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Abstract

Ultrasonic sensing of articulator movement is an area of multimodal speech recog-
nition that has not been researched extensively. The widely-researched audio-visual
speech recognition (AVSR), which relies upon video data, is awkwardly high-maintenance
in its setup and data collection process, as well as computationally expensive because
of image processing. In this thesis we explore the effectiveness of ultrasound as a
more lightweight secondary source of information in speech recognition.

We first describe our hardware systems that made simultaneous audio and ul-
trasound capture possible. We then discuss the new types of features that needed
to be extracted; traditional Mel-Frequency Cepstral Coefficients (MFCCs) were not
effective in this narrowband domain. Spectral analysis pointed to frequency-band
energy averages, energy-band frequency midpoints, and spectrogram peak location
vs. acoustic event timing as convenient features.

Next, we devised ultrasonic-only phonetic classification experiments to investi-
gate the ultrasound’s abilities and weaknesses in classifying phones. We found that
several acoustically-similar phone pairs were distinguishable through ultrasonic clas-
sification. Additionally, several same-place consonants were also distinguishable. We
also compared classification metrics across phonetic contexts and speakers.

Finally, we performed multimodal continuous digit recognition in the presence of
acoustic noise. We found that the addition of ultrasonic information reduced word
error rates by 24-29% over a wide range of acoustic signal-to-noise ratio (SNR) (clean
to 0dB). This research indicates that ultrasound has the potential to be a financially
and computationally cheap noise-robust modality for speech recognition systems.

Thesis Supervisor: James R. Glass
Title: Principal Research Scientist

Thesis Co-Supervisor: Karen Livescu
Title: Research Assistant Professor
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Chapter 1

Introduction

Conventional automatic speech recognition (ASR) systems use only audio informa-

tion. When the speech audio becomes corrupted by the presence of external noise,

recognition performance suffers.

There are three main ways to deal with channel noise. One is to do audio prepro-

cessing on the noisy signal in order to recover as much meaningful data as possible.

This might involve methods such as adaptive filtering and spectral subtraction. The

second is to use model-based techniques to model the speech+noise signal (e.g. [5]).

The third is to simultaneously use another sensor that will capture the same linguistic

information but in another domain, often called the multi-modal approach. When the

noise is non-stationary, which includes babble speech noise, the first method usually

performs poorly [24]. In this research, we explore the use of ultrasonic sensors aimed

at the user’s mouth. These sensors obtain information corresponding to movements

around the lower facial region while operating at frequencies beyond the audible

range. Thus environmental noise will not affect these sensors, and this clean source

of secondary information will add noise robustness to the ASR system.

1.1 Motivation

Humans regularly perform multimodal speech recognition. Watching someone speak

allows one to gather information about place of articulation and audio source local-
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ization [20]. Therefore, vision as a secondary information source is useful for speech

recognition in a loud environment. Researchers have translated this to automatic

speech recognition by using video cameras to capture facial features during speech

(audio-visual speech recognition, or AVSR), with significant improvements in recog-

nition performance [19]. However, high-resolution video cameras can be quite expen-

sive, and the image processing and high dimensionality of data used in classification

can also be computationally expensive. The physical limitations (described in Re-

lated Work in Chapter 2) also make current AVSR setups impractical for the average

consumer.

In searching for cheaper (both materially and computationally) alternatives, re-

searchers have tested a multitude of sensors ranging from “tethered” skin-conducting

microphones [24, 7, 13] to “untethered” [18, 10, 11] sensors operating from a dis-

tance. These multimodal systems will be described in further detail in the Related

Work chapter.

In 2006, Kalgaonkar and Raj showed that by using ultrasonic sensors, effective

multimodal voice activity detection could be done [11]. More importantly, they estab-

lished that certain aspects of lip movement could be quantified by the Doppler effect

and measured by frequency changes in the ultrasonic signal. Inspired by this exper-

iment, we set out to extend the use of these sensors to perform speech recognition

tasks.

1.2 Ultrasonic sensors background

Ultrasonic transducers are constructed from piezoelectric materials (usually ceramic)

that bend at a set resonant frequency above 20kHz. There are two types of ultrasonic

transducers: transmitters and receivers. Transmitters radiate inaudible sound waves

given an input voltage, while receivers output voltage given the received sound waves.

A transmitter/receiver pair is shown in Figure 1-1.

Ultrasonic sensors are used for a variety of applications, such as rangefinding [9]

and medical imaging [15], and have different transmitter/receiver setups. Addition-

20



Figure 1-1: Ultrasonic transmitter and receiver

ally, they are driven in different ways. Ultrasonic rangefinders usually send a period-

ically pulsed signal to a single transmitter. The pulse reflects off an object, and the

time it takes to get back to the receiver can thus be measured. For our setup, we

transmitted a continuous sinusoidal signal because we were interested in the contin-

uous frequency response governed by the Doppler effect.

The Doppler effect states that the frequency observed by the receiver sensor de-

pends upon the velocity of the sound source and the frequency emitted by that source.

In equation form:

f = f0(1 +
v

c
) (1.1)

where f is the observed frequency, f0 is the frequency at the sound source, v is the

velocity of the sound source in the direction of the receiver, and c is the constant

speed of sound. Therefore, a constant frequency emitted by an object moving toward

the receiver will result in an observed increase in frequency, while the same object

moving away from the receiver will result in a decreased frequency (e.g. police sirens

increasing or decreasing in pitch as the car moves towards or away from the observer,

respectively).

This phenomenon can be shown with a simple experiment. We direct an ultra-

sonic transmitter (driven at 40 kHz) at a sheet of cardboard. We move the card-

board toward and away from the transmitter/receiver pair with its face parallel to

the transducers. In the reference frame of the receiver, the cardboard is the sound

source, not the transmitter. Therefore, movement of the cardboard will change v in

21



Figure 1-2: Example of Doppler Effect. Shown above is a spectrogram of the ultra-
sonic signal of cardboard being pushed and pulled away from the transmitter/receiver
pair. Cardboard movement causes frequency shifting in accordance to the Doppler
effect.

Equation 1.1. Because the transmitted frequency is constant, the observed frequency

f will be directly correlated to the cardboard velocity v. The spectrogram of the

received ultrasonic signal is shown in Figure 1-2. The frequency changes are a result

of cardboard movement. Note that the signal was downsampled during postprocess-

ing; the frequency scale shown in this figure is much lower than the actual 40 kHz

operating range of the experiment.

To apply the Doppler effect to speech recognition, we direct a transducer/receiver

pair toward a user’s mouth. The lower facial region can be modeled as a mesh of

infinitely small reflecting surfaces. Each surface reflects a 40 kHz signal toward the

receiver, and moves independently of the other surfaces. The result at the receiver is

a superposition of sinusoids at different frequencies. This can be seen in Figure 1-3

below, which are ultrasonic and audio spectrograms of a user speaking the utterance

“ma na”. From the ultrasonic spectrogram, we can see that there are indeed many

frequencies represented in each frame.

Additionally, from this figure we can begin to see the value of an ultrasonic sensor

towards the application of speech recognition. The nasals “m” and “n” are tradition-

ally difficult to distinguish in standard ASR systems because of their concentration

of energy in the low frequency range. One can see the overwhelming similarities in

the audio spectrogram: almost all the energy is packed into the lowest frequencies.

However, the articulatory motions for these sounds “ma” and “na” are very different,

and this is evidenced by the clear differences in the ultrasonic spectrogram.
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Figure 1-3: Ultrasonic (top) and audio (bottom) spectrograms of a user speaking “ma
na”. Nasals that are acoustically difficult to distinguish are easily differentiable in
the ultrasonic spectrogram.

Figure 1-4: Block diagram of multimodal ASR system

1.3 Proposed approach

The purpose of this project is to study the effectiveness of ultrasonic signals as a

secondary mode of information in the context of automatic speech recognition. The

proposed system is shown in Figure 1-4.

Physically, hardware must be created to transmit and receive ultrasonic signals.

Detailed descriptions of our hardware will follow in the next section. The hardware

outputs the ultrasonic (as well as microphone audio) signal to a stereo minijack cable.

The cable is connected to a computer’s sound card for input. The signals are pro-

cessed in software; most notably, feature extraction is performed on the raw audio and

ultrasonic signals to select only the most relevant aspects of the data for classification.
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The ultrasonic signals are fundamentally different than the audio signals; they are

narrowband and frequency-modulated around a carrier, so the traditional wideband

Mel-Frequency Cepstral Coefficients (MFCCs) will not be appropriate as ultrasonic

features. New methods of feature extraction must be created for this ultrasonic data.

The specific methods of feature extraction that we developed are detailed below in

Chapter 4.

Using these feature extraction methods, models are learned from newly collected

data for recognition of separate test data. We perform noisy digit recognition ex-

periments, varying both the acoustic noise level and the weights given to the audio

and ultrasonic models in the scoring process. Results from these experiments provide

insight into the effectiveness of the ultrasonic information in improving noisy speech

recognition.

Additionally, we would like to investigate the ultrasound’s ability to classify be-

tween specific phonemes, phoneme groups, and articulatory motions. We therefore

experiment with a separate set of data consisting of Consonant-Vowel-Consonant

(CVC) and Vowel-Consonant-Vowel (VCV) utterances. We derive models from the

ultrasonic features and perform classification experiments.

1.4 Overview

The remainder of this thesis is organized in the following manner. Chapter 2 will

discuss previous related work in the areas of multimodal speech recognition, multi-

modal fusion techniques, and ultrasonic speech processing and recognition. Chapter

3 will describe our hardware setup used to capture the acoustic and ultrasonic signals

for data collection. We will present a prototype system as well as a newer hardware

setup. Chapter 4 will detail the feature extraction methods used to transform the

acoustic and ultrasonic data into feature vectors for classification and recognition. We

begin testing the effectiveness of the ultrasound with Chapter 5, which will describe

the ultrasonic phonetic classifier along with results. Chapter 6 will describe our digit

recognizer and the implications of our findings. We will conclude with Chapter 7.
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Chapter 2

Related Work

2.1 Multimodal speech recognition

It has been known for a while now that humans integrate multiple sources of informa-

tion to recognize speech [20, 14]. The most popular secondary source of information

is visual. In a noisy environment, humans use lip reading as well as facial expressions

and gestures. In fact, the interesting phenomenon of superadditivity often occurs:

The accuracy of speech perception with two information sources is often greater than

the sum of the accuracy measures of the individual sources [3, 2].

Speech recognition scientists have been taking advantage of multimodal percep-

tion, using it for noise-robust machine speech recognition. Zhang et al. [24] at Mi-

crosoft Research have produced prototypes that rely upon secondary information

from bone-conducting sensors. The bone-conductive microphone captures speech in

the < 3kHz frequency range. The data from this sensor is used for voice activity

detection as well as estimating a reconstruction of the original clean waveform. Voice

activity detection (VAD) simply outputs whether or not the user is speaking. This

is useful in reducing recognition of noise as nonsense speech. Additionally, the esti-

mated reconstruction of the clean speech signal is fed into a speech recognizer. The

published speech recognition experiment was speaker dependent and performed on a

42-sentence corpus, and they showed that their WER was reduced from 64% to 30%

when using the additional bone-conducting signal.
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Graciarena et al. [7] have used a glottal electromagnetic micropower sensor (GEMS),

which is attached to the skin near the user’s throat. The sensor is an extremely sen-

sitive phase-modulated quadrature motion detector. The probabilistic optimum filter

(POF) method [17] is used to map the noisy microphone + throat microphone Mel-

Frequency cepstral coefficient (MFCC) features to clean MFCC features. POF is

an implementation of feature concatenation fusion, which will be discussed below in

Section 2.2. This multimodal system yielded a WER reduction from 95.6% to 52.6%

in 0dB SNR. Kwan et al. have also made a GEMS multimodal speech recognition

system. They used Gaussian mixture models instead of POF to reconstruct the clean

MFCC features. This yielded a WER reduction from 60% to 40% at 5dB SNR [13].

The most widely researched modality of multimodal speech recognition is Audio-

Visual Speech Recognition (AVSR). For humans, information about place of articula-

tion is obtained when looking at the speaker’s mouth, which increases human speech

recognition performance [19]. Applied to machines, AVSR uses a video camera to

capture visual information about the user’s face and an acoustic microphone to cap-

ture simultaneous audio data from the speech. Processing of the visual information

results in visual features that are ultimately fused with acoustic features and fed into

a recognizer that takes into account both types of information. State-of-the-art AVSR

systems are able to reduce WER from 78% to 38% in 0dB SNR [19]. However, AVSR

requires computationally expensive preprocessing just to prepare the data: face and

facial part recognition, region of interest (ROI) extraction, (optionally) lip/face shape

recognition, lighting normalization. There are also stringent physical limitations, such

as no side-to-side rotation of the head, and stationary, no-shadow light source loca-

tion. The two-dimensional nature of the video images also result in computationally

expensive processing during the actual feature extraction and later stages.

2.2 Fusion of multimodal sources

For two information sources to be considered in the recognition of speech, there must

be a way to fuse these sources to obtain one recognition result in the end.
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Fusion from features, also known as Direct Identification (DI) fusion [19], usually

require either feature concatenation of two sources or feature weighting. In feature

concatenation, each feature source is treated as equally important, and the two are

simply combined in one long feature vector. Usually dimensionality reduction is

necessary afterwards [16]. This single vector is then used in the classification stages.

In feature weighting, the audio or secondary-sensor Gaussian distance-to-mean of

each model is multiplied by a certain weight. This allows flexibility in choosing

the contribution level of each modality. Fusion from classifier outputs is known as

Separate Identification (SI). SI is very good at taking advantage of the reliability of

each modality [19]. SI fusion is usually done by a linear combination of log-likelihoods

of each single-modality score. The linear combination uses defined weights for each

modality [22]. These fused log-likelihoods are then used to determine the output.

There is also active research in automatically finding the optimum weight for each

modality [21]. There exist other more complex fusion methods, particularly those

which use both DI and SI. These are known as Hybrid fusion techniques, which can

generally perform better than DI- or SI-only methods [19, 4, 8].

2.3 Ultrasonic speech recognition modality

There has not been much research on using ultrasonic sensors as a second modality in

speech recognition. Jennings and Ruck [10] created a multimodal ultrasonic speech

recognition system based on dynamic time warping (DTW), with experiments on

speaker-dependent, isolated digit recognition.

In their setup, they used a 40 kHz oscillator to drive an ultrasonic transducer aimed

at the user’s mouth. The signal reflects back, and a standing wave manifests between

the transmitter/receiver pair and the user’s mouth. Mouth movements change the

amplitude and slightly shift the frequency of the standing wave. This ultrasonic signal

is captured by the ultrasonic receiver, and is fed through an envelope detector and

AC coupling. This low-frequency signal is downsampled and used as features in the

ultrasonic classifier. The acoustic features are 10 LPC coefficients per frame.
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For each class, a template is defined for each modality, from which DTW distances

are derived. The probability of a certain class (for each modality) is inversely pro-

portional to the DTW distance and is normalized over the distances for each class.

These “pseudo probability mass functions” for each modality are fused pairwise by a

simple linear combination, resulting in one output probability for each class. Jennings

and Ruck performed speaker-independent experiments of isolated digit recognition,

adding various levels of white noise to the acoustic channel. At 0dB, the system was

able to reduce WER from 22% to 7%.

More recently, Kalgaonkar and Raj [11] used a similar hardware setup to perform

voice activity detection using a multimodal ultrasonic system. Changes in mouth

movement are characterized by Doppler frequency shifts. The detection algorithm

frequency-demodulates the received signal, and the energy of the resultant signal rep-

resents the total velocity of the articulators. This energy is compared to an adaptive

threshold, and the output is a binary “speech” or “no speech” decision. With 0dB

babble noise, VAD detection rate increased from 52.5% audio-only to 96.05% using

both audio and ultrasonic information.
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Chapter 3

Hardware Setup

3.1 Prototype hardware

The hardware is the first part of the multimodal system, capturing the ultrasonic

and acoustic information simultaneously. The ultrasonic part needs to generate and

receive an ultrasonic signal. The acoustic signal is captured by a simple electret

microphone. This section describes the first hardware capture system we built.

Each of the received ultrasonic and acoustic signals are single-channel, so we can

output them as a stereo signal, using a stereo minijack cable. This cable is input

to a conventional computer sound card, which performs A/D conversion. Since a 40

kHz carrier tone is higher than the largest sampling rate of most sound cards, we

decided to modulate the ultrasonic signal so that the stereo signals could be sampled

without aliasing at a sampling frequency of 16 kHz/s. The hardware setup is shown

in Figure 3-1.

Figure 3-1: Hardware configuration
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The transducers it contains are an ultrasonic emitter and receiver, and an electret

microphone for the regular audio signal. The ultrasonic transmitter is a Kobitone

400ST160 tuned to a resonant frequency of 40 kHz. The transmitter is driven by a 40

kHz squarewave generator, which is implemented by a PIC10F206 microcontroller.

The output of the transmitter is a pure sinusoid even though it is driven by a square-

wave, because the transmitter is inherently a narrowband device that will bandpass

filter the other harmonics, leaving the first 40 kHz sinusoidal harmonic.

The ultrasonic receiver is a Kobitone 400SR160 also centered around 40 kHz,

with a -6dB bandwidth of 2.5 kHz. This receiver is extremely sensitive within this

bandwidth, which allows minor frequency shifts to be detected; these frequency shifts

are the basis of our subsequent analysis. In order to shift the ultrasonic spectrum

down to a lower frequency range, the received signal is modulated with a 35.6 kHz

sinusoid to downshift it to be centered at 4.4 kHz, well within the capture bandwidth

of standard sound cards. The modulation process is implemented by a 35.6 kHz

squarewave generator (also a PIC10F206) and a fourth-order Butterworth lowpass

filter with a cutoff frequency at 48 kHz. This cutoff frequency eliminates the odd

harmonics above the first, resulting in a 35.6 kHz sinusoid. An Analog Devices MLT04

analog multiplier is then used to multiply the received signal and the sinusoid to

perform the modulation.

The schematics and Printed Circuit Board (PCB) layout are shown in Figures A-

1 and A-2 in Appendix A. The PCB was printed offsite by a PCB manufacturing

company and sent back to us. We hand-soldered the device with the necessary com-

ponents onto the PCB and tested it to ensure that the hardware was working properly.

3.2 Next-generation hardware

In order to reduce noise in the capture process, as well as to miniaturize our current

setup, we collaborated with researchers Carrick Detweiler and Iuliu Vasilescu from

the MIT CSAIL Distributed Robotics Laboratory to build a small, digital-output

version of the ultrasonic+audio capture hardware.
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Figure 3-2: User speaking into prototype hardware

Figure 3-4 shows an image of the next-generation hardware and Figure 3-3 shows

its block diagram. At the heart of the device is a Xilinx XC2C256 CoolRunner II

CPLD (complex programmable logic device). This generates a 40 kHz square wave

with variable duty cycle which is input into the ultrasonic emitter.

The reflected signal is captured by the ultrasonic receiver. This signal passes

through a low noise amplifier (LNA) followed by a variable gain amplifier (VGA),

which allows control over the sensitivity of the receiver (36dB range). The signal

then passes through a 40 kHz bandpass filter. Finally, the filtered signal goes into a

16-bit analog to digital converter (Analog Devices AD7680). The CPLD reads the

ADC at 24 kHz causing the 40kHz signal from the ultrasonic receiver to be aliased

down to 8kHz.

The audio is captured from an internal or external microphone and is processed

similarly to the ultrasound channel. The main difference is that a lowpass filter with

a cutoff of around 8 kHz is used. The digital representation of both the ultrasound

and audio channels on the CPLD is then formatted for transfer over USB using an

FTDI FT245 USB chip. The result is pure digital streams of both channels to the

host computer.

The fabrication process was handled by Carrick and Iuliu, and reportedly was
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Figure 3-3: Block diagram of next-generation hardware system

Figure 3-4: Next-generation hardware

similar to the process for the prototype board.
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Chapter 4

Feature Extraction

The audio and ultrasonic channels will each go through independent feature extrac-

tion stages, whose outputs will be used in separate classifiers. The audio channel

will be processed by standard Mel-Frequency Cepstral Coefficient (MFCC) feature

extraction, while new techniques must be developed to extract features from the

fundamentally different type of data in the ultrasonic channel.

4.1 Audio Feature Extraction

We use standard MFCCs as features from the audio signal. MFCCs represent the

spectral content of a signal on a logarithmic frequency scale.

The audio signal is split into 5 ms frames, and the spectrum is calculated by

Fast Fourier Transform (FFT) analysis. The FFT coefficients are then mapped to

a logarithmic “Mel-scale” using triangular windows, shown in Figure 4-11. The log-

power at each of these mel frequencies is calculated, and then the Discrete Cosine

Transform (DCT) of this log-power spectrum is computed, resulting in the MFCCs [1].

We extract 14 total MFCC features from each frame.

1http://labrosa.ee.columbia.edu/doc/HTKBook21/img165.gif
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Figure 4-1: Illustration of the Mel-scale and triangular averaging windows

4.2 Ultrasonic Feature Extraction

The ultrasonic signal differs from the acoustic signal in that it is narrowband and

very sensitive to minute frequency shifts. Standard MFCC features are not sufficient

for classification. We must analyze this ultrasonic signal and develop a new method

of feature extraction.

4.2.1 Time domain analysis

Figure 4-2 shows audio spectrogram and ultrasonic time-domain plots of four utter-

ances: two of the digit “seven” and two of the digit “five”. The utterances were

taken from continuous speech sequences in which the instances of “seven” and “five”

occurred.

Across instances of “seven” and “five”, we observe that the ultrasonic plots show

almost no correlation whatsoever between digits across instances. Subsequent analysis

of other digits across more instances reveals a similar trend. There does not seem to

be a robust, quantifiable measurement that will allow reasonable classification to be

done. Thus we must look elsewhere to gain insight for ultrasonic feature extraction.

4.2.2 Frequency domain analysis

As described earlier, the recorded ultrasonic signal will consist of a number of different

frequency components, with each component corresponding to a reflection from a

moving (articulator) surface. The amount of energy at a particular frequency can be
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Figure 4-2: Time-domain ultrasonic analyses of two instances each of “seven” (a,b)
and “five” (c,d). There is seemingly very little ultrasonic correlation between (a) and
(b), as well as (c) and (d).

associated with articulator(s) moving with a certain velocity at a particular time. We

can thus expect the spectrograms of identical utterances to appear similar.

This is confirmed in Figure 4-3, which shows the same utterances as those in

Figure 4-2, but substitutes ultrasonic time-series plots with spectrograms. We can

observe much greater similarities between instances of the same digit. We would like

to extract features from the spectra of the ultrasonic signals.

4.2.3 Carrier cancellation

In addition to the ultrasonic reflections from the user, the receiver also picks up

coupling directly from the transmitter. We can see from the middle graph in Figure 4-

4 that the carrier signal is very strong, and in fact it overwhelms the magnitudes of

the ultrasonic signal near the carrier. We would like to remove this coupled signal by

spectral subtraction.

We characterize the carrier spectrum by taking the FFT of the first 6 ms frame of

each utterance, when there is no movement or talking. Figure 4-5 shows a typical car-
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Figure 4-3: Ultrasonic spectrograms in different-context scenarios. The figure setup
is the same as in Figure 4-2, but with ultrasonic spectrograms instead of time-domain
plots. Much greater similarities can be observed between (a) and (b), (c) and (d).

rier spectrum. For each frame, we then normalize the magnitude of the spectrum by

matching its value at the carrier with that of the utterance frame’s carrier magnitude.

This normalized spectrum is subtracted from each frame of the received spectrum.

The bottom spectrogram of Figure 4-4 shows the result of this carrier cancellation.

We can observe much more detail in the frequencies near the carrier, which were

obscured previously.

4.2.4 Frequency-band energy averages

We have determined from analyzing the ultrasonic signal spectrum that there are

consistent trends in the data. There now needs to be a way of quantifying these visible

trends for use in machine classification procedures, which require feature vectors as

input.

The first type of ultrasonic feature extraction is a simple sub-band averaging

method. Figure 4-6 illustrates the spectrum partitioning method. In practice, we

partition the ultrasonic spectrum into fourteen non-linearly spaced sub-bands cen-
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Figure 4-4: Carrier cancellation effects on utterance “aaDaa”. The middle spec-
trogram shows the carrier coupling signal overwhelming useful received data. The
bottom figure shows the spectrogram with the carrier removed.
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Figure 4-5: A standard spectrum of the ultrasonic carrier signal that will be removed.

tered around the carrier frequency of 4.4kHz. The spectrum of each frame of an

utterance is separated into these bands, and the average magnitude of each band is

taken as a feature. The bandwidths slowly increase from 40 Hz to 310 Hz from the

first to the seventh band, respectively. The bandwidths near the center are smaller

in order to capture higher resolution around the carrier frequency. This approach

measures the amount of energy (relative to the carrier tone) in different portions of

the spectrum. Let FBi be the frequency band feature for band i for a particular

frame, f be frequency, fhighi
and flowi

be the frequency boundaries for band i, and

U(f) be the magnitude of the ultrasonic spectrum at frequency f .

FBi =

fhighi
∑

f=flowi

U(f)

fhighi
− flowi

(4.1)

Figure 4-7 shows sample results of the sub-band feature extraction. Two feature

vectors are shown; they have been extracted from the 3.8-4.1 kHz and 4.6-4.9kHz

sub-bands (outlined in blue rectangles). We see that at the peaks (both positive and

negative) of the spectrogram, there exists high energy in the frequency bands.
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Figure 4-6: Example of six frequency sub-bands on an ultrasonic spectral slice. The
average magnitude is computed for each sub-band.

Figure 4-7: Sample frequency sub-band feature vectors obtained from the blue-
outlined frequency bands.
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4.2.5 Energy-band frequency centroids

The second set of measurements quantifies frequency deviation from the center fre-

quency in different parts of the spectrum. The reasoning for this method of feature

extraction is based on the Doppler Effect described in Section 1.2. Frequency devi-

ation from the carrier represents movement in the articulatory surfaces of the user’s

face. From observation of the ultrasonic spectrogram, we can identify several iso-

energy contours, as shown in Figure 4-8. We would like to extract these contours as

features.

Figure 4-9 displays the partitioning of the spectrum into several energy bands.

The frequencies that exist within each band are weighted by their distance from

the carrier frequency, and a center-of-mass (COM) averaging is performed to select

one representative frequency centroid for each energy band. Equation 4.2 details the

feature extraction calculation. Let EBj be the energy-band centroid feature for energy

band j for a particular frame, fc be the carrier frequency, and U ′

j(f) be a boolean

which equals 1 when the frame contains energy in energy band j at frequency f , and

0 when no energy exists at that frequency. Let El
j and Eh

j be the low and high energy

thresholds for band j, respectively. U ′

j(f) acts as a window for a particular energy

range, and the EBj feature is the center-of-mass of the frequency values the window

passes through.

EBj =








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8000
∑

f=fc

f − fc

8000 − fc

U ′

j(f)f

8000
∑

f=fc

f − fc

8000 − fc

U ′

j(f)

, if j band is > fc

fc
∑

f=0

fc − f

fc

U ′

j(f)f

fc
∑

f=0

fc − f

fc

U ′

j(f)

, if j band is < fc

(4.2)
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Figure 4-8: Contours on different energy levels.

Figure 4-9: Example of five energy sub-bands on an ultrasonic spectral slice. Center-
of-mass calculations are performed over frequency ranges defined by relative energy
thresholds.

U ′

j(f) =











1, if U(f) in [El
j, E

h
j )

0, otherwise

(4.3)

Several energy thresholds were used, over the ranges: -10 to -20 dB, -20 to -30 dB,

-30 to -40 dB, -40 to -50 dB, and -50 to -60 dB. Ten total energy band features were

computed for each frame.

Figure 4-10 shows sample results of EB feature extraction, from the energy level

-50 dB to -60 dB. It is evident that these features closely follow the natural outline

of red-to-yellow peaks, which occur at -50 to -60 dB. This outline is directly marked

in blue in Figure 4-8.
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Figure 4-10: Ultrasonic spectrogram of a digit sequence (top), and example feature
vectors (bottom).

4.2.6 Peak location features

It is apparent from observing the ultrasonic spectrograms that there are many large

peaks in each utterance. These peaks correspond to mouth closures (positive peaks)

and mouth openings (negative peaks). Closures cause a high-velocity shifting of

the reflection surfaces toward the ultrasonic receiver, thus increasing the observed

frequency. Openings cause a high-velocity backwards shift in reflection surfaces, thus

decreasing the observed frequency.

Timing information of these closures and openings should provide useful informa-

tion, especially in relation to phone boundaries. These inter-phone timestamps are

calculated through a landmark generation process, which will be detailed in the next

section.

Around certain selected landmarks, we find the maximum and minimum peaks of

the spectrogram in a 40 ms window (centered at the landmark). To find the peaks,

we use two EB features (of the same energy band - one for lower frequencies and and

one for upper) as the signal because they can approximate the lower/upper contours

along the energy band we are interested in. We are only interested in the larger
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Figure 4-11: Peak location feature extraction process, illustrated with utterances
“aaKaa” and “aaGaa”

peak, so we find the difference between the large peak timestamp and the landmark

timestamp. Figure 4-11 shows this process visually for the utterances “aaKaa” and

“aaGaa”. The landmarks we use are after the first vowel and before the last vowel

in each word. These are shown as vertical purple lines which extend through all the

sub-figures. The bottom sub-figures show EB extracted contours, with the positive

peak marked with blue and the negative peak marked with green. The differences

between the peak times and landmark times are also shown; these two difference

measurements are the peak location features for that particular word. We observe

that these features are different between the two utterances shown.
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4.3 Landmark feature processing

Landmarks are used in segment-based speech recognizers [6, 8]. From the acoustic

MFCCs, salient changes in acoustic information (hypothetically, phone boundaries)

are found and labelled as possible landmarks. Using acoustic models, we then score

the segments between all possible landmarks, and then force a one-to-one mapping of

the segments to phones (or other acoustic events, such as noise, silence, etc...). This

process also automatically selects the “correct” landmarks and rejects the landmarks

corresponding to segments with low phonetic likelihood. As explained in Chapter

6, our digit recognizer uses both boundary models, which rely on features around

landmark locations, and segment models that are based on the duration of a segment

between landmarks.

Using these landmarks, we prepare the audio and ultrasonic features for classifi-

cation. From streams of frame-based features in each utterance, we end up with an

n-dimensional feature vector for each landmark. At each phonetic change landmark,

j telescoping windows extend out to each side of the landmark, averaging the features

within each window. For k feature sets, there will be a total of j∗k = n dimensions for

each landmark. Specific dimensionalities will be given in the latter sections regarding

recognizer setups.
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Chapter 5

Phonetic Classification

Experiments

Two types of experiments were performed to investigate the usefulness of ultrasonic

information as a second data source for speech recognition. The first set of exper-

iments involved phone and phone-group classification in CVC and VCV contexts,

using only the ultrasonic features, to determine the ultrasonic information’s ability

to distinguish between specific articulatory motions. The second type of experiments

involved continuous digit recognition using both audio and ultrasonic features, in

which we investigated the effects of varying the ultrasonic model weight as well as

acoustic noise levels. We will describe the procedures and findings of the phonetic

classification experiments in this section.

5.1 Experimental setup

5.1.1 Data collection procedures

Data collection was performed at MIT in a quiet office environment.

The corpus consisted of eight talkers: six male and two female. The talkers sat in

front of the hardware, which captured simultaneous ultrasonic and acoustic data.

The talkers read a script consisting of isolated words each containing a target
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vowel or consonant. The script consisted of fifteen CVCs in one context (“h-V-d”)

and twenty-four VCVs in four contexts (“aa-C-aa”, “ee-C-ee”, “oo-C-oo”, “uh-C-

uh”), for a total of 111 distinct words. The exact words are in Appendix C. Due to

time constraints, we had a different amount of data collected from each individual.

Two talkers, one male and one female, contributed 20 sessions (of the entire 111 word

collection) of data, while the other talkers contributed 2 sessions each. Thus there

are a total of 54 instances of each word. The speaker-dependent experiments were

only performed on the two talkers with 20 sessions each.

5.1.2 Classifier setup

As input to the classifier, we generated landmark-based features from only the ultra-

sonic features for classification. However, in the process of generating the ultrasonic

features, we used acoustic information to obtain the landmark locations.

The acoustic data was first run through a recognizer trained on spoken lecture

data in forced mode to generate phone boundary landmarks. The correct phoneme

sequences were used as input. These landmarks were then edited manually for accu-

racy.

The edited acoustic landmarks were used to generate ultrasonic features as de-

scribed in Section 4.2. In a process very similar to that described in Section 6.1.2, the

22 ultrasonic feature streams (10 energy-band frequency centroids and 12 frequency

sub-band energy averages) were averaged within twelve telescoping regions around

each acoustic landmark (symmetric windows extending 0-6ms, 6-18ms, 18-30ms, 30-

60ms, 60-90ms, and 90-180ms on each side from the landmark). Additionally, the

two peak features were calculated for each landmark. Each word has two landmarks,

placed after the first phone, and before the last phone. When modeling each word,

there is a total of 532 dimensions: 528 from the FB and EB features (12 regions

* 22 dimensions * 2 landmarks), and 4 from the peak features (2 dimensions * 2

landmarks). Principal components analysis was then used to project down to 50

dimensions, which were modeled with single diagonal Gaussians.

The dimensionality of the models was chosen from a coarse analysis of misclas-
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sification rate with respect to dimensionality, and finding the dimensionality for the

minimum error rate. The coarse analysis was performed in increments of 10 between

30 and 70 dimensions, and 50 was found to be the optimal dimensionality. Figure 5-1

shows a more recent detailed analysis, with increments of 1, between the ranges of 10

and 70. The classification task was Speaker 2’s “aa” context VCVs. We see here that

the error rate is minimum at 22 dimensions, although there is also a local minimum

at 47 dimensions. Because all the experiments were done with 50-dimension models,

classification with 22-dimension models will be future work.
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Figure 5-1: Misclassification rate vs. dimensionality.

Several classification experiments were performed, all using the same procedure.

We use the jackknife method in obtaining classification results. Given a set of data,

90% is used to train models, and the other 10% is used for testing. Classification

performance is measured, and the 90% train/10% test sets are rotated nine more

times, resulting in ten sets of classification results, which are then averaged.

We partition the corpus into the contexts denoted above (vowels, “aa”, “ee”, “oo”,

and “uh”). Separate classification experiments are performed on each of the consonant

contexts to differentiate how they affect our ability to detect consonant articulatory

production. We also separately perform speaker-dependent and speaker-independent

experiments. In addition to general misclassification measures, we analyze the mis-
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classifications using confusion matrices, which will be discussed in further detail in

the next section.

5.2 Preliminary results and observations

For analyzing the classification results, we looked at overall misclassification rates, and

investigated in further detail using confusion matrices. We also used raw spectrogram

data to understand the trends we observed. In Appendix F, we show one example

spectrogram of each word used in this experiment for both Speaker 1 and Speaker 2.

Figure 5-2 presents a page of these spectrograms for Speaker 2’s “aa” context VCVs.

The analyses we present are preliminary. More data collection and investigation

into our feature extraction methods must be done in order to confirm the conclusions.

In particular, in deriving the landmark-based features, we may be averaging over rapid

changes in the features within the telescoping windows.

5.2.1 Confusion matrix structure

To analyze the classification results, we create a confusion matrix with the two axes

representing the hypothesized classes and the correct classes. A sample confusion

matrix (Speaker 1’s VCV in “aa” context) is shown below in Figure 5-3. The number

in each element (A,B) of the matrix indicates the number of times A was classified

as B. The shading of each cell is proportional to the classification rate. Darker cells

indicate higher classification rates.

In order to simplify the analysis of confusion matrices, we grouped together equiv-

alent misclassifications. For example, a “B” misclassified as “M” is in the same group

as “M” misclassified as “B.” In both cases, we observe pairwise confusability between

“B” and “M”. The simplified confusion matrix is shown in Figure 5-4. Notice that

the cells in the upper triangle of the matrix have been zeroed out. Those classification

rates have been added to their mirror image cells.

Figures D-1 and D-3 in Appendix D show simplified confusion matrices of Speaker

1 and Speaker 2’s vowel classification. Figures D-2 and D-4 show confusion matrices
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Figure 5-2: Spectrograms of Speaker 2 “aa” context VCVs. Time (in 6ms frames)
is represented by the x-axis, while frequency (in 4 Hz frames) is represented by the
y-axis.
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Figure 5-3: Confusion matrix of Speaker 1’s “aa” VCV classification.

of Speaker 1 and Speaker 2’s VCV classifications that have been superimposed across

context. We added the classification results from each of the VCV contexts and

compiled them into one confusion matrix.

5.2.2 Acoustic confusability comparisons

We find that certain acoustically confusable pairs such as “M-N” are very rarely con-

fused by the ultrasound-based classifier. On an acoustic spectrogram, the nasals are

difficult to distinguish. However, from the confusion matrices in Figures D-2 and D-

4, we see that all three pairs “M-N”, “M-NG”, and “N-NG” have few confusions.

From the raw ultrasonic spectrograms in Figure 5-5 we see that the three nasals have

different profiles.

In addition to the nasals, we see that other acoustically similar pairs such as

“P-B” and “T-D” also have few misclassifications. This low ultrasonic confusability

of acoustically confusable phones suggests that even without noise, there are situa-

tions in which the ultrasonic signal can contribute usefully, which is important for a
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Figure 5-4: Simplified confusion matrix of Speaker 1’s “aa” VCV classification.

multimodal system.

aaMaa

360 380 400 420

0

50

100

150

200

aaNaa

540 560 580 600

0

50

100

150

200

aaNGaa

700 720 740 760

0

50

100

150

200

Figure 5-5: Speaker 2’s “aaMaa”, “aaNaa”, and “aaNGaa” spectrograms with acous-
tic landmarks.

5.2.3 Place of articulation confusability comparisons

We expect that consonant pairs with the same place of articulation would be highly

confusable. While this is true for many pairs such as “F-V”, “G-NG”, and “B-M,”

we find some surprising exceptions. Along with two examples stated in the previous

sub-section, “P-B”(bilabial) and “T-D” (alveolar), we also find “T-N” (alveolar),
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“K-NG”(velar), and “ZH-CH” (post-alveolar) to be rarely misclassified.

Looking at the spectrograms in Figure 5-6, we see that although “aaKaa” and

“aaNGaa” have similar profiles, their peaks occur at different times relative to the

vertical landmarks shown (which indicate the end of the first “aa” and the onset

of the second “aa”). The velar movement in “aaNGaa” begins long before the first

vowel ends, while that of “aaKaa” begins only slightly before the vowel ends. This

discrepancy can be seen by the ultrasonic valley of “aaNGaa” occurring before that

of “aaKaa”, relative to the first landmark. Similarly, the aspiration after the release

of “K” delays the onset of the vowel, while this does not occur with “NG”. Therefore,

the second landmark which indicates vowel onset occurs after the second peak of “K”,

while the landmark for “NG” occurs during the peak. These discrepancies as well

as similar discrepancies for the other rarely misclassified pairs are captured by the

features.
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Figure 5-6: Speaker 2’s “aaKaa” and “aaNGaa” spectrograms with acoustic land-
marks.

Another expectation we have is that across different places of articulation, we

would see few misclassifications. From the confusion matrices in Figures D-2 and D-

4, which have the classes arranged on the axes by place of articulation, we see that

many of the highly misclassified pairs occur near the diagonal, which means that

misclassification often occurs within place of articulation. However, in the areas

beyond the diagonal there are numerous highly misclassified pairs. This indicates

that there are many phoneme pairs that appear similar in the ultrasonic signal even

when they are not in the same place of articulation. An example is “S-TH”, whose

similarities are demonstrated by the spectrograms in Figure 5-7.
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Figure 5-7: Speaker 2’s “aaSaa” and “aaTHaa” spectrograms with acoustic land-
marks.

5.2.4 Context and speaker dependency

We have performed consonant classification tasks on four separate vowel contexts

(“aa”, “ee”, “oo”, and “uh”). Table 5.1 shows speaker-dependent misclassification

measurements across these contexts. We see here that classification widely varies

depending on the context.

Within consonant classification, we observe that consonants in “ee/oo” contexts

are more difficult to classify than those in “aa/uh” contexts. This may be due to the

more closed mouth positions of “ee/oo” which result in smaller articulatory move-

ments than in “aa/uh” contexts. From ultrasonic spectrograms, we can see evidence

for this in the lower frequency deviation from the carrier frequency in the “ee/oo”

contexts. Figure 5-8 shows “vowel-NG-vowel” across the four contexts.
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Figure 5-8: Speaker 2’s “aaNGaa”, “eeNGee”, “ooNGoo”, and “uhNGuh” spectro-
grams with acoustic landmarks.

With less mouth movement, there is less ultrasonic signal resolution in the features

and class models. The most prominent information comes from the openings and

closings of the lips because those movements effectively move a large area of reflecting

surfaces toward/away from the receiver very quickly. This almost-instantaneous shift
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Speaker 1 (F) Speaker 2 (M)
Misclassification (%) Misclassification (%)
Context Test Context Test
vowel 60.00 vowel 50.33
aaCaa 41.04 aaCaa 30.83
eeCee 66.25 eeCee 52.08
ooCoo 71.25 ooCoo 45.21
uhCuh 44.17 uhCuh 41.67

Table 5.1: Speaker 1 (Female) and Speaker 2 (Male) Speaker-Dependent Misclassifi-
cation Rates

Speaker Independent)
Misclassification (%)
Context Test
vowel 75.47
aaCaa 57.08
eeCee 74.92
ooCoo 78.58
uhCuh 65.08

Table 5.2: Speaker-Independent Misclassification Rates

causes large frequency shifts in the ultrasonic signal. Additionally, with a more open

context, we are also able to observe tongue movements better.

In Appendix D, Figures D-5 through D-12 show specific confusion matrices of

VCVs in the four contexts for both speakers. From glancing over these matrices

it is evident that there are many differences in misclassifications across contexts.

Appendix E contains tables of the 10 most misclassified pairs for each context; we see

from Tables E.1 and E.2 that highly confusable pairs differ across the vowel contexts.

From the same few figures and tables mentioned above, we observe differences

between Speaker 1 and Speaker 2’s misclassification results. Speaker 2’s models gen-

erally perform better, and given a context, the highly confusable pairs differ amongst

the speakers, as shown by Tables E.1 and E.2. It is no surprise then that speaker-

dependent classification performance (Table 5.1) is much better than that of speaker-

independent classification (Table 5.2).
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5.2.5 Hierarchical clustering analysis

For the “aa” context, Figures 5-9 and 5-10 show dendrograms of hierarchical cluster-

ing analysis of the consonant classes. The distance between two classes was computed

by subtracting the misclassification rate for that class pair from the maximum mis-

classification rate over all pairs in the experiment. Thus, higher error rates correspond

to smaller distances between classes. The dendrograms were created with the shortest

distance method in MATLAB.

From these dendrograms we can understand how close two phonemes are to each

other with respect to classification rates. For both speakers, the “B-M” pair was

highly confusable, as evidenced by the confusion matrices in Figures D-5 and D-

9. This is reflected by the clustering of “B” and “M” in the lowest level of the

dendrograms. Similarly, “W” and “H” were rarely confused with any other phones,

so they were clustered last. In the middle cases, other inter-speaker similarities as

well as dissimilarities can be observed from these dendrograms.

Figure 5-9: Speaker 1’s dendrogram for “aa” context.

Figure 5-10: Speaker 2’s dendrogram for “aa” context.
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Chapter 6

Digit Recognition Experiments

For this experiment, we performed continuous digit recognition, while varying the

weight given to the ultrasonic model as well as the level of acoustic input noise.

6.1 Experimental setup

6.1.1 Data collection procedures

Data collection was performed at MIT in a quiet office environment.

The corpus consisted of twenty talkers: nineteen male and one female. The talkers

were situated in front of the ultrasonic transducers, with a distance of about six inches

between the talker’s face and the transducers. The talkers were told to limit their

head movement as much as possible. The microphone on the hardware simultaneously

captured acoustic data.

The talkers were prompted with fifty sequences, each containing ten randomized

digits. These sequences can be referenced in Appendix B. The digits were 0 through

9, and the users were told to say “zero” instead of “oh” for consistency. The entire

data set consisted of one thousand ten-digit utterances; each digit was spoken approx-

imately one thousand times. For our experiments, we divided our collected data into

a training set containing 750 utterances from 15 speakers, and a test set containing

250 utterances from the remaining set of 5 speakers.
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6.1.2 Recognizer setup

Our speech recognition experiments were conducted using a landmark-based speech

recognizer that has been previously used for AVSR experiments [6, 8]. The recognizer

was configured to recognize arbitrary digit strings containing exactly 10 digits. The

digit strings were modeled by 110 context-dependent diphone-based acoustic and

ultrasonic models.

To generate the landmark-based acoustic features, the speech signal was first

processed into frame-based Mel-frequency scale cepstral coefficients (MFCCs) at a

rate of 200 frames per second. Each frame consisted of a vector of 14 MFCCs, which

were described in Section 4.1. From the MFCC frames, significant landmarks in

the acoustic signal were first detected using a measure of acoustic change. Feature

vectors were extracted at landmarks based on averages of MFCC vectors in the region

surrounding each landmark. Specifically, a set of 8 telescoping regions were defined,

which together span 150ms around the landmark (symmetric windows extending 0-

5ms, 5-15 ms, 15-35ms, and 35-75ms on each side of the landmark). Within each of

these regions the frame-based MFCC feature vectors were averaged to form a single

14-dimensional feature vector for the entire region. In total, this yielded a single

112-dimensional (8 regions * 14 dimensions) feature vector for each landmark. The

landmark feature vectors were then projected down to 50 dimensions using principal

components analysis (PCA). From the 50-dimensional feature vectors extracted from

the training data, word-dependent diphone-based phonetic models were created to

represent the acoustic landmarks within the digit words. Gaussian mixture density

functions were used to model the 110 diphone models.

The models of the ultrasonic features were generated in a similar fashion as the

acoustic models. For every frame the ultrasonic signal was represented by the col-

lection of 27 ultrasonic measurements (13 energy-band frequency centroids and 14

frequency sub-band energy averages). Within each of six telescoping regions sur-

rounding an acoustic landmark, the ultrasonic frame vectors were averaged to form

a single 27-dimension feature vector for the entire region. The full set of six regions
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spans 140ms around the landmark (symmetric windows extending 0-10ms, 10-30ms,

and 30-70ms out each side of the landmark). In total, this yields a 162-dimensional

(6 regions * 27 dimensions) ultrasonic feature vector for each landmark. The ultra-

sonic landmark feature vectors were then also projected down to 35 dimensions using

principal components analysis. As with the acoustic features, the ultrasonic features

were modeled with a Gaussian mixture density function for each of the 110 different

diphone models.

In addition to the acoustic and ultrasonic models, a context independent phonetic

duration model was also created [25]. The three models were trained on the data

in the 15 speaker training set. In the baseline recognizer configuration, the acoustic,

ultrasonic and duration models were combined with equal weights of 1. In situations

where there may be considerable background acoustic noise, the system can reduce

the weight of the acoustic model relative to the ultrasonic model as the acoustic

signal-to-noise ratio (SNR) is reduced.

To simulate noisy acoustic conditions, babble noise from the NOISEX database

was synthetically added to the data in the test set at SNR levels of 20db, 10db and

0db [23]. This provided us with four noise conditions (including the clean condition)

for our experiments. At each noise condition we examined the recognition perfor-

mance as the weight of the acoustic model was varied from 0.0 to 1.0.

6.2 Results and Discussion

In general, we have found that using ultrasonic information in addition to acoustic

information improves digit recognition performance.

In Figure 6-1, we see results from all four acoustic noise-level settings. The x-

axis represents audio weight, while the y-axis shows Word Error Rate (WER) on

a logarithmic scale. A solid curve for each noise condition shows the multimodal

(audio+ultrasonic) recognition results as the audio weight is varied from 0.0 to 1.0,

and a dashed line is shown for the unimodal audio-only result. The graph shows

that the ultrasonic information improves the speech recognition performance over

59



Optimal Word Error Rate (%)
Noise Audio Audio Ultrasonic Audio +
Level Weight Only Only Ultrasonic
Clean 1.0 0.32 70.5 0.24
20db 1.0 3.44 70.5 2.44
10db 0.5 24.0 71.8 17.5
0db 0.3 61.2 72.0 46.6

Table 6.1: Digit recognition results for the audio-only, ultrasonic-only, and multi-
modal (audio+ultrasonic) systems when the optimal audio weight is used.

the audio-only case for a wide range of audio weights for each condition. This is

confirmation that ultrasonic data is a useful secondary modality for noise-robust

speech recognition.

For each noise level, there is an optimal audio weighting which provides the best

recognition result, i.e. the minimum WER. These optimal points are circled (in red)

on the chart. An important point to note is that as the noise level increases, the

optimal audio weight decreases (1.0 to 0.5 to 0.3). This demonstrates that with

increasing noise, the audio information becomes less important, and the ultrasonic

data contributes more to accurate recognition. This is expected because ultrasonic

data should be immune to acoustic noise, and its usefulness should increase relative

to acoustic data with added acoustic noise.

Even without optimal audio weighting, i.e. keeping the audio weight at a baseline

level of 1.0, we see by the green boxes on the chart that we still obtain similar

improvements over the audio-only scenario.

Table 6.1 summarizes the results from the figure. The audio+ultrasonic perfor-

mance is presented at the optimal audio weight setting. Over the four different noise

conditions, relative error rate reductions from audio-only to the audio+ultrasonic

system varied between 24% and 29%. Notice that the ultrasonic-only performance

is quite poor, at around 71% WER (this measurement changes with noise level only

because the ultrasonic features depend upon acoustic landmarks, which shift slightly

with noisy data). However, the fusion with acoustic data improves the performance

significantly.
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Figure 6-1: Digit recognition results for four noise levels as the audio weight is varied
from 0.0 to 1.0. Audio+ultrasonic results are represented by the solid lines, while
audio-only results are given by the dashed lines.

61



62



Chapter 7

Conclusions

7.1 Summary

In this research we built a multimodal speech recognition system that uses ultrasonic

sensing of articulatory movement as a second modality beyond the standard acoustic

information. We tested our system on a continuous digit recognition task as well as

phoneme and phoneme cluster classification tasks. Our digit recognition experiment

demonstrates improved word error rate (WER) performance across multiple noise

levels when including ultrasonic data as a second recognition modality.

7.1.1 System description

We built hardware to simultaneously capture acoustic and ultrasonic speech data.

In addition to an onboard mic, an ultrasonic transmitter/receiver pair is aimed at

the talker’s mouth. The transmitter emits a continuous 40 kHz sinusoid, which is

reflected by the talker’s moving articulators during speech. These movements cause

Doppler frequency shifts in the received signal; the frequency shifts are characterized

by features we have designed, which are modeled with Gaussian densities.

Three types of features are extracted from the ultrasonic data at each time frame.

The first type is the average energy of the signal for a given frequency band of the

spectrum. The second type is an averaged frequency deviation (from the carrier) for
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a given energy band of the spectrum. This feature corresponds to contours running

along a certain energy band in the ultrasonic spectrogram. The third feature type,

which was only used in the phonetic classification experiments, represents the timing

of the mouth closure and opening relative to the beginning and end of the phone.

The features at each frame are further processed into feature vectors for diphone

(for digit recognition) or word (for phonetic classification) Gaussian models. Acoustic

landmarks are computed, defining the phone boundaries around which these frame

features are averaged and concatenated into class feature vectors. The averaging

is done over telescoping time windows extending from these landmarks. For the

multimodal digit recognition task, acoustic MFCC-based models are also computed.

The phonetic classification experiments use only ultrasonic models.

7.1.2 System testing and performance

Phonetic classification

In a preliminary study, we investigated the ultrasound’s abilities to distinguish phones

in different contexts. More data collection and more precise features appropriate for

this task could help to confirm our observed trends. We measured overall misclassi-

fication rates as well as analyzed in detail classification confusion matrices.

We have observed that phones that are acoustically similar (such as “m” and

“n”) are often distinct in the ultrasonic signal because the articulatory motions are

different. This provides some evidence for the orthogonality the two sources, which

is desirable for a multimodal system. We have seen that the expected confusability

between two consonants with the same place of articulation (such as “p” and “b”)

is often nonexistent. Much of this can be explained by relative timing differences

between articulatory events in these phonemes.

Our experiments on consonants were context-dependent. We have seen that differ-

ent vowel contexts (“aa”, “ee”, “oo”, and “uh”) result in different classification results

and different confusion matrices. Finally, we have observed that speaker-dependent

classification outperformed speaker-independent classification, as expected. The dif-
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ferences between talkers’ articulatory styles resulted in dissimilar features that were

averaged together in the consequently poor speaker-independent models.

These trends can also be observed qualitatively by comparing pairs of the raw

spectrograms visually.

Digit recognition

We performed a continuous speaker-independent digit recognition task, while varying

the audio/ultrasonic model weight ratio as well as varying the amount of acoustic

noise. Over four noise levels (clean, 20 dB, 10 dB, and 0 dB), the recognizer reduced

word error rates by a relative 24% to 29%. At each noise level, there was an opti-

mal audio model weighting which resulted in the best performance. As we increased

the noise level, this optimal audio weight decreased, indicating that the ultrasonic

information contributes more toward accurate recognition as the audio becomes nois-

ier. The digit recognition experiment demonstrates that ultrasonic information is an

effective modality for noise-robust speech recognition.

7.2 Future work

For the phonetic classification experiments, the dimensionality of our features was

greatly reduced to 50-dimensions because of data sparsity. This could be solved

with more data collection. More users and more data per user would improve the

speaker-dependent modeling. More work should be done in feature extraction as well.

The current landmark-based method could be averaging features that change quickly

over time. By capturing frame-by-frame spectral information, dynamic time warping

(DTW), for phonetic classification could be useful; a template for each CVC or VCV

word would be warped against. We have already seen similarities and differences

across word spectrograms through subjective visual evaluation. Another possible

improvement to the phonetic classification task is further analysis of the composition

of the automatically generated clusters, and investigating the reason behind certain

phones being clustered together.
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For recognition tasks, larger vocabulary experiments could be done, beyond the

digit domain. Medium vocabulary recognizers for information kiosks could be built

and tested. Data collection would then become more automatic, although there

would be problems with unsupervised head movements and incorrect facial position-

ing. With a larger vocabulary, better features for continuous speech would need to

be developed.

Beyond speech recognition, there are applications such as speaker verification and

gait/walker identification [12] that could be explored further. These systems could

be integrated into an existing speech recognition system for purposes such as speaker

adaptation or automatic selection of specific speaker-dependent models. Physically,

hardware issues could be explored, such as the use of ultrasonic beamforming arrays

or placing ultrasonic transducers on a headset for portability.
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Appendix A

Hardware Schematics
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Figure A-1: Annotated schematic of prototype hardware.

Figure A-2: PCB diagram of hardware layout.
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Appendix B

Digit Recognition Utterances

4 6 7 0 5 0 5 5 6 0

7 5 1 9 0 8 4 6 4 9

1 1 7 2 2 1 3 8 6 9

7 0 8 2 7 9 9 1 2 9

2 8 0 8 8 9 0 1 7 5

4 0 3 8 8 6 9 9 2 5

4 3 6 0 4 3 7 6 0 2

8 9 3 2 6 7 5 3 6 9

6 7 0 2 8 0 6 8 9 4

5 4 9 8 1 7 6 4 1 7

3 0 2 2 7 3 2 4 0 9

9 3 2 4 7 6 5 4 9 4

9 4 3 3 6 8 6 2 2 0

4 2 6 7 8 6 8 9 3 1

0 7 1 7 6 7 7 6 0 4

2 9 2 8 0 3 0 1 8 8

2 4 4 5 4 8 5 9 6 8

2 2 2 9 8 4 2 2 3 6

8 8 9 5 2 0 3 1 5 8

5 2 6 2 9 3 8 2 6 3

7 7 9 3 7 7 1 9 5 4

5 4 3 4 4 8 2 2 5 4

0 9 4 8 6 7 6 6 6 3

8 1 1 3 7 8 3 8 4 3

5 0 7 7 5 1 4 5 3 8

7 2 5 9 5 9 3 2 4 9

1 8 7 6 7 6 0 2 5 0

5 2 4 9 5 6 8 4 6 0

4 2 7 5 3 9 3 0 3 0

3 3 3 0 7 5 8 3 5 1

8 8 4 9 9 8 9 9 6 7

4 6 4 4 5 1 8 2 0 5

2 7 5 3 9 7 3 9 9 0

2 7 2 4 0 5 9 6 9 6

1 6 1 4 4 9 8 4 7 2

0 2 8 6 3 3 2 1 1 5

6 9 6 7 8 8 3 4 4 8

2 3 8 8 1 5 4 5 7 9

3 0 2 4 9 8 5 6 1 5

8 3 7 6 8 3 2 8 2 9

1 1 6 1 0 8 0 6 2 2

6 9 9 7 3 8 7 3 4 1

3 8 1 8 9 1 6 6 4 3

0 0 7 3 6 0 7 1 9 1

1 8 9 2 0 6 5 5 6 5

2 1 8 4 0 8 7 8 7 0

0 3 4 7 3 4 3 9 7 8

5 6 6 7 4 6 1 5 7 4

4 1 4 8 7 7 1 9 3 4

1 6 1 5 9 7 8 4 7 4
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Appendix C

Phonetic Classification Utterances

71



heed aaPaa ePee ooPoo uh-Puh
hid aaBaa eeBee ooBoo uh-Buh
head aaTaa eeTee ooToo uh-Tuh
had aaDaa eeDee ooDoo uh-Duh
hod aaKaa eeKee ooKoo uh-Kuh

who’d aaGaa eeGee ooGoo uh-Guh
heard aaMaa eeMee ooMoo uh-Muh
hud aaNaa eeNee ooNoo uh-Nuh
hood aaNGaa eeNGee ooNGoo uh-NGuh
hide aaFaa eeFee ooFoo uh-Fuh

how’d aaVaa eeVee ooVoo uh-Vuh
hoed aaTHaa eeTHee ooTHoo uh-THuh
hoyed aaDHaa eeDHee ooDHoo uh-DHuh
hayed aaSaa eeSee ooSoo uh-Suh
hawed aaZaa eeZee ooZoo uh-Zuh

aaSHaa eeSHee ooSHoo uh-SHuh
aaZHaa eeZHee ooZHoo uh-ZHuh
aaCHaa eeCHee ooCHoo uh-CHuh
aaJaa eeJee ooJoo uh-Juh
aaLaa eeLee ooLoo uh-Luh
aaWaa eeWee ooWoo uh-Wuh
aaRaa eeRee ooRoo uh-Ruh
aaYaa eeYee ooYoo uh-Yuh
aaHaa eeHee ooHoo uh-Huh

Table C.1: Phonetic Classification Utterances. The capitalized target consonants are
represented here using the ARPAbet phonetic alphabet. The speakers were instructed
in their proper pronunciation.
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Appendix D

Referenced Confusion Matrices
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Figure D-1: Simplified confusion matrix of Speaker 1’s vowel classification.

Figure D-2: Simplified confusion matrix of Speaker 1’s VCV classifications, with all
contexts superimposed.

74



Figure D-3: Simplified confusion matrix of Speaker 2’s vowel classification.

Figure D-4: Simplified confusion matrix of Speaker 2’s VCV classifications, with all
contexts superimposed.
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Figure D-5: Simplified confusion matrix of Speaker 1’s “aa” context VCV classifica-
tions.

Figure D-6: Simplified confusion matrix of Speaker 1’s “ee” context VCV classifica-
tions.
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Figure D-7: Simplified confusion matrix of Speaker 1’s “oo” context VCV classifica-
tions.

Figure D-8: Simplified confusion matrix of Speaker 1’s “uh” context VCV classifica-
tions.
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Figure D-9: Simplified confusion matrix of Speaker 2’s “aa” context VCV classifica-
tions.

Figure D-10: Simplified confusion matrix of Speaker 2’s “ee” context VCV classifica-
tions.
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Figure D-11: Simplified confusion matrix of Speaker 2’s “oo” context VCV classifi-
cations.

Figure D-12: Simplified confusion matrix of Speaker 2’s “uh” context VCV classifi-
cations.
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Appendix E

Tables of Highly Confusable

Consonant Pairs
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Speaker 1 (F) Top 10 Confusions - Consonants
“aa” “ee” “oo” “uh”

Rank Pair Miscl. % Pair Miscl. % Pair Miscl. % Pair Miscl. %
1 M-B 27.50 M-B 25.00 K-T 22.50 R-Y 27.50
2 R-Y 22.50 L-N 25.00 K-P 20.00 D-B 17.50
3 K-T 17.50 G-Y 25.00 G-W 17.50 Z-V 17.50
4 N-D 17.50 NG-G 25.00 H-W 17.50 S-TH 17.50
5 J-CH 17.50 J-CH 20.00 J-CH 17.50 M-B 15.00
6 SH-F 15.00 NG-R 20.00 T-P 15.00 SH-F 15.00
7 Z-V 15.00 ZH-SH 17.50 M-B 15.00 DH-TH 15.00
8 SH-V 12.50 H-G 17.50 NG-B 15.00 DH-V 12.50
9 J-SH 12.50 D-T 15.00 SH-F 15.00 Z-DH 12.50
10 Z-F 10.00 K-Y 15.00 SH-S 15.00 SH-S 12.50

Table E.1: Speaker 1 Top 10 Misclassified Pairs of VCVs in each context.

Speaker 2 (M) Top 10 Confusions - Consonants
“aa” “ee” “oo” “uh”

Rank Pair Miscl. % Pair Miscl. % Pair Miscl. % Pair Miscl. %
1 M-B 17.50 M-B 35.00 L-N 17.50 ZH-Z 27.50
2 NG-G 17.50 G-K 25.00 ZH-Z 17.50 NG-G 25.00
3 DH-TH 15.00 S-TH 20.00 NG-G 17.50 J-SH 22.50
4 V-F 12.50 CH-SH 20.00 L-DH 15.00 M-B 20.00
5 L-V 12.50 G-Y 20.00 SH-S 12.50 V-F 15.00
6 S-TH 12.50 NG-V 15.00 CH-SH 12.50 L-V 15.00
7 DH-V 10.00 Z-DH 15.00 J-CH 12.50 CH-T 15.00
8 J-S 10.00 J-SH 15.00 Z-B 10.00 Z-S 15.00
9 ZH-Z 10.00 J-CH 15.00 ZH-SH 10.00 J-Z 15.00
10 R-Y 10.00 NG-F 12.50 R-SH 10.00 M-P 12.50

Table E.2: Speaker 2 Top 10 Misclassified Pairs of VCVs in each context.
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Figure F-1: Spectrograms of Speaker 1 vowels. Time (in 6ms frames) is represented
by the x-axis, while frequency (in 4 Hz frames) is represented by the y-axis.
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Figure F-2: Spectrograms of Speaker 1 “aa” context VCVs. Time (in 6ms frames)
is represented by the x-axis, while frequency (in 4 Hz frames) is represented by the
y-axis.
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Figure F-3: Spectrograms of Speaker 1 “ee” context VCVs. Time (in 6ms frames)
is represented by the x-axis, while frequency (in 4 Hz frames) is represented by the
y-axis.
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Figure F-4: Spectrograms of Speaker 1 “oo” context VCVs. Time (in 6ms frames)
is represented by the x-axis, while frequency (in 4 Hz frames) is represented by the
y-axis.
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Figure F-5: Spectrograms of Speaker 1 “uh” context VCVs. Time (in 6ms frames)
is represented by the x-axis, while frequency (in 4 Hz frames) is represented by the
y-axis.
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Figure F-6: Spectrograms of Speaker 2 vowels. Time (in 6ms frames) is represented
by the x-axis, while frequency (in 4 Hz frames) is represented by the y-axis.
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Figure F-7: Spectrograms of Speaker 2 “aa” context VCVs. Time (in 6ms frames)
is represented by the x-axis, while frequency (in 4 Hz frames) is represented by the
y-axis.
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Figure F-8: Spectrograms of Speaker 2 “ee” context VCVs. Time (in 6ms frames)
is represented by the x-axis, while frequency (in 4 Hz frames) is represented by the
y-axis.
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Figure F-9: Spectrograms of Speaker 2 “oo” context VCVs. Time (in 6ms frames)
is represented by the x-axis, while frequency (in 4 Hz frames) is represented by the
y-axis.
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Figure F-10: Spectrograms of Speaker 2 “uh” context VCVs. Time (in 6ms frames)
is represented by the x-axis, while frequency (in 4 Hz frames) is represented by the
y-axis.
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