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Abstract

This thesis introduces a novel technique for noise robust speech recognition by first
describing a speech signal through a set of broad speech units, and then conduct-
ing a more detailed analysis from these broad classes. These classes are formed by
grouping together parts of the acoustic signal that have similar temporal and spectral
characteristics, and therefore have much less variability than typical sub-word units
used in speech recognition (i.e., phonemes, acoustic units). We explore broad classes
formed along phonetic and acoustic dimensions.

This thesis first introduces an instantaneous adaptation technique to robustly rec-
ognize broad classes in the input signal. Given an initial set of broad class models
and input speech data, we explore a gradient steepness metric using the Extended
Baum-Welch (EBW) transformations to explain how much these initial model must
be adapted to fit the target data. We incorporate this gradient metric into a Hidden
Markov Model (HMM) framework for broad class recognition and illustrate that this
metric allows for a simple and effective adaptation technique which does not suffer
from issues such as data scarcity and computational intensity that affect other adap-
tation methods such as Maximum a-Posteriori (MAP), Maximum Likelihood Linear
Regression (MLLR) and feature-space Maximum Likelihood Linear Regression (fM-
LLR). Broad class recognition experiments indicate that the EBW gradient metric
method outperforms the standard likelihood technique, both when initial models are
adapted via MLLR and without adaptation.

Next, we explore utilizing broad class knowledge as a pre-processor for segment-
based speech recognition systems, which have been observed to be quite sensitive to
noise. The experiments are conducted with the SUMMIT segment-based speech rec-
ognizer, which detects landmarks - representing possible transitions between phonemes
- from large energy changes in the acoustic signal. These landmarks are often poorly
detected in noisy conditions. We investigate using the transitions between broad
classes, which typically occur at areas of large acoustic change in the audio signal, to
aid in landmark detection. We also explore broad classes motivated along both acous-
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tic and phonetic dimensions. Phonetic recognition experiments indicate that utilizing
either phonetically or acoustically motivated broad classes offers significant recogni-
tion improvements compared to the baseline landmark method in both stationary
and non-stationary noise conditions.

Finally, this thesis investigates using broad class knowledge for island-driven
search. Reliable regions of a speech signal, known as islands, carry most information
in the signal compared to unreliable regions, known as gaps. Most speech recognizers
do not differentiate between island and gap regions during search and as a result
most of the search computation is spent in unreliable regions. Island-driven search
addresses this problem by first identifying islands in the speech signal and directing
the search outwards from these islands. In this thesis, we develop a technique to iden-
tify islands from broad classes which have been confidently identified from the input
signal. We explore a technique to prune the search space given island/gap knowl-
edge. Finally, to further limit the amount of computation in unreliable regions, we
investigate scoring less detailed broad class models in gap regions and more detailed
phonetic models in island regions. Experiments on both small and large scale vocab-
ulary tasks indicate that the island-driven search strategy results in an improvement
in recognition accuracy and computation time.

Thesis Supervisor: Victor W. Zue
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Motivation

In recent years, improvements in speech recognition systems have resulted in high

performance for certain tasks under clean conditions. For example, digit recognition

can be performed with a word error rate of less than 0.3% [67]. In addition, a

less than 1% error rate has been achieved on a speaker-independent isolated word

recognition task with a 20,000 word vocabulary [19]. The performance of speech

recognition systems, however, rapidly degrades in noisy environments. For example,

the accuracy of a speech recognizer in a clean speech environment can drop by over

30% when the same input speech is corrupted by the noise that is present over long-

distance telephone lines [66].

While the performance of speech recognition systems can degrade in noisy envi-

ronments, human performance is much more robust. For example, [64] compares the

performance of humans and machines on over 100 utterances from the Wall Street

Journal task [55], with automobile noise artificially added at four different signal-

to-noise ratios (SNRs) (i.e., Clean, 22dB, 16dB and 10dB). The word error rate for

machines exceeds 40% at SNRs of 10dB and 16dB. However, human error rate remains

at around 1% in all four noise conditions. In addition, [92] compares human and ma-

chine performance for isolated digits at five different SNRs ranging between 18dB and

-6dB, in 6dB increments. 6 different noise types from the Noisex-92 database [93] are
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explored, varying in their stationarity and harmonicity properties. The study indi-

cates that human error rate is less than 2% across all noise types. However, machine

performance degrades rapidly, and reaches an error rate of almost 100% at 0dB.

The degradation of speech recognition systems in noisy conditions can be ex-

plained by various phenomena [49]. First, additive noise can alter the speech signal

and corresponding feature vectors used by speech recognizers to represent this sig-

nal. Second, reverberations from the recording environment as well as the recording

microphone itself can also distort the speech signal. Third, changes in articulation

caused by adverse conditions, known as the Lombard effect1, can also have a profound

effect on the signal [72].

To date, it has not been possible to develop a universally successful and robust

speech recognition system in the presence of background noise. Systems which per-

form well in one scenario can seriously degrade in performance under a different set of

environmental conditions. The increased focus on natural human-to-computer inter-

action has placed greater emphasis on moving speech recognition performance closer

to human level, particularly in noisy conditions. In addition, with the increased

availability and popularity of mobile information devices, the interest in noise ro-

bust system performance has also grown, since speech-based interactions are more

likely to be conducted in a wide variety of noise-corrupted environments. Numer-

ous techniques have been studied to improve the robustness of speech systems under

noisy conditions. These techniques can be divided into four main categories based on

their focus, namely noise resistant features, speech and feature enhancement, noise

adaptation [34], and multi-modal information [54].

Noise resistant feature methods attempt to use features which are less sensitive

to noise and distortion [34]. These methods focus on identifying better speech recog-

nition features or estimating robust features in the presence of noise. Perhaps the

most popular technique is cepstral mean normalization (CMN) [4], which involves

subtracting the mean of the cepstral feature vector [47], typically calculated across

1The Lombard effect is a phenomenon in which speakers raise their vocal intensity in the presence
of noise.

22



subsections of the utterance, from each frame in the corresponding section, to re-

duce the effect of channel disturbances. Auditory-inspired features are also a popular

example of noise robust features. For example, perceptual linear predictive (PLP)

features [42] and wavelet features [97] have both been shown to offer improvements

in noisy conditions. Techniques such as relative spectral processing (RASTA) [43]

attempt to remove noises which vary more slowly compared to the variations in a

speech signal. While many of the above techniques make neither assumptions nor

estimations about noise characteristics, this is sometimes a disadvantage since these

techniques may be far from optimal in certain noise conditions. For example, in

a babble noise environment where the noise characteristics are similar to those of

speech, RASTA processing could potentially be ineffective.

Speech enhancement techniques attempt to suppress the impact of noise on speech

by extracting out clean speech or feature vectors from a contaminated signal. Spectral

subtraction [9] methods subtract noise from the speech signal with the assumption

that noise characteristics are slowly varying and uncorrelated with the signal. Param-

eter mapping techniques [27] attempt to transform noisy speech into clean speech, and

typically do not make any assumptions about noise characteristics. Finally, Bayesian

estimation methods [18] attempt to estimate a clean speech vector by minimizing a

cost function, usually the mean squared error (MSE) between noisy speech and clean

speech. Many speech enhancement techniques were originally developed to improve

speech quality for human listeners. Thus, while many of the algorithms have been

shown to enhance the quality of speech to the human listener, the deformation of

the signal induced by some methods does not always lead to improvements in speech

recognition.

Instead of deriving an estimate of clean speech, noise adaptation techniques at-

tempt to adapt recognition models to noisy environments. This includes, for example,

changes to the recognizer formulation, such as changing model parameters of the rec-

ognizer to accommodate noisy speech. Parallel Model Combination [26] is one such

method for compensating model parameters under noisy conditions in a computa-

tionally efficient manner. In addition, some techniques also explore designing noise
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models within the recognizer itself. While this technique performs well at high SNRs,

at low SNRs compensated model parameters often show large variances, resulting in

a rapid degradation of performance.

Finally, multi-modal information techniques use multiple sources of information

about the speech signal, such as different sets of temporal features, articulatory fea-

tures or audio-visual information, in conjunction with standard acoustic representa-

tions. For example [54] shows the benefits of using articulatory features in addition

to standard speech recognition features in adverse environments. Furthermore, [39]

shows the benefit of incorporating both audio and visual cues in noisy speech, rather

than just utilizing audio cues.

Many of the noise robust techniques discussed apply general pattern recognition

and statistical learning techniques to improve noise robustness without incorporating

speech-specific knowledge. Instead, they focus solely on the noise type and signal-

to-noise ratio when adapting to a specific environmental condition. The limited uti-

lization of speech knowledge is partly due to the fact that the most commonly used

sub-word unit representation for speech knowledge, phonemes [24], is subject to a

high degree of variability in noisy conditions.

This thesis explores the use of speech knowledge for robust speech recognition by

first describing a speech signal through a set of broad speech units, and then con-

ducting a more detailed analysis from these broad classes. These classes are formed

by grouping together parts of the acoustic signal that have similar temporal and

spectral characteristics, and therefore have much less variability than the underly-

ing sub-word units. Typically, these broad classes can be formed along phonetic or

acoustic dimensions.

Broad classes, which are phonetically motivated, are created by grouping together

underlying phonemes into a set of broad phonetic classes (BPCs), for example vowels,

nasals, stops, fricatives and closures. Linguists have agreed on a pre-defined mapping

between phonemes and a corresponding set of BPCs [14]. An example of broad

classes learned from phonetic units is displayed in Figure 1-1. This figure shows a

speech time-frequency representation, known as a spectrogram, of the spoken word
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“nine”. The phonemes corresponding to the word, namely /n/, /ay/ and /n/ are also

indicated. Finally, the mapping from these phonetic units to a set of broad classes,

namely nasal (nas) and vowel (vow), is shown on the last line. For further details

regarding these phonetic and broad class representations, refer to Appendix B.

Figure 1-1: Speech spectrogram of the word “nine”. The corresponding phonemes
(/n/, /ay/, /n/) as well as the set of broad phonetic classes (nas, vow, nas) are also
delineated.

Broad classes can also be motivated along acoustic dimensions, by using acoustical

characteristics to group the signal into a set of broad acoustic classes (BACs). An

example of a set of broad classes learned from the acoustic signal is illustrated in

Figure 1-2. The diagram illustrates a spectrogram of the spoken word “zero”. The

phonemes corresponding to the word (i.e., /z/, /ih/, /r/, /ow/), as well as the learned

BACs (i.e., bac1, bac2, bac3 ) are also displayed in the figure. Notice that when broad

classes are motivated by acoustics, the number of learned BACs does not always

correspond to the number of phonetic units. For example, /r/ and /ow/ are grouped

into one broad class, namely bac3.

This thesis explores using broad classes for robust speech recognition because these
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Figure 1-2: Speech spectrogram of the word “zero”. The corresponding phonemes
(/z/, /ih/, /r/, /ow/) as well as the set of learned broad acoustic classes (bac1, bac2,
bac3 ) are also delineated.

classes have many important characteristics which make them attractive. First, broad

classes are prominently visible in speech spectrograms, as discussed in [102] and fur-

ther indicated in Figures 1-1 and 1-2. In addition, [37] and [65] further demonstrate

through experimental studies the salience of broad classes by showing that most of

the confusions between English phonemes occur in the same broad class. Second, be-

cause the broad classes are formed by pooling together different sub-word units (i.e.,

phonemes or acoustic units), there is more training data available compared to the

full set of sub-word units, allowing for better model representation and robustness.

Third, generally sub-words which belong to the same manner/articulatory class con-

vey similar spectral and temporal properties and can be categorized as belonging to

the same broad class, while sub-word units in different broad classes are acoustically

distinct. Grouping together sub-word units into broad classes, which behave differ-

ently in noise, provides the advantage of applying distinct class-specific methods to

each broad class. For example, certain broad classes corresponding to high-energy,
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voiced parts of the speech signal, are more reliably identified in noisy conditions, so a

detailed analysis of reliable parts of the spectra can help to fill in information about

unreliable sections [16]. Fourth, [11] suggests the possible language-independence of

broad classes by illustrating that various languages use the lexical space in a similar

fashion when represented by a set of broad classes. While the experiments in this

thesis are explored only in English, the use of broad classes allows for the possibly of

exploring the proposed techniques across multiple languages.

The rest of this chapter is organized as follows. In Section 1.2, an overview of

previous work on utilizing broad class knowledge in speech recognition is provided.

In Section 1.3 the main contributions of this thesis are discussed. Finally in Section

1.4, the structure of the thesis is outlined.

1.2 Previous Work

The use of broad classes has been explored extensively for many tasks in speech

recognition. One of the most popular uses of broad classes is for lexical access. For

example, the Huttenlocher-Zue model [48] explores isolated word recognition by first

characterizing a word by a broad class representation and using this partial description

to retrieve a cohort of words. A detailed analysis is then performed on this cohort to

determine the best word. In addition, [90] explores the Huttenlocher-Zue model for

lexical access in continuous speech recognition.

Broad classes have also been utilized in designing mixture of expert classifiers.

Both [38] and [85] investigate using expert classifiers specific to each broad phonetic

class. Phonetic classification is then performed by combining scores from the different

experts.

In addition, many acoustic modeling techniques investigate grouping together

phonemes within broad classes during training. As discussed in [100], during context-

dependent acoustic model training, enough training data is often unavailable to accu-

rately train each context-dependent model. Thus, context-dependent phones which

fall into the same broad class are often merged together and the aggregate of their
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data is used to train the models. In addition, [25] explores using broad classes for

Maximum Likelihood Linear Regression (MLLR) transformations. Again, because

enough training data is often unavailable to estimate a transform for each phoneme,

the authors explore applying the same transformation to all phonemes within the

same broad class and show that this approach outperforms applying just one uniform

transformation for all models.

Furthermore, broad classes have been used for language identification [41], [46].

Both works explore representing sentences in different languages by a set of broad

phonetic strings, and demonstrate good performance for language identification by

using a less detailed broad class analysis.

The above uses of broad classes in speech recognition reveal several underlying

themes. First, the lexical access and mixture of experts research illustrate that broad

classes can be utilized to conduct a less detailed but robust analysis of the signal,

after which a more detailed analysis is performed with the broad class knowledge.

Secondly, the acoustic modeling work demonstrates that broad classes allow for a

natural grouping among sub-word units which behave similarly, while differentiat-

ing among those that behave differently. Finally, the language identification work

shows that broad classes capture very robust and salient portions of the signal. It is

these three main themes that we take advantage of in our utilization of broad class

knowledge for robust speech recognition.

1.3 Contributions

In this thesis, the use of broad class knowledge as a pre-processor is explored for two

noise robust speech recognition applications. The main contributions of the thesis

are outlined in the following subsections.

1.3.1 Instantaneous Adaptation for Broad Class Recognition

First, we introduce an instantaneous adaptation technique to robustly recognize broad

classes from the input signal. In general pattern recognition tasks, given some input
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data and an initial model, a probabilistic likelihood score is often computed to measure

how well the model describes the data. Typically the model is trained in a condition

that is different from the target environment. While popular adaptation techniques,

such as Maximum a-Posteriori (MAP) [28] and Maximum Likelihood Linear Regres-

sion (MLLR) [62] have been explored to adapt initial models to the target domain,

these methods frequently require a few utterances of data in the target domain to

perform the adaptation.

The Extended Baum-Welch (EBW) transformations [35] are one of a variety of

discriminative training techniques ([75], [86]) that have been explored in the speech

recognition community to estimate model parameters of Gaussian mixtures. Recently

however, the EBW transformations have also been used to derive a gradient steepness

measurement ([51], [52]) to explain model fit to data. More specifically, given an initial

model and some input data, the gradient steepness measurement quantifies how much

we have to adapt the initial model to explain the target data. The better the initial

model fits the data, the less the initial model needs to be adapted and the flatter the

gradient steepness. In addition, this gradient steepness measurement can be thought

of as an instantaneous adaptation technique to explain model fit to data, since very

little data is required to measure the gradient required to adapt the initial model.

We incorporate this instantaneous adaptation technique into a Hidden Markov

Model (HMM) [76] framework for broad class recognition. We demonstrate the ef-

fectiveness of this gradient metric over scoring models using likelihood in a variety

of noise environments, both when initial models are adapted using MLLR and with-

out MLLR. We then utilize this broad class knowledge for two noise robust speech

applications discussed in the next two subsections.

1.3.2 Utilization of Broad Class Knowledge For Landmark

Detection

A segment-based framework for acoustic modeling ([31], [68]), which can also be

formulated as a variable frame-rate HMM [101] has shown success in recognizing
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speech in noise-free environments. For example, the SUMMIT speech recognizer

developed at MIT has shown success in phonetic recognition tasks [37], as well as

word recognition tasks such as in speech recorded over telephone lines [33] or in

lecture halls [32]. However, we suspect that the performance of a segment-based

system like SUMMIT may be sensitive to certain types of noise.

SUMMIT computes a temporal sequence of frame-based feature vectors from the

speech signal, and performs landmark detection based on the spectral energy change

of these feature vectors. These landmarks, representing possible transitions between

phones, are then connected together to form a graph of possible segmentations of the

utterance. This segment graph is then passed to a scoring and search phase to find

the best set of hypothesized words. A block diagram of this segment-based system

is shown in Figure 1-3. In this thesis, we refer to this segmentation algorithm as the

spectral change segmentation method.

Figure 1-3: Block Diagram of the SUMMIT Segment-Based Speech Recognition
System

While this spectral method works well in clean conditions ([31], [37]), the sys-

tem has difficulty locating landmarks in noise and often produces poor segmentation

hypotheses [80]. Thus, in this thesis, we explore broad class knowledge as a pre-

processor in designing a robust landmark detection algorithm. More specifically, we

take advantage of the fact that transitions between broad classes occur at areas of

large acoustic change in the speech signal, even in the presence of noise. We uti-

lize the locations of these transitions to aid in landmark detection. Once landmarks

are detected, the segment graph is formed and scored using methods similar to the

spectral method.

In addition, the use of phonetically vs. acoustically motivated broad classes is
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also explored. While both phonetically and acoustically motivated representations

have been explored in clean speech, little work has been done in comparing these

representations under noisy conditions. Given different noise conditions, for example

stationary vs. non-stationary or harmonic vs. non-harmonic, we suspect that some-

times a phonetic approach is preferred, while other times an acoustic approach might

be preferred.

We demonstrate that using broad class knowledge as a pre-processor to aid in

landmark detection offers significant improvements in noisy speech environments rel-

ative to the baseline spectral change method. In addition, we show under which noise

conditions a phonetic vs. acoustic method is preferable.

1.3.3 Utilization of Broad Class Knowledge for Island-Driven

Search

Finally, we explore broad classes to aid in island-driven search [12]. [3] and [88]

hypothesize that human speech processing is done by first identifying “regions of reli-

ability” in the speech signal and then filling in unreliable regions using a combination

of contextual and stored phonological information. However, most current speech rec-

ognizers treat the reliability of information as uniformly distributed throughout the

signal. Hence, many decoding paradigms consist of a left-to-right scoring and search

component, and an optional right-to-left component, without utilizing knowledge of

reliable speech regions. More specifically, speech systems often spend the bulk of their

computation efforts in unreliable regions, when, in reality, most of the information

in the signal can be extracted from the reliable regions [103]. In the case of noisy

speech, if phrases are unintelligible, this may even lead the search astray and make

it impossible to recover the correct answer [73]. Furthermore, this is particularly a

problem in large vocabulary speech systems, where pruning is required to limit the

size of the search space. Pruning algorithms generally do not make use of the relia-

bility of portions of the speech signal, and hence may remove too many hypotheses

in the unreliable regions of the speech signal and keep too many hypotheses in the
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reliable regions [56].

Island-driven search [12] is an alternative method that may better handle noisy

and unintelligible speech. This strategy works by first hypothesizing islands as regions

in the signal which are reliable. Recognition then works outwards from these anchor

points to hypothesize unreliable gap regions. While island-driven search has been

explored for both parsing [17] and character recognition [73] there has been limited

research (i.e., [56]) in applying these techniques to continuous speech recognition.

In this thesis, we explore utilizing information about reliable speech regions to

develop a noise robust island-driven search strategy. First, we take advantage of

the salience of broad classes to identify regions of reliability in the speech signal.

Next, these island/gap regions are utilized to efficiently prune the search space and

decrease the amount of computational effort spent in unreliable regions. Specifically

we investigate pruning more aggressively in island regions and less aggressively in gap

regions. However, unlike most confidence based pruning techniques [2], [23], the island

regions are used to influence the pruning in gaps, which allows an increased number

of hypotheses to be pruned away. This decreases the search space and increases the

chances of going through reliable island regions.

Secondly, we investigate island information during final recognition. Specifically,

to limit spending time unnecessarily in gap regions, less detailed models are scored

in gap regions in the form of broad classes. In island regions, more detailed acoustic

models are utilized. We demonstrate that taking advantage of island/gap knowl-

edge, both for segment pruning and during final search, offers improvements in both

recognition accuracy and computation time.

1.4 Overview

The remainder of this thesis is organized in the following manner. First, in Chapter 2,

the various recognition frameworks and corpora used for experiments in this thesis are

described. Next, Chapter 3 discusses the formulation of the Extended Baum-Welch

Transformation gradient steepness metric which we apply to broad class recognition.
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Chapter 4 compares broad phonetically vs. acoustically motivated broad classes in

designing a robust landmark detection and segmentation algorithm, while Chapter

5 discusses using broad class knowledge in island-driven search. Finally, Chapter 6

concludes the thesis and discusses future work.
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Chapter 2

Experimental Background

Given a set of acoustic observations O = {o1, o2, o3, . . . , on} associated with a speech

waveform, the goal of an automatic speech recognition (ASR) system is to find the

corresponding sequence of words Ŵ = {w1w2...wm} which has the maximum a pos-

teriori probability P (W |O). This goal is expressed more formally by Equation 2.1.

Ŵ = arg max
W

P (W |O) (2.1)

In most ASR systems, a sequence of sub-word units U and a sequence of sub-phone

states S are also decoded along with the optimal word sequence W . These sub-word

units can correspond to context-independent phones or context-dependent phones.

Context-independent phones are modeled by just one phone. Context-dependent

phones are modeled by multiple phones, for example as diphones (i.e., two phones),

triphones (i.e., three phones), or quinphones (i.e., five phones). Taking into account

the sub-phone states and sub-word units, Equation 2.1 can be rewritten as

Ŵ = arg max
W

∑

S

∑

U

P (W, U, S|O) (2.2)

To simplify computation, most ASR systems also use dynamic programming (e.g.,

Viterbi [76]) or graph-searches (e.g., A∗ [44]) to find a single optimal sub-phone se-

quence Ŝ, along with an optimal sub-word sequence Û and words Ŵ . Equation 2.2
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then simplifies to:

Ŵ , Û , Ŝ ≈ arg max
W,U,S

P (W, U, S|O) (2.3)

Applying Bayes’ rule to the above Equation gives:

P (W, U, S|O) =
P (O|S, U, W )P (S|U, W )P (U |W )P (W )

P (O)
(2.4)

As presented in [68], the term P (O|S, U, W ) is known as the feature observation

model ; P (S|U, W ) is called the model topology ; P (U |W ) is referred to as the pronun-

ciation model ; and P (W ) is the language model. Since P (O) is constant for a given

utterance and does not affect the outcome of the search, it is usually ignored.

The two most common model topologies in ASR systems include frame-based [76]

and segment-based [31] systems. Since the ideas central to this thesis employ both

segment-based and frame-based recognizers, the behavior of the four terms outlined

in Equation 2.4 within both systems is discussed below.

2.1 Attila Speech Recognition System

The broad class pre-processor utilized in this thesis uses the frame-based Attila Speech

Recognizer developed at IBM [74]. Below the four components in the Attila system

are described in more detail.

2.1.1 Model Topology

In Attila, each sub-word unit un ∈ U is represented by a Hidden Markov Model

(HMM) [76]. The model topology for each sub-word unit un consists of a sequence of

P sub-phone states S = {s1, s2 . . . sP} which typically go from left-to-right. Sub-word

units are usually modeled by 3 or 5 left-to-right HMM states. Figure 2-1 shows the

model topology for a 3-state left-to-right HMM.
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Figure 2-1: A 3-state left-to-right HMM. States s1, s2 and s3 correspond to the three
states.

2.1.2 Observation Model

In frame-based modeling, the acoustic observation space, O, consists of a temporal

sequence of acoustic features (e.g., Mel-frequency cepstral coefficients (MFCCs) [20])

which are computed at a fixed-frame rate. Thus, the feature observation model

computes the probability of each observation frame oi given a particular state in the

HMM sk from sub-word model un. This observation model is typically represented

by a Gaussian mixture model (GMM). Let us assume that GMM for state sk has

N Gaussian components, where each component j is parameterized by the following

mean, covariance and weight parameters respectively λk
j = {µk

j , Σ
k
j , w

k
j }. Thus, the

probability of observation oi given state sk is expressed as

P (oi|sk) =

N
∑

j=1

wk
j P (oi|λ

k
j ) (2.5)

Each component P (oi|λk
j ) can be expressed by a Gaussian probability density

function, as expressed in Equation 2.6, where d is the dimension of the observation

vector oi.

P (oi|λ
k
j ) =

1

(2π)
d
2 |Σk

j |
1

2

exp

(

−
1

2
(oi − µk

j )
T (Σk

j )
−1(oi − µk

j )

)

(2.6)
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2.1.3 Pronounciation/Lexical Model

P (U |W ) is the pronunciation or lexical model which gives the likelihood that a se-

quence of sub-word units, U , was generated from a given word sequence W . This is

achieved by a lexical lookup. Each word in the lexicon may have multiple pronunci-

ations to account for phonetic variability [40].

2.1.4 Language Model

The language model is denoted by P (W ). P (W ) represents the a priori probability

of a particular word sequence W = {w1, w2, . . . , wm}. Attila typically uses an n-gram

language model where the probability of each successive word depends only on the

previous n − 1 words, as shown by Equation 2.7.

P (W ) = P (w1, w2, . . . , wm) =
m
∏

i=1

P (wi|w1, . . . , wi−1) ≈
m
∏

i=1

P (wi|wi−(n−1), . . . , wi−1)

(2.7)

2.2 SUMMIT Speech Recognition System

The segment-based recognition experiments discussed in this thesis utilize the SUM-

MIT segment-based speech recognition system, developed at the Spoken Language

Systems Group at MIT’s Computer Science and Artificial Intelligence Laboratory. In

this section we will briefly discuss the different components of the SUMMIT recog-

nition system [31].

2.2.1 Model Topology

In segment-based modeling, frame-level feature vectors (e.g., MFCCs) are computed

at regular time intervals. An additional processing stage in segment-based modeling

then converts frame-level feature vectors to segmental feature vectors.

SUMMIT creates segmental feature vectors by first hypothesizing acoustic land-

marks at regions of large change in the frame-level feature vectors. We can think of
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these landmarks as representing hypothetical transitions between spectrally distinct

events. More specifically, major landmarks are hypothesized at locations where the

spectral change exceeds a specified global threshold. A fixed density of minor land-

marks are detected between major landmarks where the spectral change, based on

the fixed minor landmark density, exceeds a specified local threshold.

These acoustic landmarks are then connected together to specify a collection of

possible segmentations S for the utterance. Since it is computationally expensive

to search through this large segmentation network, an explicit segmentation phase

is incorporated into the recognizer to reduce the size of the search space and the

computation time of the recognizer. More specifically, all minor landmarks are fully

interconnected between, but not across, major landmarks, to form a segment network

representing possible segmentations of the speech utterance. In addition, each major

landmark is connected to two major landmarks forward. In this thesis, we will refer

to the segmentation algorithm just described as the spectral change segmentation

method. Figure 2-2 shows a typical segment network formed from major and minor

landmarks, and Figure 2-3 illustrates a graphical display of the segment network from

SUMMIT.

l1 l2 l3 l4
s12

s15

s23 s45s34

s23

l5

s35

Figure 2-2: Segment network for the Spectral Change Segmentation technique. Major
landmarks are indicated by shaded circles. Each minor landmark li between major
landmarks is fully connected to every adjacent landmark lj in the graph via segments
sij. In addition, each major landmark is connected to two major landmarks forward.
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major landmarks

minor landmarks

Figure 2-3: Graphical display from the SUMMIT recognizer. The top panel displays
a spectrogram of the speech signal which has been contaminated by noise. The bottom
panel shows the segmentation network for the spectral change method. The major
landmarks are indicated by the long arrows while the corresponding set of minor
landmarks are illustrated by shorter arrows. The darker colored segments illustrate
the segmentation with the highest recognition score during search.

2.2.2 Observation Model

In frame-based modeling, acoustic features are computed and scored at a fixed frame-

rate. In segment-based modeling, features are computed across segments. In SUM-

MIT, two types of features are computed for each hypothesized segment in the seg-

mentation network, namely segmental features and landmark features. Segmental

features are computed for each hypothesized segment by taking averages of the frame-

based features across a particular segment. Landmark features are calculated from
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features centered around landmarks. Figure 2-4 shows a diagram of frame-based

features, and corresponding landmark and segment-based features.

Figure 2-4: Diagram of frame-based, landmark and segmental features. The frame-
based features, F1, . . . F7, are computed at a fixed frame rate. The landmark features,
denoted by B1 . . .B3, are calculated at segmental boundaries. Finally, the segmental
features, S1 . . . S3, span across each segment.

A corresponding set of sub-word unit models U , known as segment and landmark

models, are trained on the corresponding segment and landmark features respectively.

Again, the landmark and segment models are both modeled as GMMs. The obser-

vation model then computes an acoustic score for a particular sub-word unit at each

segment by summing the landmark and segment model scores for that segment.

2.2.3 Pronunciation and Language Models

The pronunciation and language models in SUMMIT are similar to those discussed

in Sections 2.1.3 and 2.1.4 respectively.
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2.2.4 Recognition Phase

Recognition in the SUMMIT system is implemented using a weighted finite-state

transducer (FST) [33], which is represented as a cascade of smaller FSTs:

R = (S ◦ O) ◦ (C ◦ P ◦ L ◦ G) (2.8)

In Equation 2.8:

• S represents the acoustic segmentation described in Section 2.2.1

• O represents the acoustic observation space

• C relabels context-dependent acoustic model labels as context-independent pho-

netic labels

• P applies phonological rules mapping phonetic sequences to phoneme sequences

• L represents the lexicon which maps phoneme sequences to words

• G is the language model that assigns probabilities to word sequences

Intuitively, the composition of (C ◦ P ◦ L ◦ G) represents a pronunciation graph

of all possible word sequences and their associated pronunciations. Similarly, the

composition of (S ◦ O) is the acoustic segmentation graph representing all possible

segmentations and acoustic model labelings of a speech signal. Finally, the compo-

sition of all terms in R represents an FST which takes acoustic feature vectors as

input and assigns a probabilistic score to hypothetical word sequences. The single

best sentence is found by a Viterbi search through R. If n-best sentence hypotheses

are needed, an A∗ search is then applied.
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2.3 Broad Class Pre-processor in Attila and SUM-

MIT Frameworks

Both the Attila and SUMMIT recognizers are utilized for recognition experiments in

this thesis. A block diagram of the proposed system is shown in Figure 2-5.

First, the Attila HMM system is used to recognize broad classes. In Chapter 3

we introduce an instantaneous adaptation technique within the HMM framework for

recognizing broad classes. These broad classes are then used as a pre-processor within

the SUMMIT framework in the landmark detection and search phases.

In Chapter 4 we discuss how to use broad classes, which are robustly identified

in noise, as a pre-processor to aid in landmark detection. Once the set of acoustic

landmarks are generated, the landmarks are connected together to form a set of

possible segmentations of the utterance. The segment graph is then passed to the

scoring and search phase to find the best set of hypothesized words.

Furthermore, in Chapter 5 we discuss using broad classes to identify reliable re-

gions in the speech signal, and hence limit the number of paths searched and models

scored during the scoring and search component of the recognition process. Before

moving on to discuss these contributions in more detail, we first outline the main

corpora used in this thesis.

Figure 2-5: A block diagram of the speech recognition system utilized in thesis. The
broad class recognizer in Attila is used as a pre-processor to aid in landmark detection
and search within the SUMMIT framework.
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2.4 Speech Recognition Corpora

Both phonetic recognition and word recognition tasks are explored in this thesis. The

following sections describe, in more detail, the different corpora used.

2.4.1 TIMIT

TIMIT [57] is a continuous speech recognition corpus recorded and transcribed by

Texas Instruments (TI) and the Massachusetts Institute of Technology (MIT), re-

spectively. It contains over 6,300 utterances read by 630 speakers, including 438

males and 192 females, representing the 8 major dialects of English. Each speaker

reads 10 sentences, including 2 sa sentences designed to represent dialectical differ-

ences, 5 sx sentences which cover all phoneme pairs and 3 phonetically diverse si

utterances.

The sentences from the corpus are divided into three sets. The training set consists

of 3,696 sentences from 462 speakers. This set is used to train various models used

by the recognizer. The development set is compromised of 400 utterances from 50

speakers and is used to train various tuning parameters in the broad class algorithms.

The full test set includes 944 utterances from 118 speakers, while the core test set is

a subset of the full test set containing 192 utterances from 24 speakers. In this thesis,

results are only reported on the full test set.

2.4.2 Noisex-92

To simulate noisy speech in TIMIT, we add various types of noise from the Noisex-92

speech-in-noise corpus [93], which was created by the Speech Research Unit at the

Defense Research Agency to study the effect of additive noise on speech recognition

systems. The corpus contains the following noises:

• White noise

• Pink noise

• High frequency radio channel noise
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• Speech babble

• Factory noise

• Military Noises: fighter jets (Buccaneer, F16), engine room noise, factory oper-

ations room noise, tank noise (Leopard, M109), machine gun

• Volvo 340 car noise

In this thesis we look at three specific types of noise - pink, speech babble and

factory noise. We specifically focus on these three noise types as they differ in their

stationarity and harmonicity properties. The pink noise was acquired by sampling

a high-quality analog noise generator. The speech babble was obtained by recording

samples of 100 people speaking in a canteen. Finally, the factory noise was obtained

by recording noise samples in a car production hall onto a digital audio tape. We

simulate noisy speech by adding noise from the Noisex-92 set to clean TIMIT speech

at signal-to-noise ratios (SNRs) in the range of -5dB to 30dB. ‘

2.4.3 Aurora

Experiments are also conducted using the Aurora-2 corpus [45], which consists of

clean TI-digit utterances with artificially added noises. The TI-digits consist of male

and female English speakers reading digit sequences up to 7 digits. To simulate noisy

speech, a diverse set of noises are selected to represent various telecommunication

areas. These noises include suburban train, crowd of people (babble), car, exhibition

hall, restaurant, street, airport and train station noises. The noise signals are added

to the TI-digits in SNRs ranging between 20dB and -5dB in 5dB increments.

The training set consists of 8,440 recordings of 55 male and 55 female adults.

To simulate noisy speech, the recordings are equally split into 20 subsets, with each

subset representing one of 4 different noise types and one of 5 different SNRs. The

four noise types include suburban train, babble, car and exhibition noises while the

SNRs range from 20dB to 5dB and clean conditions.
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In the test set, 4,004 utterances from 52 male and 52 female speakers are split

into 4 subsets of 1,001 utterances each. One of the noise conditions is added to

each subset of 1,001 utterances in SNRs ranging between clean and -5dB. In the first

test set, known as Test Set A, the 4 noises which match the training set, namely

suburban train, babble, car and exhibition, are added to one of the subsets. In Test

Set B, restaurant, street, airport and train station noises, different from the training

set, are added to created a training-test mismatched scenario. Finally in Test Set C

only 2 of the 4 subsets of 1,001 utterances are used, and suburban train and street

are used as the noise signals. In this set, the speech and noise signals are first filtered

with a filter that attenuates lower frequencies. In this thesis, experiments are only

conducted using Test Set A.

2.4.4 CSAIL-info

CSAIL-info is a speech-enabled kiosk which provides information about people, rooms,

and events in the Computer Science and Artificial Intelligence Laboratory (CSAIL)

at MIT. The system is linked to an updated online database of CSAIL personnel and

seminars, and thus it is constantly updated to adapt to new user names and seminar

announcements.

The CSAIL-info Kiosk is located in a high-traffic public area in the lobby of

CSAIL, with a microphone mounted near the touch screen of the tablet PC. In ad-

dition to noise from the computer, recordings of user speech are also contaminated

by various types of non-stationary noises, including background speech, elevator door

opening/closing, and reverberation caused by hard surfaces of the large surrounding

space.

The Spoken Language Systems Group at MIT has collected over 9,000 utterances

from users interacting with the kiosk. Since the focus of our experiments is noise

robustness, we have removed all sentences that contain out of vocabulary (OOV)

words, allowing for a total vocabulary size of over 8,000 words. The data is divided

into the following three sets:
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• The training set consists of 6,140 sentences. This is used to train various models

used by the recognizer.

• The development set contains 859 sentences used to design and develop the

various broad class algorithms.

• The test set includes 876 sentences used to test our developed model.

To create unbiased experimental conditions, the sentences in the training, devel-

opment and test sets do not overlap.

2.5 Chapter Summary

In this chapter, we presented a framework for the frame-based and segment-based

systems utilized in this thesis. We first discussed the frame-based Attila HMM system,

which will be used for broad class recognition. Next, we introduced the segment-based

SUMMIT recognizer, which we will investigate for using broad class knowledge in the

landmark detection and search stages. We also reviewed the main corpora used for

phonetic and word recognition experiments in this thesis. In the next three chapters,

we present various experiments on these corpora, using both the Attila and SUMMIT

recognizers.
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Chapter 3

Incremental Adaptation with

Extended Baum-Welch

Transformations

3.1 Introduction

In order to utilize broad classes for robust speech recognition, we first explore a

method to robustly recognize broad classes in the presence of noise. In this chapter,

we introduce a novel instantaneous adaptation technique using the Extended Baum-

Welch (EBW) Transformations to robustly identify these broad classes. Unlike most

adaptation methods, which are computationally expensive and require a lot of data

for adaptation, the adaptation method presented is much less data intensive.

We then incorporate this adaptation technique into a frame-based Hidden Markov

Model (HMM) framework for recognition of broad classes. We explore a frame-based

HMM to recognize broad classes for three reasons. First, segment-based models are

very sensitive to noise and have a difficult time in detecting variable frame bound-

aries (i.e., acoustic landmarks) [80]. However, since frame-based techniques compute

observations at a fixed frame rate, they are less sensitive. Second, HMMs still con-

tinue to be the dominant acoustic modeling technique in speech recognition to date
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[68]. Therefore, we hope that incorporating our instantaneous measure into an HMM

framework will introduce a new decoding metric that can be explored for general

speech recognition tasks. Third, because of the salience of broad classes, we are keen

on exploring their benefits in noisy conditions. Specifically, we are interested in inves-

tigating broad classes as a pre-processor in determining more reliable boundaries for

segment-based speech recognition systems and aiding in island-driven search. Both

of these ideas will be discussed in Chapters 4 and 5 respectively.

3.1.1 Related Work

Noise adaptation is a popular technique for noise robust speech recognition. This

method attempts to adapt initial recognition models to a noisy target environment in

order to accommodate the noise and recognize noisy speech [34]. Current approaches

for adaptation include both batch and instantaneous adaptation, depending on the

amount of data used to adapt the initial models.

Batch adaptation generally requires a large amount of data from the target do-

main to adapt initial models. The most common technique is Maximum a-Posteriori

(MAP) adaptation [28], which estimates an adapted model as a linear interpolation

of the initial model and a model estimated from target data. Maximum Likelihood

Linear Regression (MLLR) [62] is another popular method, generally requiring a few

utterances from the target domain to estimate the updated model. In this technique,

a set of linear transformation matrices is estimated to transform model parameters

and maximize the likelihood on the test data. While both MLLR and MAP have

shown success in a variety of tasks, these techniques perform poorly when limited

adaptation data is available, as maximum likelihood estimates of the transformed

model are poor.

Incremental adaptation techniques require a minimal amount of data, and attempt

to improve recognition on the same data that is used during recognition. The most

common technique is Feature Space Maximum Likelihood Linear Transform (fMLLR)

[63], where the feature vectors themselves are transformed to a new space to maximize

the likelihood of this transformed data given an initial set of models. While fMLLR
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has shown success for incremental adaptation, it requires storing a large number of

parameters and is computationally expensive to implement.

In this work, we explore using the EBW transformations to derive an incremental

adaptation measure, which suffers from neither the computational complexity of other

incremental adaptation techniques nor the data scarcity issues of batch adaptation.

3.1.2 Proposed Approach

Given some input data and a family of models, the goal of a typical pattern recogni-

tion task is to evaluate which model best explains the data. Typically, an objective

function such as a likelihood probability, is computed to measure how well the model

characterizes the data. Recently, a new approach for evaluating model fitness to data

has been explored which is based on the principle of quantifying the effort required to

change one model into another given some evaluation data. For example, the Earth

Mover’s Distance (EMD) [77] evaluates model fitness to data by calculating the min-

imal cost needed to transform one distribution into another. In addition, feature

space Gaussianization [69] computes a distance between models in an original and

transformed feature space.

In this chapter, we look to evaluate model fitness by using a gradient steepness

measurement. Given a set of initial models, some data, and an objective function,

we can re-estimate each of the models given the current data by finding the best

step along the gradient of the objective function. During such an update, each of

the models changes such that models that fit the data best change the least, and

correspondingly have flatter gradient slopes.

One of the popular training methods used to estimate updated models, which we

explore in this work, is the Extended Baum-Welch (EBW) transformations [35]. The

EBW transformations have been used extensively in the speech recognition commu-

nity as a discriminative training technique to estimate model parameters of Gaussian

mixtures. For example, in [91], the EBW transformations were used for Maximum

Mutual Information (MMI) training of large vocabulary speech recognition systems.

In addition, [75] explores the EBW update equations under a variety of objective
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functions for discriminative training. The EBW transformations have also been used

to derive an explicit formula to measure the gradient steepness required to estimate

a new model given an initial model and input data [51], [52]. This gradient steepness

measurement is an alternative to likelihood to describe how well the initial model

explains the data.

The advantages of this gradient steepness measurement have been observed in

a variety of tasks. In [81], we redefined the likelihood ratio test, typically used

for unsupervised audio segmentation, with this measure of gradient steepness. We

showed that our EBW unsupervised audio segmentation method offered improve-

ments over the Bayesian Information Criterion (BIC) and Cumulative Sum (CUSUM)

methods. In [84], we used this gradient metric to develop an audio classification

method which was able to outperform both the likelihood and Support Vector Ma-

chine (SVM) techniques. Finally, in [83] we observed the benefits of the gradient

metric on a speech/non-speech segmentation task, which also outperformed the like-

lihood method, specifically when the initial models were poorly trained.

In this work, we are interested in exploring this gradient metric for broad class

recognition via Hidden Markov Models (HMMs) [76]. When HMMs are used for

acoustic modeling, the Viterbi algorithm [94] is generally used during decoding to

find the most likely sequence of HMM states and corresponding words. This decoding

is accomplished by first computing likelihood scores for each frame given all HMM

states, and then performing a dynamic programming Viterbi search to find the most

likely sequence of states. In this work, we look at replacing the likelihood scores

computed at each frame with the EBW gradient steepness measurement. We explore

looking at both the absolute change in gradient steepness - i.e., how much the initial

model must move to the updated model to explain the current frame of data, as well

as the relative change - i.e., how the initial model changes to the updated model

relative to the initial model. We show that these EBW metrics, which are computed

on a per-frame basis and thus require only a small change to the HMM formulation,

are able to provide a simple and effective instantaneous model adaptation technique.
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3.1.3 Goals

In this chapter, we demonstrate that the EBW gradient steepness measure is a general

technique to explain the quality of a model used to represent the data. In addition,

it provides a simple and effective noise adaptation technique, which does not suffer

from the data and computational complexities of other adaptation techniques. First,

we examine both the absolute and relative change in EBW gradient to explain model

fit to the data. We find that the relative EBW metric outperforms the standard

likelihood method, both when initial models are adapted via MLLR and without

adaptation, for broad phonetic class (BPC) recognition on the TIMIT corpus [57].

In addition, we explore the advantages of EBW model re-estimation in noisy envi-

ronments, demonstrating the improved performance of our gradient steepness metric

over likelihood across a variety of signal-to-noise ratios (SNRs).

3.1.4 Overview

In the following section, we describe the EBW transformations. The implementation

of the EBW gradient metric in an HMM framework is described in Section 3.3. Section

3.4 presents the experiments performed, followed by a discussion of the results in

Section 3.5. Finally, Section 3.6 summarizes the chapter.

3.2 Extended Baum-Welch Transformations

3.2.1 EBW Transformations Formulation

Assume that observations O = (o1, ..., oM), from frames 1 to M , is drawn from a

Gaussian λj parameterized by the following mean and variance parameters λj =

{µj, σ
2
j }. Let us define the probability of frame oi ∈ O given model λj as p(oi|λj) =

zij = N (µj, σ
2
j ). Let F (zij) be some objective function over zij and cij = zij

δ
δzij

F (zij).

Intuitively, cij measures the gradient steepness of the objective function, as captured

by the objective function derivative term. The steeper the gradient slope, the larger

cij .
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Given an objective function, initial model λj and observation data, there are

many statistical optimization techniques to estimate a new model for the data. In

the simplest case, maximizing the objective function directly will lead to a new model

estimate. However, in situations where the objective function cannot be maximized

directly, an auxiliary function is defined, where maximizing the auxiliary function

leads to an increase in the objective function. Standard techniques to re-estimate

model parameters by maximizing the auxiliary function include both the Baum-Welch

(BW) [6] and Expectation Maximization (EM) [7] algorithms. The disadvantage of

these methods is that the auxiliary function is only defined if the objective function is

a likelihood function. To address this issue, another optimization technique involves

finding the extremum (that is minimum or maximum) of an associated function, Q,

given by Equation 3.1. The benefit of the associated function is that it is defined for

any rational objective function.

Q =
∑

i

zij

δF ({zij})

δzij

log ẑij (3.1)

Optimizing Equation 3.1 will lead to closed-form solutions to re-estimate model

parameters λ̂j, known as the EBW transformations [35], such that the re-estimated

model parameters increase (or decrease) the associated and corresponding objec-

tive functions. The EBW solutions to re-estimate model parameters λ̂j = λj(D) =

{µj(D), σ2
j (D)} are given as follows:

µ̂j = µ̂j(D) =

∑M

i=1 cijoi + Dµj
∑M

i=1 cij + D
(3.2)

σ̂2
j = σ̂2

j (D) =

∑M

i=1 cijo
2
i + D

(

µ2
j + σj

2
)

∑M

i=1 cij + D
− µ̂2

j (3.3)

Here D is a constant chosen in the EBW model re-estimation formulas, given

by Equations 3.2 and 3.3. If D is very large then model re-estimation is slow but

the associated function, and corresponding objective function, increase with each
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iteration, that is, F (ẑij) ≥ F (zij). However if D is too small, model re-estimation

may not increase the objective function on each iteration. For a deeper mathematical

understanding of these EBW update equations, we refer the reader to Appendix A.1.

3.2.2 EBW Gradient Steepness

Given the EBW formulas, we now discuss the derivation of the EBW gradient steep-

ness measurement, as defined in [51]. Figure 3-1 gives a graphical illustration of the

EBW model updates. The graph shows different values of the objective function F

as we change the model parameter λ(ǫ). λ(ǫ) are transformations of the mean and

variance as defined in (3.2) and (3.3) respectively. The parameter ǫ controls the rate

at which we estimate our updated model. A larger value of ǫ favors the updated

model more while a smaller value of ǫ gives more weight to the initial model. A more

detailed investigation on the tuning of ǫ is presented in Appendix A.2.

Figure 3-1: Illustration of model re-estimation via the Extended Baum-Welch (EBW)
Transformations
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Let us denote a tangent to the curve F at point {0, F (λ(0))} as follows:

TΛ(0) = limǫ0→0
FΛ(λ̂(ǫ0)) − FΛ(λ(0))

ǫ0
(3.4)

Intuitively, the flatter the tangent to the curve at point λ(0), the better the initial

model λ(0) fits the data. In [51], it was shown that T could be represented as a sum of

squared terms and therefore is always non-negative. This guarantees that F increases

per iteration and provides some theoretical justification for using the gradient metric

T as a measure of quality of model fit to data.

With the graphical illustration of the EBW gradient steepness measurement given

in Figure 3-1, we can now derive our gradient measurement more formally. Note that

we will now use D = 1
ǫ
. Using EBW transformations (3.2) and (3.3) such that

λj → λ̂j(D) and zij → ẑij, [51], [52] derives a linearization formula between F (ẑij)

and F (zij) for large D as:

F (ẑij) − F (zij) = Tij/D + o(1/D) (3.5)

A large value in T means the gradient to adapt the initial model λj to the data

xi is steep and F (ẑij) is much larger than F (zij). Thus the data is much better

explained by the updated model λ̂j(D) compared to the initial model λj. However

a small value in T indicates that the gradient is relatively flat and F (ẑij) is close to

F (zij). Therefore, the initial model λj is a good fit for the data.

In [51], Kanevsky also derives a closed form solution for T for large D. For

example, using Equation 3.5, defining the objective function F to be the log-likelihood

function, i.e., F (zij) = log p(oi|λj) = log(zij), and cij by Equation 3.6,

cij = zij

δ

δzij

F (zij) =
zij

zij

= 1, (3.6)

the following formula gives a closed form solution for the gradient steepness T . Here

r indexes a dimension of the feature vector oi, where oi has dimension 1 to d.
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Tij =

{

d
∑

r=1

{cij[(oir − µrj)
2 − (σrj)

2]}2

2(σrj)4
+

d
∑

r=1

[
cij(oir − µrj)

σrj

]2

}

(3.7)

If we quantify gradient steepness by taking the difference in objective functions

at two model parameter values (i.e., the left side of Equation 3.5), the actual model

re-estimation using the EBW Transformations must be performed. The benefit of

Equation 3.7 is that it gives a closed form solution for gradient steepness without

having to explicitly re-estimate models. We have observed the computational benefits

of using Equation 3.7 as a measure of gradient steepness in developing an unsupervised

audio segmentation algorithm [81]. We will refer to the EBW metric in Equation 3.7

as EBW-T.

The disadvantage of using EBW-T is that it only holds for large D, meaning the

rate of adapting to the updated model, λ̂j(D), cannot be adjusted. Typically, we

have found better performance gains by taking the difference in objective function

values, as illustrated by the left side of Equation 3.5, where the rate of adaptation

can be controlled. This is discussed in more detail in [84], which explores the use of

the gradient steepness metric for audio classification.

Therefore, in this thesis we focus our attention on gradient steepness using the

difference in objective function values given in Equation 3.5, which we refer to as

EBW-F. We also introduce a normalized version the left side of Equation 3.5 which

we will call EBW-F Norm. Recall that Equation 3.5 measures the gradient steepness

required to adapt an initial model λj to the target data oi. While this metric can be

applied for any general pattern recognition task (i.e., [81], [84], [83]), in this thesis

we will concentrate on the use of this gradient metric for broad class recognition via

HMMs.

3.3 EBW Gradient Metric for HMMs

Given a set of acoustic observations O = {o1, o2 . . . oT } associated with a speech

waveform, the goal of a speech recognition system is to find the sequence of sub-word
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units Ŵ = {w1, . . . wk} that most likely produced the given observation sequence. In

other words, we want to maximize the following expression:

Ŵ = arg max
W

P (W |O) =
P (O|W )P (W )

P (O)
(3.8)

As discussed in Section 2.1, P (O|W ) is referred to as the acoustic model while

P (W ) is the language model. In this section, we look at representing the acoustic

model via an HMM, and will subsequently extend our EBW gradient metric in this

context.

3.3.1 HMM Scoring with Likelihood

Given observation sequence O, HMMs can be used to find the optimal state sequence

through time Q = {q1, q2 . . . qT } that produced the given T observations. An HMM

is defined over a set of N states S = {s1, s2 . . . sN} and observations O, and is

represented by the following three parameters [76]:

• State Transition Probability Distribution:

aij = P (qt = sj |qt−1 = si)

• Observation Symbol Probability Distribution:

bi(ot) = P (ot|qt = si)

• Initial State Distribution:

πi = P (q1 = si)

Typically, the output distribution for each state sk is drawn from a mixture of

L gaussians. Let zk
tj be the likelihood of observation ot given component j from

Gaussian mixture model (GMM) k and wk
j the a priori weight of component j in

GMM k. Then the log-likelihood of ot from model λk can be defined as follows:

bk(ot) = log P (ot|qt = sk) = log

L
∑

j=1

wk
j z

k
tj (3.9)
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Given the set of states S and corresponding models Λ = {λ1, λ2 . . . λN}, the

Viterbi algorithm is generally used to find the optimal state sequence. To find this

sequence, first define δt(i) as the best score along a single path up to time t which

ends in state si at time t as:

δt(i) = max
q1,q2,...,qt−1

P (q1q2 . . . qt = Si, O1O2 . . . Ot|Λ) (3.10)

By induction, the probability of the best path up to time t which ends in state sj

at time t + 1 is defined as:

δt+1(j) = max
i

[δt(i) + log(aij)] + log(bj(ot+1)) (3.11)

Equation 3.11 illustrates that the best state at each time depends on the scores

assigned to previous states as well as transition probabilities aij between states, cap-

turing the inherent HMM structure. In the next section, we discuss how to find the

best state sequence using the EBW gradient metric.

3.3.2 HMM Scoring with EBW-F Metric

Instead of scoring each observation frame using standard likelihood, we can score it

using the EBW gradient steepness measurement given by the left side of Equation

3.5. Let us define objective function F (zk
t ) to be the log-likelihood of observation ot

given state model λk as:

F (zk
t ) = log

L
∑

j=1

wk
j z

k
tj (3.12)

and similarly ck
tj as:

ck
tj = zk

tj

δ

δzk
tj

F (zk
tj) =

zk
tjw

k
j

∑L

l=1 wk
l z

k
tl

. (3.13)

In addition, given initial state model λk = {µk, σk} and observation ot, a new

model λ̂k(D) can be re-estimated at each frame t using Equations 3.2 and 3.3. This

process is illustrated in Figure 3-2.

Using Equation 3.5, the objective function for F (zk
t ) given by Equation 3.12 and
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Figure 3-2: HMM State Model Re-estimation using the Extended Baum-Welch
(EBW) Transformations

the adapted model λ̂k(D), the state output score at frame ot can be calculated using

Equation 3.14. We will refer to the state output score computed in this manner as

EBW-F.

bk(ot) =
(

F (ẑk
t ) − F (zk

t )
)

× D (3.14)

Note that this gradient steepness metric in Equation 3.14 requires just a simple

change to the HMM formulation. As shown in Figure 3-2, models are re-estimated and

adaptation occurs on a per-frame basis, allowing for advantages over batch adaptation

methods. Furthermore, only the sufficient statistics for the current model being re-

estimated are required to be stored in memory, making this method computationally

efficient compared to fMLLR, for example.

Using the EBW score assigned to each state from Equation 3.14, the best path

is again found through the Viterbi algorithm given in Equation 3.11. However, the

better a model fits the data, the smaller the EBW score, so δt(i) is now defined as

the set of best (smallest) EBW scores along a single path up to time t which ends in

state si.

δt(i) = min
q1,q2,...,qt−1

EBW (q1q2 . . . qt = Si, O1O2 . . . Ot|Λ) (3.15)
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Therefore, by induction, δt+1(j) is defined as:

δt+1(j) = min
i

[δt(i) − log(aij)] + bj(ot+1) (3.16)

Note that, to reflect this minimum change, the negative log-likelihood of aij is

also calculated. The objective function in Equation 3.14 is the same as that used in

[84], though now applied to HMMs. In the next section, we discuss a novel change to

this objective function which is more appropriate for an HMM framework.

3.3.3 HMM Scoring with EBW-F Normalization Metric

As shown in Equation 3.14, we score how well model λk fits ot by looking at the

difference in likelihood given the updated model F (ẑk
t ) compared to the likelihood

given the initial model F (zk
t ). Using this absolute measure allows us to compare

model scores for a given input frame, as was done in [84]. However, we have observed

that the magnitude of these scores loses meaning if we compare them across different

frames. In other words, a lower absolute EBW score for one frame and one model

does not necessarily imply a better model than a higher EBW score for another frame

and another model. Having an EBW measure that can be compared across frames

is particularly important in HMMs, as scores for a state sequence are computed by

summing up scores assigned to individual frames.

Therefore, we compute the EBW score as the relative difference in likelihood given

the updated model F (ẑk
t ) compared to the initial model likelihood F (zk

t ). To compute

this relative EBW score, we normalize Equation 3.14 by the original likelihood F (zk
t )

as shown in Equation 3.17. We will refer to the state output score computed in this

manner as the EBW-F Norm metric.

bk(ot) =

(

F (ẑk
t ) − F (zk

t )
)

× D

F (zk
t )

(3.17)

Using this relative EBW score provides a measure which can be compared across

frames, which is important in the context of HMMs.
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3.4 Experiments

Broad Phonetic Class (BPC) recognition is performed on the TIMIT corpus [57]. The

61 TIMIT labels are first mapped into 7 BPCs, ignoring the glottal stop ‘q’, as shown

in Table 3.1. The labeling in Table 3.1 was determined based on a phonetic to BPC

mapping defined in [36].

Broad Phonetic Class TIMIT Labels
Vowels/Semivowels aa ae ah ao aw ax axh axr ay eh er ey

ih ix iy ow oy uh uw el l r w y
Nasals/Flaps em en eng m n ng nx dx

Strong Fricatives s z sh zh ch jh
Weak Fricatives v f dh th hh hv

Stops b d g p t k
Closures bcl pcl dcl tcl gcl kcl epi pau
Silence h#

Table 3.1: Broad Phonetic Classes and corresponding TIMIT Labels

Our experiments are conducted using the IBM Attila recognizer discussed in Sec-

tion 2.1. We use 13 dimensional, perceptual linear prediction (PLP) features [42]

obtained from a Linear Discriminant Analysis (LDA) projection [22] that are mean

and variance normalized on a per utterance basis. In addition, each BPC is modeled

as a three-state, left-to-right context-independent HMM with no skip states. The

output distribution in each state is modeled by a mixture of 32 component diagonal

covariance Gaussians. The language model is structured as a trigram. All models

are trained on the standard NIST training set (3,969 utterances) in clean speech

conditions. To analyze phonetic recognition performance in noise, we simulate noisy

speech by adding pink noise from the Noisex-92 database [93] at signal-to-noise ra-

tios (SNRs) in the range of 0dB to 30dB in 5dB increments. We train the EBW-F

methods to find the optimal D range, described in more detail in Appendix A.2.2,

using the development set (400 utterances).

We report phonetic recognition error rate results on both the development set

and the full test set (944 utterances). The phonetic error rate (PER) is calculated

by summing the number of hypothesized phonemes inserted (I), reference phonemes
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deleted (D) and reference phonemes substituted (S), divided by the true number of

reference phonemes N . The equation for the PER is given more explicitly by Equation

3.18. The insertion, deletion and substitution errors are determined using the NIST

sclite scoring script [70], which aligns the hypothesized output to a reference text to

calculate the three errors.

PER =
I + D + S

N
(3.18)

3.5 Results

In this section, we discuss two experiments performed on the TIMIT corpus. First,

we analyze the BPC recognition performance of the EBW-F, EBW-F Norm and like-

lihood methods, with and without MLLR adaptation, in a clean speech environment.

Second, we explore the behavior of EBW model re-estimation in noisy environments.

Note that all EBW techniques presented in this section use the Adaptive-D method,

discussed in Appendix A.2.2, when setting the learning parameter D.

3.5.1 Clean Speech Recognition Performance

Table 3.2 shows the phonetic recognition error rates for the likelihood, EBW-F and

EBW-F Norm metrics on the development and test sets, with the best performing

method highlighted in bold. In this experiment, models were trained in clean speech

conditions, and the test data was also drawn from clean speech. We investigate

likelihood decoding using both initial baseline models and MLLR models adapted

per utterance, with the number of regression classes optimized on the development

set. We only explore adapting MLLR models per utterance since this is the smallest

delineation we can use for adaptation and still maintain a fair comparison to the

EBW metrics, where adaptation is performed per frame.

Table 3.2 indicates that the EBW-F Norm method outperforms the likelihood met-

ric, with and without MLLR adaptation, on both the development and test sets, but

the EBW-F method performs worse than both likelihood metrics. A Matched Pairs
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Method Development Test
Likelihood - No MLLR 18.4 19.5

Likelihood - MLLR 18.6 19.8
EBW-F 18.7 19.9

EBW-F Norm 17.7 18.9

Table 3.2: BPC Error Rates on TIMIT development and test sets for clean speech
conditions. The best performing technique is indicated in bold.

Sentence Segment Word Error (MPSSWE) significance test [29] indicates that the

EBW-F Norm results are statistically significant from the other three metrics. Notice

also that adapting models with MLLR using just one utterance actually leads to a

higher error rate than using the likelihood metric without MLLR adaptation, showing

the inefficiency of batch adaptation with little data. To explain the performance of

the EBW metrics compared to the baseline likelihood, we analyze the relationship be-

tween EBW-F and likelihood scores (evaluated on a per-frame basis) vs. the EBW-F

Norm and likelihood scores, illustrated in Figures 3-3 and 3-4 respectively.1
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Figure 3-3: Regression of EBW-F scores against log-likelihood scores

First, observe that there is a strong positive correlation between the EBW-F and

likelihood scores, as well the EBW-F Norm scores. It appears that the variance of

1Note that the likelihood score shown is actually the negative log-likelihood, so the better a
model explains an observation, the smaller the negative log-likelihood and EBW scores (i.e., closer
to origin).
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Figure 3-4: Regression of EBW-F Norm scores against log-likelihood scores

likelihood scores for a given EBW-F score is larger than the variance of likelihood

scores for a given EBW-F Norm score. To quantify this variance more explicitly,

we divide the likelihood scores at increments of 10, and take a weighted average of

the variance of likelihood scores that fall within each bin. More specifically, first we

define wi to be the percentage of EBW scores that fall between increments 10× i and

10 × (i + 1). This is given more explicitly by Equation 3.19.

wi =
Number of EBW Points Between (10 × i) and (10 × (i + 1))

Total Number of EBW Points
(3.19)

Then, we quantify the total variance of likelihood scores as a weighted average

of conditional variance of likelihood scores in each of these bins. This is given by

Equation 3.20, where N is the total number of bins.

V arlik =
N
∑

i=0

wi ∗V ar(Log-Likelihood Scores|(10× i) ≤ EBW Scores < (10 × (i + 1))

(3.20)

Using this measure, we find the variance of the likelihood scores, when regressed
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against the EBW-F scores, to be roughly 20.8. However, the variance of the likelihood

scores when regressed against the EBW-F Norm scores is about 8.4, roughly 2.5 times

less. This large variance for the EBW-F metric is due to the fact that the EBW-F

score is an absolute measure and cannot really be compared across frames. Because

Viterbi decoding determines the best path based on the scores of all individual frames

in that path, if the EBW score for one frame is large it dominates and can throw off

the entire score for the path. This is one reason why the EBW-F metric performs

worse than likelihood when used in an HMM context. This motivated us to examine

the EBW-F score in terms of relative change, thus introducing the EBW-F Norm

metric.

The smaller variance of EBW-F Norm scores for a given likelihood score indicates

that using the relative measure allows for a more direct comparison across frames.

Also, notice that as models become worse, the EBW scores move even faster and there

is a slight curve to the graph. As shown by Equation 3.17, EBW-F Norm captures

the relative difference between the likelihood of a data given the initial model and

the likelihood given a model estimated from the current observation being scored,

while the likelihood just calculates the former. Thus, when the initial model is not a

good fit for the data, we see that we must move this model quite a bit to explain the

current input, and therefore the EBW score is quite large compared to likelihood.

To better understand the curve between the EBW-F Norm and Likelihood scores

depicted in Figure 3-4, we looked at transforming the EBW-F Norm scores to produce

a more linear relationship with the likelihood scores. The Box-Cox transformations

[10] are a common method used to make the relationship between two variables more

linear. The transformations are defined as follows:

τ(EBW ; λ) =











(EBW λ
−1)

λ
if λ 6= 0

ln(EBW ) if λ = 0

(3.21)

Here λ is the transformation parameter which controls the degree to which we

transform the EBW scores. Figure 3-5 shows the correlation between likelihood and

Box-Cox transformed EBW scores for different values of λ. In addition, Table 3.3
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shows the PER for the EBW Box-Cox transformed scores for different λ values.
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Figure 3-5: EBW Box-Cox Transformed (x-axis) vs. Likelihood (y-axis) scores for
different λ values

Notice that as λ decreases, the correlation of EBW and likelihood scores moves

from concave to convex and the PER increases. In addition, notice that λ = 0.4

produces the most linear relationship between the EBW-F Norm and likelihood scores,

and the EBW Box-Cox transformed PER (i.e., 19.6) is very close to the likelihood

PER given in Table 3.2 (i.e., 19.5).

λ PER
0.2 20.5
0.4 19.6
0.6 19.1
1.0 18.9
1.2 20.0

Table 3.3: BPC Error Rates on the TIMIT Test Set using EBW Box-Cox Transformed
scores for variable λ. The best performing metric is indicated in bold.

As we decrease λ and make the relationship of EBW and likelihood more convex,

the PER increases. This shows that the true benefit of EBW over the likelihood occurs

when models are poor, and the EBW scores are much higher relative to likelihood,

producing the curve in Figure 3-4. Because scores from local frames are summed up
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to determine the best path, the large EBW scores for models which do not fit the data

well allow us to disregard these paths more confidently. However, if λ is increased past

1.0 and the relationship between the EBW and likelihood scores becomes increasingly

concave, the PER again increases, indicating that there is a limit to how large EBW

scores can be for poor models.

3.5.2 Noisy Speech Recognition Performance

In Section 3.5.1, we showed that the EBW-F Norm metric outperformed the likelihood

method due to the model re-estimation inherent in EBW. In this section, given models

trained in clean conditions, we analyze the benefit of the EBW-F Norm method when

the target data is corrupted by noise. Recall that D controls the rate at which models

are re-estimated. We would expect that, as models become a worse fit for the data,

we must make D smaller and re-estimate models faster. Figure 3-6 shows the BPC

Error Rates for the EBW-F Norm metric on the development set for different SNRs

as D is varied. Again note that we are using the Adaptive-D metric discussed in

Appendix A.2.2, and here D indicates the average range over which we adapt D.
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Figure 3-6: BPC Error Rates using EBW-F Norm Metric vs. D for different SNRs.
Circles indicate the D at each SNR which gives lowest PER.
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As the SNR decreases and the clean speech models become poorer estimates of the

noisy data, we must decrease D and train models more quickly for better performance,

as indicated by the circles in Figure 3-6. This shows the importance of the rate of

model re-estimation, particularly when models are not a good fit for the data.

Table 3.4 shows the PER rate on the development and test sets for the EBW

and likelihood methods across a variety of SNRs when models are trained in clean

conditions and re-estimated in noisy speech using the optimal D values indicated in

Figure 3-6. Notice that as the SNR is increased, the model re-estimation inherent in

EBW allows for significant improvement over the likelihood metric. Thus, we see that

the EBW-F Norm metric also provides a simple yet effective noise robust technique

when compared to the likelihood measure.

Set Method clean 30dB 20dB 10dB 0dB

development
Likelihood - No MLLR 18.4 28.2 45.0 65.2 75.6

EBW-F Norm 17.7 27.1 43.6 60.8 72.4
% Err. Red. 3.8 3.9 3.1 7.7 4.2

test

Likelihood - No MLLR 19.5 29.7 46.7 66.2 75.9
EBW-F Norm 18.9 28.6 45.0 61.5 71.7
% Err. Red. 3.1 3.7 3.6 7.1 5.5

Table 3.4: BPC Error Rates on the TIMIT development and test sets for Likelihood
and EBW-F Norm Metrics. Note that results are reported across different SNRs of
pink noise when models are trained on clean speech. The best performing metric is
indicated in bold.

Analyzing the error rates given in Table 3.4 further, Figure 3-7 shows the errors on

the development set within each the 7 BPCs as a function of SNR. First, notice that

for non-harmonic classes such as nasals, stops, closures and strong fricatives, the error

rate increases significantly as the noise level increases. Second, the error rates in the

vowel/semi-vowel class do not degrade as quickly, indicating that harmonic classes

such as vowels and semi-vowels are much better preserved in noise. Third, notice that

the error rate within weak fricatives does not degrade like other non-harmonic classes.

A closer analysis reveals that most of the confusions with the other four non-harmonic

classes occur with the weak fricative class, indicating that weak fricatives are over

hypothesized. Fourth, observe that the silence class also has a relatively lower error
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rate. One explanation is because each utterance in the TIMIT data set always begins

with the silence class, and thus we have forced the recognizer to hypothesize this class

first, resulting in a lower error rate.
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Figure 3-7: Error rate within individual BPCs as a function of SNR
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3.6 Chapter Summary

In this chapter, we introduced a novel instantaneous adaptation technique using a gra-

dient steepness measurement derived from the EBW transformations. This gradient

steepness metric provided a simple yet effective adaptation technique which did not

suffer from the data and computational intensities of other adaptation methods such

as MAP, MLLR and fMLLR. We explored looking at both the relative and absolute

gradient metrics, which we referred to as EBW-F and EBW-F Norm respectively, and

incorporated these gradient metrics into an HMM framework for BPC recognition on

the TIMIT task.

We demonstrated that the EBW-F Norm method outperformed the standard like-

lihood technique, both when initial models are adapted via MLLR and without adap-

tation. In addition, we demonstrated the EBW-F Norm metric captures the difference

between the likelihood of an observation given the initial model and the likelihood

given a model estimated from the current observation being scored, while the likeli-

hood metric just calculates the former. We showed that this extra model re-estimation

step is a main advantage of the EBW-F Norm technique. In addition, we explored

the benefits of the EBW-F norm metric in noise. Specifically, we demonstrated that,

when models are trained on clean speech and used to decode noisy speech, the model

re-estimation inherent in the EBW algorithm allows for significant improvement over

the likelihood method. Note that, while results in this chapter were only presented

for BPCs, similar results were observed for broad acoustic classes (BACs) as well.

Now that we have introduced a technique to robustly recognize broad classes

in noise, in the next chapter we explore using this broad class knowledge as a pre-

processor for robust landmark detection in a segment-based system. Then, in Chapter

5, we further explore broad class knowledge to aid in island-driven search.
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Chapter 4

Comparison of Broad Phonetic and

Acoustic Units for Noise Robust

Segment-Based Speech Recognition

4.1 Introduction

In Chapter 3 we presented an instantaneous adaptation technique to improve the

performance of broad class recognition in noisy speech. In this chapter, we explore

using the recognized broad classes as a pre-processor to aid in landmark detection in

a segment-based speech recognition system, which we have found to be sensitive to

noisy conditions. Specifically, we explore utilizing the spectral distinctness of broad

class transitions to help in major landmark placement. We also investigate minor

landmark placement specific to each detected broad class.

In addition, we probe whether these broad classes should be phonetically or acous-

tically motivated, an idea which has been studied for clean speech but is relatively

unexplored for noisy speech. Given different noise conditions, for example stationary

vs. non-stationary or harmonic vs. non-harmonic, one approach might be superior to

the other.

We explore the phonetic vs. acoustic pre-processing approaches on the TIMIT
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corpus, where we artificially add a variety of different noise types. We demonstrate

that using broad class knowledge as a pre-processor to aid in landmark detection of-

fers significant improvements in noisy speech relative to the baseline spectral change

method. In addition, we illustrate under which noise conditions a phonetic vs. acous-

tic method is preferred.

4.1.1 Motivation

A segment-based framework [31], [68] for acoustic modeling, which can also be for-

mulated as a variable frame rate Hidden Markov Model (HMM) [101], has shown

success in recognizing speech in noise-free environments. However, we suspect the

performance of a segment-based system like SUMMIT may be more sensitive to

certain types of noise. This is because SUMMIT computes a temporal sequence of

frame-based feature vectors from the speech signal, and performs landmark detection

based on the spectral energy change of these feature vectors. These landmarks, rep-

resenting possible transitions between phones, are then connected together to form a

graph of possible segmentations of the utterance. While the spectral method works

well in clean conditions [31], [37], the system has difficulty locating landmarks in

noise and often produces poor segmentation hypotheses [80]. In [80], we found that

noise robustness in SUMMIT could be improved with a sinusoidal model segmenta-

tion approach, which represents speech as a collection of sinusoidal components and

detects landmarks from sinusoidal behavior. This method offered improvements over

the spectral approach at low signal-to-noise ratios (SNRs), but landmark detection

was not as robust at high SNRs.

Broad classes, whether motivated along acoustic or phonetic dimensions, have

been shown to be salient compared to phonemes [37], and are also prominently vis-

ible in spectrograms [102]. Furthermore, in Chapter 3 we demonstrated that broad

phonetic classes (BPCs) are robustly identified in noisy conditions. In this chapter,

we explore whether the transitions between broad classes, representing large areas of

acoustic change in the audio signal, can aid in landmark detection in a segment-based

system, particularly in noisy conditions.
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A large area of study in speech recognition involves choosing an appropriate set

of units when mapping from the acoustic signal to words in the lexicon. The choice

of these units is typically not well defined, and subsequently a variety of different

mappings have been explored at different levels, i.e., sentence, phrase, word, syllable

and phoneme. The mapping at each level has a different amount of acoustic am-

biguity [59], which correspondingly affects the performance of the speech recognizer

depending on the task at hand.

Because of training data issues, most current speech recognizers do not use word-

based models. More specifically, word-based modeling requires having many instances

of specific words in the training set in order to adequately train the word models.

While word-models have shown great success in small vocabulary tasks, they cannot

easily be extended to large vocabulary tasks.

Therefore, nearly all state-of-the-art speech recognition systems employ a sub-

word based representation for the mapping between the acoustic signal and words in

the lexicon. The most commonly used sub-word units are motivated by phonology

and phonetics; e.g., phonemes, syllables, etc. [24]. Phonetic units have the advantage

that they are well-defined linguistically, and training of these models is straightfor-

ward given the phonetic transcription of an utterance [60]. While the training prob-

lems present in word-models are eliminated by using phonetic units, these phonetic

units may not always be acoustically distinct and therefore acoustic ambiguity can

sometimes be a problem when using phonetic units.

For example, consider the varying acoustic characteristics throughout a diphthong

such as /a¤�/. To address this issue, researchers have explored the use of acoustically-

motivated units [5], [60]. For example, in [5], the authors find that using acoustically

motivated units offers better performance than using phonetic units on a small vo-

cabulary, speaker independent, read speech task. Furthermore, [60] demonstrates

comparable results using both acoustic and phonetic units on a small vocabulary,

isolated word recognition task.

While both phonetic and acoustic sub-word approaches have been effectively

demonstrated for clean speech, we suspect that their performance may vary under
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conditions where the speech signal has been corrupted by noise. For example, in noise

conditions which are very harmonic in nature (i.e., babble noise or music), finding

acoustically distinct units could pose a challenge since harmonic classes such as vowels

appear to look more spectrally similar to non-harmonic classes such as fricatives and

closures. Therefore, a phonetic sub-word approach might be preferred. However, in

non-stationary noises such as pink and white noise, the harmonics of the speech signal

are more prevalent and therefore an acoustic method might be preferred over a pho-

netic approach. Figure 4-1 shows an example of the word “zero” in both stationary

and non-stationary noise conditions. Notice that the formants are more prominent in

non-stationary subway noise compared to the stationary babble noise condition.

Figure 4-1: Spectrogram of the word “zero” in stationary and non-stationary noise
conditions. The corresponding phonemes (i.e., /z/, /ih/, /r/, /ow/) and word label
are also indicated.

4.1.2 Proposed Approach

The goal of this chapter is to compare using broad phonetically vs. acoustically mo-

tivated units as a pre-processor to design a noise robust landmark detection method.

A block diagram of the proposed system is given in Figure 4-2.

Specifically, we look at broad classes that are spectrally distinct in noise, as in-

dicated by the broad classes in Figure 4-3. We take advantage of the large acoustic
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Figure 4-2: Block diagram of broad class pre-processor within segment-based recog-
nition framework of SUMMIT

changes that occur at broad class transitions and thus can aid in landmark detection.

Once landmarks are detected, the segment graph is formed and scored similarly to

the spectral method [31].

Figure 4-3: Spectrogram of noisy speech in which broad class transitions are delin-
eated by red lines.

First, we compare whether these broad classes should be phonetically vs. acousti-

cally motivated. In exploring broad acoustic classes, we also introduce a novel cluster

evaluation method to choose an appropriate number of acoustic clusters and evaluate

their quality. We evaluate the broad acoustic vs. broad phonetic segmentation meth-

ods on a noisy TIMIT corpus, exploring pink, speech babble and factory noises. We

choose these noises because they differ in their stationarity and harmonic properties,

allowing us to compare the behavior of broad phonetic vs. broad acoustic units across

different types of noise. We find that both the acoustic and the phonetic segmenta-

tion methods have much lower error rates than the spectral change and the sinusoidal

methods across all noise types. Finally, we observe that the acoustic method has
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much faster computation time in stationary noises, while the phonetic approach is

faster in non-stationary noises.

4.1.3 Overview

The remainder of this chapter is organized as follows. In Sections 4.2 and 4.3, we

describe our broad phonetically- and acoustically- derived broad classes, respectively.

Section 4.4 describes our landmark detection and segmentation algorithm using these

broad class pre-processors. Section 4.5 presents the experiments performed, followed

by a discussion of the results in Section 4.6. Finally, Section 4.7 summarizes the work

in the chapter.

4.2 Broad Phonetic Units

[24] argues that a phoneme is the smallest phonetic unit in a language to distin-

guish meaning. Generally phonemes which belong to the same manner class [87] have

similar spectral and temporal properties and can be categorized as belonging to the

same broad phonetic class (BPC) [36], while phonemes in different BPCs are spec-

trally distinct. One representation of these BPCs is vowels/semi-vowels, stops, weak

fricatives, strong fricatives, nasals, closures and silence [37]. In phonetic classification

experiments on the TIMIT corpus [37], it was shown that almost 80% of misclassified

phonemes belonged to the same BPC as the substituted phonemes. These BPCs have

been shown to be relatively invariant in noise [82], motivating us to define them as

our broad phonetic units.

4.3 Broad Acoustic Units

4.3.1 Learning of Broad Acoustic Units

We learn broad acoustic classes (BACs) from acoustic correlates in the audio signal.

The process of learning acoustic units involves a segmentation of the utterance into
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quasi-stationary sections followed by a bottom-up clustering [60]. We define our

segmentation from the underlying phonetic transcription. Thus, instead of using the

underlying phonemes to define BPCs, we learn BACs from acoustic correlates of these

phonemes. The segments are then clustered in a bottom-up fashion similar to the

clustering method described in [30].

Our first step in agglomerative clustering is to pre-cluster segments using an it-

erative nearest-neighbor procedure to form a set of seed clusters. Each segment is

represented by a feature vector averaged across the entire segment. Then for each

feature vector, we compute the zero-mean Euclidean distance from the vector to each

cluster mean. If the closest distance falls below a specified threshold, the vector is

merged into the existing cluster. Otherwise, a new cluster is formed. After the clus-

tering is complete, all clusters with less than 10 components are merged into one

of the closest existing clusters. This step ensures that each cluster has adequate

data coverage. Here the distance threshold is chosen to maximize the number of

pre-clusters.

After the pre-clustering, stepwise-optimal agglomerative clustering [22] is per-

formed on the seed clusters. In this method, with each iteration the two clusters

which cause the smallest increase in distortion are merged. We define distortion

between two clusters Di and Dj by the sum-of-squared-error criterion, as given in

Equation 4.1. Here m is the cluster mean and n is the number of constituents of

a cluster. We chose this measure of distortion since it tends to favor merging small

clusters with larger clusters rather than merging medium-sized clusters, allowing for

clusters to have good data coverage.

d(Di, Dj) =

√

ninj

ni + nj

||mi − mj|| (4.1)

This stepwise-optimal agglomerative clustering method produces a hierarchical

tree-like structure of acoustic clusters, where each level of the tree indicates a different

grouping of clusters. After developing a method to learn the acoustic structure, it is

necessary to evaluate a meaningful number of clusters from the tree structure.
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4.3.2 Cluster Evaluation with V-Measure

Evaluation measures for supervised clustering methods include homogeneity (i.e., pu-

rity, entropy), which requires that the clusters contain only data points which are

members of a single class, as well as completeness, which requires that all data points

that are members of a given class are elements of the same cluster. One such recent

measure, known as the V-measure [78], derives a clustering metric which evaluates

cluster quality by observing the tradeoff between homogeneity and completeness.

Evaluation metrics for unsupervised clustering are a bit more difficult, as labels for

clusters are not known a priori. To evaluate the unsupervised BACs, we slightly alter

the V-measure formulation. Below we describe the traditional V-measure approach

and then introduce our approach to using the V-measure for unsupervised clustering.

Traditional V-Measure

Assume we have a set of classes C and clusters K. If the number of clusters K is

known a priori, the conditional entropy of the classes given the clusters, H(C|K), is

defined as:

H(C|K) = −
K
∑

k=1

p(k)

C
∑

c=1

p(c|k) log p(c|k) (4.2)

Instead of looking at the raw conditional entropy H(C|K), the entropy is nor-

malized by the maximum reduction in entropy the clustering algorithm could provide

without any prior cluster information, namely H(C), given by:

H(C) = −
C
∑

c=1

p(c) log p(c) (4.3)

Using Equations 4.2 and 4.3, homogeneity is defined as:

homg =











1 − H(C|K)/H(C) if H(C) 6= 0

1 if H(C) = 0

Similarly, completeness is computed by looking at the conditional entropy of the
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clusters given the classes H(K|C):

H(K|C) = −
C
∑

c=1

p(c)
K
∑

k=1

p(k|c) log p(k|c) (4.4)

And the worst case value of H(K|C) is H(K), given by:

H(K) = −
K
∑

k=1

p(k) log p(k) (4.5)

Using these metrics, completeness is defined as follows:

comp =











1 − H(K|C)/H(K) if H(K) 6= 0

1 if H(K) = 0

The quality of the clustering solution is defined by the V-measure [78], which

computes the harmonic mean between homogeneity and completeness as:

Vβ =
(1 + β) × homg × comp

(β × homg) + comp
(4.6)

Here β controls the weight given to completeness vs. homogeneity.

Class Similarity V-Measure

The above V-measure assumes that each class C is labeled. In our work the only

labeled classes are the underlying phonemes, and therefore for simplicity we choose

these as our classes. However, our goal is to find a set of broad spectrally distinct

classes in an unsupervised manner, which are subsequently unlabeled. Therefore, to

use the V-measure to learn an appropriate set of clusters, we assume that cluster k

is made up of some true classes c∗ which are hidden. Ideally we would like cluster

k to be composed of classes which are acoustically similar. We cannot observe these

true classes c∗. However, we estimate the distribution p(c∗|k) by the classes our

clustering algorithm assigns to cluster k. We also define the similarity between each
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of the true classes c∗ and all other hypothesized classes c by p(c|c∗, k). Making the

assumption that c and k are conditionally independent given c∗, then by definition

p(c|c∗, k) ≈ p(c|c∗). p(c|c∗) measures the probability a phoneme being hypothesized as

c given that the true phoneme is c∗. The probability p(c|c∗) is calculated by running a

phonetic classification experiment on the TIMIT development set, as described in [37],

and counting the number of times phoneme c∗ is confused with phoneme c. Finally,

to calculate p(c|k) we sum over all the hidden variables c∗, as given by Equation 4.7.

p(c|k) =
∑

c∗

p(c|c∗, k)p(c∗|k) =
∑

c∗

p(c|c∗)p(c∗|k) (4.7)

Intuitively, to calculate p(c|k), Equation 4.7 computes the probability of each of

the true classes assigned to cluster k (i.e., p(c∗|k)) and weights them by the similarity

of these true classes c∗ to class c (i.e., p(c|c∗)). p(c|k) is computed in the same manner

by observing the similarity between c and c∗ as:

p(k|c) =
∑

c∗

p(c∗|c, k)p(k|c∗) =
∑

c∗

p(c∗|c)p(k|c∗) (4.8)

Again the confusion probability p(c∗|c) is derived from a phonetic classification

confusion matrix. Equations 4.7 and 4.8 give more weight to classes which are spec-

trally similar, and Equations 4.2 and 4.4 are modified to reflect this as well.

4.3.3 V-Measure Cluster Analysis

In this section, we analyze the behavior of the V-measure and corresponding learned

BACs across different noise types and SNRs.

Choosing Number of Clusters

First, we discuss how the V-measure allows us to choose an optimal number of clusters.

Figure 4-4 left shows the V-measure as the number of clusters is varied from 2 to 50.

The dendrogram on the right indicates the hierarchical clustering formed by merging

classes in a bottom-up fashion. Notice that the class similarity V-measure shows a
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broad peak around 8 clusters which represents the clustering solution which gives the

best tradeoff between completeness and homogeneity. This is the number we choose

as the optimal cluster number.
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Figure 4-4: The figure on the left displays the number of clusters as the V-measure is
varied. The peak in the V-measure, representing the optimal number of clusters, is
indicated by a circled. The right figure illustrates a dendrogram formed by merging
different clusters in a bottom-up fashion at different levels. The numbers at each level
indicate the number of clusters at that level.

Next, we explore the benefits of our novel class similarity measure for better cluster

selection at lower SNRs. Figure 4-5 shows the V-measure with and without the class

similarity measure for (a) 30dB and (b) 10dB of babble noise as the number of clusters

is varied.
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Figure 4-5: V-measure vs. number of clusters, with and without class similarity, at
30dB and 10dB of babble noise. The optimal number of clusters for each metric and
noise level is indicated by a circle.
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First, both measures show a broad peak, which defines the range for the optimal

cluster number. In plot (a), both metrics peak at 11 clusters. In plot (b), the class

similarity V-measure peaks at 6, while the other condition peaks at 13. As the SNR

decreases and the number of confusions between broad classes increases, intuitively

the number of broad classes should decrease. While the V-measure without class

similarity seems to find a reasonable number of clusters at 30dB, the increase in

clusters at 10dB indicates the clusters are not acoustically distinct. However, when

similarity information is utilized the clusters are chosen based on spectral closeness,

as reflected by a decrease in the number of clusters with decreasing SNR. While only

babble is shown here, similar V-measure trends were observed for other noise types.

Choice of β

Referring to Equation 4.6, β controls the weight given to the model complexity com-

pleteness term and β > 1 weights completeness more than homogeneity. Figure 4-6

shows the behavior of the V-measure for three different values of β. We see that the

larger we make β, the more weight given to model complexity and the smaller the

number of optimal clusters.
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Figure 4-6: Behavior of V-measure vs. number of clusters for different values of β

In learning BACs, we justify our choice of β by defining our objective to learn
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as many acoustic clusters such that the cluster distribution within the majority of

individual phonemes is greater than 50%. In other words, 50% of the members

within the majority of a specific phoneme will fall into the same BAC. We utilize

this information in our choice of β because ideally all members of a specific phoneme

should fall within the same BAC.

This idea is illustrated more clearly by Figure 4-7, which displays the cluster dis-

tribution within each phoneme for 7 learned BACs. This distribution was calculated

by counting the number of training tokens within a phoneme group assigned to a

specific class, and normalizing across all training tokens within that phoneme. Each

distinct color in the figure represents a specific cluster and this colored bar within a

phoneme group indicates the percentage of tokens within that phoneme assigned to

that cluster. So, for example, more that 95% of phoneme tokens /h#/, the rightmost

entry, belong to one cluster.
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Figure 4-7: Cluster distribution for each phoneme. Each distinct color in the figure
represents a specific cluster and this colored bar within a phoneme group indicates
the percentage of tokens within that phoneme assigned to that cluster.
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Broad Class Behavior in Noise

Now that we have described the behavior of the V-measure, we next turn to ana-

lyzing the learned clusters for each noise type. To gain a better understanding for

the learned BACs, we first analyze the confusion of phonemes in the vowel class with

all other phonemes. Again, these confusions are obtained from a phonetic classifica-

tion experiment on the TIMIT development set, as described in [37], for each SNR

and noise type. The confusions are calculated by counting all phonemes in TIMIT

confused with each individual phoneme which is mapped to the vowel class. This

mapping is defined in Table 3.1 from Section 3.4. We also explore this confusion

for phonemes in the fricatives class as well. These two classes are chosen since the

behavior of phoneme confusions in noise within these two classes is quite different.

Figure 4-8(a) shows the confusions for vowels in each noise type and SNR, nor-

malized by the maximum vowel confusions over all noises. Notice that vowels have

the least amount of confusions in stationary, non-harmonic pink noise, implying that

harmonics are well-preserved in pink compared to non-stationary, non-harmonic bab-

ble, which has the most number of confusions. Non-stationary, non-harmonic factory

noise retains harmonics better than babble but not as well as pink. Figure 4-8(b)

plots the normalized confusions for fricatives, and indicates that fricatives have a

common amount of confusions and thus behave similarly in all noises. This same

trend is true for other non-harmonic broad classes such as stops and closures.

Cluster Evaluation in Noise

With a better understanding of broad class behavior in noise provided in the previous

section, Table 4.1 shows the number of learned BACs for each SNR and noise type. In

addition, to further compare the learned clusters in the three noise types, we analyze

the quality of hypothesized clusters within various broad classes, i.e., vowels, weak

fricatives, strong fricatives, etc. Figure 4-9 illustrates the distribution of various

learned clusters within each broad class for clean speech. Each color represents a

different cluster, while each pie slice color within a specific broad class illustrates the
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Figure 4-8: Normalized Confusions in Noise for Phonemes in Vowel and Fricative
Classes.

percentage of that broad class that belongs to a specific cluster.

SNR Clean 30dB 20dB 10dB 0dB -5dB
Pink-Number of Clusters 11 12 7 6 5 4

Babble-Number of Clusters 11 10 6 5 5 3
Factory-Number of Clusters 11 10 7 6 4 4

Table 4.1: Number of Clusters Across SNRs

In clean speech, eleven broad acoustic clusters are learned. These clusters consti-

tute the following main classes: front vowels, back vowels, /r/-like phonemes (i.e., /r/,

/axr/, /er/), other semivowels, nasals, weak fricatives, strong fricatives, stops, voiced

closures, unvoiced closures, silence. Figure 4-9 also indicates that there is quite a bit

of homogeneity within each cluster, as each broad class tends to be concentrated in

one main cluster. Notice from the figure that the vowel class has two main clusters,

namely clust1 and clust3, illustrating the split between front vowels and back vowels.

In addition, notice the split between retroflexed semivowels (/r/-like phonemes) be-

longing to clust9, and other semivowels in the semivowel class, mainly concentrated

in clust5.

As the noise level increases, the number of clusters decreases. The first merge

occurs with the nasals, weak fricatives and closures being merged by 20dB, and then

stops by 10dB. This is true for all noise types since many of the non-harmonic classes

behave similarly in noise conditions, as demonstrated in Figure 4-8(b). Figure 4-
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Figure 4-9: Distribution of learned clusters within each broad class for clean speech.
Each color represents a different cluster, as illustrated by the legend, while each pie
slice color within a specific broad class illustrates the percentage of that broad class
that belongs to a specific cluster.

10 shows the cluster distribution within the closure class for each SNR and noise

type. Notice that at each SNR, the cluster distribution is very similar for all three

noise conditions, supporting the claim that closures behave similarly in different noise

types. This fact was also verified for nasals and weak fricatives.

Between 20dB and 10dB, babble noise has one less class compared to both factory

and pink noises. Because vowels are well preserved in pink and factory noise compared

to babble, as shown by Figure 4-8(a), we find that separate clusters are formed for

front and back vowels for these two noises. However, in babble noise just 1 cluster

is formed for the vowel class. This is further verified in Figure 4-11, which shows

the cluster distribution for vowels as a function of SNR and noise type. Notice that

for lower than 30dB SNR, all vowels in babble noise fall into one cluster, with the

exception of 0dB SNR, whereas two clusters are learned in pink and factory noises.

Finally, at -5dB, both pink and factory noises have 4 main clusters: vowels, strong

fricatives, silence and the merged classes of weak fricatives, nasals, stops and closures.

Babble noise has one less cluster, as the vowels are now merged with the weak frica-

tives, nasals, stops and closures.
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Figure 4-10: Distribution of learned clusters as a function of SNR and noise type for
the closure class. Each color represents a different cluster, while each pie slice color
within a circular pie illustrates the percentage of a specific cluster that belongs to the
closure class.

4.4 Segmentation with Broad Classes

In the previous section, we described a method to learn broad classes (i.e., BPCs,

BACs) in noise. Now, in this section, we examine how these broad classes can be
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Figure 4-11: Distribution of learned clusters as a function of SNR and noise type for
the vowel class. Each color represents a different cluster, while each pie slice color
within a circular pie illustrates the percentage of a specific cluster that belongs to the
vowel class.

used to design a robust landmark detection and segmentation algorithm for speech

recognition. A block diagram of the system is shown in Figure 4-2. Given an input
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utterance, we first detect the broad classes in the signal. Transitions between broad

classes represent the places of largest acoustic change within an utterance. Recall

that major landmarks in the baseline spectral change method are placed where the

spectral change exceeds a specified global threshold. Since this threshold is static,

oftentimes in noisy speech major landmark boundaries are poorly detected. Therefore,

we explore using broad class transitions to aid in major landmark placement.

More specifically, we run multiple spectral change segmentations with different

major landmark thresholds in parallel. We define a reasonable segmentation within an

utterance as one where the broad class transitions are detected by a major landmark

threshold setting. We can quantify how well a specific major landmark threshold

detects a broad class (BC) and how many false alarms it produces by precision and

recall, defined as:

Precision =
# detections

total # true BC landmarks
, Recall =

# detections

# hyp. major landmarks
(4.9)

and can combine this into an F-measure score as:

F-measureα =
(1 + α) × Precision × Recall

α × Precision + Recall
(4.10)

Here α controls how much emphasis we place on major landmark false alarms

versus missed broad class. Since false alarms within a broad class could represent

potential transitions between phonemes while a missed broad class detection may in-

dicate not detecting acoustically distinct transitions, we allow for greater false alarms

and fewer missed landmarks. Correspondingly, we tune α to be large to weight recall

more than precision.

Therefore, for each broad class transition, we look at the major landmark setting

which maximizes the F-measure. Formulating this idea mathematically, for a given

utterance, let S = {s1 . . . sN} represent a particular major landmark segmentation

setting, T the list of all segmentation settings and BC = {BC1 . . . BCJ} the list

of hypothesized broad class transitions. At each BCi transition, the segmentation
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parameter setting Si
∗ which has the highest F-measure is the optimal segmentation

setting chosen. In other words:

Si
∗ = {arg max

S∈T
[F-meas(S|BCi)]} (4.11)

Since each broad class conveys a distinct acoustic characteristic, we next look at

setting a fixed density of minor landmarks specific to each broad class. For example,

stops are more acoustically varying than vowels, and therefore we expect stops to

have a greater density of minor landmarks. Finally, major and minor landmarks are

connected together through an explicit set of segmentation rules.

In our connectivity method, we explore a partial-connectivity method similar to

one explored in [79]. First we label each broad class major landmark as either hard

or soft. Landmarks in which the spectral change across the landmark is above a

specified threshold are defined to be hard landmarks, while soft landmarks have a

spectral change below this threshold. Minor landmarks can be connected to other

minor landmarks across soft major landmarks. However, minor landmarks cannot

be connected across hard major landmarks. In addition, each major landmark is

connected to the next two consecutive major landmarks, as in the regular spectral

change method. Figure 4-12 illustrates the connectivity using hard and soft major

landmarks more explicitly, while Figure 4-13 shows a graphical display of the partial-

connectivity method from the SUMMIT recognizer.

Figure 4-14 shows a complete picture of the segmentation steps discussed in this

section. First, a series of broad classes are detected. These broad classes are used

as anchor points to aid in major landmark detection. Within each broad class, a

set of minor landmarks are placed specific to that broad class. Landmarks are then

connected together using the partial-connectivity method to form a segment network.

A Viterbi search is then performed through this segment graph to find the best set

of sub-word units.
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Figure 4-12: Segment network for Partial-Connection technique. Hard major land-
marks are indicated by light shaded circles while soft major landmarks are indicated
by dark shaded circles. Circles which are not shaded correspond to minor landmarks.
Minor landmarks li are connected across soft major landmarks to other landmarks lj
which fall up to two major landmarks away via segments sij. However, minor land-
marks cannot be connected across hard major landmarks. In addition, each major
landmark is connected to the next two major landmarks.

Figure 4-13: Graphical display from the SUMMIT recognizer. The top panel illus-
trates a spectrogram of the speech signal. The bottom panel shows the segmentation
network for the partial connectivity method. The darker colored segments illustrate
the segmentation with the highest recognition score during search.
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Figure 4-14: Steps of the broad class segmentation method. The first panel shows
a spectrogram with broad classes delineated by lines. The second panel illustrates
how broad classes are used for major landmark placement. The third panel depicts
using broad classes for minor landmark placement, as indicated by the small lines.
Finally, the last panel shows the segment network in SUMMIT formed using the
partial-connectivity method.

4.5 Experiments

Phonetic recognition experiments are performed on the full 61-phoneme TIMIT cor-

pus described in Section 2.4.1, which offers the benefit of a phonetically-rich context,
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in addition to a hand-labeled and time-aligned transcription. We simulate noise on

TIMIT by artificially adding pink, speech babble or factory noise, from the Noisex-92

database [93] at SNRs in the range of 30dB to -5dB.

Our experiments explore BPC/BAC units specific to each SNR and noise type.

While the number of BPCs is fixed for each condition, the number of BACs varies

based on the environment. Each broad class is modeled as a three-state, left to-right

context-independent HMM, described in Chapter 3. A unigram language model is

used. Broad class models are trained for each SNR and noise type using the TIMIT

training set. For a given utterance, broad classes are detected with an HMM, and

their transitions are used to aid in landmark detection, as discussed in Section 4.4.

Phonetic recognition is then performed in SUMMIT using context-dependent tri-

phone acoustic models to score and search the segment graph for the best recognition

hypothesis. Acoustic models are trained specific to each SNR, noise type and seg-

mentation method (i.e., BAC, BPC, sinusoidal and spectral change techniques). A

bigram language model is used for phonetic recognition experiments. Recognition

results are reported on the full test set.

First, we compare the phonetic error rate (PER) of the BAC and BPC segmenta-

tion methods to the baseline sinusoidal and spectral change approaches. Secondly, we

analyze the minor landmark settings for the broad class segmentation method. Next,

we investigate the recognition computation time of the BAC and BPC techniques for

all utterances in the test set. This computation time is defined to be the total time,

in seconds, spent strictly during the scoring and search phase. Finally, we explore

the performance of the BAC method having a fixed number of acoustic clusters.

4.6 Results

4.6.1 Segmentation Error Rates

Table 4.2 shows the PER for each SNR, averaged across the three noise types, for the

spectral change, sinusoidal, BPC and BAC methods. The best performing method
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at each SNR is indicated in bold. Note that the number of BACs at each SNR for

pink, babble and factory noise is also indicated in parentheses in the BAC column.

In addition, Figure 4-15 shows the average duration difference between true phoneme

boundaries and hypothesized landmarks for each method, also averaged across the

three noise conditions. The durational difference is the absolute time difference be-

tween each true phonetic boundary in the TIMIT corpus and the landmark closest

to this boundary. First, decreasing the SNR results in rapid degradation in perfor-

mance for the spectral change method, as well as a large time deviation from the true

phonetic boundaries. While the sinusoidal model approach is more robust at lower

SNRs compared to the spectral change method, it does not perform as well at high

SNRs, as landmarks are not as robust. The BAC and BPC methods provide the best

performance of all methods, and have the most robust landmarks, as shown in Fig-

ure 4-15. A Matched Pairs Sentence Segment Word Error (MPSSWE) significance

test [29] also indicates that the BAC and BPC results are statistically significant

compared to the spectral change and sinusoidal methods, though not compared to

each other. The only exception to this is -5dB of babble noise, where harmonics are

very poorly preserved, leading to poor BACs. While the performance of these two

methods is fairly similar across noise conditions, Section 4.6.3 will illustrate that their

computation times are different.

TIMIT Average Phonetic Error Rates
db spec sine bpc bac

Clean 28.7 30.6 27.7 27.3 (11,11,11)
30dB 29.2 31.3 28.4 28.3 (12,10,10)
20dB 32.5 34.3 31.5 31.7 (7,6,7)
10dB 42.1 43.3 41.1 40.9 (6,5,6)
0dB 70.7 59.4 57.9 58.0 (5,5,4)
-5dB 91.8 68.5 67.3 69.6 (4,3,4)

Average 49.2 45.5 42.3 42.6

Table 4.2: PERs for Segmentation Methods on TIMIT Test Set, averaged across Pink,
Babble and Factory noises at each SNR. The best performing method at each SNR
is indicated in bold. In addition, the BAC method indicates the number of clusters
at each SNR for pink, babble and factory noise in parentheses.
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Figure 4-15: Average Time Difference between True Phonemes and Hypothesized
Landmarks as a function of SNR for different segmentation methods. Results are
averaged across the three different noise types.

4.6.2 Broad Class Landmark Tuning

Next, we explored the benefits to tuning the minor landmarks specific to each broad

class. Table 4.3 shows the PER for the BPC Method in pink noise, with and without

minor landmark tuning. Again, the best performing technique at each SNR is outlined

in bold. Note that these results are shown for the TIMIT development set. One

can observe that using BPC information to tune the minor landmarks per class has

significant improvement compared to just tuning major landmarks. While not shown,

similar results also hold for the BAC segmentation method.

4.6.3 Segmentation Computation Time

In this section, we use the V-measure to investigate the quality of the hypothesized

BPC and BAC units, and show the direct correlation to computation time. The

entire recognition process, as illustrated in Figure 4-2 involves detecting broad classes,

creating a segmentation network, and finally performing a scoring and search through

this network. In this thesis, we only explore computation time for the BPC and BAC
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db BPC Segmentation, BPC Segmentation,
Major Landmarks Major & Minor Landmarks

Clean 27.9 27.1
30dB 28.5 27.5
20dB 31.8 31.1
10dB 41.1 40.1
0dB 58.4 56.0
-5dB 65.5 65.8

Average 42.2 41.3

Table 4.3: PER on TIMIT Development Set for BPC Segmentation method com-
paring major landmark tuning vs. major and minor landmark tuning. Results are
shown across different SNRs of pink noise. The best performing method at each SNR
is indicated in bold.

methods during the scoring and search phases. We define computation time in this

manner since the time to detect broad classes and form the segment graph is similar

for the two approaches, and also negligible, compared to final computation time.

To assign a set of labeled classes to the broad units to compute the V-measure,

we look at the true underlying phonemes which make up the different BPCs or BACs

generated from the TIMIT transcription. Figure 4-16 shows the total V-measure,

average V-measure for vowels, and computation time (CPU Time) as a percentage

of real time, for the BAC/BPC units in the three noise conditions. Finally, the last

column in Figure 4-16 illustrates the relative time difference between the BAC and

BPC methods. For example, a relative time difference of 20% means that the BAC

method is 20-percent faster relative to the BPC method (or the BPC method is

20-percent slower).

In pink noise, the total V-measure is higher for the BAC method across all SNRs,

and gains are made particularly in the vowel class. As illustrated in Figure 4-8(a), pink

noise tends to preserve harmonics well, resulting in a higher V-measure and better

quality clusters for the BAC technique relative to BPC, which groups all vowels into

one class. This leads to a faster CPU time for the BAC method, i.e., roughly between

0 to 20% faster relative to the BPC method. The segment graph in Figure 4-17(a) also

indicates that the BAC method has more finer level hypothesized acoustic clusters

compared to the BPC method in Figure 4-17(b), resulting in a smaller segment graph
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Figure 4-16: V-measures and CPU Times for BAC and BPC methods across different
noise types and SNRs.

and faster CPU time.

In babble noise, harmonics are not well preserved at lower SNRs. This leads to

greater confusions between broad classes, resulting in fewer BACs. Thus, in babble

the BPC method has a higher V-measure and faster CPU time at lower SNRs. In

fact at -5dB, the BAC method is roughly 60% slower relative to the BPC method.

Finally, for factory noise, at high SNRs, harmonics are well-preserved and the

BAC method has a higher V-measure and faster CPU time. As the SNR decreases,

harmonics are not as well preserved in factory compared to pink and the number of

BACs decreases. Thus, the BPC method has finer level BPCs and is roughly 20%

faster relative to the BAC method at lower SNRs. This is further confirmed by the

smaller segment graph for BPC in Figure 4-17(c) compared to BAC in 5(d).
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Figure 4-17: Graphical displays of BAC and BPC methods in SUMMIT. The top dis-
play contains speech spectrograms. Below that, (a) shows a segment-network for the
BAC method in pink noise, and bac indicates the hypothesized BACs. Similarly, (b)
shows the network for the BPC method in pink, and bpc are the hypothesized BPCs.
The darker colored segments indicate the highest scoring segmentation achieved dur-
ing search. (c) and (d) show the BAC and BPC methods in factory noise.

4.6.4 Broad Acoustic Segmentation with Fixed Classes

Thus far, we have observed that while there is little difference in PER for the BPC

and BAC methods, the computation time is faster when there are more broad classes.

In this section, we compare the BAC segmentation method when we choose just 7

clusters, to match the number of classes chosen by the BPC method. Table 4.4 shows

the PER results averaged across the three noise conditions for the BAC method with 7

clusters as well as when clusters are chosen using the V-measure. Again the number of

clusters for pink, babble and factory noise are shown in parentheses. The performance

of the BPC segmentation method is listed as well for comparison.

At high SNRs, having fewer clusters results in front/back and semivowels merged

into one class. As discussed in Section 4.6.3, merging front and back vowel classes

leads to slower recognition computation time. In fact, at high SNRs, 7 clusters leads

to the following classes: {vowels/semivowels, nasals, weak fricatives, strong fricatives,
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TIMIT Average Phonetic Error Rates
db bpc bac-variable clusters bac-7 fixed clusters

Clean 27.7 27.3 (11,11,11) 27.4
30dB 28.4 28.3 (12,10,10) 28.3
20dB 31.5 31.7 (7,6,7) 31.6
10dB 41.1 40.9 (6,5,6) 41.1
0dB 57.9 58.0 (5,5,4) 58.1
-5dB 67.3 69.6 (4,3,4) 68.0

Average 42.3 42.6 42.4

Table 4.4: PERs for BPC, BAC method with variable clusters and BAC method with
fixed clusters on TIMIT Test Set, averaged across pink, babble and factory noises at
each SNR. The bac-variable method indicates the number of clusters at each SNR for
pink, babble and factory noise in parentheses. The best performing method at each
SNR is indicated in bold.

stops, closures, silence} which are exactly the 7 BPCs.

At low SNRs, the extra number of BACs is mainly due to having two clusters for

vowels and fricatives. In general, having 7 clusters does not change the segmentation

performance much, as we have two clusters to predict certain classes rather than one.

Furthermore, the locations of broad classes are used as “guides” to determine where

to place major landmarks. If there is a broad class transition in the middle of the

vowel where there is little spectral change, as is sometimes the case when using 7

BACs at low SNRs, these transitions are usually ignored since no major landmark

setting identifies this transition. This explains why the segmentation performance in

general is not sensitive to choosing an optimal number of BACs or 7 BACs.

The only exception to this is using 7 BACs at -5dB of babble noise, where we have

4 clusters to explain vowels, nasals, weak fricatives and closures instead of 1. However,

the clusters are mixed between the broad classes, thus giving a low homogeneity score,

which explains why the V-measure metric did not identify 7 as an optimal cluster

number. Yet, because there are now 4 classes instead of 1 to explain a large portion

of the audio signal, the broad class HMM decoder switches between these classes more

frequently. Thus, there are more potential anchor points to detect segments, which

explains why having 7 classes offers better performance.

In conclusion, matching the number of BACs to BPCs only changes the perfor-
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mance of the BAC method in babble noise. While the results in Section 4.6.3 do

indicate that having more classes leads to faster computation time, both Tables 4.2

and 4.4 verify the main message of this chapter - using a broad class pre-preprocessor

for landmark detection and segmentation, whether acoustically or phonetically moti-

vated, leads to significant recognition improvements in noisy environments compared

to the spectral change and sinusoidal methods.

4.7 Chapter Summary

In this chapter, we explored using BPCs and BACs under different noise conditions

to design a robust segment-based algorithm. We demonstrated that utilizing broad

classes for both major and minor landmark placement offered improvements over the

baseline spectral change and sinusoidal methods on the noisy TIMIT task. Also,

we introduced a phonetic similarity metric into the V-measure, which allowed us to

choose an appropriate number of distinct acoustic clusters and analyze under what

noises the BAC or BPC method is preferred. We found that the BPC method has

faster computation time in non-stationary noises, while BAC is faster in stationary

conditions.

While utilizing broad classes as a pre-processor certainly improves the segmen-

tation and corresponding recognition performance, notice from Figure 4-16 that the

size of the search space and the corresponding search computation time grow as the

SNR decreases and the environment becomes more noisy. In essence, more time is

spent during search, and one might argue unnecessarily, when the signal becomes

less reliable. In the next chapter, we tackle this problem by exploring broad class

knowledge to identify reliable regions in our input signal. We then utilize the reliable

regions to guide the search such that more time is spent in reliable regions and less

time in unreliable ones.
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Chapter 5

Broad Class Knowledge for

Island-Driven Search

5.1 Introduction

In Chapter 3 we introduced an instantaneous adaptation technique using the EBW

Transformations to recognize broad classes in noisy speech. This broad class knowl-

edge was utilized as a pre-processor to aid in landmark detection in a segment-based

speech recognition system in Chapter 4. We found that taking advantage of broad

class information improved the segmentation and corresponding recognition perfor-

mance in a variety of noise conditions. However, we also observed that, when the

SNR decreases and the signal becomes more unreliable, more computational effort is

spent during the search.

In this chapter, we address this problem by utilizing broad class knowledge as a

pre-processor to first identify reliable regions in the input signal, which we refer to

as islands. Portions of the signal which are not identified as islands are defined to be

gaps, and represent areas of the signal which are unreliable. Reliable island regions

are then used to develop a noise-robust island-driven search strategy. Specifically, we

alter our search such that more effort is spent in reliable, information-bearing parts

of the signal and less time in unreliable gap regions. We will demonstrate that, by

utilizing regions of reliability during search, we can not only reduce the amount of
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computation spent during search, but also improve recognition accuracy as well.

5.1.1 Motivation

Many speech scientists believe that human speech processing is done first by identify-

ing regions of reliability in the speech signal and then filling in unreliable regions using

a combination of contextual and stored phonological information [3], [88]. However,

most current decoding paradigms in speech recognition consist of a left-to-right scor-

ing and search component, and an optional right-to-left component, without utilizing

knowledge of reliable speech regions. More specifically, speech systems often spend

the bulk of their computational efforts in unreliable regions when in reality most of the

information in the signal can be extracted from the reliable regions [103]. In the case

of noisy speech, if phrases are unintelligible, this may even set the search astray and

make it impossible to recover the correct answer [73]. This is particularly a problem

in large vocabulary speech systems, where pruning is required to limit the size of the

search space. Pruning algorithms generally do not make use of the reliable portions

of the speech signal, and hence may prune away too many hypotheses in unreliable

regions of the speech signal and keep too many hypotheses in reliable regions [56].

Island-driven search [12] is an alternative method to better deal with noisy and

unintelligible speech. This strategy works by first hypothesizing islands from regions

in the signal which are reliable. Further recognition works outwards from these anchor

points to hypothesize unreliable regions. Island-driven search has been applied in a

variety of areas, for example in parsing [17] and character recognition [73], though

has been relatively unexplored in probabilistic automatic speech recognition (ASR).

The goal of this chapter is to explore an island-driven search strategy for modern-day

ASR.

The incorporation of island-driven search into continuous ASR poses many chal-

lenges which previous techniques have not addressed. First, the choice of island re-

gions is a very challenging and unsolved problem [99]. Kumaran et al. have explored

an island-driven search strategy for continuous ASR [56]. In [56], the authors perform

a first-pass recognition to generate an N-best list of hypotheses. A word-confidence
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score is assigned to each word from the 1-best hypothesis, and islands are identified

as words in the 1-best hypothesis which have high confidence. Next, the words in the

island regions are held constant, while words in the gap regions are re-sorted using the

N-best list of hypotheses. This technique was shown to offer a 0.4% absolute improve-

ment in word error rate on a large vocabulary conversational telephone speech task.

However, we argue that, if the motivation behind island-driven search is to identify

reliable regions of the signal which might be thrown away during pruning, identifying

these regions from an N-best list generated from pruning is not an appropriate choice.

The use of acoustic information to identify islands is explored by Park in [71].

Specifically, Park introduces a probabilistic landmark algorithm which assigns proba-

bility scores to all possible acoustic landmarks. A Viterbi search is performed through

this landmark probability network to determine the best set of landmarks. Because

landmarks have probabilities assigned to them, an N-best sequence of landmarks can

also be hypothesized. Park identifies islands as landmarks which do not change from

one N-best hypothesis to the next. While this algorithm does introduce a technique

to identify island and gap regions from the input speech signal, subsequent use of this

information in continuous speech recognition was not explored.

The use of island information for parsing has also been explored in the BBN HWIM

speech understanding system [98]. In this system, parsing works outwards from island

regions to parse a set of gap regions. While this type of approach has shown promise

for small grammars, it has not been explored in large vocabulary speech recognition

systems due to the computational complexities of the island parser.

Finally, [73] explores island-driven search for isolated-word handwriting recogni-

tion. The authors identify reliable islands in isolated words to obtain a small filtered

vocabulary, after which a second-pass more detailed recognition is performed. This

technique is similar to that explored by Tang et al. in [89] for improving lexical access

using broad classes. However, these solutions cannot be directly applied to continu-

ous speech recognition. Thus, our first goal is to develop a methodology to identify

reliable island regions that can be applied to continuous ASR.

Second, the nature of speech recognition poses some constraints on the type of
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island-driven search strategy preferred. While island searches have been explored

both unidirectionally and bi-directionally, the computational and on-line benefits of

unidirectional search in speech recognition make this approach more attractive. Fur-

thermore, if reliable regions are identified as sub-word units and not words, a bidirec-

tional search requires a very complex vocabulary and language model. Unidirectional

island-driven search strategies, which have been explored in [12] and [21], typically

make use of a heuristic strategy to significantly decrease the number of nodes ex-

panded. Therefore, our second goal is to explore the use of island/gap regions in a

unidirectional framework to decrease the number of nodes expanded during search.

Specifically we look to use island/gap knowledge to efficiently prune the search space

and decrease the amount of computational effort spent in unreliable regions. We hope

that, by increasing the efforts spent in reliable islands, the recognition accuracy will

also improve.

5.1.2 Proposed Approach

In this chapter, we look to develop a method of island-driven search which can be

incorporated into a modern probabilistic ASR framework. Specifically, we look to

alter the typical left-to-right search such that more computational effort is given to

reliable island regions compared to gap areas. A block diagram of the proposed system

is illustrated in Figure 5-1.

Figure 5-1: Block Diagram of Broad Class Pre-Processor within SUMMIT Frame-
work Utilized for Island-Driven Search
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First, we explore utilizing broad class knowledge to identify reliable island regions1.

The EBW-HMM broad class recognizer, described in detail in Chapter 3, is used to

detect broad classes. A confidence score is then assigned to each hypothesized broad

class, and island regions are identified as those broad classes with high confidence.

We then utilize the island/gap knowledge to better guide our search and limit our

search methods from unnecessarily spending too much computation time in unreliable

regions.

In Chapter 4 we observed that while the broad class segmentation method offered

improvements in noisy conditions, the size of the search space and corresponding

recognition computation time increased as the signal became more unreliable. There-

fore, we explore utilizing island information to prune the segmentation graph gener-

ated from the broad class segmentation. In Chapter 4 we also observed that there

was very little difference in performance if the broad class segmentation was moti-

vated along acoustic vs. phonetic dimensions. Therefore, in this chapter, we focus on

applying island-pruning to the broad phonetic class (BPC) segmentation technique.

In addition, we investigate utilizing island information in the scoring and search

component of the recognition process. Specifically, to limit spending time unneces-

sarily in gap regions, we look at scoring less detailed models in gap regions in the

form of broad classes and more detailed acoustic models in island regions.

First, we explore the proposed island-driven search strategy on the small vocabu-

lary Aurora-2 noisy digits task. We will demonstrate that our island-based segment

pruning method offers improvements in both performance and computation time over

the broad class segmentation method. In addition, further usage of island informa-

tion during final recognition offers additional improvements in both performance and

computation time.

We then investigate the extension of these island-driven methods to the large

vocabulary CSAIL-info corpus. We will illustrate that, on the CSAIL-info task,

island-driven techniques offer comparable performance to the broad class segmen-

tation method, though still provide faster computation time.

1Note that in this chapter, the term broad class will refer to just broad phonetic classes (BPCs).
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5.1.3 Overview

The rest of this chapter is broken down as follows. We discuss our method for de-

tecting islands in Section 5.2. Utilization of island information for pruning of the

search space and during final recognition are discussed in Sections 5.3 and 5.4 respec-

tively. Section 5.5 discusses the experiments performed, while Sections 5.6 and 5.7

discuss the results on Aurora-2 and CSAIL-info tasks respectively. Finally, Section

5.8 summarizes the main findings in this chapter.

5.2 Identifying Islands

In this section, our method of identifying island regions is discussed. Island identifi-

cation is motivated from acoustic information itself rather than using language model

information, as done in [56], so as to ensure that islands are not detected from a

pruned search space. Specifically we look to detect reliable islands from broad class

knowledge for three reasons. First, in Chapters 3 and 4, we have illustrated that

broad classes are much more spectrally distinct and more robustly detected in noisy

environments compared to the underlying phonemes. Second, as [88] discusses, when

humans process speech, they utilize articulator-free broad classes (i.e., vowels, nasals,

fricatives, etc) as one source of information when identifying reliable regions in the

signal to help in further processing of unreliable regions. Third, island-driven search

experiments are conducted on the broad class segment-based recognizer discussed in

Chapter 4. This method uses broad class knowledge in designing a robust landmark

detection and segmentation algorithm. As we will show, utilization of this same broad

class knowledge to further reduce the search space during island-driven search allows

us to make direct use of the broad class segmentation and does not require further

reliability detectors (i.e., syllables, etc.), therefore minimizing system complexity.

Thus, to detect reliable island regions from broad class knowledge, we define

reliable areas to be those broad classes which are detected with high confidence.

To determine confidence scores for hypothesized broad classes, we explore a broad

class-level acoustic confidence scoring technique, as discussed in [50]. The confidence
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scoring method is discussed in more detail below.

5.2.1 Confidence Features

First, we derive a series of features for each hypothesized broad class based on frame-

level acoustic scores generated from the HMM broad class recognizer described in

Chapter 3. The most common acoustic score for broad class confidence is the max-

imum a posteriori (MAP) probability, as given by Equation 5.1. Here ci is the hy-

pothesized broad class and ot is the observed feature vector at a specific frame t. The

value of p(ci|ot) varies from 0 to 1, and is closer to 1 the higher the confidence in the

hypothesized model ci.

Cmap(ci|ot) = p(ci|ot) =
p(ot|ci)p(ci)

p(ot)
(5.1)

The other acoustic score proposed in [50] is the normalized log-likelihood (NLL)

score p(ci|ot), as given by Equation 5.2. This confidence measure is based purely on

the acoustic score p(ot|ci) and does not incorporate the prior class probability p(ci)

like the MAP score. The NLL confidence score ranges from −∞ to log p(ci), with

increased confidence in class ci reflected by a more positive NLL value.

Cnll(ci|ot) = p(ci|ot) = log

(

p(ot|ci)

p(ot)

)

(5.2)

Using these frame-level acoustic confidence features, we can derive broad class-

level features for each hypothesized broad class by taking various averages across the

frame-level features2. Table 5.1 shows the features used. A more detailed mathemat-

ical description of these features can be found in [50].

A complete illustration of the steps taken to obtain broad class confidence features

is displayed in Figure 5-2. The first panel shows the broad class recognition output

from the HMM. In the second panel, frame-level acoustic confidence features are

extracted at each frame ot. Then in the third panel, broad class-level features, f1 and

2Note that if the same broad class is hypothesized twice in a row, a separate broad class-level
feature is extracted for each broad class.
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Feature
Arithmetic Mean of Cmap scores
Arithmetic Mean of Cnll scores
Geometric Mean of Cmap scores
Geometric Mean of Cnll scores

Standard Deviation of Cmap scores
Standard Deviation of Cnll scores

Catch All Model scores

Table 5.1: Broad Class-Level Features

f2, are computed from the frame-level confidence features.

o1 o2 o4 o5 o6o3

vow st

frame-level

confidence 

scores

HMM

recognition

CmapCmap

Cnll Cnll

CmapCmap

Cnll Cnll
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confidence 
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Cmap

Cnll

Cmap

Cnll

Arithmetic Mean of Cmap

Arithmetic Mean of Cnll
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Std Dev of Cmap

Std Dev of Cnll

f1=

Arithmetic Mean of Cmap

Arithmetic Mean of Cnll

Geometric Mean of Cmap

Geometric Mean of Cnll

Std Dev of Cmap

Std Dev of Cnll

f2=

Figure 5-2: Diagram of various steps in obtaining broad class confidence features.
The first panel shows the broad class recognition output from the HMM. In the
second panel, frame-level acoustic confidence features are extracted at each frame ot.
Finally, in the third panel, broad class-level features, f1 and f2, are computed from
the frame-level features.

5.2.2 Confidence Scores from Features

After broad class-level features are extracted from each hypothesized broad class, a

Fisher Linear Discriminant Analysis (FLDA) projection [22] is applied to reduce the

set of broad class-level features f into a single dimension confidence score. The goal

of the FLDA is to learn a projection vector w to reduce dimensionality of f while

achieving maximal separation between two classes. Typically, these two classes are
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correctly and incorrectly hypothesized sub-word units (i.e., [50]). However, the goal

of our work is to identify reliable island regions, not correctly hypothesized broad

classes. More intuitively, a silence or stop closure could be hypothesized correctly

but generally provides little reliability information on the actual word spoken relative

to a voiced sound, such as a vowel. Therefore, a 2-class unsupervised k-means [22]

clustering algorithm is applied to the feature vectors f to learn a set of set of two

classes, denoted as class0 and class1.

To analyze the behavior of these two learned classes, Figure 5-3 shows a histogram

of the arithmetic mean of the Cmap scores, one of the acoustic features extracted from

the broad class recognition results, for class0 and class1. The figure indicates that

there is good separation between the Cmap scores for the two different classes. In

addition, the Cmap scores are much higher for class0 relative to class1, showing that

there is higher confidence in this class. In addition, Figure 5-4 shows a histogram of

the standard deviation of the Cmap scores for class0 and class1. Not only is there good

separation between the two classes, but the standard deviation of scores for class0

is also smaller than the scores for class1, another indication of higher confidence in

class0. Similar trends were observed for the other broad class-level features listed in

Table 5.1. The trends illustrated in Figures 5-3 and 5-4 indicate that there is higher

confidence in class0, and thus we will refer to this class as the “reliable” class, while

class0 will be called the “unreliable” class.

The trends in class0 and class1 are further confirmed by analyzing at the con-

centration of broad classes belonging to class0 and class1, as illustrated in Figure

5-5. The figure shows that most of the reliable broad-classes, i.e., nasals, vowels and

semi-vowels, belong to class0. However, unreliable classes such as closures, strong

fricatives, silence, stops, and weak-fricatives, have a higher concentration in class1.

After a set of two classes is learned, the FLDA is then used to learn a linear

projection w. The projection vector is then applied to a newly hypothesized broad

class feature vector to produce a single acoustic confidence score, namely Fscore =

wTf .
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Figure 5-3: Histogram of the arithmetic mean of the Cmap scores for class0 and class1
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Figure 5-4: Histogram of the standard deviation of the Cmap scores for class0 and
class1

5.2.3 Detecting Island Regions

After confidence scores are defined for each hypothesized broad class, an appropriate

confidence threshold to accept the broad class as a reliable island region must be de-

termined. Ideally, we would like island regions to include reliable broad classes, that

is vowels, semivowels and nasals. Furthermore, we would like transitions between is-
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Figure 5-5: Distribution of broad classes belonging to class0 and class1

lands and gaps to occur at true boundaries between reliable/unreliable broad classes

in the utterance, but would like to minimize the transitions that occur in the middle

of sequences of reliable or unreliable broad classes. Figure 5-6 shows an example of a

set of hypothesized broad classes, along with two island/gap hypotheses. Notice that

the first island/gap hypothesis detects transitions between reliable/unreliable broad

classes. However, the second island/gap hypothesis is poor as an island/gap transi-

tion, delineated by an ‘X’, is hypothesized in the middle of an unreliable sequence of

broad classes.

Figure 5-6: A hypothesized set of broad classes, along with two examples illustrating
a set of good and poor island/gap detections. The second island/gap hypothesis is
poor as an island/gap transition, delineated by an ‘X’, is hypothesized in the middle
of an unreliable sequence of broad classes
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Thus, we define our goal of detecting reliable broad classes as those broad classes

that provide a high probability of detecting the true reliable/unreliable transitions

with a low false alarm probability. The probability of detection is calculated by look-

ing at the percentage of true reliable/unreliable transitions that are detected by a par-

ticular island/gap transition. Similarly, the probability of false alarm is calculated by

the percentage of island/gap transitions that do not detect a true reliable/unreliable

transition.

To find an appropriate confidence threshold setting, we calculate a Receiver Oper-

ating Characteristic (ROC) [22] curve, which is a common tool used to find a suitable

tradeoff between detection and false alarms as the confidence threshold setting is var-

ied. Figure 5-7 shows a graphical display of this ROC curve for different confidence

threshold settings. The optimal confidence threshold, as indicated by the rectangular

box, offers a high probability of detection and low false alarm rate.
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Figure 5-7: ROC Curve for different confidence threshold settings. The optimal
confidence threshold is indicated by a rectangular box.

After an appropriate setting is determined to define island regions, we then use

this information in our island-driven search methods. In Section 5.3 we discuss a

method to prune the search space while in Section 5.4 we explore a technique to

reduce computation time during model scoring.
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Figure 5-8: Block Diagram of Segmentation by Recognition

5.3 Island-Driven Segmentation

Segment-based recognizers can often be computationally expensive, as the number

of possible segmentations can grow exponentially with the number of segments [13].

We have observed in Chapter 4 that the size of the search space and number of

segmentations also grows as speech is subjected to noisier environments. Therefore,

we first explore utilizing island/gap information to prune the size of the segment

graph.

5.3.1 Segmentation by Recognition

Segmentation by recognition has been explored in [13] and [61] as a means of pro-

ducing a smaller segment graph with more meaningful segments. A block diagram of

segmentation by recognition in shown in Figure 5-8.

In this method, landmarks are first placed at a fixed frame rate independent of

acoustic change. Then, a forward phonetic Viterbi search is performed to produce

an phonetic lattice with corresponding acoustic scores. Next, a backwards A∗ search

[44] is carried out on this lattice to produce an N-best list of phonemes. This N-best

list is then converted into a new pruned N-best segment graph. A second-pass word

recognition is then performed over this pruned segment graph.

Segmentation by recognition is attractive for two reasons. First, the pruned seg-

ment graph is produced from phonetic recognition and therefore the segments are

much better aligned to the phonemes we want to match during word recognition.

Second, the segment graph is much smaller, allowing more paths to be kept alive
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during recognition and subsequently reducing the chances of throwing away poten-

tially good paths. In fact, improvements with segmentation by recognition over the

acoustic segmentation method were found for both phonetic [13] and word recognition

tasks [61]. We take advantage of this segmentation by recognition idea in utilizing

island/gap knowledge to prune the search space.

5.3.2 Island-Based Segmentation

Many dynamic beam width approaches (i.e., [2], [23]) have resulted in greater recogni-

tion speed-up but not an improvement in recognition performance. One explanation

for this is that the dynamic pruning strategies prune the gap and island regions in-

dependently without incorporating acoustic confidence information. Therefore, to

try and better utilize the reliable regions for dynamic pruning, we explore using

island/gap contexts to prune the segment graph, an idea that is similar to the seg-

mentation by recognition idea discussed in the previous section.

More specifically, we first use the broad classes to define a set of island/gap regions

as presented in Section 5.2, and to define a set of variable frame rate acoustic land-

marks discussed in Chapter 4. We look at using the variable frame rate landmarks

rather than fixed frame rate landmarks due to the computational benefits of having

fewer landmarks, an idea which was first explored in [61].

Island/gap knowledge is then used to chunk an utterance into smaller sections at

islands of reliability. This not only allows us to vary the amount segment pruning

in island vs. gap regions, but also allows the future potential opportunity to paral-

lelize the forward/backward search done in each region, similar to [61], therefore not

requiring exactly two full recognition passes.

In each island region, a forward phonetic Viterbi search is done to produce an

phonetic lattice. A backwards A∗ search over this lattice then generates a smaller list

of N-best segments, after which a new pruned segment graph is created in the island

regions. Here N , the number of allowed paths, is chosen to be the N which optimizes

the recognition performance on a held out development set.

Next, the pruned segment graphs in the island regions are used to influence seg-

116



ment pruning in the gap regions. More specifically, another forward Viterbi/backward

A∗ is performed across each gap-island-gap region. Here the pruned island segment

graph from the island pruning is inserted in the island regions. Again, N is chosen

to optimize performance on the development set. We chose N in the gap regions to

be smaller than in the island regions to allow for fewer segments in areas we are less

confident about and more detailed segments in confident island regions.

Finally, the N-best segments from the island and gap regions are combined to form

a pruned segment graph 3. Then, given the new segmentation by recognition graph, a

second-pass full word recognition is done over this pruned search space. We will refer

to this segment-pruning technique described above as an island-driven segmentation,

as fewer segments are permitted in areas of reliability and denser segmentation is

allowed during regions of less confidence.

A pictorial view of the island-based segmentation idea from the SUMMIT recog-

nizer is illustrated more clearly in Figure 5-9. Item A in the figure shows a spectro-

gram and corresponding segment graph in SUMMIT. Item B indicates the detected

island and gap regions. C illustrates a forward Viterbi and backward A∗ search in

the island regions, while D shows a forward Viterbi and backward A∗ search over a

gap-island-gap region. Finally E depicts a pruned segment graph.

5.4 Utilization of Island Information During Final

Recognition

In the previous section, we demonstrated that by utilizing island/gap information,

the size of the segmentation graph could be reduced. In this section, we explore

the utilization of island/gap regions during the final recognition search component to

further differentiate between the search effort in islands vs. gaps.

3Note that the island-gap transitions are hard boundaries, so segments in island and gap regions
are not connected together.
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Figure 5-9: A view of island-based segmentation from the SUMMIT recognizer.A
shows a spectrogram and corresponding segment graph in SUMMIT. B illustrates
island and gap regions. C shows a forward Viterbi and backward A∗ search in the
island regions, while D illustrates a forward Viterbi and backward A∗ search over a
gap-island-gap region. Finally E depicts the resulting pruned segment graph.

5.4.1 Overview

Many speech systems often spend the bulk of their computational efforts in unreliable

regions when in reality most of the information in the signal can be extracted from

the reliable regions [103]. This trend is illustrated in Figure 5-10, which shows the

average number of active viterbi nodes within each phoneme for all 11 words in

Aurora-2 digit task. The number of active viterbi nodes is also a measure of beam

width. Notice that the number of active counts is much higher at the beginning of a

word, where the phonemes are unvoiced and unreliable. However, after knowledge of

reliable phonemes, such as vowels and semi-vowels, the number of active counts drops.

Similar behavior can also be observed in Figure 5-11, which depicts the percentage of

acoustic models requested by the search for each phoneme in a word. Again, notice
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that the number of models evaluated is higher for unreliable phonemes compared

to reliable phonemes. Both figures confirm the fact that the search component of a

speech recognition system spends most of its effort in unreliable regions.
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Figure 5-10: Average Number of Active Viterbi Nodes within each phoneme of a
word. Plots are shown for all 11 digits in the Aurora-2 task.

Thus, to reduce the computation in unreliable regions, we explore a technique to

score less detailed acoustic models in gap regions and more detailed models in island

regions. For example, the Aurora-2 corpus contains 28 phones, and therefore effec-

tively scores 157 diphone acoustic models (after clustering) for each possible segment.

If less detailed broad class models are scored for each segment, this can reduce the

number of acoustic models to approximately 49, roughly one-third. Therefore, we

investigate scoring broad class acoustic models in the gap regions and more detailed

full phonetic acoustic models in islands. Figure 5-12 gives a graphical illustration of
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Figure 5-11: Average Number of Models Evaluated within each phoneme of a word.
Plots are shown for all 11 digits in the Aurora-2 task.

this process. In order to implement this joint broad class/phonetic recognizer, we

make changes to both the Finite State Transducer (FST) search space and acoustic

models, both of which are discussed below.

5.4.2 Finite State Transducer Formulation

The SUMMIT recognizer utilizes an FST framework [33] to represent the search space.

The benefit of using the FST network is that a wide variety of search networks can

be constructed by utilizing basic mathematical FST operations, such as composition.

In order to allow for broad class models in the search space, we represent the FST

network R as being composed of the following components:
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Figure 5-12: Graphical illustration of joint phonetic-broad class model scoring. First,
island and gap regions are identified in the waveform. Secondly, broad class models
are scored in gap regions and phonetic models are scored in island regions.

R = C ◦ B ◦ P ◦ L ◦ G

C typically represents the mapping from context-dependent (CD) phonetic la-

bels to context-independent (CI) phonetic labels. Our CD labels include both pho-

netic and broad class labels, so C now represents the mapping from CD joint broad

class/phonetic labels to CI broad class/phonetic labels. We next compose C with

B, which represents a mapping from joint broad class/phonetic labels to CI pho-

netic labels. So, for example, given a broad class label for the stop class as st and

corresponding phonetic labels for phones which make up the stop class, namely [t]

and [k], the B FST representation for stop labels is given by Figure 5-13, where the

mapping is given by <input label>:<output label>. Intuitively, B takes all broad

class/phonetic CI labels and maps them into CI phonetic labels.

The rest of the composition is standard, with P representing the phonological

rules, L the word lexicon and G the grammar. Thus, the full composition R maps

input context-dependent broad class/phonetic labels directly to word strings.

Therefore each word in the lexicon is represented as a combination of broad class

and phoneme sub-word units. For example, one sub-word representation of the word

“three” could be:

three : /WF r iy/
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Figure 5-13: FST illustrating mapping from joint broad class/phonetic la-
bels to context-independent phonetic labels. The mapping is given by <input
label>:<output label>. Here st corresponds to the stop broad class label, while
[t] and [k] are phonetic labels which belong to the stop class.

Intuitively, the island information /r iy/ is really characterizing the word “three”

and there is no need to do a detailed search of the weak fricative /th/.

5.4.3 Acoustic Model

The acoustic model calculates the probability of an observation ot given sub-word unit

un as P (ot|un). In island regions, the sub-word unit un is a phonetic model Phn and

the acoustic model is scored as P (ot|Phn) for each Phn. In the gap region, the sub-

word unit is a broad class model BC. We calculate P (ot|BC) by taking the average

of all the phonetic model scores which make up the broad class. The expression for

the broad class acoustic model score is given more explicitly by Equation 5.3. Here

N is the number of Phn models which belong to a specific broad class (BC).

P (ot|BC) =
1

N

(

∑

Phn∈BC

P (ot|Phn)

)

(5.3)

This approach is chosen for two reasons. First, if a separate set of broad class

and phonetic models were trained, the observation spaces used during training would

be different. Therefore, the scores for P (ot|Phn) and P (ot|BC) would be in different

ranges, making it difficult to combine both scores during full word recognition. While

122



an appropriate scale factor could potentially be learned to account for this, the second

reason we choose to calculate the broad class scores via Equation 5.3 is for model

simplicity. Having a separate set of broad class models would also require training up

phonetic-broad class diphone models which occur at island-gap transitions, making

the set of total acoustic models trained more than three times the size of the number

of phonetic models.

5.5 Experiments

Island-driven search experiments are first conducted on the small vocabulary Aurora-2

database [45]. The Aurora-2 task consists of clean TI-digit utterances with artificially

added noise at levels of -5db to 20db in 5db increments. We utilize this corpus for

experiments because the simple nature of the corpus allows us to explore the behav-

ior of the proposed island-driven search techniques in noisy conditions. Results are

reported on Test Set A, which contains noise types similar to those in the training

data, namely subway, babble, car, and exhibition hall noise. For the broad class

recognizer, a set of context-independent broad class acoustic models, discussed in

Chapter 3, are trained for each SNR and noise condition in the Aurora-2 training set.

The same broad phonetic classes described in Section 4.2 are used, though the vowel

and semi-vowel broad classes are now separated, in part due to the simple nature of

the vocabulary. A unigram language model is used for each broad class. For subse-

quent word recognition experiments, global multi-style diphone acoustic models are

used. Acoustic models are trained specific to each segmentation described, namely the

spectral change, BPC segmentation and island-driven segmentation techniques. The

language model gives equal weight to all digits, and allows digits to by hypothesized

in any order.

Experiments are then conducted on the CSAIL-info corpus, which contains in-

formation about people, rooms, and events in the Computer Science and Artificial

Intelligence Laboratory (CSAIL) at MIT. The large vocabulary nature of the task,

coupled with the various non-stationary noises which contaminate the speech utter-
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ances, motivate us to further explore island techniques on this task. Results are

reported on the development set. For the broad class recognizer, a global broad class

acoustic model is trained using the CSAIL-info training set for the 7 broad phonetic

classes defined in Section 4.2, and again a unigram language model is used. For word

recognition experiments, diphone acoustic models are trained using data collected

from the telephone-based Jupiter weather system at MIT [33]. The acoustic models

are trained using only the spectral change segmentation method. A trigram language

model is used.

A variety of experiments are conducted to analyze the behavior of the island-

driven strategy proposed. First, we explore the robustness of the technique discussed

in Section 5.2 to identify island and gap regions. Second, we analyze the word error

rate (WER) of the island-based segment pruning and joint broad class/phonetic model

scoring techniques. Third, the computational benefits of the island-driven techniques

are investigated. This analysis is done on both the Aurora-2 and CSAIL-info tasks.

5.6 Results on Aurora

5.6.1 Island Quality Investigation

First, we investigate the robustness of the technique to hypothesize islands and gaps

proposed in Section 5.2. This is achieved by analyzing the concentration of island and

gap regions within each phonemic unit of each digit word. Ideally, a robust island

will have a high concentration of vowels, semi-vowels and nasals, which correspond

to more reliable, robust parts of the speech signal.

Figure 5-14 illustrates for each phoneme in a word, the distribution of islands

and gaps within that phoneme. This distribution is shown for all 11 digits in the

Aurora corpus. The distribution is normalized across each phoneme, so, for example

a distribution of 0.3 for the island region for /z/ in “zero” means that 30% of the time

/z/ is present in an island region and 70% of the time it is contained in a gap region.

Each plot shows the same behavior, i.e., most of the vowels, semi-vowels and nasals
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in each word, containing the information-bearing parts of the signal, are concentrated

in the island regions. However, most of the non-harmonic classes belong to the gap

regions. Now that we have illustrated the robustness of our island detection method,

in the next section we analyze the performance of the island-driven search methods

proposed in Sections 5.3 and 5.4 respectively.
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Figure 5-14: Concentration of Islands and Gaps within each phoneme of a word. Plots
are shown for all 11 digits in the Aurora-2 task.

125



5.6.2 Error Rates

Island-Based Segment Pruning

First, we explore the island-based segment pruning on the Aurora-2 Test set. Table 5.2

compares the baseline spectral change segmentation, the BPC segmentation discussed

in Chapter 4 and the island-based segmentation method. The results are averaged

across all SNRs and noise types in Test Set A.

Notice that the BPC segmentation method outperforms the spectral change method.

This illustrates that using a broad class pre-processor for landmark detection also

offers improvements for word recognition tasks4. In addition, Table 5.2 indicates

that the island segmentation method outperforms both the spectral change and

BPC segmentation techniques, and a Matched Pairs Sentence Segment Word Er-

ror (MPSSWE) significance test [29] indicates that the island segmentation result is

statistically significant from the other two approaches.

These results verify that recognition results can be improved by using the is-

land/gap regions to reduce the segmentation graph and keep the most promising

segments, thereby reducing the number of paths searched. This increases the chances

that reliable parts of the signal are not thrown away, and prevents the search from

scoring and keeping poor segments. A more detailed error analysis exploring the

benefits of the island-driven approach is presented later in this section.

Segmentation Method WER
Baseline Spectral Change Segmentation 31.9

BPC Segmentation Baseline 22.8
Island-Based Segmentation 22.3

Table 5.2: WER for Segmentation Methods on Aurora-2 Test Set A. The best per-
forming method is indicated in bold.

4Note that the success of the broad class segmentation method discussed in Chapter 4 was only
demonstrated on the TIMIT phonetic recognition task.
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Utilization of Island Information During Final Recognition

In this section, we explore the utilization of island/gap regions during the final search

to further decrease the number of nodes expanded. The first question explored is

how many broad class models are necessary to score in the gap regions. Figure 5-15

shows the change in WER on the development set for the joint broad class/phonetic

method as the number of broad class models is varied. Here, the additional broad

class chosen at each point on the graph is picked to give the maximum decrease

in WER. We also compare the WER of the joint method to scoring only phonetic

models in both island and gap regions, as indicated by the flat line in the figure.

Point A in the figure corresponds to the location where the WER of the joint broad

class/phonetic approach equals that of the phonetic approach. This corresponds to 8

broad classes, which are indicated in Table 5.3.

silence vowel
semi-vowel nasal

closure stop
weak fricative strong fricative

Table 5.3: Broad Classes in Gap Region Corresponding to Point A in Figure 5-15

If the number of broad classes is increased, and particularly if additional splits

are made in the strong and weak fricative classes, the WER continues to decrease.

The best set of broad class models is depicted by Point B in Figure 5-15, with the

following broad classes shown in Table 5.4. There is no extra benefit to increasing

the number of broad classes past 10, as illustrated by the increase in WER.

silence vowel
semi-vowel nasal

closure stop
voiced weak fricative unvoiced weak fricative
voiced strong fricative unvoiced strong fricative

Table 5.4: Broad Classes for Gap Region Corresponding to Point B in Figure 5-15

Using these 10 broad class models to score the gap regions, Table 5.5 compares

the WER when only phonetic models are scored vs. using island/gap information to
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Figure 5-15: WER vs. Number of Broad Class Models when joint broad
class/phonetic models are scored. The WER when only phonetic models are scored
is also indicated.

score broad class/phonetic models. There is a slight improvement when broad class

models are scored in gap regions, showing that doing a less detailed evaluation in

unreliable regions does not lead to a degradation in performance.

Scoring Method WER
Island-Based Segmentation, Full Phonetic Models 22.3

Island-Based Segmentation, Broad Class/Phonetic Combination 22.1

Table 5.5: WER for Island-Based Segmentation Methods on Aurora-2 Test Set A.
The best performing method is indicated in bold.

Error Analysis

To better understand the improvement in error rate offered by the island-driven tech-

niques, in this section we perform a detailed error analysis. Table 5.6 breaks down the

WER for the BPC segmentation, island segmentation method scoring phonetic mod-

els and the island segmentation method scoring joint broad class/phonetic models,

and lists the corresponding substitution, deletion and insertion rates.

Notice that the island segmentation causes an increase in substitution and deletion

errors. By making cruder segment and modeling approximation, the slight increase
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in the substitution and deletion rates is no surprise. However, the main advantage to

the island based approach is the large decrease in insertion rate.

Scoring Method WER Subs Del Ins
BPC Segmentation 22.8 9.9 6.8 6.1

Island Seg, Phonetic Models 22.3 10.8 7.6 3.9
Island Seg, Broad Class/Phonetic Models 22.1 11.1 8.0 3.0

Table 5.6: Breakdown of Error Rates for Segmentation Methods on Aurora-2 Test
Set A. The best performing method is indicated in bold.

A closer investigation of these insertion errors is illustrated in Figure 5-16a, which

displays the number of insertion errors for the above three methods, when errors occur

purely in island region, gap regions, or span over a combined island&gap region. In

addition, Figure 5-16b illustrates the relative reduction in insertion errors over the

BPC segmentation for each of these regions. The following observations can be made:

• Most of the insertions occur in gap only and island&gap regions where the signal

is not as reliable compared to a pure island region.

• The biggest reduction in insertions with the island segmentation approaches oc-

curs in the gap only region. For example, the broad class/phonetic combination

has approximately a 66% reduction in insertion rate in the gap region.

• The broad class/phonetic combination has approximately a 40% reduction in

insertion rate in the island and island&gap regions.

This insertion rate reduction in the gap region shows one of the strengths of

island driven search. Having a detailed segmentation and phonetic model scoring in

unreliable gap regions, particularly in noisy conditions, can throw the search astray

without taking into account future reliable regions, resulting in a large insertion of

words.

This point is illustrated more clearly in Figure 5-17 which shows the absolute

reduction in insertions for the three segmentation methods for each word in the Aurora

corpus. The two words that have the highest number of insertion reductions are
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oh and eight. These two words can have very short vowels so any slight degree of

voicing in gaps due to noise or pre/post voicing from words can cause these insertions.

However, when we take advantage of islands of reliability to retain only the most

promising segments and score less detailed models in gaps, we limit the number of

unwanted insertions.
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5.6.3 Computational Efficiencies

The last section presented the benefits of the island-based approach for improving

WER. In this section, we explore some of the computational efficiencies to the island-

based approach.

First, one advantage of the island-driven segment pruning is the reduction in

segment graph density. Figure 5-18 compares the average number of segments per

second for the BPC segmentation and the island segmentation techniques. This is

computed by calculating the number of segments produced per time (in seconds) for

each utterance, and averaging this across all utterances at a specific SNR in Test

Set A. Notice that the number of segments produced in the island method appears

to be much less sensitive to an increase in SNR compared to the BPC segmentation

approach, and it produces on average about 2.5 times fewer segments per second.
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Figure 5-18: Average number of segments per second vs. SNR for BPC and Island
segmentation approaches on the Aurora-2 Test Set A.

Next, we explore the Viterbi path extensions for the BPC segmentation and island

segmentation approaches. The number of Viterbi path extensions is computed by

counting the number of paths extended by the Viterbi search through the length

of the utterance. Figure 5-19 shows a histogram of the Viterbi extensions on all

utterances in Test Set A for the two approaches. Notice that the island segmentation
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extends fewer paths and has an average path extension of about 9.5 (in log scale),

compared to the BPC segmentation which extends roughly 10.4 paths (log scale).

5 6 7 8 9 10 11 12 13 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
bpc seg

Num Viterbi Extensions (log)

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

island seg           

Figure 5-19: Histogram of Number of Viterbi Extensions (log scale) for the BPC and
Island segmentation approaches on the Aurora-2 Test Set A.

Finally, to evaluate the benefit in computational effort with the joint broad class/phonetic

recognizer, we explore the number of models requested by the search during recog-

nition. Every time paths are extended at each landmark, the search requests a set

of models to extend these paths. The number of models evaluated per utterance is

computed by calculating the total number of models requested through the length of

an utterance. Figure 5-20 illustrates a histogram of the number of models evaluated

(in log scale) for all utterances in Test Set A, in both the island and gap regions.

The joint broad class/phonetic method is much more efficient, particularly in the gap

region, and evaluates fewer models compared to the phonetic method.

5.7 Results on CSAIL-info

In this section, we analyze the performance of the island-driven techniques on the

CSAIL-info task.
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Figure 5-20: Histogram of Number of Models Evaluated in Island and Gap Regions

5.7.1 Island Quality Analysis

As in the Aurora-2 task, we first explore the quality of the island detection tech-

nique. It has been suggested that stressed syllables in English carry more acoustically

discriminatory information than their unstressed counterparts and therefore provide

islands of reliability [58].

To analyze the behavior of stressed syllables, the vocabulary in the CSAIL-info

training and development sets were labeled with stress markings. These stress mark-

ings were obtained by looking at the IPA stress marking in the Merriam-Webster

dictionary [1]. Both primary and secondary stressed syllables were marked.

Two different techniques to define islands are investigated. In [96], it was de-

termined that only identifying stressed syllables from nucleus vowels offered more

reliability than also using stress information for non-vowel segments. Thus, we first

explore using the broad class island-detection technique discussed in Section 5.2 such

that islands are identified to maximize the detection of true stressed vowels.

Second, instead of running a broad class pre-processor to detect islands, we in-
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vestigate using a stressed/unstressed syllable detector to detect stressed syllables. In

addition to including stressed vowels as part of the stressed syllable, we also include

pre-syllable consonant clusters, which could potentially carry reliable information and

therefore could occur in island regions. Because a pre-syllable cluster could include

more than one consonant before the stressed vowel (i.e., star), the probability of the

entire pre-syllable cluster occurring in an island is less than a cluster which contains

just one consonant before the stressed vowel (i.e., seven). Therefore, we only assign

stressed syllable markings to pre-syllable clusters which contain just one consonant

before the stressed vowel. A stressed/unstressed syllable detector is trained similar

to the broad class detector described in Chapter 3 and islands are identified using

the method described in Section 5.2. Below, we compare the behavior of identifying

islands via broad classes vs. stressed syllables.

First, we analyze the distribution of just stressed vowels in islands and gaps.

Figure 5-21 shows the distribution of stressed vowels per utterance in the island and

gap regions for islands identified via broad classes vs. stressed syllables. Each point

in the island distribution shows that for all the stressed vowels per utterance, x%

of the time y% of these stressed vowels are found solely in island regions. First, the

figure illustrates that there is very little difference between the distribution of stressed

vowels when islands are identified via broad classes or stressed syllables. In addition,

both graphs illustrate that a significantly higher number of stressed vowels appear

in island regions compared to gaps. For the broad class method, approximately 84%

of stressed vowels appear in island regions, while for the stressed syllable method

approximately 83% appear in islands. In the gap region, the broad class technique

contains only about 16% of stressed vowels, while the stressed syllable approach has

17%. Both figures confirm that most of the information-bearing parts of the signal

are found in the island regions for both methods, while the impoverished parts of the

signal are found in the gaps.

Because stressed vowels should ideally represent stable portions of the signal,

they should also be recognized with high probability. Therefore, we also analyze

the recognition accuracy of stressed vowels in the island and gap regions for both
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Figure 5-21: Distribution of Stressed Vowels Calculated Per Utterance on the CSAIL-
info task in Island and Gap Regions

methods. Figure 5-22 shows a distribution of the percentage of correct stressed vowels

in the island and gap regions. Again notice that there is little difference between the

distributions for the two island detection approaches. The broad class figure indicates

that approximately 84% of the stressed vowels found in island regions are correct while

81% of stressed vowels occurring in gaps are correct. The island/gap behavior for the

syllable method is similar, with approximately 86% of the stressed vowels correct in

island regions, while 80% in gaps are correct. From this graph and Figure 5-21 we

can conclude that not only are most stressed vowels found in island regions for both

island-detection techniques, but also that most of these stressed vowels are correctly

hypothesized.

Finally, Figure 5-21 indicated that about 16% of stressed syllables in the broad

class method occur in gap regions, while 17% occur in gaps for the stressed syllable

method. Since we would expect most stressed syllables to occur in islands, we observe

the length of the words which contain stressed syllables in island and gap regions.

Figure 5-23 shows the distribution of the length of words, measured by the number of

letters contained in the word, in island and gap regions, for both techniques. For the

broad class method, note that over 51% of words in gaps have a length less than two,

while more than 79% have a length less than four. Again the numbers are similar

for the stressed syllable technique, with approximately 54% of words with length less
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Figure 5-22: Distribution of Correct Stressed Vowels on the CSAIL-info task in Island
and Gap Regions

than two and 80% with length less than four. This illustrates that many of the words

found in gaps are monosyllabic function words (i.e., a, it, is, the) which are typically

spoken in reduced form.
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Figure 5-23: Distribution of Length of Words with Stressed Syllables on the CSAIL-
info task in Island and Gap Regions

5.7.2 Error Analysis

Having confirmed that the detected islands for the CSAIL-info task are indeed reason-

able, in this section we analyze the performance of the island-based segment pruning

and joint broad class/phonetic model scoring methods.
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Island-Based Segment Pruning

Table 5.8 shows the results for the baseline spectral change segmentation, as well as

the BPC segmentation method discussed in Chapter 4 and the island-based segment

pruning technique, both when islands are detected with broad classes and stressed

syllables. First, notice again that the BPC Segmentation is more robust than the base-

line spectral change method. In addition, both island-based segmentation techniques

offer similar performance, which is no surprise given the similar behaviors illustrated

in Section 5.7.1. However, both island-based techniques offer slightly worse perfor-

mance than the BPC method, though a MPSSWE significance test indicates that the

difference in errors rates for the two methods is not statistically significant. Since the

behavior of the two island-techniques is similar, we will just focus on analyzing the

island-driven broad class method further.

Method WER
Baseline Spectral Change Segmentation 26.5

BPC Segmentation 24.3
Island-Based Segmentation - Broad Classes 24.8

Island-Based Segmentation - Stressed Syllables 24.8

Table 5.7: WER for Different Segmentation Techniques on CSAIL-info Task. The
best performing method is indicated in bold.

One hypothesis for the slight deterioration in performance in the island-driven

technique is that acoustic models are trained on the Jupiter weather system using

the spectral segmentation method, which behaves more similarly to the BPC seg-

mentation method compared to the island-based segmentation approach. We have

observed in the Aurora-2 task that retraining acoustic models specific to each seg-

mentation method offered greater improvements rather than using acoustic models

trained only on the spectral change segmentation method. However, due to the lim-

ited data in the CSAIL-info training set, better performance was found using Jupiter

acoustic models, rather than training acoustic models specific to each segmentation.

Taking a closer look at the segmentations, Figure 5-24 shows a cumulative distri-

bution of the time difference between actual phonetic boundaries and landmarks for
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the island and spectral change segmentation methods. The true phonetic boundaries

were determined by performing a forced transcription using the BPC Segmentation

technique5. Notice that the island technique hypothesizes a larger percentage of seg-

ments with a time difference of less than 0.05 seconds to the true phonetic boundaries

relative to the spectral change method. In addition, Figure 5-25 shows a distribution

of the average segments per second. Here we see that the island method has the

least dense segment graph, as we would expect, while the BPC segmentation has the

densest segment graph. While the island method is not as dense as either the base-

line or BPC segmentation, the fact that it comes closer to detecting true phonetic

landmarks compared to the spectral change segmentation gives more justification for

the fact that the acoustic model training is limiting the island method.
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Figure 5-24: Cumulative Distribution of Time Difference Between Phonetic Bound-
aries and Landmarks on the CSAIL-info task

Joint Phonetic/Broad Class Models

Next, we explore the behavior of the joint broad class/phonetic approach on the

CSAIL-info task. Table 5.8 shows the performance of the joint broad class/phonetic

5A distribution is not shown for the BPC Segmentation approach as the time difference would
be zero since this segmentation was used to generate the forced transcription.
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Figure 5-25: Distribution of Average Segments Per Second for Different Segmentation
Methods on the CSAIL-info task

approach for various broad class splits. First, notice that using noise and nasal broad

classes leads to a slight improvement in performance. However, as the number of

clusters is increased past the nasal class, the error rate increases. Because of the large

scale nature of the CSAIL-info task, scoring less detailed broad class models increases

the confusability among words. For example, consider the words “bat” and “pat”,

which have the same broad class transcription. To address this issue, in the future,

we would like to consider exploring a lexical access technique similar to [90], where a

first pass recognition is performed to determine an N-best list of broad class/phonetic

hypotheses, after which a second-pass word recognition is done over this cohort of

words.

Broad Classes WER (development)
No Broad Classes-Phonetic Models 24.8

Noise Classes (Laughter, Cough, Babble) 24.7
+Nasal 24.8

+Alveolar Closures + Labial Closures +Dental Closures 25.1
+Voiced Stops + Unvoiced Stops 25.2

+Voiced Weak Frics + Unvoiced Weak Frics 25.5

Table 5.8: WER for Different Broad Classes in Gap Region on CSAIL-info Task
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5.8 Chapter Summary

In this chapter, we explored an island-driven search method which we incorporated

into a modern probabilistic ASR framework. More specifically, we utilized broad

class information to identify a set of island and gap regions. We illustrated that this

proposed method to identify islands was able to identify vowels (in the Aurora-2 task)

and stressed syllables (in the CSAIL-info corpus), typically representing information-

bearing parts of the signal, with high probability.

On the Aurora-2 noisy digits task, we demonstrated that utilizing island/gap

information to prune the segmentation graph resulted in an improvement in both

word error rate and computation time. Furthermore, utilizing island/gap information

during final recognition by scoring less detailed broad class models in gap regions

resulted in further improvements in both performance and timing.

Finally on the CSAIL-info task, we showed that utilizing island information for

segment pruning offered comparable performance to the BPC segmentation approach.

However, further utilization of broad class knowledge in gap regions during final search

resulted in a slight degradation in performance.
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Chapter 6

Contributions and Future Work

6.1 Contributions

In this thesis, we explored the use of broad speech units for noise robust speech

recognition. We first explored a technique to robustly recognize broad classes in

noise. Then, we utilized a broad class pre-processor to develop a robust landmark

detection and segmentation algorithm. Finally, we investigated the use of broad

classes in island-driven search. The main contributions of the thesis are summarized

in more detail in the following subsections.

6.1.1 Instantaneous Adaptation for Broad Class Detection

In Chapter 3, we introduced a novel instantaneous adaptation technique using a gra-

dient steepness measurement derived from the Extended Baum-Welch (EBW) trans-

formations. We incorporated this instantaneous adaptation technique into an HMM

framework and we illustrated that this gradient metric allowed for a simple and ef-

fective adaptation technique which did not suffer from the data and computational

intensities of other adaptation methods such as Maximum a-Posteriori (MAP), Max-

imum Likelihood Linear Regression (MLLR) and feature-space Maximum Likelihood

Linear Regression (fMLLR).

We explored the EBW gradient metric for broad phonetic class (BPC) recognition
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on the TIMIT corpus. We found that the EBW gradient method outperformed the

standard likelihood technique, both when initial models are adapted via MLLR and

without adaptation. In addition, we demonstrated the EBW metric captures the

difference between the likelihood of an observation given the initial model and the

likelihood given a model estimated from the current observation being scored, while

the likelihood metric just calculates the former. We showed that this extra model

re-estimation step is a main advantage of the EBW technique.

Finally, we investigated the benefits of the EBW technique in noisy conditions. We

demonstrated that, when models are trained on clean speech and used to decode noisy

speech, the model re-estimation inherent in the EBW algorithm allows for significant

improvement over the likelihood method.

6.1.2 Utilization of Broad Class Knowledge For Landmark

Detection

Segment-based speech recognition systems [31], [68] have been observed to be quite

sensitive in noisy conditions [80]. Thus, in Chapter 4, we explored using the broad

class HMM developed in Chapter 3 as a pre-processor to develop a robust land-

mark detection and segmentation algorithm using the SUMMIT segment-based speech

recognition system [31]. Specifically, we explored using broad class transitions, which

represent large areas of acoustic change in the audio signal, to aid in landmark detec-

tion, specifically in noisy conditions. We also compared whether these broad classes

should be motivated along acoustic or phonetic dimensions, known as broad phonetic

classes (BPCs) and broad acoustic classes (BACs) respectively.

We demonstrated that using either BPCs or BACs as a pre-processor for segmen-

tation offered significant improvements in recognition performance over the baseline

SUMMIT segmentation method in a variety of noise conditions on the TIMIT cor-

pus. While the BPC and BAC methods provided similar recognition accuracy across

various noise conditions and SNRs, we discovered that the BPC method provides

faster computation time in non-stationary noises, while BAC is faster in stationary
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conditions.

6.1.3 Utilization of Broad Class Knowledge for Island-Driven

Search

Finally, in Chapter 5 we explored an island-driven search method which we incorpo-

rated into a modern probabilistic ASR framework. More specifically, we utilized broad

class information to identify a set of “reliable” island and “unreliable” gap regions.

We illustrated that this proposed method to identify islands was able to identify vow-

els (in the Aurora-2 task) and stressed syllables (in the CSAIL-info corpus), typically

representing information-bearing parts of the signal, with high probability.

On the Aurora-2 noisy digits task, we showed that utilizing island/gap informa-

tion to prune the segmentation graph resulted in an improvement in both word error

rate and computation time. Furthermore, utilizing island/gap information during the

final recognition by scoring less detailed broad class models in gap regions resulted

in additional improvements in both performance and timing. Finally on the CSAIL-

info task, we illustrated that utilizing island information for segment pruning offered

comparable performance to the BPC segmentation approach. However, further uti-

lization of broad class knowledge in gap regions resulted in a slight degradation in

performance.

6.2 Future Work

In this section, we discuss various ideas for future work centered around the major

contributions in this thesis.

6.2.1 Instantaneous Adaptation

Given the success of our gradient metric in for broad class recognition via HMMs,

and the widespread use of HMMs in the speech recognition community, we would like

to expand the use of this gradient metric for large vocabulary tasks. Recently, we
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have applied EBW decoding to a Large Vocabulary Continuous Speech Recognition

(LVCSR) task, namely transcription of English Broadcast News in the distillation

portion of the Global Autonomous Language Exploitation (GALE) [15] evaluation.

Some of the issues related to the choice of D and normalization on a per state basis,

are being explored in this context. Our work on broad class recognition provided

a good understanding of the behavior of the EBW transformations and serves as a

precursor to understand the issues in the Gale large vocabulary continuous speech

recognition (LVCSR) task better. We are hoping that demonstrating success of the

EBW gradient metric on a larger scale task will introduce a new decoding metric into

HMMs which can be applied for general speech recognition tasks.

In addition, we have also been exploring other gradient steepness metrics. For

example, in [53] we provide a theoretical formulation showing that, for any technique

where a distance metric can be provided, a corresponding set of model updates and

gradient steepness measure can also be derived. We then derived an explicit set

of model update rules and gradient steepness for the Kullback-Leibler [22] distance

metric. Thus, we are also interested in comparing the behavior of various gradient

metrics for numerous pattern recognition tasks, such as HMM decoding.

6.2.2 Landmark Detection and Segmentation

The broad class landmark detection method presented in Chapter 4 took advantage

of broad class transitions to find a set of major landmarks and minor landmarks, but

utilized spectral change knowledge to determine these landmarks. We would like to

explore if landmarks can be hypothesized without acoustic information. More specifi-

cally, we are interested in hypothesizing major landmarks solely based on broad class

transitions. Within a broad class, a more detailed phonetic search can be performed

to determine a set of minor landmarks, which correspond to hypothetical transitions

between phonemes.

In addition, in Chapter 5, we presented an island-segmentation technique which

first divided the utterance into island and gap regions. A forward Viterbi and back-

wards A∗ phonetic recognition was performed independently in each region to generate
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a pruned segment graph, over which a second pass word recognition was done. We

are looking at optimizing this current method by parallelizing the forward/backward

search, and performing corresponding word recognition in each region, similar to [61],

therefore not requiring exactly two full recognition passes.

6.2.3 Island-Driven Search

While we demonstrated the effectiveness of our proposed island-driven search tech-

nique in Chapter 5, the improvements over doing a regular search were small, par-

ticularly for the large vocabulary CSAIL-info task. We suspect that one of the main

reasons is that the search remained left-to-right in the proposed technique, which

still leaves the possibility for good hypotheses to be pruned away. Therefore, in the

future, we are interested in exploring a search method which first starts in the reliable

island regions and works outwards to the gaps, thereby utilizing the island regions

more heavily and decreasing the risk of pruning away good hypotheses.

The technique presented in Chapter 5 for utilizing broad classes during final word

recognition scored each broad class model by averaging all the acoustic model scores

of phonemes belonging to that broad class. This approach was chosen for ease of

implementation, though, when running such a system in real-time, this type of tech-

nique to score broad class models would actually increase recognition computation

time. Therefore, we are interested in exploring the use of a separate set of broad

class and phonetic models. Since the observation spaces used during training would

be different, an appropriate scale factor would need to be empirically determined so

that the ranges for the two scores would be similar.

In addition, in Chapter 5 we observed on the CSAIL-info task that using a joint

broad class/phonetic model approach led to a degradation in performance. One

hypothesis for this is that, on a large scale task, scoring less detailed broad class

models increases the confusability among words. For example, consider the words

“bat” and “pat”, which have the same broad class transcription. To address this

issue, in the future, we would like to consider exploring a lexical access technique

similar to [90], where a first pass recognition is performed to determine an N-best
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list of broad class/phonetic hypotheses, after which a second-pass word recognition

is done over this cohort of words.

Finally, Chapter 5 explored using both broad class and stressed syllable informa-

tion to define islands. We suspect that one of the reasons for the minimal recognition

improvements with our island-driven techniques was due to our definition of islands.

Thus, in the future, we would like to explore a better definition of what constitutes

an island. For example, as [88] discusses, when humans process speech, they first

identify distinct acoustic landmarks to segment the speech signal into articulator-

free broad classes. Acoustic cues are extracted at each segment to come up with

a set of features for each segment, which make use of both articulator-bound and

articulator-free features. Finally, knowledge of syllable structure is incorporated to

impose constraints on the context and articulation of the underlying phonemes. We

would like to explore a combination of articulator-free and articulator-bound cues, in

conjunction with syllable knowledge, to better define islands.

6.2.4 Broad Classes for Multi-Lingual Speech Recognition

Broad classes have been shown to provide a set of language-independent units. For

example, [11] illustrates that various languages use the lexical space in a similar fash-

ion when represented by a set of broad classes. Furthermore, [8] shows that there is a

large set of phonemes which are similar across languages (i.e., poly-phonemes), while

most of the language dependent information is captured by a smaller set of phonemes

specific to certain languages. Therefore, in language identification experiments, clus-

tering poly-phonemes into a set of broad classes allows for similar performance to

using language-specific phonemes, while reducing computational effort. In this the-

sis, we explored using broad classes for acoustic landmark detection and island-driven

search on English-only corpora. However, in the future, we are interested in exploring

how these techniques behave in other languages.
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Appendix A

Properties of Extended

Baum-Welch Transformations

In this Appendix, we elaborate on various properties of the Extended Baum-Welch

(EBW) transformations, which we discussed in Chapter 3.

A.1 Mathematical Understanding of EBW Trans-

formations

In Section 3.2, we presented formulas for the EBW mean and variance update formu-

las, given by Equations 3.2 and 3.3 respectively. Below, we describe in more detail

the intuitive meaning of these equations.

A.1.1 Linearization of EBW Mean

In [53] we explored the deeper underlying meaning of EBW these transformations,

by linearizing the mean and variance parameters. First, let us rewrite Equation 3.2

from Chapter 3 as follows:
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µ̂j =

∑M

i=1 cijxi

D
+ µj

∑M

i=1 cij

D
+ 1

(A.1)

Furthermore, we assume the following Taylor series expansion for the denominator,

where terms with 1/D2 are combined together.

1
∑M

i=1 cij

D
+ 1

= 1 −

∑M

i=1 cij

D
+ o

(

1

D2

)

(A.2)

Substituting Equation A.2 into A.1, we get the following:

µ̂j =

(

∑M

i=1 cij

D

)

µj +

(

1 −

∑M

i=1 cijxi

D

)

µj + o

(

1

D2

)

(A.3)

Assuming α =
PM

i=1
cij

D
, Equation A.3 can be re-written as:

µ̂j = α

(

∑M

i=1 cijxi
∑M

i=1 cij

)

+ (1 − α)µj + o

(

1

D2

)

(A.4)

Intuitively, we see that the EBW update for µ̂j is a weighted combination of the

initial mean µj and the extremum of the associated function. Here α controls the

weight given to the initial model vs. the model estimated by taking the extremum of

the associated function.

A.1.2 Linearization of EBW Variance

Let us derive a similar linearization for the EBW variance given in Equation 3.3 from

Chapter 3. Assuming the same Taylor series expansion given in Equation A.2, we

can rewrite Equation 3.3 as follows:

σ̂2
j = α

(

∑M

i=1 cijx
2
i

∑M

i=1 cij

)

+ (1 − α)(µ2
j + σ2

j ) − µ̂j + o

(

1

D2

)

(A.5)
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Now, rewriting the linearization for the updated mean µ̂2
j as

µ̂2
j = µ2

j + α2µj

∑M

i=1 cij(xi − µj)
∑M

i=1 cij

(A.6)

and substituting this into Equation A.5, gives the following equation for the updated

variance after simplification:

σ̂2 = α

(

∑M

i=1 cijx
2
i − 2µj

∑M

i=1 cij(xi − µj) −
∑M

i=1 cijµ
2
j

∑M

i=1 cij

)

+(1−α)σ2
j +o(

1

D2
) (A.7)

Given Equation A.7, we can also rewrite the EBW update for σ̂2
j as a weighted

combination of the initial variance σ2
j and the extremum of the associated function,

as similarly done for µ̂j.

σ̂2
j = α

(

∑M

i=1 cij(xi − µj)
2

∑M

i=1 cij

)

+ (1 − α)σ2
j + o

(

1

D2

)

(A.8)

Again, we can observe that the EBW update equation for the variance σ̂2
j is also

a weighted combination of the initial variance σ2
j and the extremum of the associated

function.

A.2 Behavior of EBW Adaptation Term D

A.2.1 Behavior of D in EBW-F Metric

In [84] we compared the behavior of the EBW-F, EBW-T and Likelihood metrics in

classifying audio samples from the CHIL corpus [95]. In this paper, we also explored

the behavior of the EBW-F classifier for various values of D, which controls the rate

at which updated models are trained.

Figure A-1 shows the classification accuracy for the EBW-F metric for various

values of D. Recall that this metric is calculated using Equation 3.14 from Chapter

3. The accuracy for the EBW-T (shown in Equation 3.7) and Likelihood (Equation
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3.12) classifiers, which are both independent of D, are also shown for comparison.

First, for very large D the EBW-F classifier accuracy approaches that of the

EBW-T. This verifies the statement given in Equation 3.5, that for large D, the

EBW-F metric approaches EBW-T. As we make D smaller and train the updated

model more quickly, an appropriate estimate for the updated model is still achievable

and the objective function still increases with model re-estimation. It is particularly

beneficial to quickly update the initial model if the slope of the objective function is

relatively flat. This results in an increase in classification accuracy for the EBW-F

metric.
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Figure A-1: Classification accuracy of EBW-F Classifier for various values of D. The
EBW-F and Likelihood accuracies are also shown for comparison.

If D is too small then we train our models too quickly and do not increase the

value of the objective function on each iteration. We would expect that the EBW-

F accuracy should continue to decrease for smaller D. However, Figure A-1 shows

that accuracy decreases for small D but then increases for very small D. To explain

this factor, if we take D very small, then we can re-write Equations 3.2 and 3.3

independently of D as:

µ̂j = µ̂j(D) =

∑M

i=1 cijxi
∑M

i=1 cij

(A.9)
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(σ̂j)
2 = σ̂j(D)2 =

∑M

i=1 cijx
2
i

∑M

i=1 cij

− (µ̂j)
2 (A.10)

As D becomes smaller, the re-estimated model λ̂j(D) is less influenced by the

original model λj . However, the updated means and variances are weighted by cij

from Equation 3.6, and those cij which have higher likelihood zij are weighted more.

Thus, for very small D, the classifier accuracy increases as we put less weight on the

poor model re-estimation and more emphasis on the initial likelihood zij . In addition,

the EBW-F score moves closer to the likelihood classifier, which is influenced entirely

by zij .

A.2.2 EBW Adaptive D

As Section A.2.1 illustrated, there is no mathematical rigorous method to determine

the value of D, and therefore an appropriate choice for D is often accomplished via

hand-tuning. To minimize the work needed to tune D, various approaches have been

explored. For example, [75] explores setting D in MMI training of GMMs to be

proportional to the number of data points assigned to that GMM. Intuitively, the

more data assigned to a specific model, the larger D is and the less the updated

model needs to be trained.

In this section, we explore a very similar idea to [75]. Conceptually, the better

our original models, the less we want to train our updated models and the larger we

want D. And similarly, the better our original models, the larger the log-likelihood

will be. Thus, we investigate adapting the rate of model training at each frame based

on the likelihood. Specifically, we explore the following linear relationship between D

and log-likelihood shown in Figure A-2.

Here LLmax and LLmin are the upper and lower limits of the log likelihood de-

termined from training data, and Dmax and Dmin the corresponding limits that we

allow D to take. Between the likelihood limits, D is set linearly proportional to the

likelihood. Intuitively, we can think of the log-likelihood as a confidence measure to

151



Figure A-2: Linear Transformation of Likelihood used to determine D.

determine how quickly we need to estimate the updated model.

We explore the benefits of the Adaptive D metric on the TIMIT broad phonetic

class (BPC) recognition task discussed in Section 3.4. Figure A-3 shows the per-

formance of the EBW-F Norm Global D and Adaptive D classifiers on the TIMIT

development set as we globally vary D.
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Figure A-3: Change in Phonetic Error Rate for Different EBW Metrics as D is
varied. Note the large change in PER for the Global D method as a function of
D. As indicated by the circle, the Adaptive D technique is able to achieve the same
performance as the best Global D choice without having to heuristically tune it.

First, notice that the performance of the Global D method is quite sensitive to
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the choice of D, as the PER varies by over 3% as we vary the rate at which we re-

estimate updated models between 10−1 and 105. If D is made smaller and the updated

models are trained more quickly, we are still able to get an appropriate estimate for

the updated model while allowing the objective function to increase. However, if we

take D to be too small and train our models too quickly, the value of the objective

function is not guaranteed to increase on each iteration. Therefore, the performance

of the Global D metric decreases.

However, as indicated by the circle in Figure A-3, if the likelihood scores are

used as a confidence measure to linearly adapt D, the Adaptive D metric has similar

performance to the best performing value of D in the global D method, without

having to heuristically tune D.
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Appendix B

Phonetic Symbols

In this Appendix, we provide the IPA, ARPAbet and Broad Phonetic Class (BPC)

symbols for phones in the English Language, as listed in Table B.1.
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IPA ARPA BPC Example IPA ARPA BPC Example
[a] aa vowel bob [|] ix vowel debit
[@] ae vowel bat [i] iy vowel beet
[^] ah vowel but [J] jh strong fricative joke
[O] ao vowel bought [k] k stop key
[a⁄�] aw vowel bout [k›] kcl closure k closure
[{] ax vowel about [l] l semi-vowel lay
[{‡�] ax-h vowel potato [m] m nasal mom
[}] axr vowel butter [n] n nasal noon
[a¤�] ay vowel bite [4] ng nasal sing

[b] b stop bee [FÊ] nx nasal winner
[b›] bcl closure b closure [o] ow vowel boat
[C] ch strong fricative choke [O¤�] oy vowel boy

[d] d stop day [p] p stop pea
[d›] dcl closure d closure [√] pau closure pause
[D] dh weak fricative then [p›] pcl closure p closure
[F] dx weak fricative muddy [?] q stop glottal stop
[E] eh vowel bet [r] r semi-vowel ray
[lÍ ] el semi-vowel bottle [s] s strong fricative sea
[mÍ ] em nasal bottom [S] sh strong fricative she
[nÍ ] en nasal button [t] t stop tea
[4Í ] eng closure Washington [t›] tcl closure t closure

[∑] epi closure epenthetic silence [T] th weak fricative thin
[5] er semi-vowel bird [U] uh vowel book
[e] ey vowel bait [u] uw vowel boot
[f] f weak fricative f in [uÚ ] ux vowel toot
[g] g stop gay [v] v weak fricative van
[g›] gcl closure g closure [w] w weak fricative way
[h] hh weak fricative hay [y] y weak fricative yacht
[H] hv weak fricative ahead [z] z strong fricative zone
[I] ih vowel bit [Z] zh strong fricative azure
- h# silence utterance initial and final silence

Table B.1: IPA, ARPAbet and Broad Phonetic Class (BPC) symbols for the phones
in the English Language with sample occurrences
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