
Large-Margin Gaussian Mixture Modeling for

Automatic Speech Recognition

by

Hung-An Chang

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2008

© Massachusetts Institute of Technology 2008. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 13 2008

Certified by .
James R. Glass

Principal Research Scientist
Thesis Supervisor

Accepted by .
Terry P. Orlando

Chair, Department Committee on Graduate Students

2

Large-Margin Gaussian Mixture Modeling for Automatic Speech

Recognition

by

Hung-An Chang

Submitted to the Department of Electrical Engineering and Computer Science
on May 13 2008, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Discriminative training for acoustic models has been widely studied to improve the per-
formance of automatic speech recognition systems. To enhance the generalization ability
of discriminatively trained models, a large-margin training framework has recently been
proposed. This work investigates large-margin training in detail, integrates the training
with more flexible classifier structures such as hierarchical classifiers and committee-based
classifiers, and compares the performance of the proposed modeling scheme with existing dis-
criminative methods such as minimum classification error (MCE) training. Experiments are
performed on a standard phonetic classification task and a large vocabulary speech recog-
nition (LVCSR) task. In the phonetic classification experiments, the proposed modeling
scheme yields about 1.5% absolute error reduction over the current state of the art. In the
LVCSR experiments on the MIT lecture corpus, the large-margin model has about 6.0%
absolute word error rate reduction over the baseline model and about 0.6% absolute error
rate reduction over the MCE model.

Thesis Supervisor: James R. Glass
Title: Principal Research Scientist

3

4

Acknowledgements

First of all, I would like to thank my advisor, James. R. Glass, for providing constant support,

constructive encourage, useful guidance, broad picture of automatic speech recognition, and

the freedom of proposing and testing out our own ideas.

I would like to give special thanks to Fei Sha, who I didn’t have a chance to meet, for

providing help for the large-margin training on TIMIT through mails. Special thanks to T.

J. Hazen for providing me guidance to the MCE training on the MIT lecture corpus.

I would also like to thank Ken Schutte and Paul Hsu for providing constant helps on

the SUMMIT recognizer and for insightful discussions. I would also like to thank other

members of the Spoken Language Systems for providing an excellent and enjoyable working

environment.

Thanks to all my friends, brothers, and sisters for providing me all kinds supports and

constantly reminding me that I am not alone.

Thanks to my beloved family members, my parents, my big brother Hung-Yin, my young

sister Chun-Yin, and my wife Pei, whose love and warmth I can still feel affectionately even

though we are thousands of miles apart.

Finally, thanks to God for arranging all the things.

5

6

Contents

1 Introduction 15

1.1 Overview . 15

1.2 Discriminative Training Methods for ASR 17

1.2.1 MMI Training . 17

1.2.2 MPE Training . 23

1.2.3 MCE Training . 28

1.2.4 Comparisons of Discriminative Training Methods 31

1.3 Multi-level classification . 35

1.3.1 Hierarchical classifiers . 35

1.3.2 Committee-based classifiers . 36

1.4 Organization of the Thesis . 36

2 Large-Margin GMMs for Phonetic Classification 39

2.1 Large-Margin GMMs . 39

2.2 Hierarchical Large-Margin GMM Training 43

2.2.1 Joint Margin Criterion . 43

2.2.2 Parameter Optimization . 45

2.3 TIMIT Corpus . 47

2.3.1 TIMIT Data Sets . 47

2.3.2 TIMIT Phonetic-Classification . 49

2.4 Experiments . 51

7

2.4.1 Features . 51

2.4.2 Baselines . 52

2.4.3 Large-Margin Classifiers . 54

2.4.4 Committee-based Classifiers . 57

2.4.5 Heuristic Selection of Margin Scaling Factor 58

2.5 Discussion . 60

3 Large-Margin GMMs for LVCSR 63

3.1 Issues of Expending to LVCSR . 63

3.1.1 Loss Function . 63

3.1.2 Diagonalization of GMMs . 65

3.1.3 Convexity of Loss Function . 66

3.1.4 Parallelization of Computation . 67

3.2 Experimental Environment . 68

3.2.1 MIT Lecture Corpus . 68

3.2.2 SUMMIT landmark-based speech recognizer 69

3.3 Experiments . 73

3.3.1 MCE Models . 73

3.3.2 Large-Margin Models . 74

3.3.3 Comparisons and Discussion . 76

4 Conclusions and Future Work 79

4.1 Conclusions . 79

4.2 Future Work . 79

4.2.1 Applying Convex Optimization to Refine Parameters 80

4.2.2 Changing the Way of Computing String Distance 80

4.2.3 Constructing a Hierarchy for Diphones 80

4.2.4 Utilizing Lattices . 81

8

A Optimization for MMI Training 83

A.1 Auxiliary Function for MMI Training . 83

A.2 Parameter Update . 86

B Quickprop Algorithm 91

C Conjugate Gradient Algorithm 95

D Large-Margin Training on Lattices 97

D.1 ES[log(pλ(Xn|S)pL(S))] . 97

D.2 ES[D(S,Yn)] . 99

9

10

List of Figures

1-1 Hierarchical classifier. 35

2-1 Illustration of outliers. 41

2-2 Error rates of ML GMM classifiers on Dev set. 54

2-3 Error rates of ML GMM classifiers on Core Test set. 55

2-4 Average error rate on Dev set under different margin scaling factor. 56

2-5 Error rates of large-margin GMM classifiers on Dev set. 57

2-6 Error rates of large-margin GMM classifiers on Core Test set. 58

2-7 Error rates of committee-based classifier on Dev set under different margin

scaling factor. 59

A-1 Illustration of an auxiliary function. 84

11

12

List of Tables

2.1 ARPAbet symbols for phones in TIMIT with examples. 48

2.2 Sentence type information of TIMIT [12]. 49

2.3 Data set information of TIMIT. 49

2.4 Mapping from 61 classes to 39 classes used for scoring, from [12]. 50

2.5 Recent reported classification results on TIMIT core test set. 51

2.6 Summary of features used for experiments. 52

2.7 Mapping from 61 classes to 48 classes in [33]. 53

2.8 Phone labels in manner clusters. 54

2.9 Average error rates of the ML GMM classifiers. 55

2.10 Average error rates of the large-margin GMM classifiers. 56

2.11 Error rates of committee classifiers. 57

2.12 Error rates of classifiers with pre-determined α. 60

3.1 Sizes of lectures in the training set. 70

3.2 Sizes of lectures in the development set. 70

3.3 Sizes of lectures in the test set. 70

3.4 Specifications of telescope regions for landmark features. 71

3.5 Word error rates on the development set. 76

3.6 Word error rates on test lectures. 77

3.7 The p-values of McNemar significance tests of the models on WER. 78

13

14

Chapter 1

Introduction

1.1 Overview

Over the years there has been much research devoted to improving the acoustic modeling

performance for automatic speech recognition (ASR) systems. Among the acoustic model-

ing frameworks in existing ASR systems, Gaussian mixture models (GMMs) are typically

used as classifiers to predict the acoustic labels in speech utterances. Traditionally, GMM

parameters can be estimated efficiently via maximum-likelihood (ML) training using the

Expectation-Maximization (EM) algorithm [5]. However, because the conditions for the op-

timality of the ML training, such as model correctness, generally do not hold [38], other

parameter estimation approaches such as discriminative training of GMM parameters have

been proposed to improve ASR performance.

While ML training determines model parameters that maximize the log-likelihood of the

training data, discriminative training methods seek model parameters that can minimize the

confusions in the training data made by the model. Generally, reduction of the confusions

is achieved by optimizing the model parameters with respect to objective functions that are

related to the degree of confusions. In the past ten years, several objective functions such as

maximum mutual information (MMI)[38] training, minimum classification error (MCE) [17],

and minimum word/phone error (MWE/MPE) [29] training have been proposed. Experi-

15

mental results on a variety of ASR tasks [25, 38, 29], including large vocabulary continuous

speech recognition (LVCSR), have demonstrated the effectiveness of these methods in reduc-

ing the recognition error rate of ASR systems.

Although the training objectives are different, one common issue of all training methods is

the generalization ability of the trained models; that is, the ability to translate the confusion

reduction gained in training to unseen data. In the past, such a generalization ability has

been maintained by applying smoothing techniques such as I-smoothing in MPE training [29],

or by careful selection of the learning rate and smoothing coefficients [25]. More recently,

as inspired by the success of support vector machines (SVM) [3] in other fields of pattern

recognition, large-margin methods [33, 22, 39] that incorporate margin constraints in the

training have been proposed to further improve the generalization ability of discriminatively

trained models.

Large-margin training methods ensure generalization by requiring a log-likelihood mar-

gin between the well-classified samples and the decision boundary. Because of such margin,

the trained model can tolerate some mismatch between the training data and the unseen

data, and thus tends to have better generalization ability. Large-margin training is espe-

cially effective when the training error rate is low. This is because under low training error

condition, the large-margin criterion will guide the training to select the set of parameters

that has the maximal margin among all the sets of parameters that have low training error

rate.

In addition to discriminative training, a better classifier structure has also been helpful

in improving the acoustic model performance. For example, a hierarchical classifier was

proposed [13] to reduce phonetic classification error. By dividing the classification prob-

lem into smaller sub-problems, a hierarchical classifier is potentially more robust and more

generalizable to unseen data since there are more training exemplars in the pooled class.

Also, hierarchies can also be used to partition a large feature vector into committees of

smaller dimensionality classifiers. Considerable benefit has been observed by applying such

committee-based classification framework in [14].

16

The goal of the thesis is to investigate the large-margin training criteria, to integrate the

training with flexible modeling structures such as hierarchical classifiers or committee-based

classification, and to compare the large-margin training with other discriminative training

methods. The proposed modeling scheme will first be implemented and evaluated on the

TIMIT phonetic benchmark task [12], and will be extended to a LVCSR task from the MIT

lecture corpus [8].

1.2 Discriminative Training Methods for ASR

This section reviews discriminative training methods for GMMs models as proposed in the

literature. The training methods reviewed include maximum mutual information (MMI)

training [38], minimum phone error (MPE) training [29], and minimum classification error

(MCE) [17, 24, 25] training. In the following sections, the objective functions and optimiza-

tion algorithms of the discriminative methods are illustrated, followed by a brief comparison

between the training methods.

1.2.1 MMI Training

This subsection briefly describes the MMI training of GMMs in a hidden Markov model

(HMM) based speech recognizer. The basic idea of MMI training is to seek model parameters

that can maximize the posterior probability of the correct transcription being generated by

the model. Maximizing the posterior probability of the correct string increases the separation

between the correct string and other competing hypotheses, and thus reduces confusion.

Objective Function

Given a set of training acoustic observation sequences {X1, . . . ,XN}, the corresponding

transcription {Y1, . . . ,YN}, and HMM parameter set λ, the objective function of MMI

17

training can be expressed by

FMMI(λ) = log(p(Y1, . . . ,YN |X1, . . . ,XN))

=
∑N

n=1 log(p(Yn|Xn))

=
∑N

n=1 log(pλ(Xn|Yn)κpL(Yn)κ∑
S pλ(Xn|S)κpL(S)κ)

),

(1.1)

where pλ(Xn|S) is the probability of the observation sequence Xn being generated by λ given

the hypothesis S, pL(S) is the language model probability of hypothesis S, and κ is a scaling

factor that controls the relative weights between the acoustic model and the language model

during the training.1 Note that if the denominator term in Equation (1.1) is removed, the

objective function becomes the same as what is used in ML training.

Auxiliary Function

Maximizing of the objective function in Equation (1.1) can be achieved either by applying

gradient based methods such as Generalized Probabilistic Descent (GPD) [18] or by applying

Extended Baum-Welch (EBW) update [10] with an appropriate auxiliary function, G(λ, λ′).

The following paragraphs briefly describe the EBW update for MMI training used in [28].

More detailed mathematical descriptions can be found in Appendix A.

The basic EBW update procedures for MMI training are composed of the following steps:

1. Starting from HMM parameter set λ′, construct an auxiliary function GMMI(λ,λ′) for

FMMI(λ) around λ′.

2. Update the parameter set to λ̂ such that GMMI(λ,λ′) is maximized.

3. Repeat step 1 and 2 till the objective function FMMI(λ) converges.

The auxiliary function GMMI(λ,λ′) can be decomposed into the following form:

GMMI(λ,λ′) = Gnum(λ,λ′)−Gden(λ, λ′) + Gsm(λ, λ′), (1.2)

1For notational convenience, it is assumed that the language model probability pL(S) has been scaled by
a factor 1

κ , and thus further scaling by κ reverts the probability back to its original value.

18

where Gnum(λ, λ′) corresponds to the numerator term in Equation (1.1), Gden(λ,λ′) corre-

sponds to the denominator term in Equation (1.1), and Gsm(λ, λ′) is a smoothing function

that has maximum at λ = λ′. Gnum(λ,λ′) is the same as the auxiliary function used in the

E-M update of ML training; Gden(λ,λ′) is similar to Gnum(λ,λ′) but considers all hypothe-

ses generated by the speech recognizer; and the smoothing function Gsm(λ,λ′) is intended

to make the auxiliary function converge better. Details about constructing the auxiliary

function can be found in Appendix A.1.

The maximization of GMMI(λ,λ′) involves computation for the partial derivative of

GMMI(λ,λ′) with respect to the parameter set λ. Because the term Gnum(λ,λ′) in Equation

(1.2) is the same as the auxiliary function used in the E-M update of ML training and the

Gden(λ,λ′) is similar to Gnum(λ,λ′), the procedures to compute the partial derivative are

similar to what are used in ML training. The first step is to compute statistics such as the

posterior probabilities of occupation of HMM states and the weighted-sum of training data

with respect to the posterior probabilities based on the parameter set λ′ from the previous

iteration. Efficient computation of such statistics can be achieved by utilizing phone lattices

generated by the recognizer. There are two types of phone lattices that are used in MMI

training:

1. Numerator-lattices: Lattices used for computing partial derivatives of Gnum(λ, λ′).

Numerator-lattices are generated by the recognizer in forced-alignment mode that pro-

duces state sequences that match each observation sequence Xn with its corresponding

transcription Yn.

2. Denominator-lattices: Lattices used for computing partial derivatives of Gden(λ, λ′).

Denominator-lattices are generated by the recognizer in recognition mode that pro-

duces hypotheses for each observation sequence Xn. Denominator-lattices can also be

called recognition-lattices since they are generated by the recognition process.

Note that because of pruning operations during recognition, the correct transcription may not

necessarily appear in the denominator-lattices. The next section describes how to compute

statistics needed for MMI triaining.

19

Computing Statistics

The following procedures compute statistics needed for computing the partial derivative for

Gnum(λ, λ′); similar procedures can be applied to compute statistics for Gden(λ,λ′). Given

the start and end times of a phone arc q in a numerator-lattice, the HMM forward-backward

procedure can be applied to compute the within-arc posterior probability γnum
jmq (t) of the mth

Gaussian mixture component of HMM state j at time t. Putting together all the within-arc

posterior probabilities and running the forward-backward procedure across the entire lattice

generates γnum
q , the posterior probability of arc q being traversed. The occupation γnum

jm of

mixture component m of state j can be computed by summing over the within-arc posterior

probabilities of all phone arcs in all the numerator-lattices:

γnum
jm =

Qnum∑
q=1

eq∑
t=sq

γnum
jmq (t)γnum

q , (1.3)

where sq and eq denote the start and end times of phone arc q, and Qnum is total number

of phone arcs in the numerator-lattices. The weighted sum of the training data can be

computed by the following:

ϑnum
jm (X) =

Qnum∑
q=1

eq∑
t=sq

γnum
jmq (t)γnum

jm xt, (1.4)

where xt is the observation vector at time t. Also the weighted square sum of the training

data can be computed by

ϑnum
jm (X2) =

Qnum∑
q=1

eq∑
t=sq

γnum
jmq (t)γnum

jm xtx
T
t . (1.5)

Applying similar procedures on the denominator-lattices, statisitcs for Gden(λ, λ′) such as

γden
jm , ϑden

jm (X), and ϑden
jm (X2) can also be computed.

20

Parameter Update

The following paragraphs describe how to update the mean vectors and covariance matrices

in λ. The basic idea is to find the parameters such that the partial derivatives of the

auxiliary function is zero. Because Gnum(λ,λ′) is the same as the auxiliary function used

in ML training, the partial derivatives of Gnum(λ,λ′) with respect to mean vectors and

covariance matrices can be expressed by the following forms:

∂

∂µjm

Gnum(λ,λ′) ∝ (ϑnum
jm (X)− γnum

jm µjm), (1.6)

∂

∂Σjm

Gnum(λ,λ′) ∝ (ϑnum
jm (X2)− µjmϑnum

jm (X)T − ϑnum
jm (X)µT

jm + γnum
jm µjmµT

jm), (1.7)

where µjm is the mean vector of the mth Gaussian mixture component of HMM state j, and

Σjm is the covariance matrix. Because Gden(λ,λ′) is of similar form as Gnum(λ,λ′), the

partial derivatives of Gden(λ,λ′) can be also expressed by:

∂

∂µj,m

Gden(λ, λ′) ∝ (ϑden
jm (X)− γden

jm µjm), (1.8)

∂

∂Σjm

Gden(λ,λ′) ∝ (ϑden
jm (X2)− µjmϑden

jm (X)T − ϑden
jm (X)µT

jm + γden
jm µjmµT

jm). (1.9)

Note that the constant matrices for the ∝ in (1.6) and in (1.8) are the same given the same

µjm and Σjm. The same thing also holds for the matrices in (1.7) and (1.9). Detailed deriva-

tion of the partial derivatives can be found in Appendix A.2. Also, because the Gsm(λ, λ′)

in Equation (1.2) has maximum at λ = λ′, the derivatives of Gsm(λ,λ′) with respect to µjm

and Σjm are of the forms:

∂

∂µjm

Gsm(λ,λ′) ∝ (µ′
jm − µjm), (1.10)

where µ′
jm is the mean vector of mixture m of state j in λ′; and

∂

∂Σjm

Gsm(λ,λ′) ∝ ((Σ′
jm + µ′

jmµ′T
jm)− µ′

jmµT
jm − µjmµ′T

jm + µjmµ′
jm −Σjm). (1.11)

21

Setting ∂
∂µjm

Gnum(λ,λ′) − ∂
∂µjm

Gden(λ,λ′) + ∂
∂µjm

Gsm(λ,λ′) = 0 and solving for the mean

µ̂jm yields

µ̂jm =
ϑnum

jm (X)− ϑden
jm (X) + ηjmµ′

j,m

γnum
jm − γden

jm + ηjm

, (1.12)

where ηjm is a positive constant that controls the degree of smoothing. In similar way,

combining the derivatives in (1.7), (1.9), and (1.11) and plugging in mean vector in Equation

(1.12) to solve Σjm results in

Σ̂jm =
ϑnum

jm (X2)− ϑden
jm (X2) + ηjm(Σ′

jm + µ′
jmµ′T

jm)

γnum
jm − γden

jm + ηjm

− µ̂jmµ̂T
jm. (1.13)

Note that the value of the smoothing constant ηjm is critical. If it is too small, some

covariance matrices are not guaranteed to be positive semi-definite; if it is too large, the

optimization will be slow. Also, a bad choice of the constant may potentially degrade the

performance of MMI-trained models. Several heuristic selection criteria for ηjm can be found

in [28].

For the update of mixture weights, another auxiliary function is suggested in [28] such

that the sum-to-one constraint of mixture weights can be more easily incorporated into the

optimization. For the mixture weights {wjm}Mj

m=1 of state j, the following auxiliary function

is used:
Mj∑

m=1

γnum
jm log(wjm)− γden

jm

w′
jm

wjm, (1.14)

where w′
jm is the mixture weight from the previous parameter set λ′. The update weights

{ŵjm}Mj

m=1 are obtained by running the EBW procedure on Equation (1.14) for several it-

erations. Details of the update can also be found in Appendix A.2. Because HMM state

transition weights also have the sum-to-one constraint, the transition weights can also be

updated using a similar auxiliary function as in Equation (1.14).

To prevent overtraining, additional smoothing can be incorporated with MMI training.

The I-smoothing that seeks to interpolate the ML-trained model with the MMI-trained model

is typically used. Because the numerator terms in the MMI objective function is the same as

the ML objective function, the effect of I-smoothing is the same as scaling γnum
jm by a factor

22

1+τ
γnum

jm
. However, the value of τ , in general, has to be tuned on the development set.

1.2.2 MPE Training

This section describes Minimum Phone Error (MPE) training proposed in [29]. The basic

idea of MPE training is to maximize the average phone accuracy of hypotheses generated

by the recognizer.

Objective Function

Given observation sequences {X1 . . .XN}, transcriptions {Y1 . . .YN}, and HMM parameter

set λ, MPE training seeks to maximize

FMPE(λ) =
N∑

n=1

∑
S pλ(Xn|S)κpL(S)κA(S,Yn)∑

U pλ(Xn|U)κpL(U)κ
, (1.15)

where the A(S,Yn) denotes raw phone accuracy that equals the number of phones in the

reference transcription Yn minus the number of phone errors. Because the term A(S,Yn)

are not necessarily positive, there is no log term in the MPE objective function as in the

MMI objective function. As a result, the expected log-likelihood used in MMI training can

not be directly used as auxiliary function for MPE training, and another auxiliary function

has to be constructed.

Auxiliary Function

The key to constructing a tractable auxiliary function for optimizing the MPE objective

function is to partition the change in FMPE(λ) into a sum of change contributed by the

change of log-probability of phone arc q in the lattices. More specifically, given the HMM

parameter set λ′ from the previous iteration, construct the auxiliary function GMPE(λ, λ′)

by

GMPE(λ,λ′) =
N∑

n=1

Qn∑
q=1

∂FMPE(λ)

∂ log(pλ(q))
|λ=λ′ GML(λ,λ′, n, q), (1.16)

23

where N is the number of training utterances, and Qn is the number of phone arcs in the

recognition lattice of the nth utterance, pλ(q) is the probability of phone arc q being generated

by λ, and GML(λ,λ′, n, q) is the auxiliary function for log(pλ(q)) at λ = λ′ that is used

for ML training. Note that in this way the partial derivative of FMPE(λ) with respect to

λ equals to that of GMPE(λ,λ′) at λ = λ′, and therefore GMPE(λ,λ′) is a valid auxiliary

function for FMPE(λ).

Parameter Update

As in MMI training, optimizing GMPE(λ,λ′) requires statistics computed from the training

data. The key statistics required in MPE training is

γMPE
q =

1

κ

∂FMPE(λ)

∂ log(pλ(q))
, (1.17)

for each arc q. The statistics γMPE
q can be computed by:

γMPE
q = γq(c(q)− cn

avg), (1.18)

where γq is the posterior probability of phone arc q being traversed, c(q) is the average raw

phone accuracy of hypotheses passing through phone arc q, and cn
avg is the average raw phone

accuracy of all hypotheses in the recognition lattice of the nth training utterance.

To show how Equation (1.18) holds, let us first break the numerator and denominator

terms in FMPE(λ) into two parts according to whether the hypotheses contain phone arc q;

that is,

FMPE(λ) =
N∑

n=1

∑
S:q∈S pλ(Xn|S)κpL(S)κA(S,Yn) +

∑
S:q /∈S pλ(Xn|S)κpL(S)κA(S,Yn)∑

U:q∈U pλ(Xn|U)κpL(U)κ +
∑

U:q /∈U pλ(Xn|U)κpL(U)κ
.

(1.19)

Note that for hypotheses S that contains q, the differential of pλ(Xn|S)κ with respect to

log(pλ(q)) is κpλ(Xn|S)κ, and that for hypotheses S that does not contain q, the differential

24

of pλ(Xn|S)κ with respect to log(pλ(q)) is zero. As a result, γMPE
q can be represented by

1
κ

∂FMPE(λ)
∂ log(pλ(q))

=
∑

S:q∈S pλ(Xn|S)κpL(S)κA(S,Yn)∑
U pλ(Xn|U)κpL(U)κ

−
∑

S pλ(Xn|S)κpL(S)κA(S,Yn)∑
U pλ(Xn|U)κpL(U)κ

∑
S:q∈S pλ(Xn|S)κpL(S)κ

∑
U pλ(Xn|U)κpL(U)κ .

(1.20)

The term
∑

S:q∈S pλ(Xn|S)κpL(S)κ

∑
U pλ(Xn|U)κpL(U)κ in Equation (1.20) is the posterior probability of q being

traversed and hence equals γq; the term
∑

S pλ(Xn|S)κpL(S)κA(S,Yn)∑
U pλ(Xn|U)κpL(U)κ is the average phone accu-

racy of all hypotheses in the lattice of the nth utterance and hence equals cn
avg. Note that

∑
S:q∈S pλ(Xn|S)κpL(S)κA(S,Yn)∑

U pλ(Xn|U)κpL(U)κ =
∑

S:q∈S pλ(Xn|S)κpL(S)κA(S,Yn)∑
S:q∈S pλ(Xn|S)κpL(S)κ

∑
S:q∈S pλ(Xn|S)κpL(S)κ

∑
U pλ(Xn|U)κpL(U)κ , and therefore

the whole term equals to c(q)γq.

After γMPE
q for all phone arcs have been computed, other statistics required to update

mean vectors and covariance matrices in λ can be computed using similar procedures as in

the MMI training. More specifically, if we let

γnum
q = max(0, γMPE

q) (1.21)

γden
q = min(0, γMPE

q), (1.22)

all the statistics γnum
jm , γden

jm , ϑnum
jm (X), ϑden

jm (X), ϑnum
jm (X2), and ϑden

jm (X2) can be computed

using the same formula as in MMI training. As a consequence, the same update formula

in Equations (1.12) and (1.13) can be directly used for MPE training. An intuition for

MPE training is that if a phone arc q can help to produce hypotheses that have higher

phone accuracy than the average, this phone arc should be consider a positive example in

the training; on the other hand, if a phone arc tends to result in hypotheses that have

lower phone accuracy than the average, this arc should be considered as a negative training

example in the training.

Computing Phone Accuracy

To facilitate MPE training, it is necessary to have an efficient algorithm to compute the

following quantities:

25

� A(S,Yn): Raw phone accuracy of hypotheses S given correct transcription Yn.

� c(q): Average accuracy of hypotheses that traverse through phone arc q.

� cn
avg: Average accuracy of all hypotheses for the nth utterance in the training data.

The following paragraphs describe the methods to compute these quantities as in [28].

The raw phone accuracy A(S,Yn) can be computed by summing up the individual phone

accuracy of all phone arcs in the hypothesis S; that is

A(S,Yn) =
∑
q:q∈S

PhoneAcc(q,Yn), (1.23)

where PhoneAcc(q,Yn) is the accuracy of phone q. Ideally, the individual phone accuracy

PhoneAcc(q,Yn) =





1 if correct phone

0 if substitution

−1 if insertion





, (1.24)

but to compute the exact value above requires alignment between hypothesis S and the

reference transcription Yn. To avoid the huge computation of aligning all hypotheses with

the reference, a localized phone accuracy measure was proposed in [28]. Given a phone z in

the reference transcription that overlaps in time with the hypothesized phone q, the following

measure is computed:

Acc(q, z) =




−1 + 2e(q, z) if z and q are the same phone

−1 + e(q, z) if different phones



 , (1.25)

where e(q, z) is the proportion of length of z that overlaps with q. Then, the individual

phone accuracy can be computed by

PhoneAcc(q,Yn) = max
z∈Yn

Acc(q, z). (1.26)

26

Efficient computation for c(q) and cn
avg can be achieved by utilizing the quantities com-

puted in the HMM forward-backward algorithm. Let αq denote the scaled likelihood of the

HMM reaching phone arc q computed by the forward procedure, and let α′q denote the av-

erage accuracy of phone sequences leading up to q. The value of α′q can be computed by

averaging the accuracy α′r of each phone arc r preceding q and adding the average value with

the accuracy of q; that is,

α′q =

∑
r preceding q α′rαrt

κ
rq∑

r precdeing q αrtκrq

+ PhoneAcc(q,Yn), (1.27)

where tκrq is the scaled transition probability from r to q. Similarly, let βq denote the scaled

likelihood of the HMM following phone arc q computed by the backward procedure, and

let β′q denote the average accuracy of phone sequences following q. The value of β′q can be

computed by

β′q =

∑
r following q tκqrpλ(r)κβr(β

′
r + PhoneAcc(r,Yn))∑

r following q tκqrpλ(r)κβr

. (1.28)

As a result, the value of c(q) can be computed by

c(q) = α′q + β′q. (1.29)

The average accuracy of all hypotheses in the lattice can be computed by averaging α′q of all

q at the end of the lattice:

cn
avg =

∑
q at the end of the lattice α′qαq∑

q at the end of the lattice αq

. (1.30)

Smoothing

As in MMI training, I-smoothing can be applied to MPE training to prevent over-fitting. To

perform I-smoothing, the ML statistics γML
jm , ϑML

jm (X), and ϑML(X2) have to be computed

27

for each state j and mixture m. I-smoothing can be performed by:

γ′num
jm

ϑ′num
jm (X)

ϑ′num
jm (X2)

=

=

=

γnum
jm + τ

ϑnum
jm (X) + τ

γML
jm

ϑML
jm (X)

ϑnum
jm (X2) + τ

γML
jm

ϑML
jm (X2)

(1.31)

where τ is a positive constant that has to be tuned. I-smoothing is generally more important

for MPE training than for MMI training.

1.2.3 MCE Training

This section briefly describes Minimum Classification Error (MCE) training [18, 17, 24, 25].

The goal of MCE training is to minimize the misclassifications of training data made by

the model. For each utterance in the training data, if the best hypothesis generated by the

recognizer does not match the transcription, the utterance is considered as being misclassified

and is counted as a loss added to the objective function.

Objective Function

Given observation sequences {X1 . . .XN} and transcriptions {Y1 . . .YN}, the ideal MCE

objective function (loss function) can be expressed by:

Nerr =
N∑

n=1

sign[− log(pλ(Xn,Yn)) + max
S6=Yn

log(pλ(Xn,S))], (1.32)

where sign[z] = 1 for z > 0 and sign[z] = 0 for z ≤ 0, and pλ(Xn,S) is the probability of

observation sequence Xn and hypothesis S being generated by model parameter set λ. MCE

training seeks to find λ such that the number of misclassified utterances is minimized.

However, because the sign function in Equation (1.32) is not differentiable, it is generally

replaced by a differentiable, monotonically increasing function between 0 and 1 such that

numerical optimization algorithms can be applied for training. A typical choice of such

28

function is the sigmoid function

`(d) =
1

1 + e−ζd
, (1.33)

where ζ is a positive constant. When d is very small (negative value), `(d) is close to 0,

meaning that the utterance is correctly classified; on the other hand, when d is large, `(d)

is close to 1, meaning the utterance is seriously misclassified. The value of ζ determines

the steepness of the sigmoid function. A large value of ζ results in a steep transition close

to the sign function in Equation (1.32). Because the absolute value of the likelihood gap

− log(pλ(Xn,Yn))+maxS6=Yn log(pλ(Xn,S)) in Equation (1.32) is generally larger in longer

utterances, some MCE training frameworks in the literature normalize the log likelihood gap

with respect to the length of the utterance [25] in order to confine the dynamic range of the

log-likelihood gap.

The max function in Equation (1.32) can also be relaxed such that more than one com-

peting hypotheses can be considered. One way of such relaxation is to average the scaled

log-likelihood of the top C hypotheses:

log(

[
1

C

C∑

S6=Yn

exp(ν log(pλ(Xn,S)))

] 1
ν

), (1.34)

where ν is a positive scaling constant. In the limiting case, when ν approaches infinity, the

expression in Equation (1.32) becomes the same as maxS 6=Yn log(pλ(Xn,S)). As a result, the

relaxed MCE objective function can be expressed by

FMCE(λ) =
N∑

n=1

`


 1

ιn
(− log(pλ(Xn,Yn)) + log(

[
1

C

C∑

S6=Yn

exp(ν log(pλ(Xn,S)))

] 1
ν

))


 ,

(1.35)

where `(d) = 1
1+exp(−ζd)

is the sigmoid function, and ιn equals to the number of frames in

the string if the normalized version is used (ι = 1 if no normalization). The values of ζ and

ν, in general, have to be set heuristically, and several tips for choosing these values can be

found in [25].

29

Parameter Update

Although similar EBW procedures can be applied for parameter update of MCE training

[23], most MCE related work presented in the literature applies gradient-based methods

for MCE training. The following paragraphs illustrate how to compute the gradient of

the MCE objective function for gradient-based optimization methods. By investigating the

computation for the gradient of MCE objective function, several intrinsic properties of MCE

training can also be illustrated.

Let dMCE
n (λ) = − log(pλ(Xn,Yn))+log(

[
1
C

∑C
S6=Yn

exp(ν log(pλ(Xn,S))
] 1

ν
), and the gra-

dient of the MCE objective function FMCE(λ) can be computed by

∂

∂λ
FMCE(λ) =

N∑
n=1

1

ιn

∂`(d)

∂d
|d=dMCE

n (λ)

∂dMCE
n (λ)

∂λ
. (1.36)

Note that term ∂`(d)
∂d

= ζ`(d)[1−`(d)] in Equation (1.36) has maximum of 0.25ζ at d = 0 and

that the ratio ζ`(d)[1−`(d)]
0.25ζ

decreases as ζ increases. As a result, MCE training gives more weight

to training utterances close to the classification boundary; as the value of ζ increases, MCE

training becomes more focusing on utterances near classification boundaries. Experiments

in [24] show that choosing an appropriate large value of ζ for training results in better model

performance than choosing a small value of ζ, where each training utterance is of similar

weight.

For the gradient of dMCE
n (λ) with respect to λ, the gradient can be decomposed into the

following terms:

∂dMCE
n (λ)

∂λ
= − ∂

∂λ
log(pλ(Xn,Yn))

+
∑C

S6=Yn

exp(ν log(pλ(Xn,S)))∑C
S 6=Yn

exp(ν log(pλ(Xn,S)))

∂
∂λ

log(pλ(Xn,S)).
(1.37)

Note that if the parameters in λ are moved along the direction of the gradient of log(pλ(Xn,Yn))

with respect to λ, the value of log(pλ(Xn,Yn)) increases after the update. Because the goal

of MCE training is to minimize the objective function, gradient-based optimization meth-

ods move the parameters in λ in the reverse direction of the gradient ∂
∂λ

FMCE(λ). As a

30

consequence, the intuition of the gradient in Equation (1.37) can be interpreted as follows.

For each training utterance, MCE training seeks to increase the likelihood of the correct

transcription being generated and to decrease the likelihood of competing hypotheses. Since

there are many potential competing paths, MCE training uses the scaled posterior proba-

bility, exp(ν log(pλ(Xn,S)))∑C
S6=Yn

exp(ν log(pλ(Xn,S)))
, as a weight to penalize competing hypotheses; the higher the

log-likelihood of the hypothesis is, the more penalty is imposed on the hypothesis.

As in other acoustic training framework, the gradient ∂
∂λ

FMCE(λ) can be decomposed

into a concatenation of partial derivatives with respect to GMM parameters and state transi-

tion weights. After all partial derivatives have been computed, the model can be updated by

applying gradient-based optimization methods. Several kinds of optimization methods for

MCE training have been compared in [25]. Based on the results reported in [25], the Quick-

prop algorithm resulted in the best MCE trained models. More details about the Quickprop

algorithm can be seen in Appendix B.

1.2.4 Comparisons of Discriminative Training Methods

In previous sections, discriminative training methods including MMI, MPE, and MCE train-

ing have been reviewed. This section first briefly compares how the discriminative training

methods select training examples for GMMs in the parameter set and how the methods

determine the weight of each training utterance. Optimization methods used for the dis-

criminative training methods are also compared.

Selecting Training Examples for GMMs

Discriminative training for GMMs, in some sense, can be viewed as a process of using ob-

jective function to guide the selection of training examples (observation vectors) for GMM

parameters. For each GMM, its training examples can be divided into two types: positive

training examples whose likelihood of being generated by the GMM should be increased; and

negative training examples whose likelihood should be decreased. In contrast to ML train-

ing where only positive training examples are considered, discriminative training considers

31

both positive and negative training examples and seeks to increase the likelihood difference

between the two types of examples. Depending on the type of objective function, different

signs and weights can be assigned to observation vectors in the training data.

MMI and MCE training both utilize the forced-alignment of reference transcriptions to

allocate positive training examples for the GMMs. For selecting negative training examples,

MMI training treats the observation vectors corresponding to phone arcs in recognition-

lattices as negative training examples for GMMs related to those phone arcs. MCE training

collects negative training examples from recognition outputs (N-best list or lattices, depend-

ing on the implementation) in a similar manner as MMI but does not consider the portions

contributed by correct hypotheses in the recognition outputs. The weight of each training

example in these two training methods is determined according to the posterior probability

of occupation of the example.

On the other hand, MPE training uses the average phone accuracy cn
avg of each training

utterance as a threshold to decide whether the observation vectors within a phone arc are

positive training examples for the GMMs related to the arc. If c(q), the average phone

accuracy of hypotheses passing through phone arc q, is higher than cn
avg, the observation

vectors within arc q are considered as a positive training examples for the GMMs related to

q; otherwise, the vectors are considered as negative training examples. Further, instead of

using posterior probabilities of occupation as weights for training examples, MPE scales the

posterior probability of each arc q by a factor of |c(q)−cn
avg|, and uses the scaled probabilities

as weights for training.

By scaling the posterior probability with |c(q) − cn
avg|, MPE tends to focus on differen-

tiating hypotheses with high accuracy from those with low accuracy, and may potentially

enhance the reduction of confusion. However, because an incorrect phone can be considered

as a positive example if the hypotheses passing through it have high average accuracy, the

positive training examples selected by MPE training can potentially be noisier than those se-

lected by MMI or MCE training. This fact may explain why I-smoothing is more important

to MPE training than to MMI training. The ML statistics added in the I-smoothing can

32

provide additional positive training examples for MPE and thus enhance the performance of

MPE.

Weight of Trainning Utterance

Because of the sigmoid function in its objective function, MCE training gives more weight to

utterance that is near the classification boundary. Although this weighting helps to reduce

confusions by focusing on errors that are easier to correct, it also has a potential side-effect of

penalizing longer utterances. This is because longer utterances tend to have larger dynamic

range of likelihood gap between the reference and competing hypotheses. Larger dynamic

range of likelihood gap tends to make the sigmoid function assign smaller weights to the

utterances. Although normalizing the likelihood gap with respect to the length of utterance

helps to confine the dynamic range, the normalization also introduces a scaling inversely

proportional to the length of the utterance to the gradient of the utterance. Whether the

normalization is performed or not, longer utterances are penalized in some sense. As a result,

appropriate chopping of the training data may be necessary for MCE training to avoid the

penalizing effects on longer utterance.

On the other hand, MMI and MPE training do not use other function to adjust the weight

of each utterance. However, because longer utterances can generally provide more training

examples, longer utterances tend to contribute more effects to the training than shorter

utterances. In MPE training, the effects of longer utterances can potentially be enhanced

further. This is because the dynamic range of c(q) − cn
avg in longer utterances tends to be

larger, and potentially can give more weights to the arcs in longer utterances.

Comparisons of Optimization Methods

EBW algorithm and gradient-based methods are major techniques used for the parameter

optimization of discriminative training methods. EBW algorithm optimizes the objective

function by re-estimating the parameters such that an auxiliary function related to the

objective function can be maximized. Gradient-based methods, on the other hand, use

33

the gradient as a reference to compute the update-step of the parameters. The following

paragraphs discuss practical issues of applying the two types of optimization methods to

discriminative training.

To use EBW algorithm for discriminative training, the first thing to do is to construct an

appropriate auxiliary function. Generally, a tractable strong-sense auxiliary function which

can guarantee to increase the objective function after each update is desired. However,

because such kind of strong-sense auxiliary functions are not known to exist for the objec-

tive functions of discriminative training methods, weak-sense auxiliary functions which only

guarantee to have the same partial derivatives as the objective functions are used instead.

To make a weak-sense auxiliary function vary more consistently with the objective function,

smoothing terms are added to the auxiliary function. The smoothing terms can make the

maximum of the auxiliary function closer to the initial point of the parameter set, and can

make better guarantee to increase the objective function. However, how to set the smoothing

terms is critical. If the smoothing terms are too small, the training can become unstable; if

they are too large, the training can be slowed down and are more easily to get trapped at

a bad local extrema. Having appropriate smoothing for the auxiliary function is the key to

successfully apply EBW algorithm for discriminative training methods.

For the gradient-based methods, the key issue is to select an appropriate learning rate

of updating the parameters. If the learning rate is too large, the optimization may become

unstable; if it is too small, the optimization may easily fall to a poor local extrema. Although

several gradient-based methods [1, 21] have more sophisticated ways of choosing proper scal-

ing of the update step, a task-dependent initial learning rate generally has to be heuristically

specified as well as other learning parameters. Generally, applying gradient-based methods

has fewer parameter tuning compared with applying EBW algorithm, but the number of

iterations required before the training converge can be larger.

34

1.3 Multi-level classification

This section introduces multi-level classification proposed in [13] and [14]. Two types of

multi-level classifiers are discussed. The hierarchical classifiers divide the classification prob-

lem into a set of sub-problems, while the committee-based classifiers combine the outputs of

different classifiers to make a joint decision. Both types of the classifiers have been shown

to have potential to improve the acoustic model performance. Details of the classifiers are

illustrated in the following subsections.

1.3.1 Hierarchical classifiers

The basic idea of hierarchical classifiers is to use a hierarchical structure to divide and conquer

the whole classification problem. Figure 1-1 is an example of a two-level hierarchical classifier.

The structure of the hierarchy can be constructed either by automatic clustering algorithms

or by acoustic-phonetic knowledge. For a hierarchical GMM classifier, each non-root node

in the hierarchical tree has its own set of GMM parameters. Given a feature vector x, the

node c can return a distance metric d(x, c) which is the negative log-likelihood of x being

generated by the GMM parameter of c with a constant shift. Because the parent node in

the hierarchy has the training examples of all its children nodes, the parameter estimation

for the parent node is generally more robust.

{All Phones}

P0={nasals} P1={stops}

……

PM={…}

…

m n …

…

p t … … … …

…

{All Phones} Level (0)

Level (1)

Level (2)

Figure 1-1: Hierarchical classifier. The leaf nodes are the possible output labels of the
classifier.

Given a feature vector x, the hierarchical GMM classifier can choose the output label

35

by comparing the weighted sum of the distance metrics from the root to the leaves. For

example, given a two-level hierarchical GMM classifier, the output label ŷ can be predicted

by

ŷ = arg min
c

wCd(x, c) + wP d(x,P(c)), (1.38)

where P(c) is the index of the parent node of class c, wC and wP are relative weights that

reflect the importance of the two levels in the hierarchy. The values of wC and wP can be

specified by cross-validation.

1.3.2 Committee-based classifiers

Committee-based classifiers are classifiers that can combine the classification results from

models trained by different types of features. Several decision making criteria of committee-

based classifiers have been studied in [14], including decisions based on voting, decisions based

on linear combination of log-likelihood ratio (LCLR), and decisions based on an independence

assumption.

The voting criterion works by simply counting the classification result from each com-

mittee member, and choosing the output that gets the highest number of votes. Ties are

solved by assigning priorities to the committee members. The LCLR criterion first sums up

the log-likelihood ratio (posterior probability) of each output class across all the committee

members and picks the output class with highest total log-likelihood ratio. The indepen-

dence assumption criterion assumes that the features used by the committee members are

statistically independent, and a decision is made by comparing the summed log-likelihood

across the committee members. Experiments in [14] showed that the LCLR criterion and

the independence assumption criterion have similar performance.

1.4 Organization of the Thesis

In this thesis, a recently proposed large-margin discriminative training framework for Gaus-

sian mixture models is investigated. In chapter 2, the large-margin training framework is

36

integrated with multi-level classifiers to target a benchmark problem of TIMIT phonetic

classification [20]. In chapter 3, the effort of expanding the large-margin training framework

to a large vocabulary speech recognition task is presented, and the large-margin models are

compared with MCE trained models on the MIT lecture corpus [8]. Chapter 4 concludes the

thesis and proposes several possible future research directions.

37

38

Chapter 2

Large-Margin GMMs for Phonetic

Classification

This chapter introduces how to integrate the large-margin discriminative training framework

with multi-level classifiers to tackle the problem of phonetic classification. The large-margin

training framework in [33] is first reviewed, and then a training approach that combines the

large-margin training criterion with hierarchical GMM classifiers is proposed. The set up of

TIMIT corpus is illustrated, and experimental results of the proposed modeling scheme on

the benchmark task of TIMIT phonetic classification are reported. Several issues about the

large-margin training on phonetic classification are also discussed at the end of the chapter.

2.1 Large-Margin GMMs

While several variants of large-margin GMM training have been proposed in the literature

[33, 34, 22, 39], this section focus on the framework proposed by Sha and Saul [33] in that

their framework provides a more direct perspective of how the large-margin constraints can

be incorporated in discriminative training. In the following subsections, the loss function

of large-margin training is first illustrated, and then some practical issues about the large-

margin training are discussed.

39

Loss function

The basic principle of large-margin training is to make the distance metric of the correct

class be smaller than that of the competing class by at least some margin ξ ≥ 0 if possible.

To be more specific, consider the multi-way classification problem with features {xn}N
n=1 and

corresponding labels {yn}N
n=1, where yn ∈ {1, 2, . . . , C}.

For each token in the training data, the large-margin criterion requires that

∀c 6= yn, d(xn, c) ≥ ξ + d(xn, yn), (2.1)

where d(xn, c) denotes the distance metric of feature vector xn with respect to class c com-

puted by the model. Typically, in the GMM framework, the distance metric d(xn, c) can be

expressed by

d(xn, c) = − log(p(xn, c)) + θ, (2.2)

where p(xn, c) is the GMM probability and θ is a constant that is common for all the classes.

A sufficiently large value of θ is typically selected such that all the distances metrics will

be greater than or equal to 0. For each violation of the constraint in (2.1), the training

criterion will add the difference to the training objective function, resulting in a token-level

loss function

ln =
∑

c 6=yn

[ξ + d(xn, yn)− d(xn, c)]+, (2.3)

where [f]+ = max(0, f). The overall training loss of the data is derived by summing up the

token-level losses

L =
N∑

n=1

ln, (2.4)

and the model parameters can be derived by minimizing the loss in (2.4).

Outlier handling

One practical issue of large-margin training is to handle the problem of outliers. Outliers

are training examples that lie at the opposite side of the decision boundary and are far away

40

from the boundary. Examples of outliers are shown in Figure 2-1.

Figure 2-1: The circled data-points are examples of outliers. The red solid line is the decision
boundary, and the region within the two red dash lines is the space with margin less than
0.25.

As shown in Figure 2-1, outliers can contribute a large amount of margin violation, and

thus can dominate and potentially mislead the training. To reduce the effect of outliers,

several heuristic approaches have been proposed.

In [33], a token-wise re-weighting method was proposed to handle the outlier problem.

The basic idea of re-weighting is to multiply each training token with a weight that is

inversely proportional to its initial loss. More specifically, let lML
n be the loss of the nth

training token computed by the initial maximum-likelihood model, a weight wn can be

chosen by wn = min(1
ξ
, 1

lML
n

), and results in a weighted loss function

L =
N∑

n=1

wnln. (2.5)

By doing such re-weighting, outliers contribute an equal amount of loss as all other examples,

and thus avoid impacting training. Another approach proposed in [39] suggested that picking

a smaller margin value at the beginning of the training and gradually increasing the margin.

Although these methods are shown to be effective, better algorithms to handle the outlier

41

are still desired for large-margin training.

Parameter optimization

While GMM parameters can be determined by directly applying conventional gradient-based

numerical optimization with respect to the large-margin loss function, better convex opti-

mization algorithms can be applied by doing the following modifications as described in

[33].

1. Transform the GMM parameters into positive semi-definitive matrices.

2. Modify the d(xn, yn) term in (2.1) such that the distance metric is computed by a

single, pre-specified, mixture at each token.

To transform the GMM parameters into positive semi-definitive matrices, consider the

mth mixture component of class c with mean µcm, inverse covariance matrix Σ−1
cm, and

mixture weight wcm. Given the feature vector x, the log-likelihood contributed by this

component can be computed by

ρ(x, c, m) = −1

2
((x− µcm)TΣ−1

cm(x− µcm) + θcm), (2.6)

where θcm = log(det(Σ))− 2 log(wcm). By setting the matrix

Φcm =


 Σcm −Σcmµcm

−µTcmΣcm µTcmΣcmµcm + θcm


 , (2.7)

and letting z = [xT 1]T, the mixture log-likelihood can be expressed by

ρ(x, c,m) = −1

2
zTΦcmz, (2.8)

and the log-likelihood of the mixture model can be computed by

log(p(x, c)) = log(
∑
m

exp(ρ(x, c, m))). (2.9)

42

If a sufficiently large constant is added to the last element of Φcm, the matrix Φcm can

become positive semi-definite. If the proper value is selected such that {Φcm} is positive

semi-definite for all c and m, the distance metric d(x, c) will be of the form as in (2.2).

Since the function − log(
∑

m exp(−dm)) is a concave function with respect to each dm,

the distance metric d(x, c) will be a concave function of the matrices {Φcm}. As a result,

the −d(x, c) term is a convex to the matrices {Φcm}. Furthermore, since ρ(x, yn,m) is a

linear function with respect to Φynm, it is also a convex function to Φcm. Therefore, given a

pre-specified mixture index mn, the token-level loss ln can be modified by

ln =
∑

c6=yn

[ξ − ρ(x, yn,mn)− d(x, c)]+, (2.10)

such that ln is convex function with respect to {Φcm}. Note that the index mn can be

specified by picking the mixture component with the largest log-likelihood in the initial

model. In this way, since the overall loss is convex with respect to the Φ matrices, the

problem of spurious local minimum is avoided, and efficient convex optimization algorithms

such as convex conjugate (CG) algorithm [31] can be applied.

2.2 Hierarchical Large-Margin GMM Training

This section illustrates how to combine hierarchical GMM classifiers with large-margin train-

ing. Although the proposed training framework focuses on the training of 2-level hierarchical

classifier as shown in Figure 1-1, it is generalizable to classifiers with higher level hierarchies.

In the following, the joint margin criterion of the training is first introduced, and the training

procedures are presented.

2.2.1 Joint Margin Criterion

Given a 2-level hierarchical GMM classifier as in Figure 1-1, all its GMM parameters can be

transformed into positive semi-definite matrices by applying the transform in Equation 2.7

43

and adding an appropriate shift. For convenience, let us call the leaf nodes in the 2-level

hierarchy by class-level nodes, and call the non-leaf nodes (except the root) by cluster-level

nodes. For each class-level node c, its GMM parameters can be represented by a set of

matrices Φc = {Φcm}Mc
m=1, where Mc is the number of mixture components in c; for each

cluster-level node p, the parameters can be represented by Θp = {Θpk}Kp

k=1, where Θpk is the

parameter matrix for the kth mixture component of p and Kp is the total number of mixture

components of p. For each class-level node c, its corresponding cluster-level node can be

tracked by the parent pointer P(c).

Given the feature vector xn, the distance metric of the hierarchical classifier for the

competing class c can be thus computed by

wCd(xn,Φc) + wP d(xn,ΘP(c)). (2.11)

The joint margin constraint can be constructed by requiring that for each competing class c

the weighted margin computed by the class-level classifier and the cluster-level classifier be

greater than a positive value:

∀c 6= yn, wC(d(xn,Φc)− d(xn,Φyn)) + wP (d(xn,ΘP(c))− d(xn,ΘP(yn))) ≥ ξ, (2.12)

where d(xn,Φc)−d(xn,Φyn) is the margin of class-level classifier and d(xn,ΘP(c))−d(xn,ΘP(yn))

is the margin of cluster-level. Similar to the original large-margin training, every violation

of the constraint in (2.12) contributes to the token-level loss lhn; furthermore, the distance

metrics related to the correct class yn can be relaxed such that lhn is a convex function with

respect to the parameter matrices. As a result, the token-level loss of each training token

can be expressed by

lhn =
∑

c 6=yn

[ξ+wC(−ρ(xn,Φynmn)−d(xn,Φc))+wP (−ρ(xn,ΘP(yn)kn)−d(xn,ΘP(c)))]+, (2.13)

where mn and kn are pre-specified mixture component for node yn and P(yn) respectively,

44

and the values ρ(xn,Φynmn) and ρ(xn,ΘP(yn)kn) can be computed by a formula similar to

Equation (2.8). After the token-level loss has been computed for each training token, the

GMM parameters can be optimized by minimizing the weighted sum

L =
N∑

n=1

wnlhn, (2.14)

where wn is the weight to handle the issue of outliers as mentioned in the previous section.

2.2.2 Parameter Optimization

Margin Scaling Factor

Different setting of the margin ξ affect the decision boundary of the models and therefore can

potentially affect the performance of a large-margin trained model. As a result, choosing an

appropriate margin value is important for large-margin training. Since the possible dynamic

range of ξ can be large, instead of searching for the margin value ξ directly, it is more

convenient to search for its reciprocal α = 1
ξ
. This can be achieved by scaling the loss

function in Equation (2.14) with α. The scaled token-level loss lhn
′
becomes of the following

form:

lhn
′
=

∑

c 6=yn

[1 + α∆cyn]+, (2.15)

where ∆cyn contains all the remaining terms in Equation (2.13) except ξ.

Note that by the above scaling, the loss function is transformed into a function of the

margin scaling factor α. In this way, the problem of searching the margin value ξ is reduced

to the problem of searching the margin scaling factor α for the training. The value of α

has a two-sided effect on the large-margin model. Effectively, a smaller α results in a larger

margin, and will potentially make more training samples have a positive loss and thus make

more training examples be considered during the training. In general, more samples being

considered in the optimization can result in a more robust decision boundary so that the

resulting model can be more generalizable to unseen data. However, if α is set too small,

45

many examples that are included by large-margin training may not be very informative for

selecting a good decision boundary and will therefore limit the gain of the large-margin

training. In the phonetic classification experiments presented in this chapter, several values

of α were used for training to evaluate its effect on model performance. A heuristic algorithm

of selecting α was also develop to see whether effect value of α can be selected efficiently.

Turbo Training

The optimization of L in Equation (2.14) can be achieved by alternatively updating the two

levels of classifiers in the hierarchy using convex optimization algorithm such as conjugate

gradient (CG) algorithm. More specifically, the optimization procedure first fixes one set of

the matrices and optimize the matrices in the other set; after several iteration, the roles of

the two sets are changed and the alternative procedure is used until both of the two sets

of models converge. In this way, the information learned from one set of classifiers can be

used in the training for the other set. This procedure is similar to the turbo decoding used

in the communication society [2]. The pseudo code of the training procedure is shown in

Algorithm 1. In the TIMIT phonetic classification experiments, the value t1 and t2 are set

to 50 and 60 respectively, and the maximum number of rounds, r, is set to 3. Because the

CG algorithm determines the update step size at each iteration according to the length of

gradient, separating the optimizations for Φ and Θ can prevent their update step size being

affected by one another and may improve the efficiency of the update.

Algorithm 1 Turbo Training

1: Fix all cluster-level matrices Θ, run CG on class-level matrices Φ for t1 iterations to
minimize L.

2: Fix all class-level matrices Φ, run CG on cluster-level matrices Θ for t2 iterations to
minimize L.

3: Repeat 1 and 2 until CG stops or r rounds have reached.
4: Use held-out training data to choose the final models.

46

2.3 TIMIT Corpus

TIMIT [19] is an acoustic-phonetic continuous speech corpus that was recorded in Texas

Instrument (TI), transcribed at the Massachusetts Institute of Technology (MIT), and ver-

ified and prepared for CD-ROM production by National Institute of Standard Technology

(NIST). The corpus contains 6,300 phonetically-rich utterances spoken by 630 speakers, 438

males and 192 females, from 8 major dialect regions of American English. For each utter-

ance, the corpus includes waveform files with corresponding time-aligned orthographic and

phonetic transcriptions [12]. There are 61 ARPAbet symbols used for transcription and their

example occurrences are listed in Table 2.1.

2.3.1 TIMIT Data Sets

There are three types of sentences in the TIMIT corpus: dialect (SA), phonetically-compact

(SX), and phonetically-diverse (SI). The dialect sentences were designed to reveal the dialecti-

cal variation of the speakers, and were spoken by all 630 speakers. The phonetically-compact

sentences were designed such that the sentences are both phonetically-comprehensive and

compact. The phonetically-diverse sentences were drawn from existing text sources to reveal

contextual variance. The sentences were organized such that each speaker spoke exactly 2 SA

sentences, 5 SX sentences, and 3 SI sentences. The sentence type information is summarized

in Table 2.2.

Because the SA sentences were spoken by all the speakers, they were excluded from the

training and evaluation of acoustic models. The standard training set selected by NIST

consists of 462 speakers and 3,696 utterances. The utterances of the other 168 speakers form

a “complete” test set. Note that there is no overlap between the texts read by the speakers

in the training and “complete” test set. 400 utterances of 50 speakers in the “complete”

test set are extracted to form a development set for model development. Utterances of the

remaining 118 speakers are called the “full” test set. Among the utterances of the “full” test

set, 192 utterances by 24 speakers, 2 males and 1 females from each of 8 dialect regions, are

selected as a “core” test set. Typically, acoustic model performance reported in the literature

47

ARPAbet Example ARPAbet Example
aa bob ix debit
ae bat iy beet
ah but jh joke
ao bought k key
aw bout kcl k closure
ax about l lay

ax-h potato m mom
axr butter n noon
ay bite ng sing
b bee nx winner

bcl b closure ow boat
ch choke oy boy
d day p pea

dcl d closure pau pause
dh then pcl p closure
dx muddy q glottal stop
eh bet r ray
el bottle s sea
em bottom sh she
en button t tea
eng Washington tcl t closure
epi epenthetic silence th thin
er bird uh book
ey bait uw boot
f f in ux toot
g gay v van

gcl g closure w way
hh hay y yacht
hv ahead z zone
ih bit zh azure
h# utterance initial and final silence

Table 2.1: ARPAbet symbols for phones in TIMIT with examples. Letters in the examples
corresponding to the phones are put in italic.

48

Sentence #Speakers/ #Sentences/
Type #Sentences Sentence Total Speaker

Dialect (SA) 2 630 1260 2
Compact (SX) 450 7 3150 5
Diverse (SI) 1890 1 1890 3

Total 2342 - 6300 10

Table 2.2: Sentence type information of TIMIT [12].

Set #Speakers #Utterances #Hours #Tokens #Tokens w/o q
Train 462 3696 3.14 142,910 140,225
Development 50 400 0.34 15,334 15,056
Core Test 24 192 0.16 7,333 7,215
“Full” Test 118 944 0.81 36,347 35,697

Table 2.3: Data set information of TIMIT.

was evaluated on the “core” test set.

Data set information that includes number of speakers, utterances, hours, and phonetic

tokens is summarized in Table 2.3. Because the glottal stop q is generally not considered in

phonetic-classification experiment, the number of tokens after the removal of q for each set

is also listed in the table.

2.3.2 TIMIT Phonetic-Classification

TIMIT [19] phonetic-classification is a benchmark task used to evaluate the performance of

acoustic phonetic models. The basic content of the phonetic-classification task is that, given

the locations and boundaries of the phones in the utterances, try to predict the unknown

phone labels. In this sense, phonetic-classification is a task that evaluates the ability of the

acoustic models to distinguish different acoustic-phonetic units.

Generaly, the NIST training set is used for acoustic model training, and the core test

set is used for model evaluation. The development set is used to help model development.

Although the TIMIT corpus has 61 phonetic labels, a collapsed set of 39 labels is used for

evaluation [20]. The mapping from 61 classes to 39 classes is listed in Table 2.4. Also, as the

49

1 iy 20 n en nx
2 ih ix 21 ng eng
3 eh 22 v
4 ae 23 f
5 ax ah ax-h 24 dh
6 uw ux 25 th
7 uh 26 z
8 ao aa 27 s
9 ey 28 zh sh
10 ay 29 jh
11 oy 30 ch
12 aw 31 b
13 ow 32 p
14 er axr 33 d
15 l el 34 dx
16 r 35 t
17 w 36 g
18 y 37 k
19 m em 38 hh hv

39 bcl pcl dcl tcl gcl kcl q epi pau h#

Table 2.4: Mapping from 61 classes to 39 classes used for scoring, from [12].

common practice of phonetic classification, the glottal stops q are ignored for both training

and testing.

Table 2.5 lists some recent results reported on the TIMIT phonetic-classification task.

All the methods listed in the table used the NIST training set and the core test set. While

the hidden conditional random fields (CRF) method [11], the large-margin GMM method

[33], and the regularized least squares with second-order features (RLS2) method [30] use a

single set of acoustic features, the Hierarchical GMM [13] and the committee [14] methods

utilize the multi-level classification techniques to combine the classification information from

multiple types of acoustic measurements. Note that for the models using single sets of

features the recently reported error rate improvement is much less than 1%, showing the

difficulty of this task.

50

Method Feature Error Rate
Hierarchical GMM[13] Seg 21.0%

Hidden CRF[11] Frame 21.7%
Large Margin GMM[33] Frame 21.1%

RLS2[30] Seg 20.9%

Committee[14] Seg 18.3%

Table 2.5: Recent reported classification results on TIMIT core test set. Feature type refers
to segmental (1 vector/phone) or frame-based.

2.4 Experiments

This section reports the experimental results of hierarchical and committee-based large-

margin GMM on TIMIT phonetic classification. The classification results of models trained

based on different types of features and margin specifications are presented. The way of

heuristically choosing an appropriate margin scaling is also discussed.

2.4.1 Features

In the experiments, eight different segmental feature measurements proposed in [14] were

used to train GMMs. The feature measurements are computed by the following. For each

phone segment, the time region occupied by the phone segment plus the 30ms regions beyond

the start and end time of the segment are used to extract spectral representations such as Mel-

frequency Cepstral Cepstral Coefficients (MFCCs) and perceptual linear prediction (PLP)

coefficients. The entire time region for feature extraction is then divided into several sub-

regions to capture temporal information. For each sub-region, the spectral representations

computed in the sub-region are consolidated into a fixed-dimensional vector using a temporal

function which can either be an average or cosine transform. The vectors computed from all

sub-regions and the log-duration of the phone are concatenated into a single vector, resulting

in a fixed-dimensional feature for each phone segment.

The eight different features, S1-S8 are summarized in Table 2.6. The primarily differences

between the feature measurements are as follows:

51

Window Spectral Temporal
Dims [ms] Representation Basis

S1 61 10 12MFCC 5 avg
S2 61 30 12MFCC 5 avg
S3 61 10 12MFCC 5 cos
S4 61 30 12MFCC 5 cos
S5 64 10 9MFCC 7 cos
S6 61 30 15MFCC 4 cos
S7 61 20 12PLPCC 5 avg
S8 61 20 12PLPCC 5 cos

Table 2.6: Summary of features used for experiments.

1. The duration of Hamming window used to compute the short-time Fourier transform.

2. The number of MFCCs or PLP coefficients used.

3. The temporal basis function used to consolidate feature coefficients.

The number of dimensions of each type of feature is determined by the number of spectral

coefficients and the number of temporal basis regions; for example, S1 has 5 ∗ 12 + 1 = 61

dimensions.

2.4.2 Baselines

For the classification experiments, the 61 TIMIT phone labels were reduced to 48 classes to

train the acoustic models as in [20, 33]. The mapping from 61 classes to 48 classes is listed

in Table 2.7. When doing an evaluation, the 48 classes are mapped down to the 39 classes

to calculate the classification error rate as in other works in the literature.

To enable hierarchical classification, a 2-level hierarchy is built by clustering the phone

classes into nine clusters according to their broad manner of articulation. The nine clusters

are stops, nasals/flaps, strong fricatives, weak fricatives, high vowels, low vowels, short

vowels, semi-vowels and closures (including silences). Table 2.8 lists the phone labels in each

manner clusters.

52

1 iy 17 l 33 g
2 ih 18 el 34 p
3 eh 19 r 35 t
4 ae 20 y 36 k
5 ix 21 w 37 z
6 ax ax-h 22 er axr 38 zh
7 ah 23 m em 39 v
8 uw ux 24 n nx 40 f
9 uh 25 en 41 th
10 ao 26 ng eng 42 s
11 aa 27 ch 43 sh
12 ey 28 jh 44 hh hw
13 ay 29 dh 45 pcl tcl kcl q
14 oy 30 b 46 bcl dcl gcl
15 aw 31 d 47 epi
16 ow 32 dx 48 h# pau

Table 2.7: Mapping from 61 classes to 48 classes in [33].

For each of the eight types of features, 5 kinds of ML baseline models are trained:

“Gauss”, “2-mix”, “4-mix”, “H(1,2)”, and “H(2,4)”. “Gauss” refers to a single full co-

variance Gaussian model, while “2-mix” and “4-mix” represent GMMs with at most two

and four Gaussian components per classes respectively. “H(1,2)” is a hierarchical model us-

ing “Gauss” for leaf-nodes and “2-mix” for cluster-level nodes. “H(2,4)” is defined similarly.

Each type of GMM was trained by Cross-Validation EM (CV-EM) algorithm [35] which has

better prevention to overtraining than traditional EM, and the one with lower error rate on

the development set among two independent trails was selected. For “H(1,2)” and “H(2,4)”,

the development set was also used to find a proper set of relative weights wC and wP between

the two levels of the hierarchy.

Figure 2-2 shows the error rates of models trained from different feature sets, S1-S8,

on the development, and Figure 2-3 shows the error rates on the core test set. Table 2.9

summarizes Figures 2-2 and 2-3 by averaging the error rates of the models trained from the

eight feature sets. From Table 2.9, we can see that, on average, the performance of “H(1,2)”

is close to “Gauss” and “H(2,4)” is close to “2-mix” showing that ML training does not

53

Cluster Type Phone Labels

Stops b d g p t k
Nasals/Flaps m em n en nx ng eng dx
Strong Fricatives s sh z zh ch jh
Weak Fricatives v f dh th hh hv
High Vowels ae ay eh ey ih iy oy
Low Vowels aa au aw ow uh uw ux
Short Vowels ah ax ax-h axr er ix
SemiVowels el l w y r
Closures bcl dcl gcl pcl tcl kcl epi q pau h#

Table 2.8: Phone labels in manner clusters.

22.0%

22.5%

23.0%

23.5%

24.0%

24.5%

25.0%

25.5%

26.0%

S1 S2 S3 S4 S5 S6 S7 S8

Feature Type

E
rr

o
r

ra
te

Gauss
2-mix
4-mix
H(1,2)
H(2,4)

Figure 2-2: Error rates of ML GMM classifiers on Dev set.

derive much benefit from the hierarchical framework. Also, some “4-mix” models performed

worse than corresponding “2-mix” models, showing that the models may start over-fitting

the training data.

2.4.3 Large-Margin Classifiers

In this section the classification results of the models for each type of feature after large-

margin training are presented. The large-margin models “LM Gauss”, “LM 2-mix”, “LM

4-mix” are trained as in [33], while “LM H(1,2)” and “LM H(2,4)” are trained by the scheme

54

22.5%

23.0%

23.5%

24.0%

24.5%

25.0%

25.5%

26.0%

S1 S2 S3 S4 S5 S6 S7 S8

Feature Type

E
rr

o
r

ra
te

Gauss
2-mix
4-mix
H(1,2)
H(2,4)

Figure 2-3: Error rates of ML GMM classifiers on Core Test set.

Set Gauss 2-mix 4-mix H(1,2) H(2,4)
Dev 24.8% 23.8% 23.5% 24.7% 23.8%
Test 25.2% 24.4% 24.1% 25.2% 24.3%

Table 2.9: Average error rates of the ML GMM classifiers.

presented in the previous section.

As mentioned previously, the margin scaling factor α can significantly affect the perfor-

mance of the models. To illustrate how the model performances vary according to α, several

values of α were sampled and the average error rate of the eight features on the development

set were plotted in Figure 2-4. As shown in Figure 2-4, the error rate decreases as α is

reduced from 0.25 to 0.05, and increases as α gets smaller than 0.05. The trend of the curves

is the same as discussed in Section 2.2.2. Another interesting observation is that the more

complex the model is, the greater variation in classification performance; indicating that

finding a good value of α becomes important as the model becomes more complex.

Figure 2-5 shows the error rates of the models for the eight feature sets on the development

set under α = 0.05, and Figure 2-6 shows the corresponding error rates on the core test set.

Table 2.10 summarizes Figures 2-5 and 2-6 by showing the average error rates of the models

trained from the eight features sets. As shown in Table 2.10, although “LM 4-mix” has

55

18.51

18.0

18.5

19.0

19.5

20.0

20.5

21.0

21.5

- 0.05 0.10 0.15 0.20 0.25

E
rr

o
r

R
a
te

 (
%

)

LM Gauss

LM 2-mix

LM 4-mix
LM H(1,2)

LM H(2,4)

Figure 2-4: Average error rate on Dev set under different margin scaling factor. Error bars
show 0.25 standard deviation across feature sets.

Set Gauss 2-mix 4-mix H(1,2) H(2,4)
Dev 19.2% 18.7% 18.8% 18.8% 18.5%
Test 20.6% 20.0% 20.0% 19.9% 19.6%

Table 2.10: Average error rates of the large-margin GMM classifiers.

almost twice the number of parameters as “LM 2-mix”, the performances of the two kinds

of models are quite similar on average. This shows that simply increasing the number of

mixtures may not necessarily improve the overall performance, since the model may over-

fit the training data. On the other hand, “LM H(1,2)” and “LM H(2,4)” achieve better

performance than the other three types of models on average, showing that the hierarchical

models tend to generalize better to unseen data.

To see whether the hierarchical large-margin GMM has significant improvement over the

current state of art, the outputs of “LM H(2,4)” were compared with that of RLS2 model

[30] and a McNemar significance test [6] was conducted. Six out of the eight models were

significantly different at the 0.001 level. This also includes the model trained with feature

set S2, which was also used for the RLS2 experiment.

56

17.5%

18.0%

18.5%

19.0%

19.5%

20.0%

S1 S2 S3 S4 S5 S6 S7 S8

Feature Type

E
rr

o
r

ra
te

LM Gauss
LM 2-mix
LM 4-mix
LM H(1,2)
LM H(2,4)

Figure 2-5: Error rates of large-margin GMM classifiers on Dev set.

Set Gauss 2-mix 4-mix H(1,2) H(2,4)
Dev 17.0% 16.2% 16.1% 16.5% 15.9%
Test 17.8% 17.1% 17.1% 17.2% 16.8%

Table 2.11: Error rates of committee classifiers.

2.4.4 Committee-based Classifiers

This section presents the experimental results of committee-based classifiers. The inde-

pendent assumption in [14] was utilized, and the committee-based classifier combined the

outputs of the individual classifiers trained from S1-S8 by summing their log probabilities.

The performances of the committee-based classifier was also affected by the margin scaling

factor α. Figure 2-7 shows the performances of the committee-based classifiers on the devel-

opment set under different value of α. The detailed performances of the committee-based

classifiers on the development and on the core test set (using α = 0.1) are list in Table 2.11.

As in the earlier large-margin experiments, the “H(2,4)” model yields the best result.

An interesting observation is that for all five types of classifiers, the optimal explored

value of α for an individual classifier did not result in the best committee classifier. As

shown in Figure 2-7 the optimal value of α for the committee-based classifiers tended to be

57

18.5%

19.0%

19.5%

20.0%

20.5%

21.0%

21.5%

S1 S2 S3 S4 S5 S6 S7 S8

Feature Type

E
rr

o
r

ra
te

LM Gauss
LM 2-mix
LM 4-mix
LM H(1,2)
LM H(2,4)

Figure 2-6: Error rates of large-margin GMM classifiers on Core Test set.

consistently slightly larger than that of individual classifiers. One possible explanation for

this observation could be that the diversity of the individual classifiers may tend to decrease

as α becomes smaller. Because a small α results in stricter margin constraints, the number

of margin violations tends to increase. The increase of margin violations would increase

the overlap of the training examples used by the large margin training on different types of

features. As a result, although each individual classifier becomes more accurate, they become

less complementary of each other and thus the overall committee was not as effective as the

one with a set of more diverse but reasonably accurate committee members.

2.4.5 Heuristic Selection of Margin Scaling Factor

In the previous experiments, the optimal value of margin scaling factor α was found by using

a brute force search on the development set. Although this way was effective, it was also

time consuming in that the large-margin model has to be trained before it can be evaluated.

It would be much preferable if a suitable scaling factor can be found before training the

model, since the large-margin training takes a considerable amount of time.

One possible heuristic approach to select α was inspired from the observation that, for a

training token with positive loss, the value of the loss has a convex shape variation according

58

15.92
16.02

15.8

16.0

16.2

16.4

16.6

16.8

17.0

17.2

17.4

17.6

17.8

- 0.05 0.10 0.15 0.20 0.25

E
rr

o
r

R
a
te

 (
%

)

LM Gauss
LM 2-mix
LM 4-mix
LM H(1,2)
LM H(2,4)

Figure 2-7: Error rates of committee-based classifier on Dev set under different margin
scaling factor.

to α. To explain this, consider the case where the nth training example has a positive loss.

Such training examples are called “effective” in that only these examples would be considered

in the large-margin training. For convenience, the expression of token loss ln is shortened by

ln =
∑

c 6=yn
[1 + α∆c]+.

A small α can have a two-sided effect on ln. On the one hand, for a strong competing

class c1 with ∆c1 > 0, a small α can make [1+α∆c1]+ small, and in this sense, may decrease

the loss value. On the other hand, a small α may also make a weak competing class c2 with

∆c2 ¿ 0 contribute to the loss by making 1 + α∆c2 > 0, and in this sense, may increase ln.

Because the loss is piece-wise linear to α, there exists an α̂n such that ln can be minimized.

The value α̂n can potentially be a good choice for this training example, because it

balances two effects: trying to increase the margin as much as possible (or, equally, choosing α

as small as possible) while not letting too many weak competing classes disrupt the training.

Following this idea, if a value α̂ is picked such that the average loss of all the “effective”

examples is minimized, the value may also be a suitable choice of α for the whole training

set.

The heuristic approach above was applied to select the α value for “LM H(1,2)” and

“LM H(2,4)”. The performances of the resulting models for all eight feature sets are listed

59

LM H(1,2) LM H(2,4)
dev test α dev test α

S1 18.9% 20.0% 0.070 19.1% 20.4% 0.070
S2 18.9% 19.8% 0.070 18.3% 19.4% 0.072
S3 18.3% 19.6% 0.063 17.9% 19.7% 0.069
S4 18.3% 19.4% 0.067 18.1% 18.7% 0.069
S5 18.7% 19.7% 0.064 18.6% 19.6% 0.062
S6 19.1% 20.2% 0.068 18.7% 20.4% 0.069
S7 19.6% 21.0% 0.076 19.2% 20.6% 0.071
S8 18.7% 19.9% 0.067 18.7% 19.8% 0.071
avg 18.8% 20.0% 18.6% 19.8%
com 16.6% 17.2% 16.0% 16.7%

Table 2.12: Error rates of classifiers with pre-determined α.

in Table 2.12. The “com” in the table refers to committee classifier. Both the two sets of

models have performances close to the models with α = 0.05, demonstrating the effectiveness

of the heuristic method. As shown in the table, the best overall result for a classifier trained

from a single feature set reaches 18.7% error rate, while the best overall committee-based

classifier obtains an error rate of 16.7%.

2.5 Discussion

In this chapter, the large-margin training framework for phonetic classification in [33] was

introduced, and a training approach that combined the large-margin training criterion with

hierarchical GMM classifiers was proposed. The proposed hierarchical large-margin GMM

classifiers were evaluated on the benchmark task of TIMIT phonetic-classification. Based on

the experiment results, several observations are discussed in the following paragraphs.

The first observation is the relation of training errors and the test errors of the large-

margin models. Although not shown explicitly, the training errors of the large-margin models

trained from different feature sets had similar variation patterns with respect to the margin

scaling factor α: the models trained under α = 0.1, 0.15, and 0.25 have low and similar

training error rates; the models trained under α = 0.05 have a little higher training error

60

rates; and the models trained under α = 0.025 have high training error rates. By comparing

the patterns of training errors with that of test errors, several properties of large-margin

training can be revealed:

1. Under similar training error rates, using larger margin (smaller α) for training can help

increase the generalization ability of the trained model.

2. Sacrificing some loss in training errors according to margin constraints may help im-

prove the generalization ability of the model since some types of errors in the training

may not be generalizable to other data sets.

3. If the margin value is set too large, the resulting model will become very poor since

caring too much for the margin may distort the decision boundaries of the model.

These properties also demonstrate the importance of selecting an approptiate margin value

for large-margin training.

The second observation is about the effect of integrating the large-margin training with

hierarchical classifiers. As shown in Figure 2-6, for seven of the eight different feature sets,

the “LM H(2,4)” model has better performance than “LM 4-mix” and uses fewer number of

parameters. This fact reveals an advantage of using a hierarchy. Because the cluster-level

nodes get the training examples of its children nodes, the parameter estimation of cluster-

level nodes can be more robust and more generalizable to unseen data. Such an effect

may become more salient when context-dependent acoustic modeling is applied since some

context-dependency of phones may be very rare and have very limited amount of training

data. Using a hierarchy can cluster the context-dependent labels with less training data

together and provide a more stable parameter estimation.

In sum, the phonetic classification experiments presented in this chapter have shown

that choosing an appropriate margin value is important to large margin training and that

combining multi-level classification with large-margin training has a great potential to im-

prove acoustic model performance. By integrating multi-level classifiers with large margin

61

training, the proposed modeling scheme obtained the best known result on the benchmark

task of TIMIT phonetic classification.

62

Chapter 3

Large-Margin GMMs for LVCSR

This chapter presents the efforts of expanding the large-margin training framework to a large

vocabulary continuous speech recognition (LVCSR) task. Practical issues of expanding large-

margin training are first discussed, and then the environment of the LVCSR experiments is

introduced. Preliminary experimental results of large-margin training on the MIT lecture

corpus [8] are reported, and the model performances are compared with that of the model

trained under MCE criterion. Discussion about the experiment results are presented at the

end of the chapter.

3.1 Issues of Expending to LVCSR

In this section, practical issues of expanding the large-margin training framework to the

task of LVCSR are discussed. The issues include possible modification of the loss function,

diagonalization of GMMs, convexity of the loss function, and parallelization of computation.

Details of each issue is described in the following subsections.

3.1.1 Loss Function

While the token-level loss function used in the previous chapter serves well in the TIMIT

classification task, it may need some modification before being used as a training objective

63

on LVCSR tasks. This is because the token-level loss function has two intrinsic properties:

1. The loss of each token is assumed to be independent.

2. Each class can be a potential competitor against any other label at any given time.

These two properties, however, generally do not hold for most ASR systems designed for

LVCSR tasks. This is because ASR systems for LVCSR tasks, in general, use context-

dependent acoustic models, making errors and possible competitors in nearby time points

dependent. Also, the lexicons and language models used in ASR systems also help to con-

strain the sets of possible confusions that can appear in the search, strengthening the depen-

dencies between nearby confusions. As a result, modification of the loss function is needed

to better fit the nature of ASR systems for LVCRS tasks. There are several possible ways

to modify the loss function, one of which is to expand the token-level loss to string-level as

in [34].

Let Xn be the observation sequence of the nth utterance in the training data, and Yn

be the corresponding label sequence. The distance metric of Xn with respect to Yn can be

computed by summing up the token-level distance metrics in the string as follows:

D(Xn,Yn) =
Tn∑
t=1

d(xnt , ynt), (3.1)

where xnt is the tth observation vector in Xn, ynt is the tth token label in Yn, Tn is the

total number of tokens in the string, and d(xnt , ynt) is the token-level distance metrics as in

Equation (2.2).

The string-level loss of the utterance can then be then expressed by

Ln = [D(Xn,Yn) + log(
∑

S6=Yn, S∈Sn

exp(ξH(Yn,S)−D(Xn,S))]+, (3.2)

where D(Xn,S) is the distance metric of Xn with respect to hypothesis S, H(Yn,S) is

the edit distance between the correct label sequence Yn and hypothesis S, and Sn is the

set of N-best hypothesis generated by ASR systems. In this way, the loss function of the

64

large-margin training can be expressed by

L =
N∑

n=1

wnLn, (3.3)

where wn is the weight to prevent outliers, as mentioned in the previous chapter.

By generalizing the margin constraints to the string-level, the model can jointly update

more parameters, and the optimization procedure can become more flexible. Also, the log-

sum term in Equation (3.2) can help decide the importance of the hypothesis in the N-best

list. When two hypotheses have similar distance metrics, the log-sum term will make the

optimization focus more on the hypothesis with the larger edit distance. Significant error

reduction on TIMIT phonetic-recognition was reported in [34] by switching from the token-

level loss function to the string-level loss function.

3.1.2 Diagonalization of GMMs

In the experiments in [33], [34], and chapter 2, full-covariance GMMs were used. Full-

covariance GMMs, can model the relation between different dimensions of the features, and

in theory can better describe the data than diagonal GMMs. On the other hand, full-

covariance GMMs need more training data than diagonal GMMs to have robust parameter

estimation. In general, full-covariance GMMs can perform very well if the amount of training

data is sufficient and is roughly balanced for each label.

In the case of LVCSR, however, the amounts of training data for each acoustic label are

usually very imbalanced: some labels such as silence may have millions of training examples

while some labels may only have very few (< 50) training examples. In such imbalanced

data scenarios, it is necessary to conduct extra smoothing for the model parameters of the

full-covariance GMMs that have few training examples. To avoid the additional work of

smoothing, most existing ASR systems for LVCSR use diagonal GMMs. As a result, most

existing discriminative training algorithms for LVCSR tasks are implemented on diagonal

GMMs. To make a fair comparison with other existing implementation of discriminative

65

training methods, the large-margin GMMs used in the experiments reported in this chapter

are also diagonal. In this way, the factor of using different types of models is removed, and

the comparison can be more focus on the difference between the training objective functions

of different discriminative training methods.

3.1.3 Convexity of Loss Function

The relaxation of the loss in Equation (2.3) into the form in Equation (2.10) makes the loss

function of large-margin training convex with respect to the parameter matrices in Equation

(2.7). Such relaxation is based on the assumption that the log-likelihood, log(p(xn, yn)), of

the observation vector xn is mainly contributed by the log-likelihood of one single Gaussian

mixture component, ρ(xn, yn,mn). This assumption generally holds if the number of Gaus-

sian mixture components for each label is not too many. However, in the case of LVCSR,

such an assumption may not necessarily hold. This is because the amount of training data

for certain acoustic labels in LVCSR can be large, and to model the variation of such an

amount of training data, a great number of mixture components are needed. Instead of us-

ing the likelihood of a single mixture component to approximate the likelihood of an entire

GMM, another convex approximation may be needed in the case where the model has many

mixture components.

One possible approximation of the log-likelihood is as follows: Let dn(m) be the distance

metric for the mth mixture component of model yn; the distance metric of the model can be

computed by d(xn, yn) = − log
∑

m exp(−dn(m)). Although the distance metric d(xn, yn) is

a concave function for all the dn(m), it can be upper-bounded by a convex function; that is,

d(xn, yn) ≤
∑
m=1

γML
n (m)dn(m) +

∑
m=1

γML
n (m) log(γML

n (m)), (3.4)

where γML
n (m) is the posterior of the mixture component m based on the initial parame-

ters trained by the Maximum-Likelihood criterion. Because all the values of γML
n (m) are

computed by the initial ML model and would not change with large-margin training, the

66

right hand side of the inequity is a linear combination of dn(m) (plus some shift) and thus is

convex with respect to all dn(m). Note that the inequality above becomes equality if dn(m)

is computed by the initial ML parameters.

By using the upper-bound in Equation (3.4) to replace d(xn, yn) in Equation (2.3), the

loss function can still be convex, and convex optimization algorithms can still be applied to

refine the searching of parameters. However, due to the time constraint, although the convex

relaxation in Equation (3.4) was implemented in the LVCSR experiments, the model param-

eters were only updated by Quickprop, without using other convex optimization algorithms

to refine the parameters.

3.1.4 Parallelization of Computation

For LVCSR tasks, it is typical that the training corpus contains more than 100 hours of

speech data. To conduct discriminative training on such an amount of data requires a large

amount of computation, and appropriate parallelization of the computation is crucial to the

success of discriminative training on LVCSR tasks.

In general, the computations for the forced alignments and recognition results (lattices or

N-best lists) of training utterances can be distributed to multiple machines and the outputs

can be stored in separated files. The gradients or other statistics required for the training

can then be computed by accumulating the contributions of each training utterance based on

the output files. Such an accumulation process can also be parallelized by first distributing

the accumulation to multiple machines and using a single machine to merge the results.

Note that if a sophisticated optimization algorithm is used for the training, it is critical to

implement the parallelization in a way that the state of the optimization module can be

recorded before distributing the computation to multiple machines.

67

3.2 Experimental Environment

In the experiments reported in this chapter, speech recognition was performed using the

SUMMIT landmark-based speech recognizer, and acoustic models were trained and evaluated

on the MIT Lecture Corpus. The following subsections briefly describe the speech recognizer

and the corpus used to conduct the experiments.

3.2.1 MIT Lecture Corpus

The MIT Lecture Corpus contains audio recordings and manual transcriptions for approx-

imately 300 hours of MIT lectures (number is still growing) from eight different courses

and nearly 100 MITWorld seminars given on a variety of topics [26]. The audio data were

recorded with omni-directional microphones and were generally recorded in a classroom en-

vironment. The recordings were manually transcribed in a way that disfluencies such as filled

pauses and false starts are kept. In addition to the spoken words, the following annotations

are also included in the transcriptions: (1) occasional time makers at obvious pauses or sen-

tence boundaries, (2) locations of speaker changes (labeled with speaker identities if known),

(3) punctuation based on the transcribers’ subjective assessment of spoken utterances [8].

The lecture corpus is a difficult data set for ASR systems for the following reasons. (1) The

data recorded are spontaneous speech. The lecture speech contains many disfluencies such as

filled pause, false start, and partial words. In addition, the spontaneous nature also results

in less formal sentences, and poorly organized or ungrammatical sentences can be frequently

observed.(2) The lectures contain many lecture-specific words that are uncommon to daily

life. The lecture-specific words can result in serious Out-Of-Vocabulary (OOV) problems.

Even using the 10K most frequent words in switchboard as the vocabulary, the OOV rate is

still around 10% [27]. (3) The speech data potentially suffer from reverberation, coughing,

laughter, or background noise such as students’ talking. The above reasons make a robust

recognizer for lecture corpus difficult to construct.

In the experiments reported in this chapter, the acoustic models were created from a

training set of about 119 hours that includes two lectures of linear algebra (18.06), two

68

lectures of introduction to computer programs (6.001), one lecture of physics (8.224), two

lectures of Anthropology, and 99 lectures from 4 years of MITWorld lectures series with

a variety of topics. Two held-out MITWorld lectures, Thomas Friedman’s “The World is

Flat” lecture (MIT-World-2005-TF) and Thomas Leighton’s lecture about Akamai startup

(MIT-World-2004-TL), are used as a development set to select the discriminatively trained

models. A test set that includes two lectures of differential equation (18.03), two lectures of

introduction to algorithms (6.046), two lectures of automatic speech recognition (6.345), and

two lectures of introduction to biology (7.012) are used to evaluate the trained models. Note

that there are no speaker overlaps between the training lectures and the test lectures. The

sizes of training, development, and test sets are listed in Table 3.1, 3.2, and 3.3 respectively.

3.2.2 SUMMIT landmark-based speech recognizer

In conventional hidden Markov model (HMM) based ASR systems, the speech signal is

chopped into fixed-length frames, and for each frame, acoustic measurements for the speech

signal within the frame are computed to form a feature vector for the frame. Instead of

extracting feature vectors at a constant frame-rate, the SUMMIT landmark-based speech

recognizer first compute a set of perceptually important time points as landmarks based on

an acoustic difference measure, and extracts a feature vector for each landmark. In this

way, SUMMIT tends to be more focused on time-points where the acoustic nature of speech

changes.

SUMMIT uses Finite-State Transducers (FSTs) to represent all constraints and conduct

search in recognition. By utilizing FSTs, the language model and the lexicon related in-

formation, including context dependent state mapping, pronunciation rules, and reduction

rules can all be modularized. The search module for the recognizer can then be easily con-

structed by composing the modules using efficient FST composition algorithm. In addition,

by modularizing using FSTs, the recognizer can also be easily adapted to new constraints

such as additional pronunciation rules. More details about the FST implementation can be

seen in [15].

69

Class #Lectures #Hours

18.06-1999 2 1.45
6.001-1986 2 2.19
8.224-2003 1 0.94
MIT-World-2002 30 36.24
MIT-World-2003 51 54.60
MIT-World-2004 7 8.79
MIT-World-2005 11 12.39
St Marys-Anthropology 2 2.16

Total 104 118.76

Table 3.1: Sizes of lectures in the training set.

Class #Lectures #Hours

MIT-World-2005-TF 1 1.25
MIT-World-2004-TL 1 0.92
Total 2 2.17

Table 3.2: Sizes of lectures in the development set.

Class #Lectures #Hours

18.03-2004 2 1.66
6.046-2005 2 2.48
6.345-2001 2 2.54
7.012 2 1.41

Total 8 8.11

Table 3.3: Sizes of lectures in the test set.

The following paragraphs describe the setup of SUMMIT for the Lecture Corpus, includ-

ing the feature extraction, baseline acoustic model, and language model.

Landmark Features

The landmark features used for SUMMIT in the experiments are computed as follows: For

each landmark selected by SUMMIT, 8 telescoping regions, ranging from 75ms before the

landmark to 75ms after the landmark, are used to extract acoustic measurements. Detailed

specifications of the telescope regions are listed in Table 3.4. Within each telescoped region,

70

Region b=4 b=3 b=2 b=1 b+1 b+2 b+3 b+4
Start Time(ms) -75 -35 -15 -5 0 +5 +15 +35
End Time(ms) -35 -15 -5 -0 +5 +15 +35 +75

Table 3.4: Specifications of telescope regions for landmark features. The minus sign “-”
refers to before the landmark, while “+” sign refers to after the landmark.

a 25.6ms Hamming window is used to collect speech samples and the window shifts at a 5ms

frame-rate. For each group of samples selected by the window, short time Fourier analysis

is applied and the first 14 MFCCs corresponding to the samples are computed. The average

values of MFCCs of the 8 telescoping regions are then concatenated into a 112 dimensional

vector, and the 112 dimensional vector is reduced to 50 dimension by Principle Component

Analysis (PCA), resulting a 50 dimensional feature vector per landmark.

Baseline Acoustic Model

There are 74 phonetic labels used in the baseline acoustic model for the lecture corpus. The

74 phonetic labels can be derived from the 61 labels used in TIMIT by making the following

changes :

1. Remove ‘ax-h’, ‘eng’, ‘hv’, ‘ix’, ‘nx’, ‘q’, and ‘ux’ from the 61-label set.

2. Add 4 labels ‘ b1’, ‘ b2’, ‘ b3’, and ‘ b4’ for background.

3. Add 4 labels ‘ c1’, ‘ c2’, ‘ c3’, and ‘ c4’ for coughing.

4. Add 4 labels ‘ l1’, ‘ l2’, ‘ l3’, and ‘ l4’ for laughter.

5. Add 6 labels ‘ n1’, ‘ n2’, ‘ n3’, ‘ n4’, ‘ n5’, and ‘ n6’ for noise.

6. Add ‘ah-fp’ for filled pause.

7. Add ‘<>’ for sentence boundary.

8. Replace ‘h#’ by ’ ’ and ‘pau’ by ‘-’.

71

For each landmark, the left and right contexts of the landmark are modeled by a set of

diphones. Because a landmark can either be a transitional point from one phone to another,

e.g. t(bcl|b), or just an internal point of a phone, e.g. i(aa), there are (74∗74)+(74−1) = 5549

possible di-phones (-1 is for i(<>)). The 5549 di-phones are then clustered by a decision

tree, resulting in 1871 classes.

For each of the 1871 diphone classes, a diagonal GMM is used to model the training fea-

ture vectors for the diphone. The maximum number of mixture components for each GMM

is set to 30, and the model is allowed to add one mixture component for every 50 training ex-

amples available. The GMM parameters are trained based on standard E-M training except

that the mixture components are added one at a time by splitting the mixture component

with largest variance when the log-likelihood converges, until the maximum allowed number

of mixture components is reached.

In addition to the landmark models, log-duration is used as a feature to model the phone

segments during recognition. Details about the segment-based modeling can be seen in [7].

Although both the landmark models and segment models are used for recognition, only the

parameters in landmark models were updated in the experiments.

Language Model

The training data for the language model used in the experiments come from the transcripts

of the following three sources: (1) The training lectures in Table 3.1, (2) Switchboard tele-

phone conversations [9], (3) Michigan Corpus of Academic Spoken English. The SRILM

toolkit [36] was used to compute the N-gram counts of these three text sources with the

default setting of smoothing. The resulting N-gram counts were expressed by a language

model FST, and the language model FST was composed with the other lexicon level FSTs

to form the search module of the recognizer.

72

3.3 Experiments

In this section, preliminary experimental results for large-margin GMMs on the MIT Lecture

Corpus are presented and the performance of the large-margin models are compared with

that of MCE trained models [25]. The training procedures of MCE and large-margin models

are first described, followed by a performance comparison and discussion.

3.3.1 MCE Models

The MCE training in the experiments can be summarized by the following steps:

1. For each training utterance, generate the forced alignment of words and phone se-

quences based on the reference.

2. For each training utterance, generate the N-best hypotheses of the utterance.

3. Compute the gradient of the normalized MCE objective function using the outputs of

step 1 and 2.

4. Update the model parameters using Quickprop (Appendix B) based on the gradient

computed in step 3.

In the reported experiments, the number of hypotheses in the N-best list was set to 20,

and the training terminated after 15 iterations of the above procedure. For the training

parameters in the MCE objective function, the ζ in the sigmoid function was set to 10, and

the value of ν was set to 1. For the parameters of Quickprop, the scale limit was set to 1.75,

step limit was set to 10, and the learning rate ε was set to 0.2.

The Word Error Rate (WER) of the MCE model after each training iteration was com-

puted on the two lectures in the development set, and the best performing model on the

development set was used to compare with large-margin models on the test lectures.

73

3.3.2 Large-Margin Models

Selecting Margin Value

For the large-margin models, two different values of the margin ξ were used for training.

The first value was simply 1, and the other value was selected by the following heuristic

procedure:

1. For each training utterance, compute the normalized log-likelihood difference d′n =

− log(p(Xn,Yn))+maxS log(p(Xn,S))
Tn

, where Tn is the total number of landmarks in the utter-

ance.

2. Compute the average dP = E[d′n|d′n ≥ 0] and σP = E[
√

(d′n − dP)2|d′n ≥ 0] of all

utterances with d′n ≥ 0.

3. Compute dN = E[d′n|d′n < 0] and σN = E[
√

(d′n − dN)2|d′n < 0] in similar way.

4. For each utterance, compute the ratio rn = ∆n

Tn
, where ∆n is the number of different

diphones that appeared in the best competing hypothesis and the correct transcription.

5. Compute the average ratio r̂ = E[rn].

6. Set margin ξ̂ = abs(dN) + σPσN
σP+σN

The intuition behind the heuristic estimation of margin is as follows. Given a margin value

ξ, if d′n < −ξ ∆n

Tn
= −ξrn, the large-margin criterion would consider the utterance to be

recognized with strong confidence and would remove the utterance from further training.

In this sense, the problem of choosing a margin value can be reduced to a problem of

setting a threshold that determines whether an utterance has been recognized with sufficient

confidence. The threshold selected in this heuristic approach is approximately abs(dN)+σN ;

meaning that if an utterance is correctly recognized with a log-likelihood gap larger than

the average log-likelihood gap of all utterances being correctly recognized by at least one

standard deviation, the utterance should be considered confident enough. The reason why

σPσN
σP+σN is used instead of σN is to consider the thought that if σP is small, the performance

74

of the recognizer should be more reliable and the required log-likelihood gap can be set to a

smaller value. By running the heuristic algorithm above, a heuristic margin value ξ̂ = 1.13

was selected.

Training

For the large-margin training in the experiments, the following loss function was used:

L =
N∑

n=1

wn

ιn

[
D(Xn,Yn) + log(

1

C

C∑

S6=Yn

exp(ξH(Yn,S−D(Xn,S))))

]

+

(3.5)

where wn is the weight to handle outliers as mentioned before, ι is the number of diphones

in the nth utterance, and C is the size of the N-best list. In the experiments, the weight

wn is set to the same value as what the sigmoid function would give to the utterance when

computing the gradient for MCE training; more specifically,

wn = ζ`(dn)[1− `(dn)], (3.6)

where `(·) is the sigmoid function, and dn is the difference between the average log-likelihood

of the competing hypotheses and the correct transcription of the nth utterance. In addition,

the size of N-best list is set to the same value as in the MCE training. By using the above

specifications of the loss function, the initial scale of the gradients of the large-margin training

and the MCE training can be kept the same, and thus the same setting of optimization

parameters can be used for both of the two training schemes. As a result, the factor of

using different optimization scheme is removed, and the comparison between the two types

of models can focus more on whether introducing the large-margin constraints can help

improve model performance.

As mentioned in section (3.1.3), the loss function in Equation (3.5) can be made convex

by applying the relaxation as in Equation (3.4). Making the loss function convex can prevent

the training being trapped by a bad local minimum. Also, utilizing the posteriors proba-

bilities computed by the ML model as in Equation (3.4) can make the training become less

75

Models ML MCE LM 1 LM h LM ch
WER 45.7% 41.2% 41.2% 41.2% 41.0%

Table 3.5: Word error rates on the development set.

aggressive; potentially prevent the model from over-fitting the training data. The convex

criterion was used to train one of the large-margin models in the experiments to see whether

the convex relaxation can enhance the generalization ability of the model as expected.

In the experiments, three variants of the large-margin models, “LM 1”, “LM h”, and “LM

ch”, were trained. “LM 1” denotes the large-margin model trained with ξ = 1, while “LM

h” denotes the model trained with heuristic setting of ξ (1.13). “LM ch” denotes the model

trained with convex loss function and heuristic setting of ξ. For all the tree types of models,

the gradients used in training were computed using a similar distributed computation scheme

as described in the previous section, and the parameters were updated using the Quickprop

algorithm with the same setting of optimization parameters as in the MCE training. The

2-lecture development set was used to selected the models across iterations, and the best

performing models on the development set were used to in the performance comparison in

the next section.

3.3.3 Comparisons and Discussion

This section compares the model performance between the baseline ML model, MCE model,

and large-margin models. Table 3.5 lists the word error rates (WERs) of the models on

the development. As shown in Table 3.5, the four discriminatively trained models yielded

significant improvement over the baseline ML model. Also, “LM ch” yielded slightly better

performance than other models, showing that the convex relaxation can potentially enhance

the generalization ability of the model.

Table 3.6 lists the WERs of the models on the test lectures. As shown in the table, all

the four types of discriminatively trained models yielded 5-6% absolute WER reduction over

the ML baseline on all the four kinds of lectures in the test set, showing the effectiveness

76

Models 18.03-2004 6.345-2001 6.046-2005 7.012-2004 Total
Relative

Reduction

ML 42.3% 34.5% 42.7% 33.6% 38.2% -
MCE 36.8% 28.5% 37.6% 28.9% 32.8% 14.2%
LM 1 37.0% 28.4% 37.5% 28.3% 32.6% 14.5%
LM h 37.0% 28.0% 37.2% 28.7% 32.5% 14.9%
LM ch 35.9% 27.9% 36.9% 28.8% 32.2% 15.7%

Table 3.6: Word error rates on test lectures.

of the discriminative training methods. While “MCE”, “LM 1”, and “LM h” have similar

WER on the development set, the two large-margin models performed better than the MCE

model on most of the test lectures. This fact confirms the prediction that the large-margin

models tend to have better generalization ability to unseen data. Among all the large-margin

models, “LM ch” has the best performance on the development set and the test set, showing

that the convex relaxation in Equation (3.4) can help enhance the generalization ability of

the large-margin model.

To see whether there were significant differences between the models, McNemar sig-

nificance tests [6] were conducted based on the WER of the models. The p-vlues of the

significance tests were summarized in Table 3.7. The p-values for the tests between the

baseline ML model and all the other models were very small, showing that the discrimina-

tively trained models significantly are different from the baseline model. The p-value for

the test between “MCE” and “LM h” was less than the 0.01 threshold, showing that the

difference between the two models was at least marginally significant. The p-value between

“MCE” and “LM ch” was smaller than 0.001 threshold, showing that the two models were

significant different. The results of significance test also confirm that the convex relaxation

helps to enhance the generalization ability of the model.

In the experiments reported in [34], the large-margin training had a large improvement

over the MCE training on the task of TIMIT phonetic recognition, while in the experiments

on the lecture corpus, the gain of large-margin training was not as large. There are several

possible reasons for this.

77

Baseline MCE LM 1 LM h
MCE <0.001 - - -
LM 1 <0.001 0.066 - -
LM h <0.001 0.008 0.124 -
LM ch <0.001 <0.001 <0.001 0.008

Table 3.7: The p-values of McNemar significance tests of the models on WER.

In the training in [34], the objective function for large-margin training was kept convex,

and an additional convex optimization algorithm was used to refine the search for parameters

[32]. Although the loss function for “LM ch” was convex, the parameters were updated

based on Quickprop and no further refinement of the parameters was performed. It would

be worthwhile to investigate whether applying an additional convex optimization algorithm

to refine the search can provide additional performance gain.

Another possible reason is that the way that the edit distance between the reference and

the hypothesis string is computed is not the best. In the current implementation, the edit

distance is counted by the number of different diphone labels between the correct string and

the hypothesis. Although such an edit distance is easy to compute, it may not be directly

related to WER, since many diphone label differences may result in only one word error.

A more appropriate kind of edit distance may be the number of phone errors or number of

word errors of the hypothesis. Such a kind of distance can be computed without aligning

the hypothesis with the reference by using similar approximations as in MPE training.

In sum, the preliminary experiments on the lecture corpus have shown that large-margin

training can result in models potentially more generalizable to unseen data than MCE train-

ing. While the current implementation of large-margin training had marginal performance

gain over MCE training, several possible modifications that can potentially increase the gain

have been discussed. To investigate how much performance gain can be achieved by such

modifications are left as future work.

78

Chapter 4

Conclusions and Future Work

4.1 Conclusions

In this work, a large-margin training criterion for ASR systems has been investigated. In

chapter 2, possible ways of integrating large-margin training integrated with a multi-level

classification framework were studied, and experimental results on the TIMIT phonetic clas-

sification have shown that the integration has great potential to improve the acoustic model

performance. In chapter 3, the large-margin training is expended to LVCSR tasks, and the

preliminary experimental results showed that the large-margin training can potentially make

the model more generalizable to unseen data than MCE training. Possible modifications to

improve the large-margin training were also discussed.

4.2 Future Work

In the future, research to further improve the large-margin training for LVCSR tasks will be

studied. Several possible research directions are: (1) Applying convex optimization algorithm

to refine the model parameters, (2) changing the way of computing string distance, (3)

constructing a hierarchy for diphones, and (4) utilizing lattice information. The following

paragraphs briefly summarize these possible modifications of the large-margin training.

79

4.2.1 Applying Convex Optimization to Refine Parameters

In the experiments in [34], additional convex optimization algorithm was used to refine the

parameters of the large-margin models. In the experiments reported in Chapter 3, however,

no further refinement of the parameters were performed after the Quickprop update. It would

be worthwhile to investigate whether applying additional convex optimization algorithm to

refine the search can provide additional performance gain.

4.2.2 Changing the Way of Computing String Distance

One key objective of large-margin training is to have a margin between the correct string and

the incorrect string that is proportional to the string distance. As a result, how the string

distance is measured affects the importance of the hypothesis in the training. In the current

implementation of large-margin training for LVCSR, the string distance between the correct

and incorrect hypotheses is measured by the number of different diphone labels between the

two strings. However, the string distance can also be measured in terms of phone errors

or word errors of the incorrect hypothesis. Part of future research effort could focus on

investigating which kind of string distances are most effective for large-margin training.

4.2.3 Constructing a Hierarchy for Diphones

In the phonetic classification experiments in chapter 2, the hierarchical classifiers have been

shown to have better performance than single level classifiers. Introducing a similar hierar-

chical framework to acoustic models for LVCSR tasks may also have potential performance

gains. The current diphone models used in the lecture tasks were formed by the leaf-nodes of

the decision tree that were used to cluster the set of possible diphone labels. Instead of just

modeling the leaf-nodes, jointly modeling the higher parents nodes and the leaf-nodes in the

decision tree can naturally form a hierarchical classifier. Investigating the ASR performance

of such hierarchical diphone classifiers can also be an interesting topic of future research.

80

4.2.4 Utilizing Lattices

In the previous experiments, the large-margin training updated the parameters based on the

correct transcription and the N-best list generated by the recognizer. Instead of using N-

best lists, utilizing lattices for large-margin training can also potentially improve the model

performance. One possible way of utilizing lattices for large-margin training is to use lattices

to compute the expected log-likelihood and string distance of hypotheses and incorporate

these two quantities into the large-margin training criterion. More specifically, given an

observation sequence Xn, transcription Yn, and acoustic parameter set λ, the loss ln can be

computed by

ln = [− log(pλ(Xn|Yn)pL(Yn)) + ES[log(pλ(Xn|S)pL(S))] + ES[D(S,Yn)]]+ , (4.1)

where pλ(Xn|S) and pL(S) denote the acoustic model probability of hypothesis S and the

language model probability, respectively, as in previous chapters, ES[·] denotes taking an

expectation over all hypotheses, and D(S,Yn) denotes the string distance between S and

Yn.

With the help of lattices, the loss ln in Equation (4.1) and its gradient with respect to

λ can be compute efficiently by running forward-backward algorithms on the phone arcs

in the lattices. Details of the mathematical derivations of the lattice-based computation

can be seen in Appendix D. By incorporating lattices into the training, more competitors

can be considered in the training which can potentially enhance the performances of the

large-margin training.

81

82

Appendix A

Optimization for MMI Training

A.1 Auxiliary Function for MMI Training

This section describes how to construct an appropriate auxiliary function for MMI training.

The basic ideas of derivation came from [28]. Auxiliary functions are frequently used tools for

optimization, especially when direct optimization of the original objective function is difficult.

The idea of how auxiliary function works is illustrated in Figure A-1. The optimization starts

with λ = λ′, and an auxiliary function G(λ,λ′) is constructed. By maximizing with respect

to G(λ,λ′), λ is updated to λ̂, and the value of objective function F (λ) increases. The

update procedure continues until F (λ) converges to a local maximum.

A smooth (continuous in first order differential) function of λ, G(λ,λ′), is said to be a

strong-sense auxiliary function [28] for F (λ) around λ′ iff

G(λ, λ′)−G(λ′,λ′) ≤ F (λ)− F (λ′), (A.1)

whereas G(λ,λ′) is a weak-sense auxiliary function for F (λ) around λ′ if

∂

∂λ
G(λ,λ′) |λ=λ′=

∂

∂λ
F (λ) |λ=λ′ . (A.2)

Note that a function G(λ,λ′) can be both a strong-sense and a weak-sense auxiliary function

83

ˆ

)(F

),(G

Figure A-1: Illustration of an auxiliary function. The solid curve is the function F (λ) to
be maximized, and the red dashed curve is the auxiliary function G(λ, λ′). By maximizing
with respect to G(λ, λ′). λ is updated to λ̂, and the value of the objective function F (λ)
increases. The update procedure continues until F (λ) converges to a local maxima.

of F (λ) at the same time. The expected log-likelihood used in the Expectation-Maximization

update of ML training is an example of such a case. For a strong sense auxiliary function

G(λ,λ′), because the difference G(λ,λ′)−G(λ′,λ′) is always less than or equal to F (λ)−
F (λ′), the value of the objective function is guaranteed to increase if the new parameter

set λ is chosen such that G(λ, λ′) can be maximized. For a weak-sense auxiliary function,

however, this property is not guaranteed to hold. Although using a weak-sense auxiliary

function to update the parameters can not guarantee increasing the objective function as

using a strong-sense auxiliary function would, if the update converges, the function F (λ) is

guaranteed to be at a local maximum.

While a tractable strong-sense auxiliary function for MMI objective function in Equation

(1.1) is difficult to construct (even not known to exist), a weak-sense auxiliary function can

be constructed by the following steps. First, separate the numerator and denominator in the

log term of Equation (1.1) into two terms:

FMMI(λ) =
∑N

n=1 log(pλ(Xn|Yn)κpL(Yn)κ)−∑N
n=1 log(

∑
S pλ(Xn|S)κpL(S)κ)

= F num
MMI(λ)− F den

MMI(λ).
(A.3)

Second, given the previous HMM parameter set λ′, construct weak-sense auxiliary functions

84

Gnum(λ, λ′) and Gden(λ, λ′) for F num
MMI(λ) and F den

MMI(λ) around λ′ respectively. Note that

in this way Gnum(λ,λ′) − Gden(λ, λ′) is also a weak-sense auxiliary function for FMMI(λ)

around λ′. Third, add an appropriate smoothing function of λ that has a maximum at

λ = λ′ to the difference Gnum(λ,λ′) − Gden(λ,λ′) such that the overall auxiliary function

can be a concave down function as shown in Figure A-1. In this way, the auxiliary function

for FMMI(λ) around λ′ can be expressed in the following form:

GMMI(λ,λ′) = Gnum(λ,λ′)−Gden(λ, λ′) + Gsm(λ, λ′). (A.4)

Because the F num
MMI(λ) in Equation (A.3) is the same as the objective function of ML

training, the expected log-likelihood used in ML training can be directly used as Gnum(λ, λ′).

More specifically, let

Gnum(λ, λ′) =
N∑

n=1

∑

κκκ∈M(Yn)

γnum
κκκ log(pλ(Xn,κκκ|Yn)κpL(Yn)κ), (A.5)

where κκκ denotes the state-mixture sequence of a HMM that lists the state and mixture

assignment at each time frame, M(Yn) is the set of possible HMM state-mixture sequences

that can generate Yn, γnum
κκκ is the posterior probability of the state-mixture sequence κκκ

being generated by the previous HMM parameter set λ′, and pλ(Xn,κκκ|Yn)κ is the scaled

probability of the observation sequence Xn and the state-mixture sequence κκκ being generated

by the HMM parameter set λ given transcription Yn. Similarly, the auxiliary function

Gden(λ,λ′) can be set by

Gden(λ, λ′) =
N∑

n=1

∑
S

∑

κκκ∈M(S)

γden
κκκ log(pλ(Xn,κκκ|S)κpL(S)κ). (A.6)

Given the auxiliary function GMMI(λ,λ′), the parameters are updated according to the

following criterion:

λ̂ = argλ

∂

∂λ
GMMI(λ,λ′) = 0. (A.7)

85

A.2 Parameter Update

This section describes how to maximize the auxiliary function in Equation (A.4) and how to

update the parameters for MMI training in more detail. Maximization of auxiliary function

GMMI(λ,λ′) in Equation (A.4) requires computing the partial derivative ∂
∂λ

GMMI(λ, λ′).

The parameters are then updated by solving ∂
∂λ

GMMI(λ,λ′) = 0.

Because there are exponentially many γκ in Equation (A.5) and (A.6), it is necessary to

translate the two functions into forms that are much easier to analyze. Knowing that the

observations become independent given the state assignments of HMM, the summation over

all possible state-mixture sequences in Equation (A.5) and (A.6) can be broken down into a

summation over individual states and mixtures. More specifically, the function Gnum(λ, λ′)

can be expressed using the numerator-lattices and corresponding statistics in section 1.2.1:

Gnum(λ, λ′) =
∑

j

Mj∑
m=1

Qnum∑
q=1

eq∑
t=sq

κγnum
jmq (t)γnum

q log(p(xt|µjm,Σjm)) + Knum
L , (A.8)

where Mj is the total number of mixtures in state j, p(xt|µjm,Σjm) is the Gaussian proba-

bility of observation vector xt given mean vector µjm and Σjm, and Knum
L is the summation

of language model scores that are not related to HMM parameters. Similarly, Gden(λ, λ′)

can also be expressed by

Gden(λ,λ′) =
∑

j

Mj∑
m=1

Qden∑
q=1

eq∑
t=sq

κγden
jmq(t)γ

den
q log(p(xt|µjm,Σjm)) + Kden

L . (A.9)

To compute the partial derivatives, let us first consider the log probability

log(p(xt|µjm,Σjm)) =
−1

2
[(xt − µjm)TΣ−1

jm(xt − µjm) + log(det(Σjm))] + C, (A.10)

where det(Σjm) is the determinant of Σjm and C is a normalization constant. Taking partial

86

derivative of Equation (A.10) with respect to µjm results in

∂

∂µjm

log(p(xt|µjm,Σjm)) =
1

2
[(Σ−1

jm + Σ−T
jm)(xt − µjm)] = Σ−1

jm(xt − µjm). (A.11)

Note that the only term related to µjm in Equation (A.8) is log(p(xt|µjm,Σjm)) and that

ϑnum
jm (X) =

∑Qnum

q=1

∑eq

t=sq
γnum

jmq (t)γnum
q xt, the partial derivative

∂

∂µjm

Gnum(λ,λ′) = Σ−1
jm(ϑnum

jm (X)− γnum
jm µjm). (A.12)

Similarly, the partial derivative of Gden(λ,λ′) can be computed by

∂

∂µjm

Gden(λ,λ′) = Σ−1
jm(ϑden

jm (X)− γden
jm µjm). (A.13)

Since the smoothing function Gsm(λ, λ′) has maximum at λ = λ′, the partial derivative of

Gsm(λ,λ′) with respect to µjm can also be expressed by

∂

∂µjm

Gsm(λ, λ′) = Σ−1
jm(ηjmµ′

jm − ηjmµjm), (A.14)

where ηjm is a positive constant, and µ′
jm is the mean vector from the previous iteration.

Because Σ−1
jm is positive definite, the solution for equation

∂

∂µjm

Gnum(λ,λ′)− ∂

∂µjm

Gden(λ,λ′) +
∂

∂µjm

Gsm(λ,λ′) = 0 (A.15)

is the µ̂jm in Equation (1.12).

For the update of covariance matrices, consider the following partial derivative:

∂
∂Σjm

log(p(xt|µjm,Σjm)) = −1
2

[(xt − µjm)(xt − µjm)T(−Σ−2
jm) + Σ−1

jm]

= 1
2
[(xt − µjm)(xt − µjm)T −Σjm]Σ−2

jm.
(A.16)

By incorporating ϑnum
jm (X2) and ϑnum

jm (X), the partial derivative ∂
∂Σjm

Gnum(λ,λ′) would be

of the form in (1.7), and similarly ∂
∂Σjm

Gden(λ,λ′) would be of the form in (1.9). Again,

87

since Σ−2
jm is positive definite, the solution for

∂

∂Σjm

Gnum(λ,λ′)− ∂

∂Σjm

Gden(λ,λ′) +
∂

∂Σjm

Gsm(λ,λ′) = 0 (A.17)

is unique. Plugging in µ̂jm in Equation (1.12) to Equation (A.17) yields the update formula

in Equation (1.13).

Instead of using auxiliary function in Equation (A.4) directly to update mixture weights,

the following auxiliary function was used in [28]:

Mj∑
m=1

γnum
jm log(wjm)− γden

jm

w′
jm

wjm, (A.18)

where w′
jm is mixture weight from the previous HMM parameter set λ′. The reason for

switching to the auxiliary function in Equation (A.18) is that the sum-to-one constraint of

mixture weights can be easily incorporated into the maximization. Note that the partial

derivative of the auxiliary function in Equation (A.18) with respect to wjm equals to

γnum
jm

wjm

− γden
jm

w′
jm

, (A.19)

and is the same as ∂
∂wjm

GMMI(λ,λ′) at wjm = w′
jm. As a result, the function in Equation

(A.18) is also an weak-sense auxiliary function. The mixture weights are then updated by

running another EBW procedure on Equation (A.18).

To illustrate the update procedure for the mixture weights, let {w(p)
jm}Mj

m=1 denotes the

mixture weights after p iteration. The objective function that the update procedure seek to

maximize is

Fw(λ(p+1)) =

Mj∑
m=1

γnum
jm log(w

(p+1)
jm)− γden

jm

w′
jm

w
(p+1)
jm . (A.20)

To make the function above more analytically tractable, a smoothing function is added to

88

Fw(λ(p+1)), resulting in an auxiliary function

Gw(λ(p+1),λ(p)) =

Mj∑
m=1

γnum
jm log(w

(p+1)
jm)− γden

jm

w′
jm

w
(p+1)
jm + kjm(w

(p)
jm log(wp+1

jm)−w
(p+1)
jm), (A.21)

where each kjm is a constant greater or equal to 0, and w′
jm = w

(0)
jm. Note that because of

the sum-to-one constraint of mixture weights, choosing kjm =
−γden

jm

w′jm
+maxm

γden
jm

w′jm
reduces the

linear term in Equation (A.21) to a constant independent of the weights:

Gw(λ(p+1),λ(p)) =

mj∑
m=1

[γnum
jm log(w

(p+1)
jm) + kjmw

(p)
jm log(w

(p+1)
jm)] + max

m

γden
jm

w′
jm

. (A.22)

Applying Lagrangian multipliers to Equation (A.22) with the sum-to-one constraint of

{w(p+1)
jm }Mj

m=1, the update formula of mixture weights become

w
(p+1)
jm =

γnum
jm + kjmw

(p)
jm∑Mj

m=1 γnum
jm + kjmw

(p)
jm

, (A.23)

where

kjm = (max
m

γden
jm

w′
jm

)− γden
jm

w′
jm

. (A.24)

Because the transition probabilities of HMM states also have sum-to-one constraint, similar

technique can be applied for the update of transition probabilities.

89

90

Appendix B

Quickprop Algorithm

This appendix illustrates the Quickprop algorithm used in [25] in more detail. Quickprop is a

second-order optimization method loosely based on the classic Newton’s method. Newton’s

method is an iterative optimization method. At each iteration, Newton’s method builds a

quadratic approximation M(λ) to the function of interested F (λ) using the first three terms

of Taylor series expansion of the function F (λ) around the current point λ(p). The update

criterion of Newton’s method is to choose the parameter set λ(p+1) such that the gradient of

the approximation ∇M(λ(p+1)) equals 0. As a result, the solution of λ(p+1) can be expressed

by

λ(p+1) = λ(p) + s(p), (B.1)

where the step s(p) can be computed by

s(p) = −(∇2F (λ(p)))−1∇F (λ). (B.2)

In general, if the Hessian matrix ∇2F (λ) is positive definite, and the initial value λ(0) is

sufficiently close to the optimum, Newton’s method converges rapidly to a local minimum

of function F (λ) [25]. However, in general, there is no guarantee that the Hessian matrix is

positive definite, and representing true Hessian matrix becomes impractical as the length of

λ becomes large.

91

To address the two issues above, Quickprop makes the following two major changes with

regard to original Newton’s method:

1. Use a diagonal approximation for the Hessian.

2. Use certain criterion to check the condition of the Hessian, adding a term proportional

to gradient to the update step if the criterion does not hold.

The ith diagonal element the Hessian matrix can be approximated by:

∂2F (λ(p))

∂λ2
i

≈ ∇F (λ(p))i −∇F (λ(p−1))i

∆λ
(p−1)
i

, (B.3)

where∇F (λ(p))i is the ith element of the gradient at λ(p), and ∆λ
(p−1)
i is the ith component of

the update step s(p−1). The approximation is accurate when the update step is small, but in

general, the approximation above can provide helpful information to guide the optimization.

For each element in λ, the product [∇F (λ(p))i∇F (λ(p−1))i] is used as a measure to check

the condition of the Hessian: if the product is negative (different sign), the minimum is

considered likely to exist between λ(p)i and λ(p−1)i , and the update step of Newton’s method

is used; otherwise, a term proportional to the gradient is added to the update step, resulting

in

si = −[(∇2F (λ)i)
−1 + ε]∇F (λ)i, (B.4)

where ∇2F (λ)i is approximated by (B.3) and ε is a positive learning rate. Generally, setting

a proper value of ε is important.

There are also several additional controls on the update step used by Quickprop to

enhance the numerical stableness of the algorithm. For example, the absolute value of step

size can not grow k times larger than previous step size; if the gradient and the modified

Newton step are of the same sign, simple gradient step is used instead. Details of Quickprop

update can be seen in the pseudo code of Algorithm (2).

92

Algorithm 2 Quickprop Update [25]

##Quickprop Update for iteration p.
for i = 1 . . . L do

Loop over each element in λ
∆F1 ⇐ ∇F (λ(p))i # get first derivative from current iteration.
∆F0 ⇐ ∇F (λ(p−1))i # get first derivative from previous iteration.

∆λ ⇐ λ
(p)
i − λ

(p−1)
i # get last step size.

Calculate approximate diagonal second derivative
∆2F ⇐ (∆F1 −∆F0)/∆λ

Calculate modified Newton step
g1 ⇐ −ε∆F1

if (∆2F > 0) then
g2 ⇐ −∆F1/∆

2F
if (∆F1∆F0 > 0) then

gradients point the same way
d ⇐ g1 + g2

else
gradients change sign
d ⇐ g2

end if
else

d ⇐ g1

end if

Limit absolute step size
if (abs(d) > abs(k ∗∆λ)) or abs(d) >TASK LIMIT then

d ⇐ sign(d) ∗min(TASK LIMIT, abs(k ∗∆λ))
end if

If going uphill or update step is near zero, use simple gradient
if ((d ∗∆F1) > 0.0) or (abs(∆) < TINY) then

d ⇐ sign(g1) ∗min(abs(g1), TASK LIMIT)
end if

Update parameter
λ

(p+1)
i ⇐ λ

(p)
i + d

end for

93

94

Appendix C

Conjugate Gradient Algorithm

This appendix presents pseudo-code of the Conjugate Gradient (CG) algorithm provided in

[31]. Given a function f taking n parameters, a starting value x, and an error tolerance ε < 1,

the CG algorithm can minimize f(x) by doing the procedures in Algorithm 3. There are two

loops in the algorithm. The outer loop decides the direction d to update the parameters,

while the inner loop seeks to determine the best step size along the direction of d.

The algorithm terminates when the maximum number of iteration imax or when the

length of gradient after i iteration f ′(x(i)) is smaller than a ratio of the length of original

gradient f ′(x(0)). The pre-conditioner M is to make the procedure less sensitive to numerical

errors. M must be positive definite, but not necessarily be in matrix form. β is kept to be

greater 0 to ensure better convergence. The value σ0 determines the first step of linear

search. Unfortunately, the value of σ0 may need to be adjust for different types of functions.

95

Algorithm 3 Conjugate Gradient
i ⇐ 0
j ⇐ 0
r ⇐ f ′(x)
Calculate a preconditioner M ≈ f ′′(x)
s ⇐ M−1r
d ⇐ s
δnew ⇐ rTd
δ0 ⇐ δnew

while i < imax and δnew > ε2δ0 do
j ⇐ 0
δd ⇐ dT

α ⇐ −σ0

ηprev ⇐ [f ′(x + σ0d)]Td
repeat

η ⇐ [f ′(x)]Td
α ⇐ α η

ηprev−η

x ⇐ x + αd
ηprev ⇐ η
j ⇐ j + 1

until j ≥ jmax or α2σd > ε2

r ⇐ −f ′(x)
δold ⇐ δnew

δmid ⇐ rTs
Calculate a preconditioner M ≈ f ′′(x)
s ⇐ M−1r
δnew ⇐ rTs
β ⇐ δnew−δmid

δold

k ⇐ k + 1
if k == n or β ≤ 0 then

d ⇐ s
k ⇐ 0

else
d ⇐ s + βd

end if
i ⇐ i + 1

end while

96

Appendix D

Large-Margin Training on Lattices

This appendix describes how to compute the loss in Equation 4.1 and its gradient using

the lattice. The key idea is to break down the expectations into a summation over the

contributions of all phone arcs in the lattices. Given a phone lattice of an utterance, a

standard HMM forward-backward algorithm can be performed, and for each phone arc q,

the following quantities can be computed:

� p(q): Probability of phone arc q being generated by the model.

� αq: Probability of hypotheses leading up to q. Computed by the forward procedure.

� βq: Probability of hypotheses leaving q. Computed by the backward procedure.

� γq: The posterior probability of phone arc q being traversed. Computed by αqβq∑
r at the end αr

.

Given these quantities of the phone arcs in the lattice, the expectation terms in Equation

4.1 can be computed by the following.

D.1 ES[log(pλ(Xn|S)pL(S))]

For convenience, let %n
q denote the expected log-likelihood ES[log(pλ(Xn|S)pL(S))]; that is,

%n
avg = ES[log(pλ(Xn|S)pL(S))] =

∑
S pλ(Xn|S)pL(S) log(pλ(Xn|S)pL(S))∑

U pλ(Xn|U)pL(U)
. (D.1)

97

Because the probability of hypothesis S being generated can be decomposed into the prob-

ability of a phone sequence {qS
1 . . . qS

S} being generated, the log probability of S can be

computed by

log(pλ(Xn|S)pL(S)) =
S∑

s=1

log(p(qS
s)) +

S−1∑
s=1

log(tqsqs+1), (D.2)

where tqsqs+1 is the transition probability from phone arc qs to qs+1 (including the lexicon

and language model probabilities).

Using the decomposition in Equation (D.2), %n
avg can be computed by the following for-

ward procedures: Let αl
q be the expected log-likelihood of the phone sequences leading up

to q; αl
q can be computed by

αl
q =

∑
r preceding q αrtrq(α

l
r + log(trq))∑

r preceding q αrtrq

+ log(p(q)), (D.3)

where αq is forward probability leading up to q as defined above, and trq is the transition

probability from r to q. The expected log-likelihood of all hypotheses can be computed by

doing a weighted sum over all αl
q; that is,

%n
avg =

∑
q at the end of lattice αqα

l
q∑

q at the end of lattice αq

. (D.4)

For the gradient of %n
avg with respect to λ, it can be computed by using the chain rule

∂%n
avg

∂λ
=

∑
q

∂%n
avg

∂ log(p(q))

∂ log(p(q))

∂λ
. (D.5)

Similar to MPE training, to compute the partial derivative
∂%n

avg

∂ log(p(q))
needs to compute the

average log-likelihood of hypotheses passing phone arc q

%(q) =

∑
S: q∈S pλ(Xn|S)pL(S) log(pλ(Xn|S)pL(S))∑

U: q∈U pλ(Xn|U)pL(U)
. (D.6)

Note that %n
avg is of similar form as the objective function of MPE except that log(pλ(Xn|S)pL(S))

98

is also a function of log(p(q)). The partial derivative of log(pλ(Xn|S)pL(S)) with respect to

log(p(q)) is 1 if q ∈ S and is 0 otherwise. As a result,
∂%n

avg

∂ log(p(q))
can be computed by

∂%n
avg

∂ log(p(q))
= γq(%(q)− %n

avg) + γq, (D.7)

where the γq(%(q)− %n
avg) term is similar to the term γMPE

q in MPE training, and the term

γq reflects the partial derivative of log(pλ(Xn|S)pL(S)) with respect to log(p(q)).

To compute the value of %(q), a additional backward procedure is required. Let βl
q be

the average likelihood of hypotheses leaving phone arc q; the value βl
q can be computed by

a weighted average with respect to all phone arc r following q:

βl
q =

∑
r following q tqrp(r)βr(β

l
r + log(tqr) + log(p(r)))∑

r following q tqrp(r)βr

. (D.8)

After βl
q is computed, %(q) can be computed by

%(q) = αl
q + βl

q. (D.9)

D.2 ES[D(S,Yn)]

Similar to the case for computing ES[log(pλ(Xn|S)pL(S))], let δn
avg denotes the average string

distance of all hypotheses ES[D(S,Yn)], and let δ(q) denote the average string distance of

hypotheses passing through q. If the string distance D(S,Yn) can also be broken down into

a summation of phone distances
∑

q∈S ∆(q,Yn), δn
avg and its gradient can be computed as

follows.

Let αd
q denote the average string distance of hypotheses leading up to q, and let βd

q denote

the average string distance of hypotheses leaving q. The value of αd
q and βd

q can be computed

by the following forward and backward procedures:

αd
q =

∑
r preceding q αrtrqα

d
r∑

r preceding q αrtrq

+ ∆(q,Yn). (D.10)

99

βd
q =

∑
r following q βrtqrp(r)(βd

r + ∆(r,Yn))∑
r following q βrtqrp(r)

. (D.11)

After computing all αd
q , δn

avg can be computed by

δn
avg =

∑
q at the end of lattice αqα

d
q∑

q at the end of lattice αq

. (D.12)

The partial derivative
∂δn

avg

∂ log(p(q))
can be computed by

∂δn
avg

∂ log(p(q))
= γq(δ(q)− δn

avg), (D.13)

where δ(q) = αd
q + βd

q . The gradient of δn
avg with respect to λ can then be computed by

∂δn
avg

∂λ
=

∑
q

γq(δ(q)− δn
avg)

∂ log(p(q))

∂λ
. (D.14)

100

References

[1] R. Battiti. First- and second- order methods for learning: Between steepest descent and
Newton’s method. Neural Comput., 4:141–166, 1992.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-correcting cod-
ing and decoding: Turbo-codes. IEEE International Conference on Communications,
pages 1064–1070, 1993.

[3] C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, 2(2), 1998.

[4] H.-A. Chang and J. R. Glass. Hierarchical large-margin Gaussian mixture models for
phonetic classification. Automatic Speech Recognition and Understanding Workshop,
pages 272–277, 2007.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubi. Maximum likelihood from incomplete
data via EM algorithm. Journal of Royal Statistical Society, 39:1–88, 1977.

[6] L. Gillick and S. J. Cox. Some statistical issues in the comparison of speech recognition
algorithms. Proceedings of ICASSP, pages 532–535, 1989.

[7] J. R. Glass. A probabilistic framework for segment-based speech recognition. Computer
Speech and Language, 17:137–152, 2003.

[8] J. R. Glass, T. J. Hazen, L. Hetherington, and C. Wang. Analysis and processing
of lecture audio data: Preliminary investigations. HLT-NAACL Workshop on Speech
Indexing and Retrieval, 2004.

[9] J. J. Godfrey, E. C. Holliman, and J. McDaniel. SWITCHBOARD: telephone speech
corpus for research and development. Proceedings of ICASSP, pages 517–520, 1992.

[10] P. S. Gopalakrishnan, D. Kanevsky, A. Nadas, and Nahamoo. Generalization of the
Baum algorithm to rational objective functions. Proceedings of ICASSP, pages 631–
634, 1989.

[11] A. Gunawardana, M. Mahajan, A. Acero, and J. C. Platt. Hidden conditional random
fields for phone classification. Proceedings of Eurospeech, pages 1117–1120, 2005.

101

[12] A. K. Halberstadt. Heterogenous acoustic measurements and multiple classifiers for
speech recognition. PhD thesis, Massachusetts Institute of Technology, 1998.

[13] A. K. Halberstadt and J. R. Glass. Heterogeneous acoustic measurements for phonetic
classification. Proceedings of Eurospeech, pages 401–404, 1997.

[14] A. K. Halberstadt and J. R. Glass. Heterogeneous acoustic measurements and multiple
classifiers for speech recognition. Proceedings of ICSLP, pages 995–998, 1998.

[15] L. Hetherington. MIT finite-state transducer toolkit for speech and language processing.
Proceedings of ICSLP, pages 2609–2612, 2004.

[16] B.-H. Juang. Maximum-likelihood estimation for mixture multivariate stochastic obser-
vations of Markov chains. AT&T Technical Journal, 64(6), 1985.

[17] B.-H. Juang, W. Chou, and C.-H Lee. Minimum classification error rate methods for
speech recognition. IEEE Trans. on Audio, Speech, and Language Processing, 5(3):257–
265, 1997.

[18] B.-H. Juang and S. Katagiri. Discriminative learning for minimum error classification.
IEEE Trans. on Signal Processing, 40(12):3043–3053, 1992.

[19] L. Lamel, R. Kassel, and S. Seneff. Speech database development: design and analysis of
acoustic-phonetic corpus. Proceedings of DARPA Speech Recognition Workshop, 1986.

[20] K. F. Lee and H. W. Hon. Speaker-independent phone recognition using hidden Markov
models. IEEE Trans. on Acoustic, Speech, and Signal Processing, 37(11):1641–1648,
1989.

[21] J. Leroux and E. McDermott. Optimization methods for discriminative training. Pro-
ceedings of Eurospeech, pages 3341–3344, 2005.

[22] J. Li, M. Yuan, and C.-H. Lee. Soft margin estimation of hidden Markov model param-
eters. Proceedings of Interspeech, pages 2422–2425, 2006.

[23] W. Macherey, L. Haferkamp, R. Schlüter, and H. Ney. Investigations on error minimizing
training criteria for discriminative training in automatic speech recognition. Proceedings
of Eurospeech, pages 2133–2136, 2005.

[24] E. McDermott and T. J. Hazen. Minimum classification error training of landmark
models for real-time continuous speech recognition. Proceedings of ICASSP, pages 937–
940, 2004.

[25] E. McDermott, T. J. Hazen, J. L. Roux, A. Nakamura, and S. Katagiri. Discrimina-
tive training for large-vocabulary speech recognition using minimum classification error.
IEEE Trans. on Audio, Speech, and Language Processing, 15(1), 2007.

102

[26] A. Park, T. J. Hazen, and J. R. Glass. Automatic processing of audio lectures for infor-
mation retrieval: vocabulary selection and language modeling. Proceedings of ICASSP,
pages 497–500, 2005.

[27] A. S. Park. Unsupervised pattern discovery in speech: applications to word acquisition
and speaker segmentation. PhD thesis, Massachusetts Institute of Technology, 2006.

[28] D. Povey. Discriminative training for large vocabulary speech recognition. PhD thesis,
University of Cambridge, 2003.

[29] D. Povey and P. C. Woodland. Minimum phone error and I-smoothing for improved
discriminative training. Proceedings of ICASSP, pages 105–108, 2002.

[30] R. Rifkin, K. Schutte, M. Saad, J. Bouvire, and J. R. Glass. Noise robust phonetic
classification with linear regularized least squares and second-order features. Proceedings
of ICASSP, pages 881–884, 2007.

[31] J. R. Schewchuk. An introduction to conjugate gradient without the agonizing pain.
C.M.U., 1994.

[32] F. Sha. Large margin training for acoustic models for speech recognition. PhD thesis,
University of Pennsylvania, 2006.

[33] F. Sha and L. K. Saul. Large margin Gaussian mixture modeling for phonetic classifi-
cation and recognition. Proceedings of ICASSP, pages 265–268, 2006.

[34] F. Sha and L. K. Saul. Comparison of large margin training to other discriminative
methods for phonetic recognition by hidden Markov models. Proceedings of ICASSP,
pages 313–316, 2007.

[35] T. Shinozaki and M. Ostendorf. Cross-validation em training for robust parameter
estimation. Proceedings of ICASSP, pages 473–440, 2007.

[36] A. Stokle. SRILM: An extensible language modeling toolkit. Proceedings of ICSLP,
pages 901–904, 2002.

[37] L. Vandenberghe and S. P. Boyd. Semidefinite programing. SIAM Review, 38(1):49–95,
1996.

[38] P.C. Woodland and D. Povey. Large scale MMIE training for conversational telephone
speech recognition. Proceedings of NIST Speech Transcription Workshop, 2000.

[39] D. Yu, L. Deng, and A. Acero. Large-margin minimum classification error training for
large-scale speech recognition tasks. Proceedings of ICASSP, pages 1137–1140, 2007.

103

