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Abstract

Efficient error correction of recognition output is a major barrier in the adoption of speech

interfaces. This thesis addresses this problem through a novel correction framework and user

interface. The system uses constraints provided by the user to enhance re-recognition, correcting

errors with minimal user effort and time. In our web interface, users listen to the recognized

utterance, marking incorrect words as they hear them. After they have finished marking errors,

they submit the edits back to the speech recognizer where it is merged with previous edits and

then converted into a finite state transducer. This FST, modeling the regions of correct and

incorrect words in the recognition output, is then composed with the recognizer's language model

and the utterance is re-recognized. We explored the use of our error correction technique in both

the lecture and restaurant domain, evaluating the types of errors and the correction performance

in each domain. With our system, we have found significant improvements over other error

correction techniques such as n-best lists, re-speaking or verbal corrections, and retyping in

terms of actions per correction step, corrected output rate, and ease of use.
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Chapter 1

Introduction

With the rapid growth of computing power and the steady increase in recognition accuracy of

speech recognition systems, speech interfaces are becoming more attractive and accessible.

Despite this, many users are still abandoning speech recognition systems soon after trying them,

going back to conventional interfaces. The problem is not a lack of accuracy or speed, but rather

one of usability. Any recognition system, be it handwriting, vision, or speech, will naturally have

errors. With speech systems thus far, recovering from these errors has not been graceful, and at

times, efforts to correct recognition mistakes lead to further errors. A chief source of user

frustration is in the detection and correction of errors. In order for speech recognition to be

widely adopted and fulfill its potential as a natural, high-bandwidth interface, there must be

improvements in error handling. 

There are a number of error correction techniques currently used in speech recognition

systems. The most commonly used approaches are n-best lists, verbal corrections, and nothing at

all, forcing the user to type in the correct text or manually choose the intended action. Correction

schemes of these types are either extremely slow or inefficient. With n-best lists, the user is left

to search through many lines of hypotheses with the high chance that the desired transcription is

not in the list at all. Re-speaking leads to lowered recognition accuracy due to hyper-articulation,

the type of over-emphasizing that people do when they are misunderstood by another person [1].

The nature of re-speaking is problematic to most users, since without knowledge of the system
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model, how should one speak to be understood better? That two seemingly identically spoken

statements might be recognized differently leads to confusion and distrust. Finally, the hassle of

manually correcting and retyping the utterance results in users spending more time than if they

had chosen a different modality in the first place. This is especially true for mobile devices, an

area where speech systems are gaining increasing interest, where manual corrections would be

done with a numeric keypad, a slow input modality.

The Spoken Language Systems group has produced a range of user applications to

demonstrate and evaluate its speech technologies, most recently in the lecture, address, and

restaurant domains [2, 5]. These applications have some features in common—they share the

same core recognition framework, SUMMIT [7], and they are all web systems using server-

based recognition. This work focuses on a flexible error correction system integrated into

SUMMIT with a web interface, allowing for fast, accurate corrections of recognition output

across domains and platforms.

1.1 Motivation

There are two major factors driving the relevance of speech interfaces—the increasingly

universal presence of computer interfaces across the spectrum of environments and situations,

and the reduction in size and input modalities of many modern computer systems. We now find

people interacting with computers in new environments, such as home media centers, their cars,

and virtually anywhere else via cellphones and other mobile devices. In addition to the increased

distractions present in these new environments, both physical and mental, the systems used all

lack the full input capabilities of standard desktop computers. The interfaces to these systems

typically rely on limited sets of buttons, touch screens, or numeric keypads. While these

interfaces may be sufficient for a limited set of predefined tasks, they are ill-suited for more open
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tasks like searching through vast collections of data.

Speech recognition systems are ideally suited for these new environments and devices.

Aside from learning the command set, no additional training is required, making system

interactions feel natural for both novice and expert users. Speech is hands-free—the output

channel used does not intersect with those used for critical tasks in its usage environments.

Speech has a potentially high bandwidth, with output in the range of 100-200 words per minute.

This bandwidth remains a potential however, as it has not been realized with existing speech

interfaces. Even with relatively high accuracy rates, the time required to review and correct a

speech utterance or the incorrect command that resulted from it can drive down input rates to

well below that of other conventional input techniques. One study [8] found users could dictate

at an uncorrected rate of 102 words per minute. After factoring in the time for correction, the

output rate dropped to less than 10 words per minute. For speech systems that use re-speaking as

their correction mechanism, users often find themselves correcting their corrections resulting in

an inescapable error spiral [9].

Aside from hampering a user's input rate, errors lower subjective satisfaction with the

interface, and speech systems in general. In one study, users with disabilities that prevented them

from using a standard keyboard and mouse were given a speech recognition system, and after 6

months, almost all users abandoned the speech interface in favor of alternative input methods

[10]. Addressing errors by attempting to increase recognition accuracy is insufficient—there

needs to be a fast and easy way for users to correct recognition output.

1.2 Goals

The goal for this work is to create an effective error correction interface for speech recognition

systems that will allow users to quickly and easily correct recognition output. The interface must
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be general, easy for users to interact with, and allow for improved output rates compared to other

error correction techniques.

The correction interface must be general, both in terms of its front-end and its back-end

implementation. As computer interfaces appear in new environments, so too will speech

interfaces. No matter the environment or speech system, recognition errors will affect user

performance and satisfaction. Thus, it is essential that error correction is not tied to a specific

modality, such as a keyboard or mouse. In particular, mobile devices like cellphones and tablet

PCs must deal with the constraint of awkward text entry and small screen size. Secondly, this

approach should not be tied to a particular domain or recognition architecture. Our technique

should be as widely applicable as alternates lists and re-speaking are now.

The correction technique must be easy to use, reducing the user's cognitive load during

the correction process. With re-speaking, the user must think about what the correct word is, how

they're supposed to say it differently so it will not be mis-recognized again, and pay attention to

the system response to watch for the start of an error spiral. With alternates lists, the user must

scan through each alternate, trying to identify the correct phrase. If the correct utterance is not

there, the user must go through the list again, figuring out the differences between each output

and the original recognition result and then deciding which one is closest. The guiding principle

of usability that we will follow in our approach is that recognition is much easier than recall—

identifying errors can be done faster than correcting them.

Finally, the most important metric for evaluating our approach to correction is overall

output rate. Speech systems should not be relegated to hands-free environments, but rather they

should be a first-class input technique. In order for this to happen, the corrected output rate must

match or exceed that of other modalities. To accomplish this, we will investigate bringing the

recognizer into the loop during correction to use constraints provided by both the user and
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system to improve correction time.

1.3 Outline

The remainder of this work is organized as follows:

An overview of related work in the field of error correction for speech systems is covered

in Chapter 2. Background information on finite state transducers and their application to our

error correction technique is given. Finally, the lecture and restaurant domains are discussed,

highlighting their challenges and general characteristics.

Chapter 3 covers our approach to error correction, describing the design of our constraint

FSTs used in re-recognition. In addition, we discuss the challenges encountered implementing

this approach and how they were resolved.

Chapter 4 covers the web-based user interface, reviewing its design and features. The

system flow  for a sample user interacting with our interface is shown.

Our evaluation methodology, experimental setup, and results are presented in Chapter 5.

Statistics on the errors found in our experiments are also covered. The results of oracle and

speaker adaptation experiments are discussed. An analysis of theoretical efficiency is presented

using predictive evaluation.

Chapter 6 provides a summary and discussion of future work.
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Chapter 2

Background

This chapter first gives a brief survey of previous work in error correction for speech systems,

highlighting the characteristics of each with respect to our goals. This is followed by a discussion

of the technologies which form the basis of our approach and the speech system we will be

working with. The domains used in evaluation are presented, in addition to their related

challenges. Finally, the last section covers the two usage scenarios that our approach will attempt

to address.

2.1 Error Handling in Speech Systems

A number of approaches to error handling have been explored in the past. In this section we will

review these approaches and discuss their strengths and weaknesses.

2.1.1 Alternates Lists

Alternates lists, or n-best lists are one of the most basic forms of error handling. An n-best list

contains the top n recognition hypotheses ranked by their score, calculated through a weighted

sum of its acoustic probability and language model probability. As we can see in Figure 2-1, n-

best lists can be hard for users to read. Often, hypotheses will be differentiated by small

differences—the entire list may just be variations of a filler word like “a,” “the,” “uh,” or “um.”

A user might take several minutes reading the n-best list below, carefully reviewing each
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candidate, and still not pick the one which minimizes WER.

by d n a d if i give you the matrix let me come back now for them a boy or i might <cough> little the pieces and i might ask you something about the matrix for example

by d n a d if i give you the matrix let me come back now for them anymore or i might <cough> little the pieces and i might ask you something about the matrix for example

find the f b d if i give you the matrix let me come back now for them a boy or i might <cough> little the pieces and i might ask you something about the matrix for example

find the f b d if i give you the matrix let me come back now for them anymore or i might <cough> little the pieces and i might ask you something about the matrix for example

by d s p d if i give you the matrix let me come back now for them a boy or i might <cough> little the pieces and i might ask you something about the matrix for example

by d n a d if i give you the matrix let me come back out of the main or or i might <cough> little the pieces and i might ask you something about the matrix for example

by d n a d if i give you the matrix let me come back now for them a boy or i might give you the pieces and i might ask you something about the matrix for example

by b s e d if i give you the matrix let me come back now for them a boy or i might <cough> little the pieces and i might ask you something about the matrix for example

find the n b d if i give you the matrix let me come back now for them a boy or i might <cough> little the pieces and i might ask you something about the matrix for example

by d s p d if i give you the matrix let me come back now for them anymore or i might <cough> little the pieces and i might ask you something about the matrix for example

Figure 2-1: A sample 10-best list for an utterance in the lecture domain.

N-best lists most commonly have an utterance level granularity, although some speech interfaces

use word-level alternates lists, accessed by selecting a specific word. Generally, these lists are

limited to 5-10 entries as it becomes difficult for users to scan through any more than that. With

utterance level alternates and the number of possible alternates roughly exponential with the

number of words in the utterance, it becomes unwieldy to use this approach for sentences with a

moderate amount of errors. 

Modifications to improve alternates lists have typically come in the form of re-ranking

algorithms. The Open Mind Common Sense Project has collected over 700,000 “common sense”

facts to re-rank candidate hypotheses [11]. This approach helps to disambiguate between

phonetically similar words by choosing the most semantically probable. Semantic context takes

advantage of long-range dependencies, exceeding the 2-3 word limit of bigrams and trigrams.

This approach reduces word error rate by 17% relative, and reduces dictation time by 7.5%.

Stolcke et al explored optimizing the hypotheses ranking algorithm to minimize word

error rate [12]. While hypotheses are typically ranked by their posterior probability, in effect

minimizing sentence error rate, this does not result in optimal word error rates. The expected

18



word error rate of a given hypothesis is computed by summing the error rates relative to each of

the other hypotheses and weighing it by its posterior. This method results in a modest decrease in

word error rate of .5% absolute.

2.1.2 Confusion Networks

Confusion networks are similar to word level alternates lists, but alternate candidates for each

word are displayed. They are an algorithmic transformation of the weighted word lattice

generated during recognition, and can be used to display more candidates than a standard n-best

list [13, 14]. As seen in Figure 2-2, a dense word lattice can turned into a very compact

confusion network. 

Figure 2-2: A sample confusion network for an utterance in the weather domain.

Whereas an n-best list only has n alternatives, a confusion network m words long with n

candidates per word would have nm alternatives. Confusion networks are used as the error

correction mechanism to edit podcast transcripts in the PodCastle web service [17].

Confusion networks are aligned to form word “sausages” where arcs always go from state
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i to i+1. As a result, if a multisyllabic word is recognized as multiple monosyllabic words, it

must either be aligned with the first word of the sequence, or the entire sequence must be aligned

with the multisyllabic word. Either way can result in a confusion network that is hard for a user

to parse, making correction a cognitively challenging process.

2.1.3 Spoken Corrections

Spoken corrections take the form of repeating the entire utterance or word(s) that need to be

corrected, entering a correction mode or performing a correction through a spoken command, or

spelling out the incorrect word (“speak and spell”). While spoken corrections are the only choice

in a hands-free environments, outside of that context, they are one of the weaker correction

modalities. The biggest danger of using speech for corrections is the potential to misrecognize

the correction. This is a phenomenon known as cascading or spiral errors, a phenomenon

characterized and analyzed by a number of researchers [9, 18, 19, 20]. Not only does it cause

users to get incredibly frustrated, it also dramatically increases the time it takes to correct an

utterance.

Another common phenomenon with spoken corrections, particularly re-speaking, is

hyperarticulation, a manner of speaking characterized by more pauses between words, longer

pauses, and  less disfluencies [1]. This “clearer” type of speech is a person's reaction to another

human misunderstanding what was said. While stronger enunciation may improve human

understanding, it does the opposite for speech recognition systems. Standard acoustic models are

not trained on this type of speech and thus recognition performance suffers, leading to higher

error rates and cascading errors. Some attempts have been made at predicting and modeling

hyperarticulate speech [21], however the best solution is to switch modalities and prevent the

problem entirely. Despite the difficulties of speech corrections, users will favor the modality if it
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is present, and stick with it despite much higher error rates [8]. Consequently, the best approach

to multimodal error correction is to eliminate speech as an option when other modalities are

available.

2.1.4 Keyboard/Keypad corrections

One of the simplest and most effective error correction techniques is to allow keyboard input

during the correction phase. Retyping is especially attractive because it is not a recognition-based

input, unlike alternates lists, or re-speaking. What the user types will not be interpreted and thus

its contents are predictable. Errors in the correction input, or typos, are easily fixed through the

same modality. Keyboard input bandwidth, in the range of 50-100+ wpm, is relatively high

compared to that of corrected speech [22].

On the other hand, one of the primary benefits of speech interfaces is that the only

required input modality is audio, allowing for greater flexibility in their use. Current applications

of speech recognition include mobile devices, kiosks, automated telephone systems, and car-

based computer systems. All of these systems do not support full keyboards, providing a keypad

or a virtual keyboard at best. Input rates for virtual keyboards are significantly less, averaging

around 10 wpm or less with triple-tap or T9 [23].

Using virtual keyboards for constraints, rather than the full correction shows promise.

One study [39] investigated the use of a virtual keyboard for re-recognition, comparing it against

re-speaking and alternates lists. The virtual keyboard was used to select the first letter of the

correct word, constraining the lexicon during re-recognition. This approach was effective 76.4%

of the time, with alternates lists effective 36.2% of the time, and re-speaking effective only

11.2% of the time. In this study, the speech interface was for a form used to obtain the timetable

for a railway system, with the vocabulary constrained to times, dates, and a set of towns. 
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2.1.5 Error Detection and Automatic Correction

A large amount of research has been done on error detection and automated correction, looking

for ways to improve recognition accuracy and take the burden of error detection off of the user.

Error detection techniques typically rely on confidence measures estimated from a set of features

which are used by a classifier to determine if a word or utterance is correct or not. The features

are derived from two sources—recognizer independent and recognizer dependent information

[24]. Examples of recognizer independent features include linguistic information like part of

speech or content words, acoustic and language model scores, and posterior word probabilities.

Examples of recognizer dependent features reply on intermediate data structures generated by the

recognizer like word lattices, confusion networks, and n-best lists. Approaches to error detection

often rely on long range dependencies that are not examined in standard n-gram language

models. One approach [25] performs a co-occurrence analysis on the training data to determine

the context words associated with a given keyword. They then locate instances where a word

phonetically similar to a keyword was recognized, but that keywords context words appear

around it, signifying a possible error. This type of error detection would be particularly useful for

information retrieval tasks where keyword accuracy is important.

Despite the attraction of doing error correction automatically, it would not solve the need

for user intervention. Error detection and automated correction should be treated as another

element of the recognition pipeline that improves recognition performance. Performing error

detection alone as a way of saving the user time during error correction can be dangerous. Users

must detect false positives and false negatives—if a marked word is actually correct and if an

unmarked word is actually incorrect. While the number of selections may be lowered, the

number of decisions remains the same and the types of decisions doubles.
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2.1.6 Other Approaches

A number of multimodal approaches use speech for initial recognition and then switch to

handwriting for corrections. While this approach leads to a number of issues—a second

recognition step using a different recognizer, the need for a writing instrument, the attention that

writing requires, etc.—there are some potential benefits as well. Generally speaking, speech

errors are orthogonal to handwriting errors. That is, words which are confusable acoustically are

usually not confusable orthographically. One speech interface [26] performs corrections through

handwriting and written gestures. It uses word and character level editing gestures for each of the

error types—substitutions, deletions, and insertions—as well as a gesture to “accept” part of a

sentence to prune and re-search the word graph generated during recognition. 

2.2 Finite State Transducers

Finite state transducers are a mathematical framework used to represent state-based transitions

with input and output labels between states. Transitions can be weighted according to statistical

probabilities, allowing one to search for the best path amongst a dense number of alternatives.

FSTs are used throughout the SUMMIT recognition pipeline to allow for uniform representation,

efficient composition, and optimization. The SUMMIT system makes use of a single FST in the

first pass of the form opt(C o P o L o G). FSTs for context-dependent phonetic models,

phonological rules, the lexicon, and the n-gram language model are composed together and then

optimized to form the recognition framework. In the error correction method we investigated, a

fifth FST, the error FST E, is generated and then composed with the output of the n-gram

language model. FST operations are done using the MIT FST Toolkit, developed specifically for

the use of FSTs in speech recognition [27].
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2.2.1 Word Graphs

Word graphs are a data structure used to efficiently search through recognition candidates. Word

graphs are constructed as FSTs during recognition, where each arc is given a word label and

weighted by its posterior probability. Exhaustively searching all possible candidates is generally

far too costly, thus the search space must be constrained. The size of the word graphs is

controlled by a number of parameters used during Viterbi beam search. The score threshold,

vprune, is the maximum difference in log probability between the top hypothesis and the current

one. The size threshold, vprunenodes,  is the maximum number of possible candidates allowed at

each step. Another size threshold, maxpopspersec, controls the maximum numbers of arcs that

can be created each second. In our experiments, we compare the accuracy and computational

cost of composing the error FST with the language model and re-recognizing versus composing

it with the word graph generated after initial recognition.

2.3  Lecture Domain

The lecture corpus is composed of over 500 hours of speech, with lectures from 13 different

courses and over 100 seminars on various topics. The style, topic matter, and speaker

characteristics vary widely among the data, making the task of transcribing lectures a difficult

one. Lectures, 7,000 words on average, typically contain only 500 to 1,100 unique words [2].

Some fraction of these words are those found in standard conversational speech and can be

modeled through training on other lectures or other conversational speech corpora like

Switchboard. The remainder of a lecture's unique vocabulary is subject specific keywords (like

“eigenvalue” or “matrix”), and can be difficult to model without additional related data such as

other lectures in the same course or course-related materials like textbooks. 

Lectures are typically recorded with an omni-directional microphone as part of a video
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recording. Audio quality was less than ideal in a number of lectures, due to the type of

microphone (compared to a close-talking headset), audience noise, and room acoustics. Typically

each lecture has a main speaker, but some lectures have two or more speakers as well as

audience interaction, adding additional acoustic challenges. The lecture domain is challenging

for speech recognition, with word error rates as high as 30-50%, making a compelling case for

error correction.

2.4 Restaurant Domain

The restaurant test corpus was created through a web-based multimodal dialog system in the

restaurant information domain known as City Browser [5]. Roughly 2,200 utterances were

recorded through user testing of the restaurant system. Possible queries include specifying

preferences based on price, cuisine, or location relative to streets, metro regions, or landmarks, as

well as asking for information about a specific restaurant, like phone number, hours, or address.

User queries typically take one of two forms—either part of a series of cumulative constraints,

narrowing down the set of qualifying restaurants, or a new query which does not build upon the

context of prior requests.

In this system, queries are built from static and dynamic vocabularies. The dynamic

vocabulary is updated at each dialog turn and contains topic words like the names of streets and

restaurants. The dynamic classes were populated by crawling restaurant databases on the web,

and pronunciations were derived from existing data or through a letter-to-sound module. Data

were collected across seven metropolitan areas with roughly 3,000 to 17,000 restaurant aliases

(each restaurant has one or more aliases), 1,100 to 2,200 street names, and 50 to 250 cities and

neighborhoods. The recognizer language model was trained on user queries generated

automatically by a simulation server [28]. The simulated queries were built using a rule-based
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recursive text generator. The resulting training set contained 8000 sentences with a static lexicon

of 1400 words.  

2.5 Usage Scenarios

As a user interface component, error correction must be put in the context of its common usage

scenarios. Different ASR systems. domains, user backgrounds, and overall goals will all affect

the types of errors that can occur and the needs of the user in repairing them.

2.5.1 Real-time Query Corrections

The traditional use of speech in user interfaces is as an input modality to issue commands or

queries. When using such a speech system, corrections are issued by the speaker immediately

after recognition. The goal of correction in this case is not necessarily an entirely correct

utterance, but rather a correct action. City Browser, for example, has a semantic decoding step

after recognition, interpreting the command intended by the user. In this way, both

misrecognized and out of grammar utterances can still result in the correct action. Thus, the goal

of correction is to minimize concept rather than word error rate. Certain classes of words, like

proper nouns, are important to identifying the correct concept, making sequential correction

systems [30] inefficient. Random-access correction schemes allow for users to jump to relevant

error gaps in the recognition output. This is especially useful for this usage case because the

speaker is doing the corrections, and should still remember what was said, and consequently,

know what is wrong in the output without having to listen to a recording.

2.5.2 Third-party Corrections

This usage scenario could most commonly be found in the lecture domain with students

26



correcting a professor's lecture transcription. In this scenario, the professor's lecture would be

recorded and then transcribed by an ASR system. The output transcription would then be

reviewed and collaboratively edited by the students in the class to use as study notes. In this case,

users would not necessarily remember what the professor said, so an audio recording to

accompany the recognition output would be necessary. Alternatively, the lecture may be

automatically transcribed in real-time, and students correct it as they listen to it. Wald et al.

investigated a number of keyboard-based interfaces for real-time correction of lecture transcripts

generated by an ASR system [31]. They found corrected output rates ranging from 10 to 19

WPM depending on the level of the typist. Our correction scheme will attempt to address both

real-time and off-line transcript editing. Unlike the previous usage scenario, students would

attempt to minimize word error rate, looking to create as legible transcripts as possible. Perfect

accuracy is not required, however, as one study [32] quizzed students on the contents of a lecture

accompanied by transcripts with varying error rates. Word error rates of 25% or less resulted in

better performance compared to the control group which received no transcript. 
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Chapter 3

Approach

Our approach to error correction was partially motivated by the work of Kumaran et al. [29] on

automatic error detection and correction. In their approach, they noted that humans disambiguate

conversational speech through long range context. This context works in both directions, so after

hearing a portion of unintelligible speech, a person will use their short-term memory to recall

what was said before and after that portion of speech to resolve it. In the same fashion, a speech

recognizer's hypotheses can be divided into regions of high and low confidence—“islands” of

reliability and error “gaps.” The search space for LVCSR systems is far too large to search

exhaustively, so there must be score-based pruning. In doing so, a large portion of the search

space may be alternate candidates for a highly confident segment, pruning out the correct

candidates for a gap. By identifying islands and gaps, one can guide pruning decisions as well as

rescore gaps using nearby islands to calculate LM scores.

Kumaran et al. built three word confidence classifiers using boosted decision trees,

SVMs, and neural nets to identify the island and gap regions in a recognition hypothesis. Their

best classifier had an overall accuracy of 63.47%, identifying islands correctly 60.85% and gaps

80.58% of the time. While promising, this accuracy is insufficient as a user interface component.

As with other error classifiers, false positives create a confounding effect that requires extra user

attention. Consequently, we adopted a supervised approach to this technique in which users flag

sections of recognition output as correct or incorrect, followed by constrained re-recognition.
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3.1  Overview

Figure 3-1: The system architecture for our error correction system.

Our error correction system is composed of a web-based graphical user interface, a web server,

and a speech recognition server, a diagram of it can be seen in Figure 3-1. Audio, either streamed

or prerecorded, is sent to the web server running the controller servlet and then forwarded to the

recognizer server via XML-RPC for initial recognition. The n-best list is sent to the web server,

and the top candidate is passed to a JavaServer Page which then renders the correction interface.

Users manipulate the utterance via a Javascript framework, flagging incorrect regions, through

either click or drag gestures. Deletion errors are marked by clicking between words, and

substitution or insertion errors are marked by clicking or dragging over words. Users may listen
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to the audio recording sent to the recognizer through audio controls above the utterance, using a

Javascript to Flash interface. 

After marking the regions to be corrected, users then submit it back to the web server

running the controller servlet. If this is the first correction pass on a given utterance, the

correction string is sent to the recognizer server. The recognizer takes the correction string,

generates a correction FST and composes it with the right side of the n-gram language model.

Acoustic scores are kept from the initial recognition pass, and language scores are recomputed

using the new language model. The new n-best is sent back to the servlet and re-rendered on the

UI. For subsequent corrections on the same utterance, the servlet keeps an internal history of the

previous corrections made so that they can be merged with the current correction string.

3.2  Error Constraint FST

In the following sections, the design, implementation, and challenges of building and using FSTs

for correction are discussed.

3.2.1 Design

To enforce the constraints of the correct regions and re-recognize the marked incorrect regions of

the speech utterance, we generate a finite state transducer encoding the error constraints. We

chose this representation as it allowed efficient integration into the SUMMIT recognition

framework, which is composed of a series of FSTs, using composition and optimization

operations developed in the MIT FST toolkit. The constraint condition for the correct word

segments can be described as fulfilling the following transformation: given a word segment

sequence s1  t1   s2  t2 ...  sn   tn  where all si  represent a segment of one or more correct words and all ti

represent a segment of one or more incorrect words (however either s1 and tn may be empty),
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output after re-recognition must contain all si, and si  comes before sj  if and only if i < j. 

For the incorrect word segments, the new candidate text between correct word sequences

si   and si + 1  cannot contain ti  or any of its ordered subsets. For example given an incorrect word

sequence ti  composed of words  w1  w2  ... wn  the re-recognized segment cannot contain any

sequences containing wi wi + 1  ... wj where j – i ≥ 1. The rationale behind this is that we wish to

prevent word sequences which do not conform with the marked corrections. For example, given

the sequence “a b c d” with “b c” marked as incorrect, and the error segment was re-recognized

as just “b” giving “a b d” then it would imply that “b” was correct in the first place, despite being

marked as an error. 

However, some permutations of the error sequence are possible and should be permitted.

The phrase “to the two, too” might be recognized as “too a to two” which contains a

rearrangement of a subset of the incorrect words and it would be valid to mark the entire

sequence as incorrect. Alternative ways of marking that phrase are possible as well—one could

mark “too a” as incorrect and then indicate a deletion error between “to” and “two” or one could

just mark “a to two” as incorrect and then indicate an insertion error before “too.” These

alternate corrections, while appropriate from a purely textual analysis, are unlikely to align with

the corresponding hypothesis phone sequence. This can get arbitrarily complex as the error

sequences grow in length, resulting in increasingly dense constraint FSTs to represent them. To

avoid this problem of valid and invalid permutations of the error word sequence, our constraint

FST does not allow any of the incorrect words in the new candidate sequence. As a result, some

word sequences cannot be corrected and must be addressed through an alternative correction

scheme. These instances are rare, however, and do not detract from the efficacy of this approach.
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3.2.2  Implementation

Figure 3-2: The error constraint FST generated for the correction encoding “a ( b ) c d ( e f ) g.”

The error constraint FST for the sequence “a b c d e f g” where “b” and “e f” are marked as

incorrect is shown in Figure 3-2. The constraint FST is encoded as a string when it is passed

from the UI to the controller servlet to the recognizer. In our encoding, words marked as

incorrect are enclosed in parentheses as follows: “correct ( incorrect ) correct” and “correct (   )”

denotes a deletion error after a correct word. All words within a parentheses are excluded from

the outgoing arcs corresponding to that error state in the FST. States with a single outgoing arc

from it correspond to a correct word and states with multiple outgoing arcs correspond to a error

sequence. The label “* - { word1, ... , wordn }” corresponds to the arcs leaving the error state,

signifying the set of words in the recognizer vocabulary minus the set of words found in that

error segment. 

Error states contain a self loop as the number of correct words is unknown. Self loops can

be problematic as they allow for any error state to consume arbitrarily many phones. As the

entire vocabulary is permitted within this state, the optimal language model scores could be

obtained through remaining in the error state. Due to pruning during search, it may not be

discovered that one ended in a non-final state until all paths out of the error state have already

been eliminated. To fix this, a penalty must be added for each time the self loop is traversed,

signified by the penalty p in the diagram. We examined the effects this penalty parameter has on

both WER and re-recognition output in our experiments.
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3.2.3  Optimizations

A challenge we ran into was the sheer size of these constraint FSTs—with a vocabulary of over

37,000 words, each error state was enormous. Every sequence of incorrect words represented in

the constraint FST essentially contains the entire language model.  Additionally, they could not

be reused, as each error state has its own set of words excluded from the vocabulary. Our initial

implementation, direct composition of the constraint FST with the recognizer, consumed

enormous amounts of memory and computational resources, taking minutes to complete

composition, or not finishing at all.

The gap states in the error constraint FST contain outgoing arcs corresponding to V - T

where V is the set of all words in the vocabulary and T is the set of all words in the error gap.

More precisely however, the set of allowable transitions is { V | wi, wi-1 } where wi and wi-1 are

the words preceding the start of the gap. Only a small subset of words are reachable at any point

in time, on the order of hundreds, rather than thousands. To generate the same results as full

composition, the constrained recognizer FST is built in place incrementally. Using lookahead to

find the set of all words allowable from the current states, dead or invalid arcs are trimmed,

reducing space and time requirements.

3.2.4 Error History and Merging

In order for corrections to be made iteratively, their effect must be cumulative, requiring some

internal state to record the history of corrections. The purpose of the history is to avoid

hypothesizing a word that was previously marked incorrect within that same error sequence.

Using our definition of the correction transformation, given the following sequence: s1  t1   s2, all

subsequent hypotheses for words falling between s1 and s2 may not contain any word in t1. That

is, with the history s1  h1   s2  h2 ...  sn   hn ,  hi  contains the union of all ti  in previous correction
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passes. This is a somewhat restrictive view as it does not allow certain corrections which may be

valid, such as permutations of the error sequence, but this is consistent with our earlier design

choice. 

When a new correction is submitted by the user, it must be merged with the correction

history before it is sent to the recognizer for FST construction, composition, and re-recognition.

When merging, one must keep track of the initial set of correct word sequences, the “islands” 

S = { s1 ... sn }, rather than the correct word sequences as marked in the new correction 

S' = { s'1 ... s'm }. As errors are corrected, the gaps will shrink and/or split, resulting in a different

number of islands. To keep track of the original islands, we mark each word in a re-recognized

gap with a text delimiter. After the recognizer sends back the new candidate, it is compared with

the correction string and the new words are identified and marked. The new words are marked by

going through the new recognition output and searching for each island in S. In our encoding,

this is represented as “correct new! new! correct” where words marked with a “!” are the new re-

recognition results. A “!” without a word indicates that all of the words in that gap were deleted.

These markings are preserved through the next correction pass and incorporated into the

subsequent correction string. A correction string such as “correct new! ( new! ) correct” indicates

that the first new word is correct, but the second is not. To ensure the incorrect word formerly in

that gap is not given during re-recognition, the new correction string needs to be merged with the

correction history before it is converted into a constraint FST.

Using the correction delimiters, we go through the new correction, segmenting it into

islands and gaps (rather than segmenting based on the correction groupings which are based on

the new islands in S'). The history is then segmented into islands and gaps using the correction

groupings. A sample segmentation can be seen in Figure 3-3. We then align the islands and gaps

by iterating through each segment in the new correction and matching it with one or more
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segments in the history. 

Figure 3-3: The marking and segmentation process: After re-recognition, the new recognition

results in gap regions are marked, using the history to identify previous gaps. The new output is

sent to the user who then makes a new set of corrections. Finally, the new corrections are

segmented using the history markings, with marked words corresponding to gaps, and unmarked

words corresponding to islands. 

There are five possible effects to the island-sequence that can occur during re-

recognition: there can be no change at all (no effect), a gap is deleted from the start (initial

segment type is different, one less segment), a gap is deleted from the middle (two islands are

merged into one, two fewer segments), a gap is deleted from the end (final segment type is

different, one less segment), or a combination of the above (from 2n segments to as few as 1).

Alignment is performed with these effects in mind. 

Once aligned, as in Figure 3-4, the gap segments are checked for new gaps. If there is a

new gap ti  that aligns with a history gap hi, then ti = hi U ti. A new gap may align with an old

island, this is the case when a user may not have noticed an error earlier and decided to mark it in

a later correction pass. In this case, the new gap would not be modified. After merging is

completed, the updated correction string is sent to the recognizer, and re-recognition continues as

normal. The history management portion of our system—marking, aligning, and merging—takes
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place in the controller servlet. One advantage of this is that it allows for the handling of history

exceptions separately from possible recognizer exceptions. History exceptions occur when the

recognizer ends in a non-final state, returning a result which does not contain all members of S,

causing the marking process to fail. When this happens, the controller can choose the appropriate

response to the user.

Figure 3-4: Merging of gaps after alignment between the history and new correction: After the

new correction string is segmented using the island and gap segments in the history, old

corrections are then merged in. In the above example, the “b” gap is eliminated, combining “a”

and “c d” into a single island. In the new correction string, the user has marked “a” as incorrect,

indicating they did not notice or forgot to mark it in the previous correction pass. If a word in the

new string is marked as incorrect and it is in a gap segment, then the set of incorrect words from

the history is merged with the new gap. In this case, the segment “x ( y )” is aligned with “( e f )”

so “e f” is merged with “( y )” resulting in “x ( y e f ).”
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Chapter 4

User Interface

As the portion of our system which is in direct contact with the user, our goals of simplicity and

efficiency drove the design of our interface. To make a simplified user experience, user input and

output must be simple. On the input side, some correction interfaces have large command sets in

which the user uses some combination of gestures, writing, typing, and clicking. Each time a

user must think which command they need to use and how to perform it, or switch from one

modality to another, it takes a significant amount of time. In terms of output, many correction

interfaces inundate the user with recognition data. N-best lists are especially bad as they force the

user to read through many long sentences that seem unordered from the perspective of the user,

who has no notion of acoustic and language model scores. Not only can the amount of output on

the screen slow down users, but the number of different outputs can also be a factor. Each time a

user switches focus from one part of the interface to another, it again takes a significant amount

of time. With simplicity in mind, we focused on a set of controls and output which would allow

the user to perform their corrections with a minimum number of actions. 

Our interface, designed using a combination of JSP, HTML, Javascript, and Flash, was

built with platform independence in mind, and web technologies are a natural fit for this. The

command language of our interface is extremely simple, and relies on a single modality—mouse

selection and clicking. This makes it universal across multiple platforms and devices. The mouse

actions can be easily translated to the selection modality of choice on the target platform such as
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touch or stylus. 

The servlet and web interface are currently configured to work with the second usage

scenario, correcting prerecorded lectures. The instructions to use it are as follows: 

“After beginning a lecture, results will be shown one utterance (approximately 10-20

seconds of speech) at a time. 

After an utterance is recognized, controls to listen to the audio and the recognition

results will be displayed below.

If you cannot hear the audio when you click the Play Audio button, try closing other

audio applications and restarting your browser.

Click on a word to mark it as incorrect, or click between two words to indicate that a

word should be inserted.

You can also click and drag from one word to another to mark multiple words at once.

When you have marked corrections, click 'Fix Errors' to allow the recognizer to

reprocess the utterance. When you are done correcting, click 'Next Utterance' to advance

to the next clip.”

From there, users can begin with the first utterance in a lecture or jump to a specific

utterance number if they want to resume correcting a lecture from where they left off. The

utterances time boundaries are determined through an initial segmentation step, based on silence

durations. Since the interface works on a per-utterance level, as opposed to full transcript editing

tools like [31, 32], it could be easily reconfigured to work in a query or command driven speech

interface system as in the first usage scenario.

After choosing a starting point, the first utterance is recognized and the user is presented

with the correction interface. Figure 4-1 shows the UI for a sample utterance on the first

correction pass before any correction marks are made. The “Play Audio” and “Stop Audio”

buttons control audio playback using the SoundManager Javascript to Flash Sound API.

SoundManager allowed us to easily incorporate reliable sound playback into our interface. 
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Figure 4-1: The web-based user interface for a sample utterance after initial recognition, before

the user marks any words as incorrect.

Other methods of sound playback either work across limited subsets of browsers and

browser versions, require a heavyweight framework like Java applets, or require deep system

permissions like with XPCOM interfaces. The last method has a Javascript binding, however all

code must be run locally from a Firefox extension. To assist with sound playback, there are also

synchronized visual cues indicating the currently playing word. As the recording plays back, the

word hypothesized to correspond with the current time is underlined, giving users a clearer

notion if the recognition hypothesis is correct or not. Without this information, it can become

easy to get lost in a long series of incorrect words, and be unable to find where the transcript

becomes correct again. To allow for this feature, we generate a word transcript for the best

candidate with corresponding start and end times for each word. The times are parsed out and

passed to the web UI during initialization for use with playback.

The results pane is set between the two pairs of controls, containing the recognition

output and acting as the correction workspace. The user's current focus within the results pane is

shown by underlining if they hovering over a word, or a tooltip if they are hovering between

words. The tooltip indicates that one can mark a deletion error in the transcript by clicking

between two words. When marking a deletion error, an underscore is placed between the two

words and highlighted red. Clicking on a word highlights it red, indicating either a substitution or

insertion error. All correction marks can be toggled by clicking them again, bringing them back
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to their default color. In addition, clicking and dragging allows one to specify multiple errors at

once. From a usability perspective, the visual effects (highlighting, underlining, and tooltips) are

sources of feedback for the user, making the correction process as transparent as possible. Figure

4-2 shows the interface after a series of corrections.

Figure 4-2: The user interface after the recognition output has been marked for correction.

After the user is satisfied with their set of corrections marks, they may click the “Fix

Errors” button to begin the correction process. The correction marks are encoded to our

correction string format and sent back to the web server where history merging is performed, if

necessary, and the error correction process proceeds as previously mentioned. After the new

words are marked with delimiters, the re-recognition 1-best is sent back to the web UI. The

delimiters are translated into visual cues, highlighting the new words blue, allowing the user to

quickly jump to what changed, marking any words which are still incorrect. Figure 4-3 shows the

interface after one correction pass.

Figure 4-3: The user interface after corrections are marked, sent to the recognizer for re-

recognition, and a new 1-best is returned to the user.
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Chapter 5

Evaluation

To evaluate our error correction method and compare it against other correction techniques, we

need to determine its maximum efficacy through synthetic experiments. To achieve this, we

conducted a number of oracle experiments in which correction strings were generated using the

reference transcript. In our oracle experiments, we tuned the gap transition penalty parameter,

examined the durational and word length statistics of gaps, determined the reduction in WER,

SER, and types of errors corrected, compared performance against composing the constraint FST

with per-utterance word graphs, and examined applications of our technique for speaker

adaptation. 

To estimate potential user performance, we use predictive evaluation to compare our

approach against other correction techniques. We will use the Keystroke-Level Model (KLM) to

generate action sequences and times for each model [34]. KLM allows a interface designer to

predict a user's efficiency by breaking down complex operations into a series of primitive

operations. While using predictive models cannot gauge attributes like cognitive load, subjective

satisfaction, or how easy the interface is to learn, it serves as a way to estimate the performance

of an experienced user. We conclude with a brief user test, to gauge user timings and accuracy.

5.1  Experimental Setup

For our oracle experiments, we worked with a set of 7 lectures, representing approximately
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30,000 words and 3 hours of audio. Two lectures were in the recognizer's training set, taken from

an MIT course on linear algebra, containing approximately 5000 words. The remaining five

consisted of two lectures from a seminar series and three lectures from an MIT speech

recognition course. The test set lectures each had different speakers, while the two lectures from

the training set had the same speaker. Word error rates ranged from 22.5% to 49.8% and

sentence error rates ranged from 69% to 100%. 

For the restaurant domain, we worked with a test corpus mentioned earlier, generated

during user testing. We configured our recognizer for restaurant guide queries containing

dynamic classes. This recognizer has a smaller static vocabulary (and a correspondingly smaller

language model) than the lecture domain, roughly 1400 words compared to 30,000. The

controller servlet was modified to send dynamic updates to the recognizer. Experiments in this

domain were intended to compare performances across the two usage scenarios, as well as

contrast the different size vocabulary of each recognizer. Given that the language model training

corpus was derived from a rule based generator, one would expect to see smaller variation in

recognition output, and hence constrained re-recognition output. The chance of an unseen n-gram

or OOV appearing in the user data are higher than with the lectures, potentially proving an

obstacle to our correction technique.

Using the reference transcripts, we scored each recognition pass with SCLITE [35], using

the SGML output to construct an island-gap construct which was then converted into a correction

string. This correction string contains the optimal correction marks for the given utterance at that

time. The correction string is then sent to the recognizer for constrained re-recognition.

Experiments were conducted through batch recognition, performing recognition on an entire

lecture, generating the full set of correction strings, then re-recognizing using the corrections.

This process was repeated over a number of iterations to determine the most efficient user
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behavior. In addition we examined the types of errors that were eliminated and those that

persisted, and tracked the histogram of gap word length through multiple passes.

5.2 Gap Transition Penalty

Penalty - Pass WER SUB DEL INS SER # Non-Final

Initial 35.2 24.1 3.4 7.6 100

0.5 - 1 24.6 16.1 4.0 4.5 100 21

0.5 - 2 18.4 12.2 4.0 2.2 100 17

2.5 - 1 20.0 11.9 6.2 1.9 100 2

2.5 - 2 17.3 9.2 5.9 2.1 99.3 6

3.0 - 1 19.9 11.5 6.8 1.6 100 0

3.0 - 2 17.1 8.8 6.5 1.7 97.9 5

5.0 - 1 19.9 11.5 6.8 1.6 100 0

5.0 - 2 17.4 8.0 8.2 1.1 97.9 3

Table 5-1: Error rate results of gap transition penalty experiments over two correction passes.

The leftmost column indicates the correction penalty used followed by the correction pass.

Experiments were conducted using one lecture in the evaluation set with a high incident of

outputs ending in non-final states. The lecture had 141 total utterances.

Figure 5-1: Gap word length histograms for various transition penalties after the first correction

pass. The histograms track the count of gaps containing n-words for n = 1 to 10. Increasing the

penalty increases the number of 0-word errors (deletions) as well as decreases the number of

multi-word gaps.
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The gap transition penalty determines how costly it is to self loop in the multi-arc gap state

before transitioning back to a forced path island state. The penalty is applied to the log-

probability language model scores. We tuned the penalty on one of the lectures that had a

particularly high number of recognitions ending in non-final states. Table 5-1 shows the

performance of each penalty value tested, with its associated WER (broken down by error type),

SER, and number of non-final results for two correction iterations. Figure 5-1 shows the gap

word length histograms for the different penalty values. We see the increase in 0-word gaps, or

deletion errors, as a result of the higher penalty. Multi-word gaps are not as reduced with the low

penalty value because results ending in a non-final state typically retain the original errors, as

well as alter the originally correct words. In addition, replacing a multi-word gap with an equally

long word sequence during re-recognition would be costly due to the penalty incurred for each

word.

Analyzing the results, we see that the gap penalty is directly proportional to WER and

number of deletions errors while inversely proportional to the number of non-final results and

average gap word length. Figure 5-2 compares sample output for each penalty value from the

same correction pass. 

Figure 5-2: Re-recognition results for the same utterance and correction string given different

penalties.
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As expected, increasing this penalty makes it costly to remain in the gap state, resulting in

shorter word sequences in gaps after re-recognition. Aside from making for less words per re-

recognized gap, there are also more multisyllabic words. For this particular domain, college level

courses, topic words are often multisyllabic and wind up segmented into multiple smaller words

for lower penalties. After evaluating these results, we chose a gap penalty of 3.0 for the

remainder of our experiments as it offered the best balance of minimizing non-final results and

WER. 

5.3  Lecture Domain Experiments

The following experiments on the lecture domain are intended to evaluate both the efficiency of

our technique as well as characterize the types of errors that occur and the ones that are fixed.

5.3.1 Error Duration and Length Statistics

Figure 5-3: Distribution of gap word lengths after initial recognition for each lecture in the

evaluation set, indicating the frequency of a given gap length.

In order to better understand the types of errors found in this domain, we measured the duration

and word length statistics of the gaps in our evaluation set. Figure 5-3 shows the histogram of
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gap word lengths for each lecture, measured after initial recognition, but before any correction

passes. The lectures share the same distribution of error lengths despite varying speakers, initial

word error rates, and topic. The vast majority of errors are only a single word, ranging from 46%

to 53% of the total error sequences, and are surrounded on either side by either correct words or

sentence markers. One's initial intuition might be that any error correction mechanism should

focus on single word error correction, like word-level alternate lists, confusion networks, or re-

speaking with isolated word recognition. While single word errors are important, one needs to

look at the histogram weighted for each error sequence's contribution to the word error rate.

Figure 5-4 shows the histogram with each sequence weighted by its length. This data reveals that

multi-word errors are very prominent, accounting for 60-70% of the total transcript errors. Error

correction schemes that correct one word at a time are slower for users, and less effective, as

they fail to take advantage of information about other local errors.

Figure 5-4: Distribution of gap word lengths after initial recognition for each lecture in the

evaluation set, weighted by the number of words in the gap, indicating the contribution of a

given gap length towards WER.
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The duration distributions for gaps of one to five words in length is shown in Figure 5-5.

Examining the distributions, one sees a second “bump” after the main probability mass, due to

multisyllabic words. The distribution for five word gaps is very wide, as the number of possible

syllables increases exponentially. A more informative choice if this information were to be used

for constraint purposes (see Chapter 6) would be to model phone duration distributions. Given

enough data one could generate diphone duration models to predict the number of words in a gap

accurately. 

Figure 5-5: Distribution of durations (in seconds) for gaps of one to five words.

5.3.2 Word Graph Constraint Composition

Our initial implementation of composition was computationally and memory inefficient,

requiring us to investigate alternative approaches. One candidate we explored was composing the

error constraint FST with the word graph generated for each utterance during recognition. Word

graphs contain the candidate search space at the time recognition completes. Word graph

composition should perform very close to that of full re-recognition given sufficiently large word

graphs. Given infinite space, one could create a word graph containing the entire possible search
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space and achieve the same performance as re-recognition. Real world constraints require the

recognition search space to be constantly pruned as arcs are added and states are explored. The

pruning is dictated by the parameters described in Chapter 2, eliminating paths based on their

probability according to various size criterion and score thresholds. For our experiments with

word graphs, we explored the pruning parameter space, to see what gains could be achieved as

word graph size increased. 

vp / vpn / mpps Input/output symbols States Arcs

24 / 2000 / 2000 369.4 579.7 3573.4

24 / 2000 / 10000 407.1 1037.8 13971

24 / 2000 / 20000 410.1 1020.7 14331.6

24 / 5000 / 20000 409.2 930.4 14050.5

24 / 20000 / 20000 410.7 930.3 14110.7

40 / 20000 / 40000 410.4 858 13009.8

50 / 20000 / 40000 410.4 858 13009.8

Table 5-2: The size of word graphs for increasing values of vprune (vp), vprunenodes (vpn), and

maxpopspersec (mpps) for a random set of 10 utterances in a lecture.

Table 5-2 shows the size of the word graphs as vprune, vprunenodes, and maxpopspersec

are increased. Interestingly, we find that after optimizing the word graphs, their sizes level off

despite increasing the pruning parameters. The reason for this is that before optimization, a given

word might appear more than once at slightly shifted times. Each instance of that word

represents different search candidates as there will be a different probability associated with its

alignment with the acoustic information, but the paths leading from it may still result in the same

output word sequences. Optimization collapses these identical words into a single path. As a

result, increasing the pruning thresholds tends to increase the number of paths for the same

subset of words, making the resulting optimized word graph roughly the same size as with
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smaller thresholds.

To compute a correction pass, the corrected results are generated by composing each

utterance's word graph with its oracle constraint FST. Outgoing arcs in gap states contain all

words in the vocabulary of the word graph instead of the recognizer's full vocabulary. Table 5-3

show the results of first pass composition with small, medium, and large word graphs on a subset

of our evaluation set. We see modest improvements in the initial correction pass, approximately

10% absolute reduction in WER. This technique is still a post-recognition step, and does not use

information obtained through user correction in the recognition process. As such, it will be

limited to the search space at the time of recognition, like confusion networks and alternates list

are, making it impossible to retrieve pruned word sequences without moving to free form

correction methods like keyboard-based editors. Since some states may only have one outgoing

word arc, composing the constraint often gives an empty FST.  Given these limitations and our

improvements to runtime with full re-recognition, word graph composition is an inferior

technique. In situations where re-recognition is not possible (on a mobile device using a server-

based recognition architecture) then improvements to this technique might be of interest.

WER SUB DEL INS SER

Original 35.2 24.1 3.4 7.6 100

First Pass small 25.2 17.2 4.3 3.7 100

First Pass med 24.6 16.8 4.4 3.4 100

First Pass large 28.2 18.7 5.7 3.8 100

Table 5-3: First pass composition with small (vprune = 24, vprunenodes = 2000, 

maxpopspersec = 2000), medium (vprune = 24, vprunenodes = 2000, maxpopspersec = 20000),

and large (vprune = 50, vprunenodes = 20000, maxpopspersec = 40000) word graphs.
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5.3.3  Iterative Error Reduction

An important aspect of our correction technique is that, barring any out of vocabulary words, we

are guaranteed to converge on the correct hypothesis in a finite number of iterations. Figure 5-6

shows the convergence of iterative corrections for one lecture. WER levels off at around 5%, due

to OOV words (1.6% WER contribution) and the issue of not forcing non-null replacements for

deletions errors (3.3% WER contribution). While a sole user may not want to mark a

misrecognized word more than two or three times, if our correction technique were to be

incorporated into a collaborative interface for lecture viewing and editing, a class's joint efforts

could quickly produce a near-perfect transcript. The increasing demand for access to multimedia

resources in education make this scenario especially pertinent and an ideal fit for our correction

system.

Figure 5-6: Demonstration of the convergence of error correction over a large number of

iterations. Evaluated on a lecture in the test set which contained OOV errors, so 0% WER cannot

be achieved.
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SUB DEL INS WER Rel. ∆WER

Original 21.0 4.6 5.7 31.2

Pass 1 10.0 8.0 1.0 19.1 38.78

Pass 2 7.4 7.5 0.8 15.8 17.28

Pass 3 5.9 7.1 0.7 13.7 13.29

Pass 4 4.9 7.1 0.6 12.6 8.03

Table 5-4: Substitution/Deletion/Insertion statistics, WER, and relative WER reductions on a

subset of our evaluation corpus to determine the maximum number of effective iterations.

To evaluate the effect of iterative correction passes, we first determined the optimal number of

correction passes using a subset of our evaluation set. Table 5-4 shows the error statistics and

results for each correction pass, followed by the relative word error rate reduction in the right-

hand column. The effect of subsequent passes diminishes quickly, however we still see greater

than a 1% absolute WER improvement through the third pass, so in our full evaluation and

speaker adaptation experiments, we will only explore up to three iterations. In practice, the most

efficient user strategy is probably one or two correction passes, followed up with an alternate

method on the few remaining errors. 

Lecture Rel. ∆WER, first pass Rel. ∆WER, second pass Rel. ∆WER, third pass

1 43.2 17.0 8.9

2 53.6 20.7 12.2

3 32.5 20.1 9.8

4 39.2 13.9 19.8

5 37.0 17.6 15.0

6 44.4 22.6 18.6

7 37.0 22.9 13.7

Table 5-5: Relative word error rate reductions after each iteration. For the second and third

passes, the WER reduction is calculated relative to the error rate of the previous pass.
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Figure 5-7: Word error rates for the lectures in the evaluation set after each correction pass.

Large reductions in WER are obtained in the first pass, followed by modest reductions in later

passes.

Figure 5-7 shows the word error rates for the lectures in our evaluation set after each

correction pass. Table 5-5 summarizes relative WER improvements between each iteration. The

first correction pass fixes approximately 30-50% of all errors, and the second pass reduces the

remaining errors further, usually leaving less than half of the original errors. Figure 5-8 shows

the progression of gap length histograms through each iteration. As we saw in our analysis of

gap lengths, initially, most gaps are only a single word. The first correction pass reduces 1-word

gaps by 45%, but increases 0-word gaps (deletion errors) by 276%. Overall, 0-word and 1-word

gaps decrease by 17% and multi-word gaps decrease by 43%.  The increase in deletions is due to

our penalty inhibiting gap self-traversal, causing many 1-word gaps to simply be deleted.

Currently, our constrained re-recognition process does not forbid epsilon transitions (null output)
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when a deletion error is marked, so some 0-word gaps are never corrected. Since an epsilon arc

was the best path in initial recognition, the only way to get a word in re-recognition is if words

are corrected close enough to the gap to modify its LM weight.

Figure 5-8: Aggregated gap length histograms for each correction pass. Each correction pass

reduces the multi-word and single word errors, and increases the deletions errors due to the gap

penalty.

We divided the data by lecture to see if the effectiveness of our technique was correlated

with initial WER. Table 5-6 shows the correlations between initial WER and the relative WER

reduction for each correction pass. The amount corrected in the first and second pass has a

moderate negative correlation with the initial WER, indicating that lectures with high initial

WERs will be tougher to correct, as contributing factors like low audio levels, reverb, and out of

vocabulary words are not correctable with our method. There is no correlation between the

relative WER reduction and the WER between the second and third pass indicating that, because

the amount of errors corrected is close to random, re-recognition is picking from a set of roughly
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equiprobable candidates which are not affected by the language model constraints introduced by

the correction FST. These findings support our prior intuition that performing two correction

passes is the optimal strategy. In summary, we achieved consistent results across all lectures—

about half of the errors are corrected after the first two passes—demonstrating the potential of

this method in the lecture domain. 

Init. WER and Relative

WER reduction in Pass 1

Pass1 WER and Relative

WER reduction in Pass 2

Pass2 WER and Relative

WER reduction in Pass 3

Corr. Coeff. -.631 -.690 .161

Table 5-6: Correlations between initial WER and ∆WER.

5.4  Restaurant Domain Experiments

The experiments in the restaurant domain demonstrate our correction method on another test set

as well as highlight the differences between the two domains. The restaurant domain is

characterized by its dynamic classes and smaller grammar compared to the lecture domain. With

more than half of the vocabulary being class nouns, and the static vocabulary (from which carrier

phrases are composed) only 5% of the size of the lecture domain's grammar, variation in

sentence structure is very low. Another contributing factor is that much of the data was collected

from a kiosk-based system running the recognizer where users could interact with it. User

behavior typically begins with a target query followed by a number of repetitions or rephrases

when misrecognition occurs. Given this behavior, unrecoverable errors, like out of vocabulary

words, poor audio, and unseen n-grams, are amplified in the test corpus.

5.4.1 Gap Transition Penalty

We re-tuned the penalty parameter as optimal values should be domain dependent. Intuitively,

avoiding results in non-final states requires balancing the penalty against average utterance
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duration and phone length, and the average LM score of each word in the vocabulary. In addition

to preventing non-final results, the penalty also shortens the average word length of a gap's re-

recognition hypothesis, favoring words which contain more phones. Each transition made within

a gap state incurs the penalty, thus a gap sequence will be replaced with m words instead of n

words, where m < n, if (n – m) * p > LM(m) – LM(n).  Table 5-7 shows the results of our tuning

experiment, giving an optimal penalty of 1. Unlike the lecture domain, increasing the penalty

results in strictly poorer performance, and with relatively little change in the number of non-final

results.

Penalty WER SUB DEL INS SER # Non-Final

Base 29.6 16.9 9.4 3.3 66.0

1 25.2 12.2 11.9 1.1 59.8 44

3 25.6 10.2 14.7 0.6 60.6 37

7 26.7 7.9 18.4 0.4 61.1 40

Table 5-7: Error results for one correction pass in the restaurant domain for different penalty

values. Evaluated on 1161 utterances, approximately half of the test corpus.

5.4.2 Iterative Error Reduction

In our full iterative correction experiments, we found modest improvements to WER, Table 5-8

summarize the results. Some of the recurring errors can be attributed the unrecoverable errors

mentioned previously.

WER SUB DEL INS Rel. ∆WER

Original 29.6 16.9 9.4 3.3

Pass 1 25.2 12.2 11.9 1.1 14.9

Pass 2 24.4 11.2 12.0 1.2 3.2

Table 5-8: Error results and relative WER reductions for two correction passes. Evaluated on

1161 utterances, approximately half of the test corpus.
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While gains were not as large as with the lecture domain, constrained re-recognition still

proved effective with a number of utterances. Figure 5-9 shows some sample sentences before

and after re-recognition. We see effective repairs made to both the carrier phrase portion of the

query and missing instances of dynamic classes. Our correction method could be of use as an

initial correction mechanism, however, additional improvements would have to be made before it

could be used as a primary correction method; for ideas on extensions of our technique, see

Chapter 6.

Figure 5-9: Sample re-recognition results from the iterative re-recognition experiments in the

restaurant domain.

5.5 Speaker Adaptation

In our interface, the user explicitly marks the incorrect words, providing the system with free

supervised data. A natural application of this information is language model or acoustic model

adaptation, further boosting re-recognition performance beyond that provided by the error

constraint FST. The SUMMIT recognizer uses speaker independent acoustic models for

recognition, trained on hundreds of hours of lecture audio from variety of male and female

speakers, so interpolating speaker dependent models should improve recognition performance.
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We tested speaker adaptation on three lectures, each with different speakers, building speaker

independent acoustic models for each lecture. The models were trained off-line in batch mode

after each recognition pass, using the reference transcripts. Adaptation was performed using the

method described in [3], with τ set to 50. Phone models were trained through aligning the

hypothesized phone sequence with the hypothesized word boundaries, discarding data that

corresponded to incorrect words. 

Table 5-9 shows the performance of our iterative correction process with and without

speaker adaptation performed between each iteration. Our results show that off-line batch

adaptation can be used effectively to boost our correction technique. The applications of this

range from performing adaptation after each lecture transcript is corrected in a lecture series,

increasing recognition performance in later lectures, to building a speaker dependent model for a

user of a query interface, doing batch adaptation after an interval of corrections. Additional

research could be done in the area of batch adaptation, with Chapter 6 exploring some of those

ideas.

WER SUB DEL INS SER

Original 33.7 22.9 5.9 4.9 75.5

Pass 1 21.4 11.0 9.7 0.7 60.5

Pass 1 with SA 19.8 9.5 9.3 1.0 57.7

Pass 2 17.8 8.1 9.0 0.6 54.8

Pass 2 with SA 16.3 6.6 8.9 0.8 52.3

Pass 3 16.0 6.6 8.9 0.5 51.7

Pass 3 with SA 14.5 5.2 8.7 0.6 50.2

Table 5-9: Correction performance for three iterations with and without batch-mode speaker

adaptation after each pass.
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5.6 Predictive Evaluation

Predictive evaluation allows for the objective measurement of efficiency given an expert user of

the current task. The particular predictive evaluation model we will be using, the Keystroke-

Level Model, breaks down any task into a sequence of elementary operations—pressing a key or

clicking a button, pointing to a target with the mouse, moving ones hands from the mouse to the

keyboard and vice versa, drawing a straight-line segment, and mental preparation (K, P, H, D, M,

respectively) [34]. We will modify this model slightly to account for static click speed and

variable typing rate. This average time required for each operator is shown in Table 5-10.

Operator Description Time

K Typing a key on the keyboard .08s (best), .28s (average), 1.2s (worst)

B Clicking a mouse button .1s

P Pointing with the mouse 1.1s

D Drawing a line 1.1s

H Homing from the mouse to keyboard .36s

M Mental operations 1.35s

Table 5-10: Elemental operations used in KLM analysis and their associated durations for the

average person.

The times assigned to each operation were obtained from years of user testing,

representing the speed of the average human [34]. While pointing and drawing a line are

dependent on distance, we will make the simplifying assumption of uniformity, as calculating a

more detailed distance model would rely on a large number of factors like monitor size and

resolution, font size, average word length, etc. For our evaluation we will also ignore

computational costs of re-recognition as it varies based on the domain, utterance length, number

of errors, length of the error gaps, hardware used, recognizer architecture, and network latency.

In our experiments we found history operations, constraint composition, and re-recognition
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typically took on the order of seconds, with smaller recognizers, such as that used in the

restaurant domain, taking only a fraction of a second. For an analysis of computation time, see

Table 5-11 which breaks down the durations of each operation performed in re-recognition for a

long utterance (~20 seconds) and a short utterance (~5 seconds). Re-recognition was performed

using a quad core computer with 4GB of RAM. We see that total computation time is highly

influenced by the number of gaps in the correction. Increasing the number of words in each gap

reduces constraint time, since all words in a single gap are converted into a single state in the

constraint FST. Recognition time goes up as gap length increases due to the greater number of

choices in each gap state.

Gaps Initial Rec Construct Trim Re-Rec N-Best Total States Arcs

Long 1 x 1w 12.33 1.97 1.14 0.83 0.61 4.55 270525 337070

1 x 3w 1.84 1.06 0.94 1.13 4.97 263811 354527

1 x 5w 1.78 1.06 1.07 1.75 5.66 263184 367925

3 x 1w 4.73 3.29 2.55 0.87 11.44 806639 913531

3 x 3w 4.55 3.24 1.95 1.41 11.15 799681 730904

5 x 1w 7.63 5.46 1.91 0.94 15.93 1344182 1057468

Short 1 x 1w 2.89 1.51 1.1 0.16 0.11 2.87 269222 131002

1 x 3w 1.43 1.06 0.24 0.37 3.10 265787 186566

1 x 5w 1.39 1.06 0.31 0.48 3.23 265638 223390

3 x 1w 4.27 3.27 0.44 0.28 8.25 806825 401482

3 x 3w 3.75 3.36 0.80 0.69 8.59 807780 579614

5 x 1w 6.70 5.51 0.73 0.41 13.35 1346651 626383

Table 5-11: Computation time (in seconds) for each operation involved in constraint construction

(Construct and Trim) and re-recognition (Re-Rec and N-Best) for a 20 second and a 5 second

utterance in the lecture domain. Gaps of the form n x mw consist of n separate gaps, each w

words in length.

While this model does not account for user mistakes while performing the task, users can

undo correction marks through clicking on the word again, making recovery very simple. Given
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this, true user's results should not deviate significantly from those presented in our analysis.

Table 5-12 shows the time required to identify and mark all of the errors in recognition output of

n words with m sequences of errors. Note that the operations are grouped by description, and

may not necessarily follow that order in time (ex:  M P B M P D = M*2 P*2 B D). At the start of

the task, we assume the user has either listened to the audio recording or remembers what was

said.

Operator  Description  Time

M * n Read a word and decide if it is correct 1.35s * n

P * m Move the mouse to the incorrect word 1.1s * m

B * m * .7 Click the error (0-word or 1-word gap) .07s * m

D * m * .3 Drag select the error sequence (multi-word gap) .33s * m

P Move the mouse to the Fix Errors button 1.1s

B Click the button .1s

Total 1.2s + 1.35s * n + 1.5s * m

Table 5-12: Decomposition of our error correction method using KLM

In the next correction pass, there are ≤ m words to read and m * (1 - p) errors to mark

where p is the fraction of errors that were corrected. (If we did not highlight the words that were

modified through re-recognition, the user would have to read all n words again).

To compare our approach with a competing correction method, we will analyze the time

required to correct an utterance using a keyboard, currently the fastest modality (although one

unavailable on many platforms). Table 5-13 breaks down keyboard correction using the KLM

model, assuming the the interface is structured such that users must click to move the editing

cursor before typing and each error sequence is c characters long on average.
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Operator Description Time

M * n Read a word and decide if it is correct 1.35s * n

P * m Move the mouse to the incorrect word 1.1s * m

B * m Click to move the cursor before the error .1s * m

M * m Recall how to spell and type the correct

sequence

1.35s * m

H * m Move hands from the mouse to the keyboard .36s * m

K * c * m Retype .28s * m * c

Total 1.35s * n + (2.91s + .28s * c) * m

Table 5-13: Decomposition of keyboard corrections using KLM

One important difference between the two techniques is that in our error correction

interface, the user does not need to recall how to create the correct output, he or she must only

recognize that the word is incorrect. All correction interfaces share the initial step of reading

each word and determining if it is correct, making the cost to use our method only clicking to

select the words and then clicking the Fix Errors button. The average character length of an error

sequence in the lecture domain was around 8 letters, making the total time for keyboard

corrections (neglecting initial error detection), 5.15s * m compared to 1.2s + 1.5s * m for our

method. Given our correction rates of 30-50% in the first pass, our technique should be superior

as an initial correction method. For a second correction pass and a conservative estimate of only

30% corrections, the total time for our method becomes 1.2s + (1.35s + 1.5s + 1.5s * .3) * m =

1.2s + 3.3s * m, making it the more effective method if 60% or more errors can be corrected in

both passes, or if the user is a particularly slow typer. For ASR systems where a full keyboard is

not available, like a kiosk or mobile device, our correction method is clearly the most efficient.
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5.7 User Test

Given time limitations, we were unable to conduct a full-scale user test, however we obtained

some usage data for a small set of users (n = 7). Users were drawn from the population of lab

researchers and students, and all possessed a high level of computer proficiency. Before testing

began, users were read the instructions to the interface (see Chapter 4) and were told to correct

consecutive utterances from a single lecture in the lecture test set. After users were given 10

utterances to practice and familiarize themselves with the correction interface, they were

instructed to correct 50 utterances, containing 126 word errors. The web interface was modified

to log user actions, recording the number of times the user played the audio, their correction

string, and the current utterance id, along with timestamps for each action. 

Table 5-14 shows the results of our user test, demonstrating the efficiency of our

correction system. With an average correction time of 10.09 seconds, users required less than

twice real time to mark errors. Users demonstrated an extremely high precision rate, indicating it

was clear to users when a word was correct. Lower recall rates were a result of either uncertainty

or leniency with the recognition output. Users tended to ignore stemming errors (“wait” instead

of “waited” or “things” instead of “thing”). Ambiguous errors, such as “um” instead of “uh” or

“a,” as well as non-speech tags like <noise> and <laugh> were difficult for users to identify. 

Subjective user impressions were favorable, indicating that the interface was easy to use

with a low cognitive overhead. Some users encountered difficulty with longer utterances, as the

length of the audio would exceed their auditory memory, requiring multiple playings. UI

improvements we could look into to facilitate this include pausing the audio when a correction is

made, random-access playback, or variable rate playback (see Chapter 6).
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Audio Clicks Total Time Average Time Recall Precision

User 1 1.02 328 6.56 0.84 0.98

User 2 2.00 653 13.06 0.78 0.99

User 3 1.10 517 10.34 0.70 0.96

User 4 1.30 519 10.38 0.74 0.98

User 5 1.22 574 11.48 0.82 0.94

User 6 1.48 486 9.72 0.67 0.97

User 7 1.78 762 15.24 0.77 0.98

Mean 1.41 548.43 10.97 0.76 0.97

Standard Dev 0.36 136.35 2.73 0.06 0.02

Table 5-14: User test statistics for each user, the mean, and standard deviation for the number of

times the user listened to the audio for each utterance, their total and average time to complete

the task, and their recall and precision in identifying errors.
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Chapter 6

Conclusion

6.1  Summary

In this thesis, we sought to create an easy to use, widely applicable error correction system that

would boost user output rates. As ASR systems move from the research space to the consumer

environment, the need for efficient, user-friendly error correction is apparent. Effective

interactions with speech systems of any domain rely both on accurate recognition and the means

to recover when it is inevitably wrong. Through our approach of constrained re-recognition, we

have developed a correction system which works effectively alone, correcting more than half of

the errors in a minimal amount of actions, and can seamlessly integrate with alternate correction

techniques when used as a preliminary correction mechanism after the user identifies recognition

mistakes. This work is a significant first step towards efficient error correction, demonstrating

the effectiveness of our design, but there is still significant improvements and extensions that

could be made. Our error correction framework can be extended in a number of directions that

we will explore below, directly addressing usability and system performance, adding additional

constraint to the re-recognition process, and investigating further uses of data generated through

user annotated corrections.
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6.2 Future Work

Our error correction technique shows great promise over existing error correction methods, and

there are a number of improvements which could enhance the usability and performance of our

framework. As the goal of our error correction system has been to combine constraints provided

by the recognizer and the user, future extensions target both user and system performance.

In our user interface, changes to enhance user control and further increase user-generated

constraints would assist user-based metrics like time per correction step and overall output rate,

as well as user satisfaction. These changes include better synchronizing audio playback with the

recognition output, allowing for variable rate playback, visualization of word-based confidence,

and efficient supplemental correction methods. 

Changes to our system back-end to enhance recognition time and the accuracy of results

returned would again reduce the time required to repair recognition results. Interpolating a larger

language model vocabulary during re-recognition, adding additional phonetic or timing

constraints to the correction FST, and fixes to prevent results ending in non-final states are all

possible areas of future research.

6.2.1 Full User Study

Due to time limitations we were unable to conduct a large user study to determine the behavioral

patterns and characteristics of real users working with our correction interface in comparison

with other techniques. To more rigorously validate our correction scheme and interface, we

would like to measure a user's corrected word output, and obtain more subjective impressions on

its usability and user-friendliness. Other statistics of interest include the amount of time it takes

for users to find errors, as well as their recall and precision in error detection. User interface

design could be further refined with user feedback and data on correction strategies. With our
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goal of platform independence, we would like to conduct tests on a range of devices to see how

performance is affected by small screen size or limited correction modalities.

6.2.2 Supplemental Correction Methods

While user-constrained re-recognition can correct all errors, it is not guaranteed to if the correct

word is out of the recognizer's vocabulary, or if its probability is so low that it would take a large

number of correction steps to reach it. Thus, there needs to be effective alternate methods when

re-recognition fails to correct the utterance in a reasonable amount of time. One possibility

would be to present a number of correction strategies at any time, and allow users to choose the

most convenient scheme. If the modality is available, the interface could allow for keyboard or

touch-pad input, display an alternatives list below the top hypothesis, and display a confusion

network below each word.

One problem with this approach is that users often favor a correction strategy even if it is

less efficient as some studies have shown [8, 19]. Thus, it may be wise to only allow for

constrained re-recognition for the first two iterations where the technique is most efficient.

Another issue is that of cognitive overload—one driving motivation behind our work was to

make it easy for users to work with. Displaying multiple correction schemes adds another step in

the critical path of the correction process.

6.2.3 Guided Error Detection

Automated error detection techniques are not accurate enough to be combined with our

correction technique. False positives in detection would become even more harmful in later

correction steps as the correction rate drops, while falsely detected errors will always be

modified from the correct word. This confounding effect of deciding if there is a recognition
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error or a detection error would increase a user's cognitive load, lowering correction throughput. 

Despite the dangers of error detection, an error classifier could be used to guide user error

discovery. If we are displaying confusion networks as an alternate correction method, we could

use statistics derived from them as features for the classifier. These features include the

posteriors of the most probable word, the difference of the posteriors of the most and the second

most probable word, the entropy of the posteriors, and the number of alternatives within each

word slot of the confusion network [29]. The ROC curve for a classifier developed by a

researcher in SLS using these features can be seen in Figure 6-1.  

Figure 6-1: The ROC curve for a gap classifier using posterior-based features which can be used

for automatic error detection. The classifier was evaluated on data in the lecture corpus.

Experiments would have to be done on various detection thresholds to find out the levels

of precision and recall that are most useful for error correction. As was mentioned earlier,

forcing the user to decide if something is a false positive or false negative is mentally taxing, so a

high detection threshold would be preferred.
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6.2.4  Audio/Transcript Synchronization and Variable Rate Playback

When correcting another person's prerecorded speech, such as a student correcting a professor's

spoken lecture, listening to the audio is critical to successfully correcting the current utterance.

Two key improvements could be made to audio playback in our error correction interface—

better synchronization between the audio and the transcript, as well as the ability to slow down

the audio. Currently audio is on an utterance-based granularity whereas a word-based granularity

would be more effective. One could use the word segmentation boundaries proposed by the

recognizer to align the audio.

In addition, it can be difficult to follow fast speakers, especially coupled with the false

starts, filler words, and filled pauses common to the lecture domain and other spontaneous,

conversational speech data. One way to help users better follow the audio recordings would be to

lower playback rate (independent of pitch) to decrease the speaking rate. These audio-based

interface improvements would prevent users from unnecessarily listening to the audio multiple

times per correction pass.

6.2.5 Additional Constraints During Re-recognition

A  number of constraints can be added during the re-recognition phase to further improve

performance. One key constraint would be using the length of the error gap to weight the

probability of new hypotheses of various lengths. The duration distributions for error gaps based

on their word length was measured in Chapter 5. Staying within a gap state of the error FST

incurs a penalty each transition, favoring shorter hypotheses. Using timing information would

reduce the likelihood of multi-word phrases being completely deleted during re-recognition due

to this gap transition penalty. Timing information could be obtained from the time alignments

proposed in the previous recognition pass. Phonetic information could also be used as a
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constraint for this task, using simple durational distributions based on phone counts, or using

phone sequences as a feature for a word boundary classifier. A soft classifier could be developed

using these timing and phonetic features to generate a new penalty score that could be easily

incorporated into the error FST.

6.2.6 Avoiding Results in Non-Final States

When constrained re-recognition ends in a non-final state, it can be particularly harmful for error

correction. The user's correction marks may be partially ignored, previously correct words wind

up incorrect, or the utterance may raise an exception during the history process, all resulting in

longer correction times. There are a few directions one could go to help prevent this problem.

One way would be dynamic gap penalties that start low and increase each time search ends in a

non-final state. This would result in repeated recognitions, possibly increasing overall correction

time, but it would guarantee that the lowest gap penalty within the granularity of our increments

was chosen. Another way would be to increase the pruning limits so that when a non-final state

is reached, the search can backtrack to earlier decision points. Any method chosen would require

additional time and space during search, so considerations for the target platform would need to

be kept in mind.

6.2.7  Supervised Methods

All error correction schemes either implicitly or explicitly generate annotated data that can be

used for supervised training of classifiers or adapting models. Since generating annotated data

can be extremely time consuming and expensive, it would be wasteful not to harness the data

retrieved through user corrections. In our experiments we investigated using correction data for

supervised acoustic model adaptation, demonstrating the merit of the approach. More work could
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be done investigating more sophisticated interpolation schemes and tuning interpolation

parameters. We could also examine on-line speaker adaptation and its performance in a live

speech system.

Language model adaptation is another area that can be explored using supervised

correction data. This could be done either off-line in batch mode, as in our speaker adaptation

experiments, or on-line, using a cache-based language model. In the lecture domain, topic words

are particularly important and are often referred to in the same n-gram context throughout the

lecture, making an on-line approach  helpful for IR tasks. Correction data from users can be

applied to a variety of supervised approaches, improving recognition performance and the

usability of speech interfaces. Error correction need not be a dead end in ASR applications,

separated from recognition, but rather it should be recognized as a key component in the

advancement of speech systems.
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