down) and requiring peaks be at least a relative magnitude threshold below

the largest peak in the frame. The MQ algorithm locates the amplitude and frequency
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Figure 3-1: Block Diagram of Analysis Component [19]

for each peak found. The phase is determined by interpolating the unwrapped STFT

phases to get exact peak phases for every sample point.

In this thesis, the speech signal was sampled at 16kHz. A 256-point STFT with

a 16ms Hamming window was used. Finally, the speech utterance was analyzed at

4ms time intervals. These numbers were chosen to be similar to those used to obtain

the MFCC acoustic feature vectors discussed in Section 2.2.2.

3.2.2 Peak-to-Peak Matching

As the fundamental frequency changes, the number of peaks from frame-to-frame

changes. In particular, there is a rapid change in the number and location of peaks

during voiced/unvoiced transitions. The concept of sinusoidal “births” and “deaths”

is used to account for the movement of spectral peaks between frames. In order

to match spectral peaks, tracks are formed by connecting peaks between contiguous

frames. A new track is born if the frequency of a peak in the current frame is not

within ±∆ of the frequency of a peak in the previous frame. Similarly, a track is dead

when there is no peak in the current frame that is within ±∆ in frequency to a peak

in the next frame. A magnitude increase threshold is also imposed so that contiguous

peaks at the same frequency which have large magnitude differences are proposed to

belong to different tracks. Figure 3-2 shows the birth and death of frequency tracks

formed by connecting peaks of similar frequencies between frames.
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Figure 3-2: Birth and Death of Sinusoidal Tracks [4]

3.2.3 Synthesis

As shown in Figure 3-3, after reducing the speech waveform to a set of sinusoidal

components, the MQ algorithm then synthesizes the waveform by interpolating the

parameters of each track from frame to frame. The amplitude parameter is linearly

interpolated between contiguous frames. However, the phase and frequency parame-

ters cannot be linearly interpolated because these parameters are obtained modulo

2π. Thus the phase parameter must be unwrapped so that tracks are smooth and con-

tinuous across frame boundaries. In order to smooth out the phase between frames,

the phase is interpolated with a cubic polynomial function, given by Equation 3.1:

θ̂(t) = ζ + γt + αt2 + βt3 (3.1)

To see the mathematics behind solving for the interpolation parameters, see [19].

Finally, after interpolation the sinusoidal tracks are added together to produce a

synthetic speech output.

3.2.4 Improvements to Original MQ Algorithm

The original MQ Algorithm described above has some limitations [6] which newer,

more improved models have tried to address. The sinusoidal model used in this thesis

has been extended to address two of these problems.
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Figure 3-3: Block Diagram of Synthesis Component [19]

Lower Energy Threshold

As discussed in Section 3.2.1, peaks in the MQ algorithm are located by determining

locations where the spectrum is concave down and at least a relative magnitude

threshold below the largest peak in the frame. In regions of quiet speech where the

spectrum is relatively flat, using a relative magnitude threshold results in many peaks

being detected. Having many peaks detected causes a low amplitude hissing noise in

the resynthesized waveform.

To prevent this added background noise, a constant absolute lower threshold is

introduced. Thus the final threshold of a frame is the maximum of the largest relative

threshold and the absolute lower threshold.

Hysteresis

In the original MQ model, tracks are observed to die out at a specific frequency and

to be born again a few frames later at approximately the same frequency. These small

tracks which die and appear again most probably belong to the same overall track,

but have formed into separate tracks since the magnitude of the track has dropped

below the relative magnitude threshold.

To allow tracks of similar frequency to combine into one track, a track amplitude

hysteresis parameter is defined to be the lowest magnitude that a track may have

without dying out. A larger hysteresis value means a lower magnitude before tracks

end, thereby making tracks longer and smoother. Similarly, a smaller hysteresis value
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results in smaller tracks.

3.3 Other Sinusoidal Modeling Techniques

Many other methods have been proposed for sinusoidal modeling of sound. In this

section, we will discuss three such techniques.

3.3.1 Phase Vocoder

A phase vocoder is used to represent a speech signal as a series of sinusoidal compo-

nents [8]. In the analysis stage, the speech signal is broken into windowed frames,

and an N -point STFT of each frame is taken. Instead of extracting out the peaks

from each SFTF frame as in the MQ algorithm, the phase vocoder considers all N

frequency samples within a frame to be important. Therefore, each frame describes

the evolution of a sound’s frequency components over time. Thus, during the syn-

thesis stage, the sound is reconstructed using all N frequency samples within each

frame.

The phase vocoder model is appropriate for sounds with steady harmonic compo-

nents. However, sounds with transient and noise components are not well represented

using this model. In addition, the vocoder represents a sound at each frame by N

time varying sinusoids, but not all these sinusoids are necessary to characterize a

sound. For example, harmonic sounds can be modeled only by using sinusoids at

integer multiples of a fundamental frequency. The MQ algorithm solves this prob-

lem by representing the sinusoids at each frame by the amplitudes and phases of the

frequency peaks.

3.3.2 Spectral Modeling Synthesis

The Spectral Modeling Synthesis (SMS) Algorithm, developed at Stanford University,

is yet another method for sinusoidal modeling [25]. The SMS method models an input

sound s(t) as a sum of sinusoidal components and a noise component, as shown in
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Equation 3.2:

s(t) =
k∑

i=1

Ak(t) cos(θk(t) + ψk) + e(t) (3.2)

Similar to the MQ algorithm, the sinusoidal components are extracted by inter-

polating the spectral peaks. The residual noise is determined by subtracting the

synthesized sinusoidal components from the original sound. This stochastic compo-

nent is then modeled by filtered white noise, where the filter is determined by fitting

a curve to the magnitude spectrum of the noise.

The MQ algorithm was originally used to model speech, but it showed promise for

use on a broader class of sounds. However, sound often contains residual components

and cannot be reduced to a small number of sine waves. Thus the SMS algorithm

provides a more complete model for auditory signals.

3.3.3 Harmonic Plus Noise Model

The Harmonic Plus Noise Model (HNM) [28] models a speech signal s(t) as the sum

of a harmonic plus noise component, as shown by Equation 3.3:

s(t) = sh(t) + sn(t) (3.3)

The harmonic element represents the periodic components of a sound while the

noise unit models the non-periodic components. The spectrum is divided into two

bands. In the lower band, the signal is modeled by a collection of harmonically related

sinusoids. The harmonic component is given by:

sh(t) =
K(t)∑

i=1

Ak(t) cos(kθ(t) + ψk) (3.4)

The signal in the upper band is assumed to be dominated by modulated noise.

The noise part is modeled by convolving a time-varying autoregressive (AR) model

h(t, τ) with Gaussian white noise b(t) and then modulating the result by an energy

envelope function e(t). This noise part is given more explicitly by Equation 3.5:
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sn(t) = e(t)[h(t, τ) ∗ b(t)] (3.5)

The HNM has been used to produce natural-sounding synthetic speech by applying

different prosody and spectral envelope modification methods to both components.

In addition, the HNM has also been used for smoothing diphone boundaries [27] and

most notably in AT&T’s Text-to-Speech System [1].
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Chapter 4

Landmark Detection

Phonetic landmarks in speech utterances represent change from one phoneme to an-

other and are usually identified by regions of large spectral change. In the sinusoidal

model, rapid changes in spectral components are tracked using the concept of “birth”

and “death” of the underlying sine waves. In order to determine exactly how to detect

phonetic landmarks using the sinusoidal model, we look at how phonetic landmarks

are placed with respect to the behavior of sinewave tracks generated from this model.

The block diagram in Figure 4-1 shows the following steps in our landmark detector.

Each of the following blocks will be discussed in the sections below.

4.1 Sinusoidal Model

The first step of the landmark detector is to analyze the speech signal using the

sinusoidal model, discussed in Section 3.2. After this stage, we can model our speech

signal s[n] as a collection of sinusoidal components given by Equation 4.1:

MQ 
Sinusoidal 

Model

speech

signal

Endpoint
Location
Method

Landmark
Detection

Segmentation
Phase

segment

network

Figure 4-1: Block Diagram of Landmark Detector
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s[n] =
N∑

k=1

Ak cos(θk[n] + ψk) (4.1)

As discussed in Section 3.1, if the sound source is produced from vocal fold vibra-

tions and is voiced, the spectrum will be periodic. A signal which is periodic in time

is also periodic in frequency. Furthermore, any periodic signal can be represented by

a collection of harmonically related sinusoids, known as the Fourier series [21]. Thus,

voiced speech can be represented by a collection of harmonically related sinusoids.

If the sound source is produced by turbulence noise and is unvoiced, the spectrum

will be flat and aperiodic. Similarly, the spectrum for transient sources is typically a

short duration, intense energy spike. Turbulence and transient sounds can be modeled

by a collection of sinusoids which are not harmonically related.

The sinusoidal components given by Equation 4.1 can be broken down into sinu-

soids which are harmonically related, representing voiced sound, and those which are

not harmonically related, representing unvoiced speech. Equation 4.2 represents this

decomposition:

s[n] =
N1∑

k=1

Ak cos(kθk[n] + ψk)

︸ ︷︷ ︸
voiced

+
N2∑

k=1

Ak cos(θk[n] + ψk)

︸ ︷︷ ︸
unvoiced

(4.2)

Figure 4-2 shows typical sinusoidal tracks for voiced and unvoiced speech regions.

Voiced sounds can be adequately estimated by a harmonic collection of sinusoids [23].

In voiced regions, peaks computed from the STFT of the waveform occur at close am-

plitudes and frequencies from frame to frame. Since tracks are connected by matching

peaks at close frequencies in contiguous frames, the proximity in peak frequencies be-

tween frames results in long-duration tracks. In addition, the small amplitude and

frequency variation of peaks results in slowly varying, smooth sinusoidal tracks.

According to the Karhunen-Loève analysis, unvoiced signals can only be suffi-

ciently modeled by a very large number of sinusoids [29]. In unvoiced regions, peaks

do not occur at close amplitudes or frequencies between neighboring frames. Here, the

rapid frequency variation of peaks in unvoiced regions results in many short-duration
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Figure 4-2: Typical sinusoidal tracks for voiced and unvoiced speech overlaid on a
speech spectogram

tracks. Furthermore, the rapid amplitude and frequency variation of peaks causes the

corresponding sinusoids to exhibit rapid fluctuations as well.

The births and deaths of the long, continuous sinusoids in voiced regions appear to

occur at phoneme transitions. However, individual sinusoidal births and deaths can

often occur too frequently and randomly to signal a phonetic transition. Therefore,

in order to use the sinusoidal model to detect phonemes in voiced regions, voiced and

unvoiced regions of the speech utterance must be detected.

4.2 Endpoint Location Method

An important problem in speech processing is to detect voiced speech in the presence

of background noise, sometimes referred to as the endpoint location problem [24].

Accurately detecting the beginning and end of voiced speech segments will allow

us to use the sinusoidal model to detect phonetic landmarks in these regions. This

section will discuss our method of endpoint location.
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4.2.1 Short-Time Energy

Short-time energy is often used in speech processing to distinguish between voiced

and unvoiced speech segments [24]. The Short-time energy, e[n], is defined to be the

sum of the squared-magnitude of a windowed speech signal, i.e.:

e[n] =
N∑

m=1

(s[m]w[n−m])2 (4.3)

where s[n] are the speech samples and w[n] is the window size. In our method, w[n]

is chosen to be 12ms.

After the speech utterance is passed through the sinusoidal model, the short-time

energy is calculated on the synthesized output. Figure 4-3 shows a sinusoidal track

representation for a signal and the corresponding short-time signal energy. When

the signal energy is high, the sinusoidal tracks appear to be long and continuous,

indicating regions of voicing. However, in unvoiced regions where sinusoidal tracks

are short, the signal energy is usually very low. Voiced and unvoiced speech can often

be differentiated by a corresponding low or high signal energy.

While the short-time energy or spectral energy has been conventionally used to

distinguished between voiced and unvoiced segments, this measure becomes less re-

liable and robust in noisy environments [17]. Specifically, in noisy environments the

signal energy is weak for particular phonemes, making it difficult to accurately detect

regions of voicing. The phonemes for which it was was problematic to locate an exact

endpoint include the following:

1. weak fricatives (/f, th, h/) at the beginning and end of a segment

2. weak plosive bursts for /p, t, k/

3. segment final nasals /n, m, η/

4. weak semivowels /r, y, l, w/

Therefore to obtain a more accurate estimation of voicing decisions, it is necessary

to use an additional technique to identify voicing regions, which will be discussed in
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the next section.

4.2.2 Harmonicity

Harmonicity is a measure of the strength of the pitch perception for a sound. Voiced

regions can be modeled by a collection of harmonically related sinusoids, and thus

contain high harmonicity. However, unvoiced regions are modeled with non-harmonic

sinusoids and contain very little harmonicity. To exploit this difference, a harmonicity

calculation is often used to detect regions of voiced and unvoiced speech segments.

Harmonicity can be calculated as the the ratio of harmonic energy to signal energy,

as given by Equation 4.4:

h[n] =
sh[n]2

s[n]2
, 0 < h[n] < 1 (4.4)

To compute the energy of the harmonic signal, sh, first the fundamental frequency

of the synthesized waveform is calculated. We will discuss the method for fundamental

frequency calculation in more detail in Section 4.3.1. The harmonic signal is calculated

by finding the sinusoids which are integer multiples of the fundamental frequency.

Figure 4-4 shows a speech signal and its corresponding harmonicity. The har-

monicity often peaks when transitioning into a voiced region since the harmonic

energy is very large at the start of a voiced phrase. Similarly, the harmonicity tends

to reach a minimum when entering an unvoiced region as the harmonic energy is very

low.

Using harmonicity alone to identify regions of voicing has some disadvantanges.

For example, as the SNR increases, the peaks and valleys of the harmonicity become

more subdued. Figure 4-5 shows the harmonicity for the same speech signal shown

in Figure 4-4, now corrupted by noise. The increased noise causes many small local

peaks and valleys, which are often falsely detected to be voiced or unvoiced regions

respectively.

However, whenever the harmonic energy is strong or weak, the harmonicity tends

to peak or dip respectively. Especially in regions of weak voicing where the short-
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time energy does not provide a precise voicing decision, the harmonicity is more

prominent and often helps to yield a more accurate voicing detection. Therefore, the

signal energy may be used to identify general areas of voicing, but the harmonicity

can help to make the areas of voicing more precise.

4.3 Detecting Landmarks from Sinusoidal Compo-

nents

In order to determine exactly how to detect phonetic landmarks using the sinusoidal

model, we look at how phonetic landmarks from AV-TIMIT waveforms are placed with

respect to the behavior of sinewave tracks generated from the sinusoidal model. A few

important observations are drawn by looking at the location of these landmarks with

respect to the locations and behaviors of the sinusoidal tracks. These observations

include:

• In Voiced Regions:

1. Sinusoids tend to be long, smooth and slowly-varying

2. A region with a lot of harmonically born sinusoids usually represents the

beginning of a voiced region

3. A region with a lot of harmonically dead sinusoids usually represents the

transition from voiced to unvoiced region.

4. Oftentimes sinusoidal births and deaths are not present when transition-

ing into a semivowel or nasal, or when transitioning from one vowel into

another

• In Unvoiced Regions:

1. Sinusoids tend to be short and rapidly-varying

2. Births and deaths of sinusoids occur frequently and randomly with respect

to AV-TIMIT phonetic landmarks
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With these observations in mind, the method for detecting phonetic landmarks

from sinusoidal components in voiced and unvoiced regions will be described in the

following sections.

4.3.1 Identifying Harmonically Related Sinusoids

In voiced regions, phonetic landmarks are detected from the births and deaths of

sinusoids. Sometimes there are not breaks in sinusoidal tracks when transitioning

between particular voiced phonemes, but there is usually a break in harmonically

related sinusoids. The births and deaths of harmonically related sinusoids, which are

obtained from knowledge of the fundamental frequency, allow us to more accurately

detect landmarks rather than just the sinusoidal tracks alone. In this section, we will

describe the method for obtaining harmonic sinusoids.

Fundamental Frequency

In order to detect harmonic sinusoidal components, it is first necessary to identify

regions where sinusoids are harmonically related to the fundamental frequency. One

way of estimating the fundamental frequency of a speech segment is to compute the

cepstrum. The cepstrum is a Fourier analysis of the logarithmic amplitude spectrum

of the signal. If the log amplitude spectrum contains many regularly spaced harmon-

ics, then the cepstrum will show a peak corresponding to the fundamental frequency

of these harmonics.

To obtain the fundamental frequency of a speech signal, the waveform is broken

into frames and the fundamental frequency for each frame is computed by finding

the peak in the cepstrum of the frame. Accurately detecting the pitch period of a

speech signal is difficult for several reasons [3]. For example, signals are not always

completely periodic and can be corrupted by noise. Therefore, we take the most

dominant peak of the cepstrum in each frame to calculate the fundamental frequency.
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Harmonically Related Sinusoids

After the fundamental frequency for the waveform is computed, sinusoidal tracks

which occur at frequencies that are multiples of the pitch are identified to be harmon-

ically related sinusoids. As shown in Figure 4-3, the higher energy speech harmonics

at low frequencies are less corrupted by noise and their long, smooth behavior tends

to indicate phonetic transitions. However, high frequency harmonics are typically

lower in energy and are more corrupted by noise, therefore providing little informa-

tion about phonetic transitions. Therefore for the purposes of detecting landmarks

from sinusoidal components, harmonic sinusoids are only detected at low frequency

regions, up to 4 kHz.

4.3.2 Landmarks from Harmonic Sinusoids

After harmonically related sinusoids are identified in regions of voicing, the next step

is to detect phonetic landmarks from the births and deaths of these tracks. First, the

number of sinusoids that are born or die at a set frame interval of 12ms is counted.

However not all sinusoidal births and deaths correspond to potential phonetic land-

marks. For example, when transitioning into the beginning of a voiced region, various

sinusoids may not be born at the exact same instance, but rather there is a sequence

of staggered births. Furthermore, noise may influence sinusoidal tracks and cause

them to break at certain frames but this usually does not correspond to a phonetic

landmark. Therefore, the optimal number of harmonic births which constitute a po-

tential phonetic landmark must be determined. In addition, the optimal number of

harmonic deaths to identify a potential phonetic landmark must also be calculated.

We will discuss our method for determining these optimal numbers in Section 6.2.1.

In addition, we further make the assumption that if a harmonically born landmark

is detected, another harmonically born landmark will not be detected for at least a

certain number of frames future frames. This parameter will be referred to as born

hop. Similarly, if a harmonically dead landmark is detected, another similar landmark

will not be detected for at least a specified of frames, known as dead hop. Again, we
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will discuss our method for optimally determining these parameters in Section 6.2.1.

Finally, sinusoidal births and deaths can oftentimes occur close to each other when

transitioning between phonemes. For example, the movement between two phonemes

is sometimes characterized by the birth and death of many harmonic sinusoids. In

order to remove landmarks which essentially detect the onset of the same phoneme,

we search for locations where birth and death landmarks are within a window length

and remove all but one landmark from this window. This window length will be

referred to as the harmonic window.

4.3.3 Landmarks in Unvoiced Regions

As stated above, in unvoiced regions sinusoids tend to be short and rapidly varying,

and thus the births and deaths occur too frequently to indicate phonetic transitions.

Furthermore, the full segmentation approach, which places potential landmarks every

30ms, has a much lower word error rate in the presence of noise than the original

segmentation approach. Due to the lack of information from the sinusoidal model in

unvoiced regions and the lower word error rate of the full segmentation, we decided to

place landmarks at least every 30ms apart. We also found that long unvoiced regions

contain very few phonemes, and thus placing landmarks greater than 30ms apart was

enough to detect these phonemes. The following outlines our criterion for placing

landmarks in unvoiced regions:

• If unvoiced region is less than 75ms, place landmarks every 28ms1

• If unvoiced region is less than 300ms, place landmarks every 40ms

• If unvoiced region is greater than 300ms, place landmarks every 64ms

After landmarks are detected, these landmarks are interconnected together to form

a network of hypothetical segmentations. Our next step is incorporate an explicit

segmentation stage into this network in order to reduce the size of the search space,

the main topic of the next chapter.

1The resolution of the sinusoidal model results in landmarks must be placed at time intervals
which are multiples of 4. Thus landmarks were placed at 28ms intervals instead of 30ms intervals.
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Chapter 5

Segmentation

Segmentation is incorporated prior to the search phase in order to decrease recognition

computation time. In this chapter, we discuss different segmentation approaches for

the full segmentation method, original segmentation method and sinusoidal model.

5.1 Background

As discussed in Section 2.2, phonetic landmarks specify a collection of possible seg-

mentations for the utterance. It is computationally expensive to search through this

large segmentation network. Therefore, an explicit segmentation phase is incorpo-

rated into the recognizer to reduce the size of the search space and the computation

time of the recognizer.

In the segmentation phase, the segment graph is pruned prior to search. However

this pruning also increases the number of deletion errors. Therefore, in creating

segment networks, there is a tradeoff between minimizing search space and minimizing

errors.

In the following sections, we will discuss the different segmentation approaches

used for the full segmentation and original segmentation methods, as well as and our

sinusoidal model segmentation. We save the results of these different approaches for

Chapter 6.
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5.2 Full Segmentation

Figure 5-1 illustrates interconnections among landmarks in the full segmentation

method. In this approach, hypothetical landmarks are placed at fixed spacings, in-

dependent of spectral content. The segment graph is not pruned prior to search.

Therefore, the segmentation network is very large, consisting of all possible landmark

interconnections within a maximum segment length. In this thesis, the full segmen-

tation approach uses a 30ms fixed landmark rate and a maximum segment length of

250ms. Figure 5-2 shows the graphical display of the segment network from summit

for the full segmentation approach. As we will observe in Chapter 6, the computation

time for the full segmentation method is very large.

l1 l2 l3 l4
s12

s14

s23

s24

s34

s13

Figure 5-1: Segment network for Full Segmentation technique. Each landmark li is
fully connected to every other landmark lj in the graph via segments sij.

5.3 Original Segmentation

As discussed in Section 2.2.2, landmarks in the original segmentation method are

hypothesized at regions of large spectral change within the MFCC frame-level feature

vectors. More specifically, major landmarks are hypothesized at locations where
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Figure 5-2: Graphical display of the segment network for the full segmentation ap-
proach from the summit recognizer
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the spectral change exceeds a specified global threshold. A fixed density of minor

landmarks are detected between major landmarks where the spectral change, based

on the fixed minor landmark density, exceeds a specified local threshold. All minor

landmarks are fully interconnected between, but not across major landmarks, to form

a segment network. In addition, each major landmark is connected to two major

landmarks forward. Figure 5-3 shows a typical segment network formed from major

and minor landmarks, and Figure 5-4 illustrates the corresponding graphical display

from summit.

l1 l2 l3 l4
s12

s15

s23 s45s34

s13

l5

s35

Figure 5-3: Segment network for Original Segmentation technique. Major landmarks
are indicated in bold. Each minor landmark li between major landmarks is fully
connected to every other landmark lj in the graph via segments sij. In addition, each
major landmark is connected to two major landmarks forward.

5.4 Sinusoidal Model Segmentation

In Chapter 4, we discussed our method for detecting landmarks using the sinusoidal

model. The placement of these landmarks is determined by the behavior of sinusoidal

tracks. Sinusoidal landmarks which are not hypothesized to be major landmarks are

termed minor landmarks. Major landmarks serve as hard boundaries for interconnec-

tions among minor landmarks. Because of the tradeoffs associated with segmentation,

we explore a variety of segmentation methods in this thesis.
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Figure 5-4: Graphical display of the segment network for the original segmentation
approach from the summit recognizer
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5.4.1 Segmentation at Voiced/Unvoiced Boundaries

Section 4.2 discusses two methods for determining voiced and unvoiced decision

boundaries, using a short-time energy measurement as well as a combined short-time

energy and harmonicity measurement. The most obvious choice for major landmarks

are at these decision boundaries where there are many sinusoidal births and deaths.

In the middle of voiced regions, there are no obvious trends observed in sinusoidal

behavior which indicates placing a major landmark. As mentioned in Section 4.3.3,

the short and somewhat random behavior of sinusoidal tracks in unvoiced, burst and

non-speech regions also provides little indication of placing major landmarks within

this region. In this chapter, we discuss placing landmarks when voiced boundaries

are detected using a short-time energy measurement, as well as using the combined

measurements.

Segmentation Using Short-Time Energy

One method we explored was placing major landmark at voiced and unvoiced decision

boundaries detected by the short-time energy measurement. As mentioned in Section

4.2.1, there are certain phoneme types which are difficult to locate an exact endpoint

using the energy measurement. Our recognizer can be somewhat sensitive to the

placement of major landmarks, as small movements of the landmark locations can

results in completely different word hypothesis. Therefore, while short-time energy

can provide a crude estimate of major landmarks, the necessity for precise landmark

locations makes it important to incorporate other voicing decision measures.

Segmentation Using Short-Time Energy and Harmonicity

As discussed in Section 4.2.2, a harmonicity measurement was used in addition to

short-time energy to help make voicing decisions more precise. As we show in Chapter

6, adding in the harmonicity measurement gives more accurate decisions about placing

major landmarks, particularly in the problematic phoneme areas. These small changes

in major landmark locations lead to large improvements in word accuracy.
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5.4.2 Segment Connectivity Methods

In addition to determining location for major landmarks, we also explored different

connectivity methods between the segments. In this section, we will discuss three

such methods.

One-Connection

In the one-connection method, all minor landmarks between major landmarks are

fully interconnected. In addition, each major landmark is connected to the next two

consecutive major landmarks. This is the same connectivity approach used in the

original segmentation method, and is shown in Figure 5-3.

Two-Connection

Even with using short-term energy and harmonicity measurements to determine ma-

jor landmarks, there are some major landmarks which are not placed exactly between

voiced and unvoiced separations. Particularly, as the signal-to-noise ratio decreases,

the signal power gets weaker and it becomes more difficult to accurately detect end-

point locations. As a result, major landmarks may be placed in the middle of actual

phonemes.

To increase segment interconnections across major landmarks and correct for ma-

jor landmarks placed at low signal energies, we introduce a two-connection method.

In this method, each minor landmarks is connected to landmarks which fall up to two

major landmarks away. In addition, each major landmark is connected to the next

three consecutive major landmarks. This connnectivity technique is shown in Figure

5-5.

Partial-Connection

In the second-connection method, segments between two major landmarks are joined

in hopes of improving connectivity across major landmarks placed at low signal energy

levels. However, some major landmarks which occur across a large signal energy
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Figure 5-5: Segment network for Sinusoidal Model Two-Connection technique. Major
landmarks are indicated in bold. Each minor landmark li is connected to every other
landmark lj which falls up to two major landmarks away via segments sij. In addition,
each major landmark is connected to the next three major landmarks.

difference are placed at very accurate voiced and unvoiced decision regions. A two

connection method across these landmarks increases the search space but has very

little effect on improving the recognizer performance.

To decrease segment interconnections across major landmarks when necessary, we

label major landmarks based on the signal energy difference on either side of the

landmark. Landmarks which have a signal energy difference above a specified thresh-

old are defined to be hard landmarks, while soft landmarks have an energy difference

below this threshold. Minor landmarks can be connected to other minor landmarks

across soft major landmarks. However, minor landmarks cannot be connected across

hard major landmarks. In addition, each major landmark is connected to the next

three consecutive major landmarks. Figure 5-6 illustrates the connectivity using hard

and soft major landmarks more explicitly. Notice the smaller number of connections

in this figure compared to the two-connection method in 5-5. The graphical display

of the partial-connection method from summit is shown in Figure 5-7.

5.4.3 Segmentation Using MFCC Distance Information

Our method of placing major landmarks at regions of large energy change has some

disadvantages. For example, if the utterance contains very quick, short noise clicks or
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Figure 5-6: Segment network for Partial-Connection technique. Hard major land-
marks are indicated in bold while soft major landmarks are embossed. Minor land-
marks li are connected across a soft major landmarks to other landmarks lj which
falls up to two major landmarks away via segments sij. However, minor landmarks
cannot be connected across hard major landmarks. In addition, each major landmark
is connected to the next three major landmarks.

Figure 5-7: Graphical display of the segment network for the partial-connection
method from the summit recognizer
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bursts, major landmarks are hypothesized due to the energy difference. To correct for

these possible errors, we also explore looking at information from MFCC distances.

The original segmentation algorithm detects landmarks based on large spectral

changes in MFCC frame-level feature vectors. The 14-dimension MFCC feature vector

for frame i is given by:

−→mi =




x1

x2

...

x14




(5.1)

To compute the MFCC distance between frames i and j, we calculate the sum of

squared difference between each of entries mi and mj and then take the square root.

This distance dij is given by Equation 5.2:

dij =

√√√√
14∑

n=1

[−→mi(n)−−→mj(n)]2 (5.2)

This distance is computed between all possible frames of the utterance to form an

MFCC distance matrix. Equation 5.3 shows this distance matrix for an signal of n

frames and a plot of this matrix is illustrated in Figure 5-8.

D =




d11 d12 . . . d1n

d21 d22

...
. . .

dn1 dnn




(5.3)

After the distance matrix is calculated, we observe the behavior of sinusoidal

major landmarks with respect to distances between feature-vector frames. Major

landmarks should be placed at locations of a large difference in spectral content on

either side of the landmark, as shown in Figure 5-9. However, some major landmarks

hypothesized by the sinusoidal model approach occur with little change in MFCC

distance, most likely due to quick bursts of energy. Figure 5-10 illustrates a major
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Figure 5-8: MFCC feature vector distance matrix of a speech signal.
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landmark with little change in MFCC distance. Therefore, we look at recognition

peformance when we remove major landmarks with little difference in MFCC distance

between the previous and following frames. In order to remove these possible major

landmarks, we calculate an average windowed MFCC distance on either side of each

major landmark. If the difference between the two distances is less than a specified

threshold, we remove this major landmark.

1.56 1.58 1.6 1.62 1.64 1.66 1.68 1.7 1.72 1.74

1.56

1.58

1.6

1.62

1.64

1.66

1.68

1.7

1.72

Figure 5-9: The top figure shows a major landmark overlaid on top of the speech sig-
nal. Notice the large change in MFCC distance on either side of the major landmark,
as illustrated in by the bottom figure.
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Figure 5-10: The top figure shows a major landmark overlaid on top of the speech
signal. The bottom figure illustrates a small change in MFCC distance on either side
of the major landmark.
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Chapter 6

Experimental Results

In this chapter we look at the performance of the sinusoidal model on the noisy AV-

TIMIT sentences. Specifically, we analyze the landmark detection and segmentation

algorithms proposed. Finally, we compare the performance of the sinusoidal model-

based algorithm with the original segmentation and full segmentation methods under

three different noise conditions.

6.1 Experimental Setup

Our recognition experiments draw from the AV-TIMIT corpus. The vocabulary for

this corpus consists of 1793 words. As mentioned in Section 2.2.4, the language model

used in this thesis is an unweighted word-pair grammar, where a transition from one

word to another can only occur if the word pair exists in at least one of the AV-TIMIT

sentences. Because 1411 words in the corpus occur in only one of the 453 AV-TIMIT

sentences, this heavily constrains the grammar [14].

In this thesis, the recognizer is evaluated using a word recognition paradigm rather

than a phonetic recognition paradigm which is also commonly used. Many different

experiments comparing the word error rate and recognizer computation times of dif-

ferent models are discussed in this chapter. Each model is tested on noisy AV-TIMIT

sentences from the test set, unless otherwise specified. We discuss results for three

different noise types from the Noisex-92 database, namely white noise, babble noise
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and destroyer operations room noise. The SNRs for the noisy speech are varied from

-10db to 20db in 5db increments. Finally, each model is tested using acoustic models

specific to the SNR and noise type.

6.2 Sinusoidal Model Landmarks

Landmarks are detected from sinusoidal “births” and “deaths” and represent a bound-

ary or transition from one phoneme to another. In this section, we will discuss dif-

ferent experiments and conclusions relating to these sinusoidal model landmarks.

6.2.1 Landmark Detection Parameter Settings

In Section 4.3, we discussed our method for detecting landmarks from sinusoidal

components. In order to appropriately place these landmarks, the values for five

parameters in our landmark detection method must be determined. These parameters

include the number of harmonic births, number of harmonic deaths, born hop, dead

hop and harmonic window.

To find these values, we look at how hypothetical landmarks are placed in the

sinusoidal model compared to the actual phonetic boundaries obtained from forced

transcriptions of clean speech. A certain parameter setting that correctly predicts

landmarks at all the phonetic boundaries for a specific waveform might perform poorly

on another waveform. In addition, a parameter setting that predicts landmarks at all

phonetic boundaries may also overgenerate too many hypothetical landmarks. There-

fore, we want a setting which finds a balance between detecting phonetic boundaries

and overgenerating landmarks.

A receiver operating characteristic (ROC) curve is a common tool used to find a

suitable tradeoff between detection and overgeneration as parameter settings are var-

ied. An ROC curve, shown in Figure 6-1, plots the probability of detection, Pd, versus

the probability of false alarm, Pfa. The probability of detection is defined as the total

number of phonetic boundaries that are correctly detected by our landmark detection

method divided by the total number of phonetic boundaries. The probability of false
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alarm, Pfa is defined as the total number of over-generated landmarks divided by

the total number of frames in a speech signal where landmarks could potentially be

placed.

Figure 6-1: Example Receiver Operating Characteristic (ROC) Curve plotting the
Probability of Detection, Pd versus the Probability of False Alarm, Pfa

In order to determine an appropriate setting of the parameters, we vary each

parameter as follows:

• number of harmonic births: varied from 1-7 frames in one step increments

• number of harmonic deaths: varied from 1-7 frames in one step increments

• born hop: varied from 12-48 ms in 4ms increments

• dead hop: varied from 3-48 ms in 4ms increments

• harmonic window: varied from 0-28ms in 4ms increments

For each waveform, the probability of detection and the probability of false alarm

are calculated for each setting of the parameters. (Pd, Pfa) pairs are computed for 50

AV-TIMIT waveforms for each signal-to-noise ratio level, and the (Pd, Pfa) pairs are
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then averaged for each parameter setting. After calculating average (Pd, Pfa) pairs

over all waveforms, an ROC curve is generated, as illustrated in Figure 6-2. (Pd, Pfa)

values represent a tradeoff - if we detect more AV-TIMIT landmarks we increase Pd

at the cost of Pfa, whereas if we detect less of the AV-TIMIT landmarks, the opposite

effect will occur. The optimal spot on the ROC curve is for parameter settings that

generate a high Pd but a low Pfa, as indicated by the rectangle in Figure 6-1.
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Figure 6-2: Generated Receiver Operating Characteristic (ROC) Curve for Landmark
Detection Parameters

We found a range of parameter settings within this optimal region on the ROC

curve, shown by the rectangle in Figure 6-2. Each dot represents average (Pd, Pfa)

values for a specific setting of the parameters. Similarly, the curve represents the

optimal (Pd, Pfa) values as the parameter settings are varied. It is important to stress

that the optimal parameters were determined based on waveforms in the development

set. After looking at the parameter values and further observing the placement of
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these landmarks with respect to the onset of AV-TIMIT phonemes, we determined a

setting of values which appeared to be reasonably located at actual phoneme onsets.

The final parameter values used in this thesis to detect phonetic landmarks include:

• number of harmonic births: 2

• number of harmonic deaths: 2

• born hop: 24 ms

• dead hop: 28 ms

• harmonic window: 20 ms

6.2.2 Phonetic Detection Probability

To analyze the accuracy of the sinusoidal model in detecting phonetic landmarks,

the placement of these landmarks is compared against the transcribed phonemes as

estimated from the forced alignments of clean AV-TIMIT utterances. In this exper-

iment, if the sinusoidal landmark is within 20ms of the phonetic boundary in the

forced alignment, we say that the boundary is detected. The detection probability of

the onset of the different AV-TIMIT phonemes 1 was computed using all 285 wave-

forms in the AV-TIMIT development set. Figure 6-3 shows the detection probability

for the onsets of the different AV-TIMIT phonemes in the clean speech condition.

As expected, the onsets of semivowels, such as /r, y, l, w/ have a low detection

probability. Sometimes there are not breaks in harmonic sinusoidal tracks when

transitioning from a vowel into a semivowels. Furthermore, semivowels are often

characterized by weak signal energy at the onset of the phoneme, resulting in tracks

not hypothesized at the onset of these semivowel.

In addition, nasals onsets such as /m,m, η/ also have a low detection probability.

These phonemes are weak and prominent only at low frequencies making it difficult

to precisely identify sinusoidal births under noisy conditions.

1For a listing of the AV-TIMIT phonemes, please see Appendix A.
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Figure 6-3: AV-TIMIT phoneme detection probability under clean speech
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The onsets of unvoiced phonemes tend to have a slightly larger detection proba-

bility than voiced phonemes. Landmarks are placed at least every 30ms in unvoiced

regions. This placement is generally more frequent than landmarks placed in voiced

regions, resulting in a higher detection probability of these unvoiced phonemes.

6.2.3 Landmark Types Not Used

It seems natural to add landmarks based on large spectral change and near areas of

consonant bursts. However, we found that neither of these landmark types helped to

improve our landmark detector.

Energy Landmarks

In the summit system, hypothetical landmarks are placed at regions of large spectral

change. To see if our system would benefit from adding landmarks at these regions,

we briefly looked at placing landmarks at large changes in sinusoidal energy and found

no improvement in word error rate.

When a speech signal is corrupted by noise, energy landmarks are sometimes

placed when there are large noise changes in the signal. However, these hypothetical

energy landmarks often occur close to many sinusoidal births and deaths, and do

not help to provide any additional information about hypothetical phonemes. Since,

energy landmarks did not help to improve the word error rate, they were not used in

the landmark detector.

Burst Landmarks

Often times if a consonant burst comes before a region of voicing, it occurs so weakly

that it is hard to identify this burst landmark. Many of the undetected consonant

bursts in our model occur in unvoiced regions right before the birth of many sinu-

soidal tracks into a voiced region. We noticed that adding landmarks a few millisec-

onds before the onset of sinusoidal births to detect these phoneme bursts (i.e. burst

landmarks) decreases the word error rate for clean speech. However, under noisy
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conditions the recognizer is sensitive to landmarks which are close together. Partic-

ularly because these burst landmarks are placed in unvoiced regions which is often

corrupted by noise, the recognizer often incorrectly hypothesizes these landmarks to

be the onset of fricatives or burst phonemes. Hypothesizing one phoneme wrong can

cause an entire word or sentence to be hypothesized incorrectly. Therefore, adding in

these burst landmarks also did not improve the error rate, particularly as the noise

level increased.

6.3 Sinusoidal Model Segmentation Methods

In Section 5.4 we discussed various sinusoidal model segmentation approaches we

investigated. This included using various voicing decision methods, different segment

connectivity approaches and added MFCC distance information. In this section, we

compare word error rate and computation time results for the following segmentation

techniques:

• Energy Voicing Decision, One-Connection Method - eng+onecnct

• Energy and Harmonicity Voicing Decision, One-Connection Method - eh+onecnct

• Energy and Harmonicity Voicing Decision, Two-Connection Method - eh+twocnct

• Energy and Harmonicity Voicing Decision, Partial-Connection Method - eh+partcnct

• Energy and Harmonicity Voicing Decision, Partial-Connection Method, MFCC

Distance Included - eh+mfcc+partcnct

As mentioned before, summit is somewhat sensitive to the placement of major

landmarks, as small movements of the landmark locations can results in completely

different word hypothesis and changes in error rates. Table 6.1 shows the error rates

for the different segmentation methods on the AV-TIMIT development set contami-

nated by white noise.

In addition, the segmentation methods allow for different connections between

segments, which results in different computation times. The processor computation
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time for each segmentation method and SNR is shown in Figure 6-4. The recog-

nizer shows greater confusability among speech models with increasing noise levels,

resulting in less pruning and increased processor recognition time.

We will compare the different segmentation methods, both in terms of error rate

and time, in the sections below.
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Figure 6-4: Recognition computation time for different segmentation approaches un-
der varied SNR of white noise

6.3.1 Voicing Decision Methods

We explored hypothesizing major landmarks using short-time energy voicing deci-

sions as well as using added harmonicity information. As can be seen from Table

6.1, hypothesizing major landmarks using energy and harmonicity as voicing decision

improves the rate under each SNR. Short-time energy becomes less reliable and ro-

bust and robust in noisy environments as the signal weakens for particular phonemes,
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Segmentation Approach db level wer errors

eh+mfcc+partcnct clean speech 1.3 31
eh+partcnct clean speech 1.5 34
eh+twocnct clean speech 1.3 31
eh+onecnct clean speech 1.2 28
eng+onecnct clean speech 1.4 33

eh+mfcc+partcnct 20db 2.1 49
eh+partcnct 20db 2.1 49
eh+twocnct 20db 2.1 49
eh+onecnct 20db 2.3 54
eng+onecnct 20db 2.1 49

eh+mfcc+partcnct 15db 3.0 70
eh+partcnct 15db 3.1 71
eh+twocnct 15db 3.2 74
eh+onecnct 15db 3.5 80
eng+onecnct 15db 4.1 95

eh+mfcc+partcnct 10db 2.6 59
eh+partcnct 10db 2.9 67
eh+twocnct 10db 3.1 71
eh+onecnct 10db 3.8 87
eng+onecnct 10db 4.3 98

eh+mfcc+partcnct 5db 7.1 164
eh+partcnct 5db 7.1 163
eh+twocnct 5db 7.4 170
eh+onecnct 5db 7.1 163
eng+onecnct 5db 7.9 181

eh+mfcc+partcnct 0db 14.1 326
eh+partcnct 0db 13.6 313
eh+twocnct 0db 13.3 306
eh+onecnct 0db 14.1 326
eng+onecnct 0db 17.7 409

eh+mfcc+partcnct -5db 42.1 971
eh+partcnct -5db 41.7 961
eh+twocnct -5db 41.0 946
eh+onecnct -5db 44.6 1028
eng+onecnct -5db 42.6 981

eh+mfcc+partcnct -10db 96.8 2232
eh+partcnct -10db 96.9 2234
eh+twocnct -10db 96.8 2232
eh+onecnct -10db 97.1 2238
eng+onecnct -10db 99.5 2294

Table 6.1: Word Error Rates for Different Sinusoidal Model Segmentation Approaches
for varied SNRs of White Noise. Bold represents best segmentation method for each
noise condition 69



making it difficult to accurately detect regions of voicing. Using harmonicity informa-

tion helps to detect landmarks more precisely, thus improving word error rates. More

importantly, the improved accuracy does not hurt the processor recognition time.

6.3.2 Connectivity Methods

Three different segment connectivity methods were also explored. Notice from Figure

6-4, the eh+twocnct and eh+partcnct methods have a much larger computation time

over the eh+onecnct method, due to the greater segment connectivity. Since the

energy and harmonicity combined measurement provided a lower word error rate

than the short-time energy measurement alone, we compared the three connectivity

methods using the combined measurements for the voicing decision.

At high SNRs, the eh+twocnct method improves the rate very little compared to a

eh+onecnct connectivity connectivity approach. The signal energy is very strong and

voicing decisions are more accurate at high SNRs. Therefore, increasing connectivity

across major landmarks results in an increase in little improvement in word error rate.

However, at low SNRs, the eh+twocnct method greatly improves the word accuracy

in comparison to the eh+onecnct method.

The eh+partcnct method offers a nice tradeoff between error rate and computation

time. As shown in Table 6.1, at high SNRs the word error rate is very similar to the

the eh+onecnct and eh+twocnct methods. At low SNRs, word error rate is improved

over the eh+onecnct method but not not as efficient as the eh+twocnct method.

However, as shown in Figure 6-4, the computation time for the eh+partcnct method

is lower compared to the eh+twocnct technique.

6.3.3 MFCC Distance

Finally, we investigated removing major landmarks placed in locations of little MFCC

distance difference. Because the eh+partcnct technique offers the best tradeoff be-

tween accuracy and time, we apply this segment connectivity method to the land-

marks generated from the MFCC distance method.
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At high SNRs, the added MFCC distance information does not seem to help im-

prove the word error rate compared to the previous methods. In fact, the eh+mfcc+partcnct

method actually performs worse compared to the eh+partcnct technique. White noise

has been shown to reduce the variance of cepstral coefficients [31]. Therefore, as

the white noise level increases, the distance between MFCC feature vectors reduces.

An increased number of major landmarks are removed which appear to have little

change in spectral content, leading to a increased error rate. The removal of major

landmarks increases segment connectivity and thus the computation time using the

eh+mfcc+partcnct approach is also greater than the eh+partcnct method.

6.4 Comparison of Models

In this section, we will compare the performance, in terms of rate and computation

time, of the sinusoidal model approach with the with the original and full segmenta-

tion techniques. Since the eh+partcnct segmentation method offers the best tradeoff

between word error rate and computation time, we will apply this segmentation tech-

nique to the sinusoidal model approach in our experiments.

6.4.1 Word-Error-Rate

A certain landmark and segmentation method which is robust under one noise con-

dition will not always perform well under different noise conditions. To test the noise

robustness of the three methods, we compared the word error rates to white-noise,

speech babble and destroyer operations room noise. Figures 6-5, 6-6 and 6-7 show

the results under the three noise conditions. For more detailed description of these

actual results, please refer to Appendix B.

With a finite amount of test data, it is often difficult to determine if the differ-

ence in performance of the three methods is statistically significant or not. Therefore,

McNemar’s significance test is often used test the statistical significance of the perfor-

mance difference of two methods. In this thesis, if the statistical significance between

two methods is less than 0.005, we say that the methods are statistically different.

71



Clean Speech
sinemodel origseg fullseg

sinemodel = (1.000) origseg fullseg
origseg origseg = (1.000) ≈ (0.4373)
fullseg fullseg ≈ (0.4373) = (1.000)

10 dB
sinemodel origseg fullseg

sinemodel = (1.000) sinemodel ≈ (0.0072)
origseg sinemodel = (1.000) fullseg
fullseg ≈ (0.0072) fullseg = (1.000)

0 dB
sinemodel origseg fullseg

sinemodel = (1.000) sinemodel fullseg
origseg sinemodel = (1.000) fullseg
fullseg fullseg fullseg = (1.000)

Table 6.2: Comparison matrix showing results of McNemar’s Test for Sinusoidal
Model, Original Segmentation and Full Segmentation methods under varied SNRs of
white noise. Methods which are statistically similar are indicated with an ≈ symbol
and the corresponding significance level. If two methods are statistically different,
the model with the better performance is indicated. Also, the model with the lowest
error rate for each noise condition is indicated in bold.

The results for this test, applied to all three methods, are shown in Table 6.2.

The original, full and sinusoidal models all show similar behavior under all three

noise conditions. At high SNRs, the full and original segmentation models tend

to perform slightly better than the sinusoidal model. As shown in Table 6.2, the

performance of the full and original segmentation methods under the clean speech

condition are more statistically similar compared to the sinusoidal model.

At low SNRs, the performance of the original segmentation method rapidly de-

grades. However, the full segmentation method and sinusoidal model seem to degrade

more gracefully. The performance of the original segmentation is significantly differ-

ent compared to the full segmentation and sinusoidal model methods.

In addition, under all three noise conditions, the sinusoidal model provides a sig-

nificantly better word error rate than the original segmentation method, but does not

offer an improved error rate over the full segmentation model. However, the sinu-

soidal model is more statistically similar compared to the full segmentation method
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Figure 6-5: Word Error Rate for Original Segmentation, Full Segmentation and Si-
nusoidal Models for varied SNRs of White Noise
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Figure 6-6: Word Error Rate for Original Segmentation, Full Segmentation and Si-
nusoidal Models for varied SNRs of Babble Noise
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nusoidal Models for varied SNRs of Destroyerops Noise
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than the original segmentation method, particularly under higher noise levels.

Finally, the sinusoidal approach appears to be robust to all three noise environ-

ments and does not rapidly degrade in any of the three environments. The model

performs best when subject to destroyerops noise, since this noise type has a more

sporadic and random characteristic than the other two noise types. White noise has a

relatively flat spectrum and has similar sinusoidal characteristics as unvoiced speech.

However, babble noise contains noise characteristics which are more similar to voiced

speech than white noise. The babble noise will have a greater effect on the behavior

of the sinusoidal components in voiced regions than white noise. Since we use these

components to detect landmarks in voiced regions, this explains why the babble noise

degrades the performance of the sinusoidal model more than white noise.

6.4.2 Recognition Computation Time

Each of the three techniques allow for different connections between segments, causing

different recognition computation times. Figure 6-8 shows these times, in relation to

real time, for the three methods as the SNR is varied under the white noise condition.

The full segmentation method provides little segmental constraint and therefore

has the largest computation time. The original segmentation method computes ma-

jor landmarks when the spectral change is above a specified global threshold. These

landmarks are detected more often than the voicing decision landmarks of the sinu-

soidal model, explaining the lower computation time for the original segmentation

method. However, the sinusoidal model segmentation allows for a much lower com-

putation time compared to the full segmentation approach. The computation times

for all three methods under the babble and destroyerops noise conditions also show

similar trends.

The recognition computation time drops quickly for all three models at very high

noise levels. The increased noise results in fewer landmarks detected for the original

and sinusoidal models. In addition, the noise also causes the speech models to score

poorly and possible word-sequence paths are pruned quicker for all three methods.
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Figure 6-8: Recognition computation time for original, full and sinusoidal methods
under varied SNR of white noise

77



6.4.3 Word Error Rate vs. Computation Time

Finally, to observe the tradeoff between word error rate and computation time for the

three methods, we compute both statistics as we vary a Viterbi pruning threshold,

known as vprunenodes. Pruning is done in the Viterbi search to remove unlikely

paths from consideration and allow for a more efficient search time. At each step

in the search, each possible word-sequence path is extended to the next state. A

vprunenodes parameter is introduced to minimize the number of possible paths. At

each stage, only the vprunenodes paths with the highest scores are extended and the

rest are removed.

In our experiment, the three methods are compared at a SNR of 5dB, under each

noise type. We vary vprunenodes from 100 to 10,000 and compute the word error

rate and computation time for each vprunenodes setting. Figures 6-9, 6-10 and 6-11

illustrate the results for the three noise types in comparison to real time.

When the computation time is large, the sinusoidal and full segmentation mod-

els have a significantly lower word error rate compared to the original segmentation

method. As the computation time is decreased, the full segmentation method has a

faster increase in word error rate compared to the sinusoidal model. Finally, when

the word error rate is high for all three methods, the sinusoidal model and original

segmentation methods offer a much faster computation time than the full segmenta-

tion method. Thus, the sinusoidal model provides the best tradeoff between accuracy

and time of the three methods under all three noise conditions.

The timing results in the figures above are plotted with respect to real time. For

small tasks whose computation time is less than real time, the full segmentation

method is best as it provides the lowest error rate of the three methods. However,

for larger tasks which require more computation time, the error-timing curves in the

above figures will move to the right as increased computation time is needed to achieve

the same word error rate. While the full segmentation model will still have the lowest

error, the computation time is greatly increased. The sinusoidal model has a slightly

lower error rate than the full segmentation technique, but the smaller computation
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time may make it more desirable for these larger tasks.

6.4.4 Landmark and Segment Comparisons

To gain a better understanding of the behavior of the original, full and sinusoidal

methods, we analyzed the landmarks and segments generated from the three methods

under different noise levels.

Landmark Accuracy

To observe the placement accuracy of hypothesized landmarks for each of the three

methods, we compare the average time difference between landmarks hypothesized to

the transcribed AV-TIMIT landmarks as estimated from forced alignments of clean

AV-TIMIT utterances. For each of the AV-TIMIT landmarks, we find the closest hy-

pothesized landmark and compute the time difference between these two landmarks.

We then average the time difference across AV-TIMIT landmarks to compute an av-

erage landmark time difference. Figure 6-12 shows the landmark difference results for

the three methods as we vary the SNR.

As the noise level increases, the original segmentation landmarks show a greater

movement from the true AV-TIMIT landmarks compared to the full and sinusoidal

model techniques. The original segmentation technique detects landmarks from

changes in MFCC feature-vectors. The larger variance of MFCC feature vectors due

to additive noise [31] is one explanation for the increased time difference of the orig-

inal segmentation landmarks. Sinusoidal tracks still maintain their long, continuous

behavior as the noise level is increased, resulting in a relatively constant average time

landmark difference. The constant time difference of the full and sinusoidal models

is one explanation for better performance over the original method at higher noise

levels.
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Figure 6-12: Average time difference between a hypothesized and AV-TIMIT land-
mark for original, full and sinusoidal methods under white noise

Segment Overgeneration

To observe the behavior of segments, we average the number of segments generated by

the sinusoidal, original and full methods across each AV-TIMIT phone. Figure 6-13

illustrates the effect on segmentation for increased noise levels for the three methods.

At low noise levels, the original method overgenerates a smaller number of seg-

ments compared to the sinusoidal and full model. As explained in Section 6.4.2, the

original method computes landmarks more frequently than the sinusoidal model, re-

sulting in a smaller average number of segments per phone. The number of segments

overgenerated by the original method shows a steady increase as the noise level is

increased. Major segment boundaries (i.e. major landmarks) are computed at re-

gions of large spectral change. Increased noise levels results in a smaller number of

hypothesized major landmarks and a larger number of segments.

However, the number of segments for sinusoidal model changes at a much slower

rate than the original model. The sinusoidal model method places major landmarks
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Figure 6-13: Average number of segments across an AV-TIMIT phoneme for original,
full and sinusoidal methods under white noise
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at voicing decision boundaries. As the noise level increases, it becomes harder to

distinguish between voiced and unvoiced areas and accurately place major landmarks.

However, the increased noise does not result in a large change in the number of major

landmarks. Therefore, the sinusoidal model segmentation method is not as severely

affected by increased noise as the original segmentation method.
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Chapter 7

Conclusions

7.1 Summary

In this thesis, we explored a landmark detection and segmentation algorithm using

the McAulay-Quatieri Sinusoidal Model. We compared the performance of our model

to the original and full segmentation techniques in hopes of improving the word error

rates and computation times, specifically under noisy speech environments.

7.1.1 Algorithm Design

Chapter 4 described our landmark detection method while the various segmentation

methods explored are described in Chapter 5.

Landmark Detection

The McAulay-Quatieri Algorithm is used to represent our speech signal as a collection

of sinusoidal components. The long, continuous behavior of sinusoids in voiced regions

signaled phoneme transitions. However, the short, random behavior of the sinusoids

in unvoiced regions provided little information about these transitions.

Short-time energy and harmonicity measurements were used to distinguish be-

tween voiced and unvoiced speech segments. In voiced regions, landmarks were de-

tected from the births and deaths of these harmonic sinusoids. In unvoiced regions,
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landmarks were placed at regularly spaced intervals. These hypothetical landmarks

were interconnected together to form a collection of hypothetical segmentations of

the utterance.

Segmentation Stage

After the segment graph is formed, our next step was to incorporate an explicit

segmentation stage into this network to reduce the size of the search space. In this

thesis, we explored many different segmentation methods.

As discussed in Section 5.4, major landmarks serve as hard boundaries for inter-

connections among minor landmarks. Major landmarks were hypothesized at voicing

decision boundaries. In this thesis, we explored placing major landmarks when voic-

ing decision boundaries are detected using a short-time energy measurement, as well

as a combined short-time energy and harmonicity measurement. The combined mea-

surement placed major landmarks more precisely and allowed for improved word error

rates.

Secondly, we investigated various segment connectivity approaches, including a

one-connection, two-connection and partial-connection method among landmarks.

The two-partial connection method offered the best tradeoff between computation

time and word error rates.

Finally, we explored removing major landmarks placed at regions of little MFCC

distance. The MFCC distance information did not seem to significantly improve the

word error rate and actually resulted in an increased computation time.

7.1.2 Performance of Sinusoidal Model

In Section 6.4, we compared the performance of our sinusoidal model, both in terms of

word error rate and computation time, to the original and full segmentation techniques

under noisy speech environments. Furthermore, to test the noise robustness of the

sinusoidal model, we analyzed the performance under difference noise conditions.
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Tradeoff of Word Error Rate and Computation Time

The sinusoidal model offered the best tradeoff between word error rate and computa-

tion time. At higher computation times, the sinusoidal and full segmentation models

have a significantly lower word error rate than the original segmentation method. At

high word error rates, the sinusoidal model and original segmentation methods offer

a much faster computation time than the full segmentation method.

Noise Robustness

In addition, we analyzed the performance of the sinusoidal model when speech is con-

taminated by white noise, babble noise and destroyerops noise. The model appeared

to be robust to all three noise environments and did not rapidly degrade under any

of the three conditions.

7.2 Future Work

We would like to expand this work in a number of areas in the future. Humans are able

to comprehend contaminated speech under many different noise conditions, yet few

speech recognition systems can perform well in many different noise environments. In

this thesis, we have taken the beginning steps towards achieving this noise robustness

goal by demonstrating the robustness of the sinusoidal model under white nose, babble

noise and destroyerops conditions. However, it would be interesting to study the

performance of the sinusoidal model under other noise conditions. Since voiced sounds

can be adequately estimated by a collection of sinusoids, we would particularly like

to study the effect of adding periodic noise to the speech signal.

Furthermore, as shown in Section 6.4, the sinusoidal model performs poorly at very

high noise levels. Section 1.2.1 discusses some speech enhancement techniques used to

extract out clean speech from the contaminated utterance. It would be interesting to

apply once of these techniques as a preprocessing step and then apply the sinusoidal

model to the resulting clean speech.
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In addition, the experiments in this thesis were performed on utterances from

the AV-TIMIT corpus, with noise examples taken from the Noisex-92 corpus. We

would like to further explore the performance of the sinusoidal model using another

corpus. A popular database used in noise robust speech recognition experiments in

the Aurora database [15]. This database includes suburban train noise, babble, car,

exhibition hall, restaurant, street, airport and train-station noise

Finally, we would like to investigate using the sinusoidal model in an environment

with many different sound types. Today, many speech recognition systems are able to

successfully process human speech. However, little work has been done in adapting a

system to detect and process non-speech sounds present in the environment, such as a

horn beeping or a dog barking. Thus, people are limited to quiet environments where

they can use these systems. Computational Auditory Scene Analysis (CASA) [2] is

a process in which a system takes the mixture of sounds heard in a complex natural

environment and sorts these sounds into packages of acoustic evidence in which each

package corresponds to a sound class.

In the future, we would like to observe the performance of the sinusoidal model in

an environment with many speech and non-speech sounds. The overlapping sounds

from difference sources might correspond to different sinusoids, and we want to in-

vestigate if we can extract out these different sources by separating out individual

sinusoids. If we can recognize these different sources, this will give us a more complete

model of different acoustic sounds simultaneously present.
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Appendix A

AV-TIMIT Phonemes

Figure A-1: 61 AV-TIMIT phones and corresponding International Phonetic Alpha-
bet (IPA) Symbols, along with example words using the phonemes
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Appendix B

Word Error Rate Tables

This Appendix lists the detailed word error rates on the AV-TIMIT test set for the

sinusoidal, original and full segmentation methods, varying the SNRs of white, babble

and destroyerops noise.
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B.1 Word Error Rate for White Noise

Clean Speech
method word error rate errors

sinemodel 3.1 72
fullseg 2.1 48
origseg 1.8 41

20db
sinemodel 3.5 82

fullseg 2.3 54
origseg 2.3 54

15db
sinemodel 3.0 71

fullseg 2.4 55
origseg 3.3 76

10db
sinemodel 4.9 114

fullseg 3.7 86
origseg 6.1 156

5db
sinemodel 7.2 169

fullseg 6.7 156
origseg 16.8 392

0db
sinemodel 14.6 342

fullseg 12.2 285
origseg 45.8 1071

-5db
sinemodel 38.0 888

fullseg 36.6 856
origseg 93.8 2191

-10db
sinemodel 98.8 2307

fullseg 98.1 2292
origseg 98.9 2311

Table B.1: Word Error Rates for Original, Full and Sinusoidal Approaches for varied
SNRs of White Noise. Bold represents best method for each noise condition.
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B.2 Word Error Rate for Babble Noise

Clean Speech
method word error rate errors

sinemodel 2.2 50
fullseg 1.7 39
origseg 1.6 37

20dB
sinemodel 2.4 50

fullseg 1.8 43
origseg 1.7 40

15dB
sinemodel 2.8 65

fullseg 1.9 45
origseg 1.7 40

10dB
sinemodel 3.8 89

fullseg 2.4 56
origseg 3.3 76

5dB
sinemodel 7.2 168

fullseg 5.2 121
origseg 12.0 280

0dB
sinemodel 19.0 443

fullseg 16.1 377
origseg 41.4 966

-5dB
sinemodel 62.9 1469

fullseg 63.4 1481
origseg 85.3 1992

-10dB
sinemodel 92.3 2155

fullseg 91.4 2136
origseg 97.4 2276

Table B.2: Word Error Rates for Original, Full and Sinusoidal Approaches for varied
SNRs of Babble Noise. Bold represents best method for each noise condition.
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B.3 Word Error Rate for Destroyerops Noise

Clean Speech
method word error rate errors

sinemodel 2.4 59
fullseg 1.5 36
origseg 1.4 33

20dB
sinemodel 3.1 73

fullseg 1.6 38
origseg 1.8 43

15dB
sinemodel 2.5 59

fullseg 2.4 59
origseg 2.1 49

10dB
sinemodel 4.0 93

fullseg 3.3 77
origseg 4.0 93

5dB
sinemodel 6.5 153

fullseg 5.3 123
origseg 9.2 214

0dB
sinemodel 12.2 286

fullseg 11.0 257
origseg 35.7 834

-5dB
sinemodel 42.5 992

fullseg 39.9 933
origseg 76.5 1787

-10dB
sinemodel 84.6 1977

fullseg 83.8 1957
origseg 94.8 2214

Table B.3: Word Error Rates for Original, Full and Sinusoidal Approaches for var-
ied SNRs of Destroyerops Noise. Bold represents the best method for each noise
condition.
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