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Abstract

This research explores applications of joint letter-phoneme subwords, known as gra-
phones, in several domains to enable detection and recognition of previously unknown
words. For these experiments, graphones models are integrated into the SUMMIT
speech recognition framework. First, graphones are applied to automatically generate
pronunciations of restaurant names for a speech recognizer. Word recognition evalua-
tions show that graphones are effective for generating pronunciations for these words.
Next, a graphone hybrid recognizer is built and tested for searching song lyrics by
voice, as well as transcribing spoken lectures in a open vocabulary scenario. These
experiments demonstrate significant improvement over traditional word-only speech
recognizers. Modifications to the flat hybrid model such as reducing the graphone set
size are also considered. Finally, a hierarchical hybrid model is built and compared
with the flat hybrid model on the lecture transcription task.
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Chapter 1

Introduction

1.1 Motivation

Current speech recognition platforms are limited by their knowledge of words and how

they are pronounced. Almost all speech recognizers have a pronunciation dictionary

that has a finite vocabulary. If the recognizer encounters a word that is not in the

speech recognizer’s vocabulary, then the recognizer cannot produce a transcription of

the word. This limitation is detrimental in many speech recognition applications. For

example, if the user wants to find the name of an obscure restaurant while driving

home from work, the user could use a spoken dialogue interface in the car, but the

dialogue interface may have no idea how the restaurant name should be pronounced,

resulting in the inability to understand the user’s request and the failure to retrieve

information about the restaurant. Another example is transcribing video to enable

conventional text-based search. Uncommon words in these videos are often not in

the speech recognizer’s vocabulary. In addition, because a recognition system needs

to find boundaries between words in the input audio stream, a misrecognized word

can easily cause the surrounding words, or even the entire sentence to be completely

misrecognized. This often results in user frustration and reduced user confidence

in speech dialogue systems in general. Therefore, in order to build speech dialogue

systems that are applicable in practical user scenarios, we must develop techniques

to mitigate the effects of out-of-vocabulary (OOV) words.
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There are several methods to combat the OOV problem. One possibility is to

dynamically generate pronunciations of OOV words prior to recognition. For a search-

by-voice application, pronunciations can be automatically generated for new words

as they are imported into a database. These newly generated pronunciations can

then be added to the speech recognizer’s vocabulary such that they are no longer

out-of-vocabulary. However, we may not be able to perform all large vocabulary

search-by-voice tasks by increasing the vocabulary. If we increase the vocabulary by

large factors, we may be hindered by sparsity in the available language model training

data, which could lead to more confusion and degraded recognition performance.

Another argument concerns the usability of these search-by-voice interfaces. When

a user makes a voice query, if there are truly no matching results, it’s better to be

able to tell the user that the query produces no results, rather than automatically

constraining the audio query to search terms that do produce results, but are not

even close to what the user intended. In the latter case, the user may be conviced

that the lack of results is because of misrecognition.

Simply increasing the vocabulary of a recognizer also cannot solve the OOV prob-

lem in real-time transcription tasks, such as converting streaming broadcast news to

text. In this case, we have no way of knowing what the speaker will say, so we have

to be able to automatically hypothesize spellings of new words during recognition.

Traditional speech recognizers cannot do this because their recognition frameworks

are constrained by their known vocabulary, and are only able to output words in the

known vocabulary. One may wonder if we could just use a large lexicon as the speech

recognizer’s vocabulary, and not worry about recognizing the rare esoteric terms in

speech. However, in most applications of real-time audio transcription, this approach

has a crucial weakness: OOV words are likely to be content words that are highly

important for the topic discussed in the audio. In a broadcast news scenario, since

newly-coined words frequently appear in headlines, a recognizer with finite vocabulary

is likely to miss key words in these news reports.

Vocabulary size growth in training corpora has been characterized in the past

[25]. Figure 1-1 shows the the growth of vocabulary size as a function of words in

18



Figure 1-1: Vocabulary sizes of various corpora as more training data is added (from
[25]).

several training corpora. These measurements are calculated by first randomizing

each corpus and then computing the vocabulary size while scanning the corpus from

beginning to end. This process is repeated several times, and the results are averaged

to yield the final measurements. ATIS, F-ATIS, VOYAGER are data of users talking

with a spoken language system. WSJ, NYT, and BREF are from newspaper text.

CITRON and SWITCHBOARD are from human-to-humman speech. In all of these

corpora, we can see that even at very large training corpora sizes, the vocabulary size

continues to increase rapidly without leveling off. This demonstrates that new words

continue to appear even as the training data gets very large. The same study also

examines the rate at which new words appear for the same set of corpora, as shown

in Figure 1-2. This data shows that as we increase vocabulary coverage, we get still

get a substantial amount of new words even at very large vocabulary sizes.

One method for mitigating the effect of OOVs is to use sub-lexical units to model

OOV words. These units represent pieces of words, rather than whole words. One

of the most successful types of these units are known as graphones, which are joint

sequences of letters and phonemes [6]. These units are automatically-learned from

a pronunciation dictionary so they have potential for applications in any language

as long as the written form and pronunciations can be represented as two streams

19



Figure 1-2: New-word rate as the vocabulary size is increased for various corpora
(from [25]).

symbols. These units are useful for both automatically generating the pronunciation

of words in a dictionary as well as constructing a recognizer that can automatically

hypothesize spellings of OOV words. Because of the urgent need for effective OOV

models and the success of graphone models so far, we focus the work in this the-

sis on exploring applications of graphone models in the existing speech recognition

framework at MIT.

1.2 Summary of Results

This section contains an overview of the experiments presented in this thesis, along

with important results.

• Generating pronunciations for restaurant and street names. A graphone-based

letter-to-sound converter is built and used to automatically generate pronun-

ciations for restaurant and street names. Word recognition is then used to

evaluate the quality of these pronunciations. These experiments show that us-

ing a 6-gram, with graphone sizes of 0-1 letters/phonemes, produces the best

results. The generalizability of these results are demonstrated through dividing

the test set into seen and unseen words. We also explore using multiple L2S

20



pronunciations for each word, and conclude that using 10 pronunciations per

word produces the best performance without increasing confusion within the

recognizer. Graphone results are also shown to compare favorably with those

of linguistically-motivated subword models.

• Music lyrics hybrid recognition. A flat hybrid recognizer is built using gra-

phones, and tested on transcribing spoken lyrics in a closed-vocabulary scenario.

The hybrid recognizer significantly outperforms the word-only recognizer at all

vocabulary coverage levels. We find that a hybrid recognizer with ≥92% vocab-

ulary coverage on the training set actually yield lower recognition error rates

than a word-only recognizer with 100% coverage on the training set. The results

also demonstrate that graphones are useful for preventing misrecognition of the

neighbors of OOV words, as well as hypothesizing the spelling of OOV words.

In addition, we experiment with reducing the graphone set significantly, and

show that the hybrid recognition performance degrades slightly, but is still sig-

nificantly better than the word-only recognizer at the same vocabulary coverage

level.

• Transcribing spoken lectures. Spoken lectures are transcribed using a flat hybrid

recognizer at several vocabulary levels. This task is open vocabulary because we

cannot know all the words the speaker will say during the lecture. The hybrid

recognizer’s performance is significantly better than the word-only recognizer

at 88-96% vocabulary coverage on the training set, and slightly better than

the word-only recognizer at 98-99% coverage levels. We show that the hybrid

model’s performance remains about the same when the graphone set size is

reduced from 19k to 4k. A hybrid recognizer with 100% vocabulary coverage

is also built and shown to perform about the same as a word-only recognizer

at 100%, even though the graphones can add more confusion to the recognizer.

Finally a hierarchical hybrid model is built and compared with the flat hybrid

model. Results show that at 98% training set coverage, these two hybrid models

perform about the same, and both outperform the word-only recognizer.
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1.3 Outline

In the rest of this thesis, we first give an overview of previous works that examine the

OOV problem. We then discuss the background technology used in this thesis, which

are graphone models and the SUMMIT speech recognition framework. In subsequent

chapters, we explore applications of graphone models for speech recognition in areas

described in Section 1.2. Finally, we discuss future work that builds upon the research

presented in this thesis.
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Chapter 2

Background

Since OOV words are inevitable in large vocabulary speech recognition tasks, we must

find ways to cope with them in order to build practical speech applications. In this

chapter, we first review past techniques for mitigating the effect of out-of-vocabulary

(OOV) words on speech recognition performance. Next, we introduce graphone mod-

els for both automatic pronunciation generation and hybrid speech recognition. Fi-

nally, we give an overview of the SUMMIT speech recognition framework used in this

thesis.

2.1 Working with OOVs

Several techniques have been developed to mitigate the effect of OOV words on speech

recognition performance. The most straight-forward approach is to increase the vo-

cabulary of the recognizer, but this cannot completely eliminate OOVs in open vo-

cabulary tasks such as audio transcription. Other approaches focus on adding proba-

bilistic machinery to the speech recognizer to detect OOVs in utterances, and possibly

even hypothesize pronunciations and spellings associated with the OOV word. These

techniques include confidence scoring, filler models, or a combination of both. Multi-

stage recognition can also be used to improve large vocabulary recognition by using

different recognition strategies in each stage.
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2.1.1 Vocabulary Selection and Augmentation

One way to combat OOVs in speech recognition is to select the best set of words

to be in-vocabulary for the target domain. If the system has a pretty good idea of

what the user might say, the system can be trained with a set of words that give a

small OOV rate. One example is a system that provides weather information, which

can be trained with a set of geography-related words based on frequency of usage

[43]. Martins et al. combine morphological and syntactic information to optimize

the trade-off between the predicted vocabulary coverage and the number of added

words [30]. Morphological analysis is used to label words with part-of-speech tags,

which are then used to optimize vocabulary selection. Another recent study explores

using the internet as a source for determining which words to include in the speech

recognizer’s vocabulary [32]. This technique uses a two-pass strategy for vocabulary

selection, where the first pass produces search engine requests, and the second pass

augments the speech recognizer’s lexicon with words from returned online documents.

We can also increase the vocabulary by automatically generating pronunciations

for unknown words. This can be performed by encoding linguistic knowledge, or au-

tomatically learning letter-sound associations. The older techniques include purely

rule-based approaches that use context-dependent replacement rules [18]. Subse-

quent techniques have been more data-driven, such as using finite-state transducers

[38], or decision trees to capture the mapping between graphemes and phonemes

[15]. Another technique is hidden Markov models (HMM), which formulates a gener-

ative model for finding the most likely phoneme sequence for generating the observed

grapheme sequence [37]. There are discriminative techniques as well, such as percep-

tron HMM trained in combination with the margin infused relaxed algorithm (MIRA)

[27]. Finally, there has also been a series of successful techniques based on sub-lexical

models, which are the most relevant to this thesis.

Probabilistic sub-lexical models capture probabilities over chunks of letters com-

monly referred to as subwords, or sub-lexical units. These units are often correlated

to syllables that commonly occur in a language. Some of these models automatically
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learn the sub-lexical units, while others have a predefined set of them. However, they

all use a probabilistic framework to capture the dependencies between the subwords

that make up words in the training set. The advantage of probabilistic approaches is

that these methods can generally handle the problem of aligning the grapheme and

phoneme sequence much better than many non-probabilistic approaches.

One technique is to use context-free grammar (CFG) parse trees with a super-

imposed N-gram model to parse words into lexical subwords [31, 34, 35]. First, the

pronunciation of words in the lexicon are converted to sequences of subword pronun-

ciations through simple rewrite rules. Next, a rule-based CFG is applied to convert

the words in the lexicon to subwords, using the subword pronunciation sequences

as a constraint. This process converts the lexicon into lexical subword units con-

taining both letter and sound information, which are also called spellnemes. Failing

parses are either manually corrected, or made possible by the addition of new rules.

This correction process is repeated iteratively until the entire lexicon is successfully

converted into subword units. Finally, N-gram probabilities are learned from lexical

subword sequences such that this statistical model can be used to segment unknown

words into lexical subwords.

Another method is maximum-entropy N-gram modeling of sub-lexical units, in

the form of either a conditional model, or a joint model [11]. The conditional model

captures probabilities of phonemes conditioned on previous phonemes and letters, over

a sliding window. Probability distributions are estimated using maximum entropy

with a Gaussian prior. For the joint model, a maximum entropy N-gram model is

calculated on training data of words segmented into chunks consisting of either a

single letter, a single phoneme, or a single letter-phoneme pair.

Joint grapheme-and-phoneme sequences have been used to model the letter-to-

sound relationships. These models, known as graphone models, are automatically

learned from a pronunciation dictionary through EM training with language modeling.

They are described in detail in Section 2.2.1.

It is still an open question whether having a huge vocabulary recognizer is better or

worse than an open-vocabulary recognizer that can recognize arbitrary words. One
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recent study focused on Italian, and shows that augmenting a speech recognizer’s

lexicon with automatically-generated pronunciations of OOV words performs slightly

better than OOV modeling in an open-vocabulary recognizer [20]. However, in many

applications, such as transcribing audio files, there is no way to eliminate all OOV

words because we do not know what the speaker will say. In these cases, we can use

methods to detect and hypothesize spellings of OOV words.

2.1.2 Confidence Scoring

Confidence scoring allows us to get a sense of how likely a hypothesized word or word

sequence is an OOV word. Several criteria can be used to generate the confidence score

for region in the recognition hypothesis. They include word posterior probability,

acoustic stability, and hypothesis density [41, 28]. Word posterior probability can

be computed on the output lattice or the output N-best list of a speech recognizer.

Word lattice posterior probabilities are probabilities associated with edges in the

word lattice, and can be computed by the well-known forward-backward algorithm.

Word N-best list posteriors are different from lattice posteriors in that the N-best

list does not have a time associated with each word in the hypothesis. This could

be an advantage because the probabilities for the same speech recognizer output are

essentially collapsed together. Acoustic stability is a measure of how likely a given

word occurs in the same position in all hypothesized N-best list. Hypothesis density

is a measure of how many hypotheses have similar likelihoods at a given point in time.

The higher the hypothesis density, the more likely the error. Comparison of these

measures show that using word posteriors on word lattices yield the best results [41].

Multiple confidence measures can also be combined to construct confidence vectors,

which are then passed through a linear classifier to determine if the corresponding

word is OOV [24].

More recent studies have explored comparing information from several different

sources to detect OOVs. Lin et al. jointly align word and phone lattices to find OOV

words [29]. Another study compares confidence measures from strongly constrained

and weakly-constrained speech recognizers [10]. The strongly-constrained recognizer
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is a regular speech recognizer, while the weakly constrained data comes from a bigram

phoneme recognizer and a neural network phone posterior estimator. Word-to-phone

transductions have also been combined with phone-lattices to find OOVs [42]. In

addition to comparing output of weakly and fully constrained phoneme recognition

outputs, this study uses a transducer to decode the a frame-based recognizer’s top

phoneme output into words, and then compares this output with the word output of

a frame-based speech recognizer.

2.1.3 Filler Models

Filler models vary in degrees of sophistication, depending on the application. Some

filler models are based on phoneme sequences, and can hypothesize an OOV’s pronun-

ciation. Other models are based on joint letter-sound subwords, which not only can

hypothesize pronunciation, but also can hypothesize spelling of OOV words. Filler

models can be incorporated into a traditional speech recognition network through two

main approaches: hierarchical hybrid and flat hybrid. In the hierarchical approach,

an OOV tag is added to the speech recognizer’s vocabulary. At a given point in

decoding an utterance, the recognizer has a choice of decoding the next portion of

the utterance as a word, or the OOV tag. This OOV tag is modeled by a separate

OOV model that has probabilistic information of phones, syllables, or both. In these

recognizers, an extra cost can be added for entering an OOV model because we would

prefer to recognize words if the words are in-vocabulary. In the flat-hybrid approach,

OOV words in the recognizer’s training corpus are turned into subwords or phonemes,

which are treated just like regular words in the rest of the recognizer training process.

Bazzi and Glass use phones and syllables to model OOV words through a hierar-

chical approach [3, 4]. The phoneme-level OOV model is an N-gram model computed

on a training corpus of phoneme sequences. Later work in this area use automatically-

learned variable-length phonetic units for the OOV model [5]. In this study, mutual

information is used as a criterion for merging phonemes into bigger sequences. The

authors show that using variable-length units for the OOV model leads to improved

recognition performance over using only individual phonemes. They also show that if
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individual phonemes were used, it’s better to train the OOV model on phoneme se-

quences in a large-vocabulary dictionary rather than on phoneme sequences of words

in a recognizer’s LM training corpus. This reduces both domain-dependent bias of the

OOV model, as well as bias toward phonemes of frequent words in the LM training

corpus.

Modeling OOV words with phonetic units can be effective for OOV detection,

but does not allow us to hypothesize the spelling of an OOV word. To do so, our

OOV model must incorporate spelling information into subword units. For example,

spellnemes can do this by encoding both phonetic and spelling information in each

spellneme [35]. In a previous study, Choueiter incorporates spellnemes into a recog-

nizer in a flat-hybrid configuration to model OOV words [12], and demonstrates that

using spellnemes in flat hybrid recognition decreases word error rate and sentence

error rate for music lyrics spoken by a user with the intention to search for a song.

Some OOV words are spelled correctly through spellneme modelling.

Graphones have also been used in flat hybrid recognition [8, 19]. Graphones also

contain both spelling and pronunciation information, and are trained in an unsuper-

vised fashion. The details of graphone flat hybrid recognition are described in Section

2.2.2.

2.1.4 Multi-stage Combined Strategies

Efforts have been made to combine confidence scoring and filler model approaches in a

multi-stage framework. In the first stage, an utterance is first recognized into subword

or phoneme lattices. In the second stage, these lattices are used to generate confidence

scores for words or time frames. One technique is to use a phoneme OOV model in the

first stage to detect OOV words, and then use confidence scores on remaining words

to detect words with confidence [23]. Since filler models can introduce confusion

with in-vocabulary words, it would be helpful to have good methods to prevent in-

vocabulary words from being detected as OOV words. As an alternative to having a

cost for diving into the OOV model, confusion network and vector space model post

processing can be used to detect OOVs while accounting for confusion between in-
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vocabulary terms and OOV words [33]. Multi-stage frameworks can also have more

than two stages. Chung et al. present a three-stage solution, where the first stage

generates phonetic networks, the second stage produces word network, and the third

stage parses the word network using a natural language processor [14].

2.2 Graphone Models

In this section, we describe the training process for graphones, and their applica-

tions in speech recognition. We first discuss letter-to-sound (L2S) conversion because

graphones were originally developed for the L2S task. L2S conversion is also an impor-

tant part of vocabulary augmentation. We then discuss how graphones models can be

incorporated directly into speech recognizers to construct hybrid speech recognition

systems.

2.2.1 Graphone Letter-to-Sound Conversion

Graphone models capture the relationship between a word and its pronunciation

by representing them as a sequence of graphone units. Each graphone unit has a

grapheme sequence part and a phoneme sequence part. Maximum-likelihood learning

on a pronunciation dictionary is used to automatically learn graphone units as well as

transitions between graphones. In various publications, graphones have been referred

to as joint-multigrams, graphonemes, and grapheme-to-phoneme correspondences.

The symbol sequences within Ak’s can be concatenated to form a sequence R.

We can do the same for the sequences within Bk’s to form the sequence S. For the

machine learning task, we observe the sequences R and S, and we want to estimate

the underlying unit sequence G. In the L2S conversion context, R is the sequence

of letters and S is the sequence of phonemes. The term graphone refers to gk in

this formulation. Table 2.1 shows some examples of graphone sequences for English

words. The process of building a L2S converter is a three-step process. The first

step is to develop a graphone model that best represents the data. The second step

is to segment the training data into graphones. The third step is to build a N-gram
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Figure 2-1: Generative probabilistic process for graphones as described by Deligne
et al. According to an independent and identically-distributed (iid) distribution, a
memoryless source emits units gk that corresponds to Ak and Bk, each containing a
symbol sequence of variable length.

Word Graphone Sequence

alphanumeric (alph/ae l f) (anum/ax n uw m) (eric/eh r ax kd)
colonel (colo/k er) (n/n) (el/ax l)
dictionary (dic/d ih kd) (tion/sh ax n) (ary/eh r iy)
semiconductor (semi/s eh m iy) (con/k ax n) (duct/d ah kd t) (or/er)
xylophone (xylo/z ay l ax) (phon/f ow n) (e/)

Table 2.1: Examples of graphone segmentations of English words. These maximum-
likelihood segmentations are provided by a 5-gram model that allows a maximum of
4 letters/phonemes per graphone.

language model on the segmented training dictionary. This language model can then

be used to perform L2S conversion on new words.

The theoretical foundation for graphone models is presented by Deligne et al.,

where they illustrate a statistical learning framework for aligning two sequences of

symbols [16, 17]. The underlying assumption is that there is a memoryless source that

emits the sequence of units G = g1, g2, g3, ..., gK , where gk contains two parallel parts:

Ak and Bk (see Figure 2-1). Ak and Bk are each variable-length symbol sequences

themselves.

For the first step, the graphone model is learned through maximum-likelihood

training. Expectation maximization (EM) is performed on the training dictionary by

running the forward-backward algorithm on directed-acyclic graphs (DAG) represent-

ing letter and phoneme sequences. Each DAG corresponds to one word-pronunciation

pair. It can be visualized as a 2-dimensional grid: one dimension represents the

traversal of letters in the word, and the other dimension represents the traversal of
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Figure 2-2: Directed acyclic graph representing possible graphone segmentations of
the word-pronunciation pair (far, f aa r). Black solid arrows represents graphones
of up to one letter/phoneme. Green dashed arrows (only a subset shown) represent
graphones with two letters or two phonemes. Traversing the graph from upper-left
corner to lower-right corner generates a possible graphone segmentation of this word.

phonemes in the pronunciation (see Figure 2-2). Each arc in the DAG corresponds

to a graphone, and is labeled with the graphone’s probability. During training, we

must specify the minimum and maximum number of letters and phones allowed for

each graphone, which limits the length of arcs in the DAG. Any path through this

DAG represents a possible graphone segmentation of this word-pronunciation pair.

The forward algorithm runs from the upper-left corner toward the lower right corner,

while the backward algorithm runs the opposite way. These forward and backward

scores are used to calculate the posterior for each arc. Posteriors corresponding to

the same graphone are accumulated over DAGs of all dictionary entries, and then

normalized to generate the updated probability for that graphone. This process is

repeated until the likelihood of the training data stops increasing.

Mathematically, the EM training process can be formulated as follows. The like-

lihood of a dictionary, Λ, is the product of the likelihood of W word-pronunciation

pairs in the training dictionary. For a word-pronunciation pair, let the letter sequence

be r1, r2, ..., rM , and the phoneme sequence be s1, s2, ..., sN . We also denote a stream

of graphones as g1, g2, ..., gK . The likelihood of this word-pronunciation pair is the
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sum of the likelihoods for all possible segmentations. The likelihood for a possible

segmentation, z, is p(z) =
∏K

k=1 p(gk). The goal of the EM training goal is to find a

graphone model that maximizes the likelihood of the training dictionary which is:

p(Λ) =
W∏

w=1

( ∑
z∈{z}w

p(z)
)

(2.1)

where {z}w is the set of all segmentations of the w-th word in the dictionary.

The forward-backward algorithm is formulated as follows. Let tm,n represent the

node at location (m, n) in the word-pronunciation pair’s DAG, where t0,0 is the upper

left node in the DAG, and tM,N is the lower right node (see Figure 2-2). Let α(tm,n)

be the forward score and β(tm,n) be the backward score corresponding to node tm,n.

The forward score for tm,n represents the likelihood of letters and phonemes between

t0,0 and tm,n. The backward score for tm,n represents the likelihood of the of the letters

and phonemes between tm,n and tM,N . For boundary conditions, we use α(t0,0) = 1

and β(tM,N) = 1. Let Xm,n denote an arc that leads into node tm,n, and let xm,n

denote the starting node of this arc. Let Ym,n denote an arc that leads out of node

tm,n, and let ym,n denote the ending node of this arc. In addition, {Xm,n} denotes

the set of all arcs that enter node tm,n, and {Ym,n} is the set of all arcs that leave

this node. As we move through the graph, the forward and backward scores can be

computed using:

α(tm,n) =
∑

{Xm,n}
α(xm,n)p(Xm,n) (2.2)

β(tm,n) =
∑

{Ym,n}
β(ym,n)p(Ym,n) (2.3)

After the forward and backward scores are calculated, we can re-estimate the

posterior probability for each graphone gq used in the word-pronunciation pair w:

posw(gq) =

∑
(m,n)∈{gr(Xm,n)=gq} α(xm,n)p(Xm,n)β(tm,n)∑

m,n α(tm,n)β(tm,n)
(2.4)

where gr(Xm,n) is the graphone corresponding to the arc Xm,n.
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The posterior probabilities for all graphones are accumulated through all word-

pronunciation pairs in the training dictionary, and normalized such that graphone

probabilities sum to one. In the following equation for updating the graphone prob-

abilities, Q denotes the graphone set size.

p(gq) =

∑W
w=1 posw(gq)∑W

w=1

∑Q
q=1posw(gq)

(2.5)

After updating probabilities for all graphones, we check if the training dictionary’s

likelihood has stopped increasing, and repeat another EM iteration if needed. The

training dictionary’s likelihood is calculated by taking the product of α(tM,N)’s for all

words. The number of graphones can be controlled in a number of ways, the simplest

being trimming with a probability threshold. Also, in a practical implementation,

the probabilities would be stored in the log domain to reduce the effect of machine

precision.

For the second step of the graphone training process, the Viterbi algorithm is

applied on the DAGs to segment the entire training dictionary into sequences of

graphones. Running this algorithm on a word-pronunciation pair involves calculating

the Viterbi scores for each node in its DAG and setting back points which can then

be used to perform a backward trace to identify the graphones corresponding to the

best segmentation. The Viterbi scores, γ∗(tm,n), are updated while moving from the

upper-left to the lower-right corner of the DAG. This score represents the probability

of the best graphone segmentation up to node tm,n. It can be calculated using the

following equation:

γ∗(tm,n) = max
{Xm,n}

p(Xm,n)γ∗(xm,n) (2.6)

The back-pointer for node tm,n is set to point to the previous node that corresponds

to the maximum value in Equation 2.6.

For the third step, standard N-gram modeling is used to compute statistics over the

segmented training dictionary, which includes smoothing and backing-off to shorter

N-grams. These statistics can then be combined with standard search algorithms
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(e.g. Viterbi search, beam search, Djikstra search) to decode an unknown word into

its most-likely pronunciation.

In 2002, Bisani and Ney improve upon Deligne’s formulation by adding an effective

trimming method during training for controlling the number of graphones [6]. This is

important because only a subset of the graphones that satisfy the letter/phoneme size

constraints are actually valid chunks for modeling the training data. The intuition

behind this is closely related to choosing morphemes that best represent the training

data. Because only some of all possible chunks resemble valid morphemes or syllables,

trimming can help us remove spurious graphones from our set. This study explores

various constraints for the number of letter or phonemes allowed in a graphone, and

finds that allowing 1-2 letters and and 1-2 phones per graphones, combined with a

trigram language model gives the best performance in terms of phoneme error rate

(PER). This trimming method, called evidence trimming, trims graphones based on

how much they are used in segmenting words-pronunciation pairs in the dictionary,

and is slightly different from trimming graphone probabilities. For a given iteration of

EM, the evidence for a graphone refers to its accumulated posterior probability over

all word-pronunciation DAGs. The graphone set is trimmed by applying a threshold

for the minimum amount of evidence needed for a graphone to remain in the model.

The probability of the trimmed graphones are then redistributed over the remaining

graphones. Note that this is actually the opposite of the intuition from a language

modeling point of view, where we use smoothing to assign probabilities to unseen

data.

Both Bisani-Ney and Deligne et al. consider Viterbi training rather than EM train-

ing as a way to speed up the training process. During Viterbi training, only posterior

probabilities for graphones along the best path in each DAG is accumulated. This

could be a good approximation of considering all paths. However, both studies find

that Viterbi training is highly sensitive to the initialization of graphone probabilities.

One good initialization method is to initialize graphone probabilities proportional to

each graphone’s occurrence in all possible segmentations of the training dictionary.

In subsequent studies, Bisani and Ney investigate the use of graphones in large vo-
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cabulary continuous speech recognition (LVCSR) [7]. Several studies by other authors

also apply graphones to tasks such as dictionary verification [40]. Because graphone

models are trained probabilistically, they are good for spotting errors in manually-

annotated dictionaries. For entries that are likely to be erroneous, the probability

associated with its graphone segmentation is very low compared to others. Using this

information, we can automatically detect the mislabeled entries in the dictionary.

In a later study by Bisani and Ney, they revisit the L2S task with an revised

training procedure that integrates EM training with language modeling (LM) [9],

and produce results that are better than or comparable to other well-known L2S

methods. EM training is first used to determine the set of graphone unigrams, in

almost the same fashion as before. Then, the next-highest N-gram model (i.e. bigram)

is initialized with the current model, and trained to convergence using EM. This

process is repeated for successively-higher N-grams until the desired N-gram length

is achieved. This differs from their previous study [6] in that EM is now performed

for each N-gram length, rather than estimating the final language model directly on

a dictionary segmented by unigram graphones. In the higher-order N-gram models,

each node in the dictionary entry’s DAG represents a position along the letter-sound

sequence as well as the history for the N-gram that ends at this position. This means

that unlike the older model described by Figure 2-1, the underlying probabilistic

model is no longer a memoryless emitter. Instead, graphone emission probabilities

are now conditioned on the previous N − 1 emissions. Therefore, a node in the

DAG is only connected to previous nodes that satisfy the N-gram history constraint.

Each graphone N-gram is associated with an evidence value that is accumulated

through all DAGs during each iteration of EM. Kneser-Ney smoothing is applied to

graphone N-gram evidence values at the end of each EM iteration. Because these

counts are fractional, we can’t use discount parameter selection methods that assume

integer counts. Powell’s method is used to tune smoothing discount parameters by

optimizing on a held-out set. When a graphone N-gram’s fractional count falls below

the discount parameter value, this N-gram is effectively trimmed. Another difference

between this study and their previous study is that the new EM convergence criteria
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is the likelihood of a held-out set rather than the training set, which could increase

the generalizability of the L2S converter. This study concludes that training a long

N-gram (i.e. 8 or 9-gram) along with tiny graphones (i.e. 0-1 letters/phonemes)

produced the best L2S results. This finding is similar to the results produced by

Chen with joint maximum entropy models [11], which is expected because the two

methods have similar statistical learning processes. The results of this study are also

comparable to the discriminative training results reported in [27].

2.2.2 Graphone Flat Hybrid Recognition

In speech recognition, graphones can be an effective method to mitigate the OOV

problem in open vocabulary speech recognition. Ideally, OOV words could be rec-

ognized into a sequence of graphones that can be concatenated to form the correct

spellings. There may be cases where an in-vocabulary word is recognized as a series

of graphones, but as long as the graphone sequence still generates the correct spelling,

the speech recognizer’s output is still accurate. One way to move closer to this goal

is to use a flat hybrid model for the speech recognizer’s language model. To build

this model, OOV words in the recognizer’s training corpus are replaced by their gra-

phone representations. Finding the graphone representation of a word can be done

through the same process as L2S conversion, except we stop just before converting

the most-likely graphone sequence to a phoneme sequence. From now on, we will

refer to this process as graphonization. The only other part of the recognizer that

needs to be modified is the lexicon, which needs to be augmented with a list of gra-

phones and their pronunciations. This model is flat in the sense that graphones and

words are treated as equals in the language model; the model is a hybrid because it

contains statistics of N-gram transitions between graphones and words. Bisani and

Ney have applied graphones in flat hybrid recognition for the Wall Street Journal

dictation task [8]. Their graphonization process uses an N-gram size of 3, and their

speech recognition’s language model also has a N-gram size of 3. They find that at

lower vocabulary coverage (88.8% and 97.4%), the word and letter error rates are

significantly reduced by using this flat hybrid model. At high vocabulary coverage
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(99.5%), this model does not degrade the recognition performance even though the

added graphones could increase confusability with words. They also note tradeoffs

regarding the graphone size. Larger graphones are easier to recognize correctly, but

have worse L2S performance, leading to less accurate graphonization of OOV words

in the training corpus. Small graphone sizes (i.e. 1-2 letters/phonemes) can also

lead to more insertions in recognition output. In their experiments, they find that

the trade-off point is a graphone size of 4 letters/phonemes for 88.8% and 97.4%

coverage, and a graphone size of 3 for 99.5%.

Recently, Bisani-Ney’s flat hybrid recognition have been combined with other

methods. Vertanen combines graphone hybrid recognition with confusion networks

and demonstrates improvement with the addition of the confusion network compo-

nent [39]. This study also notes a technique for mitigating the tradeoff where bigger

graphones are not as good in graphonization performance as smaller graphones. In-

stead of graphonizing the language model’s OOV words directly, they first use a tiny

graphone, large N-gram, L2S unit to generate pronunciations for OOV words, and

then graphonize OOV words using bigger graphones with the L2S pronunciations as

an additional constraint. Akbacak et al. use graphones to model OOV words in a

spoken term detection task [1]. The recent applications of the graphone flat hybrid

model show that this model is a start-of-the-art technique for speech recognition in

domains where OOV words frequently occur.

2.3 SUMMIT Speech Recognition Framework

The SUMMIT Speech Recognizer is a landmark-based speech recognizer that uses

a probabilistic framework to decode utterances into transcriptions [21]. The speech

recognizer is implemented as a weighted finite-state transducer (FST), which consists

of four stages: C ◦ P ◦ L ◦ G. C and P encode phone label context and phoneme

sequences. L is the mapping from phonemes to words, and G is the grammar or

language model (LM). The acoustic model is based on diagonal Gaussian mixtures,

and is represented by features derived from 14 Mel-Frequency Cepstral Coefficients
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(MFCCs), averaged over 8 temporal regions. The mapping from phonemes to words

are constructed directly from a pronunciation lexicon. The language model is an N-

gram model trained on a large corpus of text, which is usually in the same domain

as where the recognizer is used.

Decoding during recognition is performed through a two-pass search process. The

first pass is a forward beam search where traversed nodes are labeled with their Viterbi

scores. The second pass is a backward A* search where the Viterbi scores are used as

the heuristic for the remaining distance to the destination. A wider search beam can

produce more accurate results, but takes longer to run. To minimize computational

complexity, the forward pass usually uses a lower-order N-gram than the backward

pass. The backward A* search produces the recognizer’s N-best hypotheses, along

with their associated probability scores.
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Chapter 3

Restaurant and Street Name

Recognition

This chapter focuses on applying graphones to letter-to-sound (L2S) conversion of

restaurant and street names. Since the end goal of L2S in a speech recognition system

is to be able to correctly recognize the corresponding words, we evaluate the quality

of the automatically-generated pronunciations through word recognition experiments.

The objectives of these experiments are to find the optimal training parameters for the

graphone model, determine how using multiple pronunciations affects performance,

and verify that the graphone model generalizes well to truly unseen proper names.

3.1 Restaurant Data Set

The data set used in this experiment was originally collected for research reported in

[13], in which subjects were asked to read 1,992 names in isolation. These names are

selected from restaurant and street names in Massachusetts. They are representative

of a data set that could be used for a voice-controlled restaurant guide application.

These names are especially interesting because a significant portion of them are not

in a typical pronunciation dictionary, so in order for the word recognizer to recognize

these names, we must be able to automatically determine their pronunciations. In a

typical system, as new place names are imported into the system through an update

39



process, a L2S converter can be run to automatically generate pronunciations for

those words.

3.2 Methodology

The first step involves building graphone language models using the expectation max-

imization (EM) training process described in [9]. An established ∼150k-word lexicon

used by SUMMIT is used for the training process. Different graphone models with

maximum graphone size (L) of 1-4 letters/phonemes and graphone N-gram size (N)

of 1-8 are explored. L is the upper bound on the maximum number of letters as

well as the maximum number of phonemes in a graphone. There is no limit for the

minimum number of letters or phonemes, except that we do not allow graphones to

have neither letters nor phonemes (i.e. null). Note that it is important to allow 0-

phoneme graphones because some letters can be silent. Also, for large-L models, the

number of N-grams may no longer change after a certain N , and we do not continue

building higher-order models beyond this point. These models are saved to files in

ARPA language model format, which are then used to build L2S converters using the

MIT Finite-State Transducer (FST) Toolkit [26].

The L2S converter is the composition of three FSTs: letter to graphones, graphone

language model, and graphones to phonemes. The letter-to-graphone FST maps a let-

ter sequence to all possible graphones that fit the letter sequence constraint. The gra-

phone language model component is a direct FST translation of the ARPA language

model file. The graphone-to-phoneme FST concatenates the phoneme components of

the graphones. For a given word, a Viterbi forward search and A* backward search

within the L2S FST is used to generate an N-best list for possible pronunciations.

This L2S converter is then used to generate pronunciations for all 1,992 restaurant

and street names.

For evaluation, a word-recognizer is built using the automatically generated pro-

nunciations. A standard set of telephone quality acoustic models are used [43]. Utter-

ance data collected from users are then used to determine the word-error rate (WER)
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of this recognizer. These results are also compared to the same experiments using

spellnemes.

3.3 Results and Discussion

3.3.1 Graphone Parameter Selection

Graphone parameters have a big impact on the performance of the system. Bigger

graphones with larger L values can capture more information individually, but each

word contains fewer graphones of this size. Smaller graphones on the other hand,

capture less information individually, but because each word contains more graphones,

we can more effectively use established language modeling techniques to make the

model generalizable. Bigger graphones also lead to a much larger set of graphones

compared to smaller graphones.

Graphone models with different L and N parameters were used to generate word

pronunciations. The raw data for graphs in this section are located in Appendix A.

Figure 3-1 shows the recognition word error rate (WER) for different combinations

of L and N values. For lower N values, high-L models perform the best because

low-L graphones capture little information individually. For high N values, low-

L models perform better, most likely because the language modeling framework is

more powerful and generalizable than the EM framework that identifies the graphone

set. One explanation for this could be that unlike the Kneser-Ney discounting used

with N-grams, there is no discouting that discounts larger graphones for smaller

graphones. Numerical precision may also play a role. For large L, each graphone

unigram has a very small probability, making it likely that some valuable graphones

could be discarded when their evidence falls below numerical precision. For a sense

of comparison, graphone set sizes for the unigram models are: 0.38k, 3.7k, 20k, 54k,

for L = 1, 2, 3, 4 respectively. Numerical precision could also play a role for higher-

order N-grams as well, but because the training process trains each N-gram model

to convergence before ramping up to the next-higher N-gram, we have much more
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Figure 3-1: Word recognition performance using automatically generated pronuncia-
tions produced by a graphone L2S converter trained with various L and N values.

model stability as we increase N .

These results show that the best L-N combination is L = 1, and N = 6, which

has a WER of 35.2%. For L = 1, as we increase N past 6, the WER actually starts

to increase slightly. This could be due to over-training as we increase the model order

too much. For L = 2, WER does not decrease beyond a 5-gram. This trade-off point

is around a trigram for L = 3, and bigram for L = 4.

Comparing graphone results with spellneme results from [13] shows that the best

graphone models outperform spellneme models. With spellnemes, the WER is 37.1%

while the best graphone model yields a WER of 35.2%. This could be because for

graphones, EM training with smoothing is run for both unigrams as well as higher-

order N-grams. For spellnemes however, although N-gram statistics are computed

on a subword-segmented dictionary, there is no additional learning process for re-

adjusting the higher-order N-gram models.
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Word First Hypothesis Second Hypothesis Third Hypothesis

albertos aa l b eh r t ow z ae l b er t ow z ae l b er t ow s
creperie k r ey pd r iy k r ax p r iy k r ax p er iy
giacomos jh ax k ow m ow z jh ax k ow m ow s jh ax k ow m ax s
isabellas ih z ax b eh l ax z ax s aa b eh l ax z ih z ax b eh l ax s
renees r ax n ey z r ax iy z r ax n iy z
sukiyummi s uw k iy uw m iy s uw k iy y uw m iy s uw k iy ax m iy
szechuan s eh ch w aa n s eh ch uw aa n s eh sh w aa n
tandoori t ae n d ao r iy t ae n d ao r ay t ae n d ao r ax
valverde v aa l v eh r df ey v aa l v eh r df iy v ae l v eh r df ey

Table 3.1: Examples of the L2S converter’s top 3 hypotheses using the graphone
language model.

3.3.2 Adding Alternative Pronunciations

The pronunciation dictionary can have multiple pronunciations for each word. In

fact, a manually-annotated dictionary will definitely have multiple pronunciations for

some words because words can be pronounced in different ways. For an automatically-

generated dictionary, we could just use the top hypothesis for the L2S converter as

the pronunciation. However, the next few hypotheses in the recognizer’s output N-

best list (ranked by decreasing probability) could be valuable as well, especially if a

word truly does have multiple pronunciations. Interestingly, for restaurant and street

names, multiple pronunciations can have another added benefit: people may pro-

nounce names incorrectly because they are guessing based on prior language knowl-

edge. For example, for a French restaurant name, some people may pronounce it

closer to its French pronunciation, while others may say it by reading the name as

if it were an English word. If the L2S converter suggests some of these commonly-

guessed pronunciations as alternatives, then we are more likely to recognize place

names correctly, even if the subject doesn’t pronounce it correctly in the first place.

This all works under the assumption that the L2S converter’s top hypotheses are the

ones that make the most linguistic sense based on the training dictionary. For the

graphone-based L2S, this is usually the case when the training dictionary is large.

Table 3.1 shows some examples of graphone L2S conversion using L = 1 and N = 6.
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Figure 3-2: Word-recognition performance using top 2 pronunciations generated using
various L and N values.

For most of the words, the first hypothesis is an excellent pronunciation. Sometimes,

the quality of the pronunciation degrades rapidly, such as for renees, but for most

words, the first few hypotheses are all reasonable approximations of the true pronun-

ciation. Some of these variations account for variations in phonemes that are very

close to each other, such as s and z, and ax and ae. These variations are also useful

for how fast the person says the word. For creperie, the first two pronunciations are

more accurate for someone saying it at conversational speed, especially if they know

french, whereas the third pronunciation is in more enunciated form.

First, we explore various values of L and N for generating top 2 pronunciations

for each word. The WER graph, shown in Figure 3-2, has a similar shape as the

graph for using top pronunciation only. These results are slightly better than using

the top 1 pronunciation. The best L-N combination is still L = 1 and N = 6, with

a WER of 31.6%. Since for both top 1 and top 2 pronunciation cases, the same L-N

combination gives the best results, we use this combination for experimenting with

even longer lists of alternative pronunciations.
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To study the effect of adding more alternative pronunciations, the number of pro-

nunciations per word is varied between 1 to 50 for L = 1 and N = 6. Multiple

pronunciations for each word are weighed equally in the recognizer’s FST framework.

We expect that as we increase the number of pronunciations per word, the word-

recognition performance first gets better because we are adding more useful variation

for each word, and then gets worse because too many pronunciations introduces too

much confusion into the recognition framework, and dilutes the probabilities for the

correct pronunciations. These results, along with a comparison to spellnemes are

shown in Figure 3-3. We see the most recognition improvement when the number

of pronunciations is increased from 1 to 3. We then have a trade-off point of about

10 pronunciations per word before the WER starts increasing with added pronunci-

ations. These results indicate that using graphones are the most advantageous than

spellnemes for using the top 1 hypothesis. Spellnemes do better at high number

of included pronunciations, possibly because their lexically-derived nature allows the

pronunciation quality to degrade more gradually as we move down the N-best hypoth-

esis list. In addition, because spellnemes are more linguistically-constrained, they may

be better at generating alternative pronunciations when applying phonological rules

leads to multiple correct pronunciations that are distant from each other.

3.3.3 Generalizability of Graphone Models

Finally, we explore the generalizability of graphone L2S for this task. The restaurant

and street name data set includes some common English names that are likely to

occur in the training dictionary. The set of truly unseen names provide a good test

for the generalizability of the model. Out of the 1,992 names, 626 names have an exact

match in the dictionary used to train the graphone model, and the remainding 1,366

are considered to be unseen. In order to generate good pronunciations for unseen

words, the L2S converter must use the probabilities learned from the dictionary to

guess the pronunciation of the unseen words. Also, this task is more challenging than

evaluating L2S performance by dividing a dictionary randomly into train and test

sets, because the unseen words for this task are names of places. Some examples
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Figure 3-3: Word recognition performance with various number of pronunciations
generated using the graphone (L = 1, N = 6) and spellneme L2S converters.

of words in the unseen set are: galaxia, isabelles, knowfat, verdones, and republique.

Many of these words are foreign words, concatenation of multiple words, or purposely-

misspelled words.

For using the top pronunciation only, WER results separated by seen and unseen

words are shown in Figures 3-4 and 3-5. For unseen words, we see that we are still

getting very good performance that are sometimes even slightly better than seen

words. One reason for this favorable performance is that the EM training process has

integrated smoothing. For unseen words, we also see a large dip at L = 1 and N = 6,

which indicates possible overtraining after the N-gram length goes past 6. This dip

is not present for the seen words.

For using the top 2 pronunciations, WER results for seen and unseen words are

shown in 3-6 and 3-7. It’s interesting to see that both plots have dips in their WER

curves that indicate overtraining for very high N-grams. One explanation for this is

that many seen words in the training dictionary only have one pronunciation. While

the top L2S pronunciation may match the actual seen pronunciation exactly, the
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Figure 3-4: Word recognition performance for seen words when the top 1 pronuncia-
tion is used.

Figure 3-5: Word recognition performance for unseen words when the top 1 pronun-
ciation is used.
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Figure 3-6: Word recognition performance for seen words when the top 2 pronuncia-
tions are used.

Figure 3-7: Word recognition performance for unseen words when the top 2 pronun-
ciations are used.
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second L2S pronunciation is only a hypothesized guess since it is not available in the

training data. Finally, we have also shown good generalizability to unseen words for

top 2 pronunciations, since the curves are similar to the ones for seen words.

3.4 Summary

In this chapter, we built a system that recognizes restaurant and street names, and

demonstrated that graphone models are excellent for L2S conversion of these words.

We further increased the word recognition performance of the system by incorporat-

ing more than one pronunciation for each word, using N-best hypotheses from the

L2S converter. Finally, we showed that graphones generalize well to unseen words

because their performance does not deteriorate for words not in the graphone training

dictionary.
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Chapter 4

Lyrics Hybrid Recognition

This chapter discusses applying graphones to hybrid recognition in the lyrics domain.

Song lyrics often have many terms that are not actually English words. This provides

a good environment to evaluate the performance of hybrid recognition using graphone

language models. Graphone-based hybrid recognizers are built for various vocabulary

coverages levels, and evaluated on spoken lyrics data. The results of this chapter are

applicable for building a recognizer that could be integrated into a mobile or in-car

entertainment system that allows users to query for songs by speaking their lyrics.

The system constructed in this chapter also provides a foundation for moving to a

truly open vocabulary task in the lecture domain, as described in the next chapter.

4.1 Lyrics Data Set

The lyrics data was collected in a previous experiment that focused on hybrid recog-

nition using spellnemes, as well as query songs by lyrics [12]. The data collection

process involved 20 subjects (13 males and 7 females), who were presented with 30-

second clips of songs. They were instructed to speak any segment of the lyrics for

that song based on what they heard. The subjects were also asked to type what they

said, which serves as the reference for speech recognition experiments. A total of 1k

songs were used in the data collection process. These songs were chosen from a set

of ∼37k songs while ensuring that it was not too difficult to recognize the lyrics from
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listening to these songs. Lyrics for these songs were scraped from www.lyricwiki.org,

and were cleaned by removing non-ASCII characters as well as foreign songs. A for-

eign song identification script was written to recognize foreign songs by calculating

the proportion of non-English words in the song, and using a simple threshold as a

the classification criteria. The few remaining foreign songs were manually removed

from the data set. Words in the corpus were also cleaned by correcting misspellings of

words and splitting hyphenated words. These utterances can be harder to transcribe

than normal dictation speech because lyrics can contain popular culture slangs that

are not used in dictation speech. Using the same data for graphone experiments also

allows us to make some comparisons between spellnemes and graphones for hybrid

recognition.

4.2 Methodology

The lyrics of ∼37k songs are used as the language model training corpus for the

recognizer. First, artificial vocabulary coverage levels are generated by ordering all

words in this corpus by decreasing frequency, and then choosing the set of most oc-

curring words that provide the desired vocabulary coverage level (i.e. such that x%

of all corpus words, including duplicate words, is in the vocabulary). Depending on

the vocabulary coverage, it is possible that some in-vocabulary words actually do not

occur in the SLS pronunciation dictionary (∼150k words), so their pronunciations

are initially unknown. In these cases, one pronunciation per word is generated using

a letter-to-sound (L2S) converter with L = 1 and N = 8, which are generally the

best parameters for L2S conversion [9]. This converter is trained on the SLS dic-

tionary. Out of 46k unique words in the corpus, pronunciations of ∼15k words are

automatically generated, and the rest are copied directly from the SLS dictionary.

The next step involves segmenting out-of-vocabulary (OOV) words from the cor-

pus into graphones. This is done by training a letter-to-graphone (L2G) converter,

with graphone size L = 4, using a 5-gram, on the SLS dictionary. This converter is

almost the same as the letter-to-sound (L2S) converter, except we do not include the
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Vocabulary Size Training Coverage Test Coverage

68 50.0% 53.0%
120 60.0% 63.5%
233 70.0% 74.3%
492 80.0% 84.5%
1443 90.0% 93.4%
1942 92.0% 94.9%
2766 94.0% 96.4%
4386 96.0% 97.7%
8572 98.0% 99.0%
14532 99.0% 99.4%

Table 4.1: Vocabulary size of hybrid recognizers, and their vocabulary coverage levels
on the training and test sets.

FST that converts graphones into phonemes. OOV words in the training corpus are

replaced by their L2G output. The language model for the recognizer is then trained

on the resulting flat hybrid corpus. The set of L = 4 graphones are also added to

the recognizer’s vocabulary. The rationale for choosing L = 4 is that this has yielded

the best results in Bisani and Ney’s hybrid Wall Street Journal recognition task [8].

We have also conducted preliminary experiments with L = 3 or 4, which showed that

L = 4 produces better results. The acoustic models for these recognizers are trained

on telephone speech [43].

Several hybrid recognizers are built with training set vocabulary coverage levels

ranging from 50% to 99% (see Table 4.1). These recognizers are evaluated on the 1k

utterances from the lyrics data set through two methods: replacing each graphone se-

quence in the recognizer’s output hypotheses by an OOV tag, and replacing graphone

sequences by the concatenation of the graphones’ letter sequences. Replacing by an

OOV tag gives us an understanding of how graphones can prevent misrecognition of

words adjacent to an OOV term. Concatenating graphones gives us a sense of how

well the graphones spell out OOV words. Word-only recognizers are also trained on

the same vocabulary coverage levels for comparison with hybrid recognizers. Finally,

a word-only recognizer with 100% training corpus coverage is built as well.

Since this recognizer is geared toward song retrieval, most of the test utterances

are also in the recognizer’s language model training corpus. The only situation where
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the test utterance’s reference transcription differs from the training corpus is when

the user incorrectly hears the song’s lyrics, which did happen during data collection.

This factor causes the training corpus to have a 0.2% OOV rate on the test set. Nev-

ertheless, because most of the phrases in test utterances are in the training data, this

task is mostly a closed-vocabulary task, and should perform better than completely

open-vocabulary tasks.

We evaluate the recognition performance on word error rate (WER), sentence

error rate (SER), and letter error rate (LER). WER tells us how many words we have

exactly correct in our recognition output, but can be overly harsh for words that the

graphones spell almost correctly. Therefore, we also evaluate our results on LER to

reward the recognizer for spelling words close to correct. SER tells us if we get entire

utterances correct, and is the most strict measure of correctness used for this study.

4.3 Results and Discussion

The results of this experiment show dramatic improvements for combating OOV word

by using a graphone flat hybrid model. The raw data for all graphs in this section is

located in Appendix B. Figure 4-1 shows WER recognition results for three setups.

The first setup is the baseline word-only recognizer that only knows words within the

specified coverage level. We see improvement in WER when we use a hybrid recognizer

and replace graphone sequences in the output by OOV tags. This improvement shows

that graphones are useful as an OOV detector, and helps us prevent words around

OOVs from being misrecognized. Next, we see even more improvement when we

concatenate graphones to spell OOV words. This improvement indicates that in this

task, graphones are effective in hypothesizing pronunciations of OOV words. We

get the most improvement for low vocabulary levels (50%), where using graphones

can improve WER by almost 40 percentage points. For very high vocabulary (99%),

there are still some performance gains for using the hybrid recognizer. The word-

only recognizer with 100% training vocabulary coverage yields a WER of 28.4% (see

Table B.1), which is about equivalent to the performance of a hybrid recognizer with
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Figure 4-1: Recognition word error rate (WER) for recognizers with 50-99% training
vocabulary coverage. Word & OOV is replacing each output graphone sequence by an
OOV tag. Word & Graphone is concatenating consecutive graphones in the output
to spell OOV words.

90% coverage. Table 4.2 shows some examples of hybrid recognition output for 92%

vocabulary coverage level.

The sentence error rates (SER) for the three approaches are shown in Figure 4-2.

Here, replacing graphones by the OOV tag performs about the same as word-only

recognition, except at very high vocabulary coverage. This means that at low vocab-

ulary coverages, there are just too many words that are OOV to see any improvement

for using graphones. However, at very high vocabulary coverage, some in-vocabulary

words that would have been misrecognized by the word-only recognizer, possibly be-

cause they have low probability, are actually recognized correctly as entire words

when the graphone model is added. We also see dramatic improvement when we

concatenate graphones to spell OOV words, which allows us to correctly recognize

some sentences with OOV words. Also, the 100% coverage word-only recognizer has

a SER of 67.5% (see Table B.1).

Finally, letter error rates (LER) are computed for these experiments (see Figure
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Word-Only Recognizer Hybrid Recognizer Reference

the tide at the gate the time to [hesi|tate] the time to hesitate
tonight this could you
send until the night

[tenn|ant|cisc|o] days san
[fran|cisc|o] nights

san francisco days san
francisco nights

in the l bum of my mem-
ory

in the [alb|um] of my
memory

in the album of my mem-
ory

i can see you water and
moonlight be missing

i can see you water and
moonlight [beam|ing]

i can see water and
moonlight beaming

she ring cloud it in crowd [ch|eer|ing] clouds in
[glit|ter|ing|crow|ds]

shimmering clouds glit-
tering crowds

a long story short and
your situation

a [con|stan|t|sour|ce] of
your [fru|stra|tion]

a constant source of your
frustration

Table 4.2: Example recognizer output at the 92% vocabulary coverage level. Square
brackets denote concatenated graphones (only letter part shown). Vertical bars are
graphone boundaries.

Figure 4-2: Recognition sentence error rate (SER) for recognizers with 50-99% train-
ing vocabulary coverage. Word & OOV is replacing each output graphone sequence
by an OOV tag. Word & Graphone is concatenating consecutive graphones in the
output to spell OOV words.
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Figure 4-3: Recognition letter error rate (LER) for recognizers with 50-99% training
vocabulary coverage. Word & Graphone is concatenating consecutive graphones in
the output to spell OOV words.

4-3). On this plot, we do not show results for replacing by the OOV tag because this

approach actually doesn’t make sense with LER; we do not know how many letters

the OOV tag truly encapsulates. For LER, we also see dramatic improvements in

how much graphones can help spell out words correctly. Because the curve for using

graphones is much flatter than the graph for WER, we can conclude that many words

at low vocabulary coverages are actually spelled very close to its true spelling. The

100% word-only recognizer has a LER of 18.5% (see Table B.1), which is similar to

the LER performance of the 80% hybrid recognizer with only a 492-word vocabulary.

We can also compare these graphone results with the spellneme hybrid results

reported in [12]. In the spellnemes study, a hybrid recognizer is built by converting

OOV words to spellnemes, just as in graphone hybrid recognition. Although WER

and SER results are reported for word-only and replacing spellneme sequences by

an OOV tag, no results are reported for concatenating spellnemes together. For

the replacing subwords by OOV approach, graphones perform better by about 10

percentage points for low vocabulary coverage. This advantage gradually decreases
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as we increase the vocabulary coverage, and at very high vocabulary coverage, the

two methods perform about the same in WER. For SER of replacing by the OOV

tag, spellnemes perform about 10 percentage points better than graphones at low

vocabulary coverages, and perform about the same as graphones at high vocabulary

coverage. One reason could be that at very low vocabulary coverages, graphones

are more eager to appear at places where an in-vocabulary word should appear, but

may still end up with the same spelling anyways. However, these sentences are still

penalized because of they contain OOV tags. Therefore, WER is a better measure of

performance than SER for this task.

4.4 Controlling the Number of Graphones

Controlling the size of the graphone set can be important for applications where the

size of the recognizer’s lexicon is limited. Because graphones are added directly to

the recognizer’s lexicon, they can also increase the size of the resulting recognizer.

With the untrimmed L = 4 graphone model, 22k graphones are needed to segment

all words in the training corpus. The L2G model used for this segmentation has 54k

unique graphones. Thus for the 50% coverage vocabulary, although only 68 words

are in-vocabulary, almost 22k graphones are needed to model the OOV words. For

high vocabulary coverages, the number of graphones are considerably less because

less words are considered OOV in the training corpus. Nevertheless, it is beneficial

to investigate trimming the graphone set.

The size of the graphone set is reduced by modifying the procedure for training

graphones on the pronunciation dictionary. First, the unigram EM is run to con-

vergence with the Kneser-Ney evidence discount parameter automatically chosen by

Powell’s method. For L = 4, this discount value is 0.07. We then run the unigram EM

again with a fixed discount value to trim the graphone set to the desired value. For

a sense of comparison, graphone evidence values accumulated over the entire train-

ing dictionary can be as big as 5k to 10k for common graphones like (s/s), (er/er),

and (ing/ih ng); and as small as allowable by machine precision. Finally, we use the
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Discount Value Number of Graphones

0.07 54k
3.0 11k
5.0 7k
8.0 5k
10.0 4k
20.0 2k

Table 4.3: Number of graphones for L = 4 unigram model after trimming using the
specified Kneser-Ney discount value.

Full Graphone 4k Graphone 2k Graphone Word-Only

SER 72.7% 75% 78.0% 86.0%
WER 31.6% 34.0% 37.1% 50.1%
LER 18.8% 20.3% 22.5% 32.6%

Table 4.4: Comparison of recognition performance for the full graphone hybrid model
and trimmed graphone models (4k and 2k graphone set size). We also show results
for the word-only recognizer. All of these recognizers have 80% vocabulary coverage.

trimmed model to ramp up to higher graphone N-grams using same procedure as

before. Table 4.3 shows how the size of the graphone set changes as the evidence

discount parameter is varied.

For the lyrics experiments, we ramp up the 4k and 2k trimmed unigram gra-

phone models to 5-grams, and then use these models to segment OOV words at 80%

vocabulary coverage. Table 4.4 shows results for concatenating graphones to spell

OOV words. These results indicate that trimming the graphone set does degrade the

hybrid’s recognition performance, but this effect is still small compared to the per-

formance of the word-only recognizer. Even after reducing the number of graphones

used in the hybrid model by 10-fold to 2k, we still achieve recognition performance

that is significantly better than word-only recognition.

4.5 Summary

In this chapter, we applied graphone hybrid recognition to music lyrics utterances. We

demonstrated significant performance improvements over the word-only recognizer at
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all vocabulary coverage levels tested. By replacing graphone sequences with OOV

tags, we showed that using the hybrid recognizer can reduce errors for in-vocabulary

neighbors of OOV words. By concatenating graphone sequences to spell OOV words,

we improved recognition performance even further, demonstrating that graphones can

correctly spell OOV words. Finally, we explored trimming the graphone set during

EM training, and showed that even with a much smaller graphone set, the hybrid

recognizer still significantly outperforms the word-only recognizer.
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Chapter 5

Spoken Lecture Transcription

This chapter explores using graphone hybrid recognition for spoken lecture transcrip-

tion. This task is an open-vocabulary task because we cannot anticipate everything

the lecturer says in the recorded audio, especially if it’s an unknown topic. Our main

objective is to build a hybrid recognizer and compare this recognizer’s performance

with a word-only recognizer at various vocabulary coverage levels. We also explore

several extensions for improving the hybrid recognizer, including trimming the gra-

phone set, using a full vocabulary with the hybrid model, and hierarchical models.

5.1 Lecture Data Set

The lecture data is mainly a set of manually-transcribed lectures from the MIT Open-

CourseWare and MIT World databases. The data was originally used in [22] to de-

velop a lecture transcription engine so that the lecture text can be easily accessed from

a web interface. The training corpus for the speech recognizer has 480k utterances

comprised of 6.8M words. It not only contains transcribed lectures, but also contains

data from the Switchboard corpus and the Michigan Corpus of Academic Spoken

English (MICASE). There are a total of 49.3k unique words in this training corpus,

which would be the vocabulary size of a word-only recognizer with 100% training cor-

pus coverage. The test set has 7.4k utterances containing 72k words, selected from

lectures on computer algorithms, speech recognition systems, biology, and differential
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equations. The entire training corpus has a 99.4% vocabulary coverage on the test

corpus.

The lecture data provides us with a practical application that has good opportu-

nities for working with OOV words that are likely to be important. In these lectures,

the OOV words are often technical terms that are crucial for the understanding of

the lecture. Users also are likely to use these terms as keywords for searching through

the lectures transcript. Therefore, the ability to hypothesize spellings for these OOV

words can significantly increase the value of the lecture-browsing application.

5.2 Methodology

A baseline word-only recognizer and a hybrid recognizer are built for several vocab-

ulary levels, ranging from 88% to 99% coverage on the training corpus. Most of the

steps for building the recognizers are analogous to those for the lyrics recognizer de-

scribed in the Chapter 4. In-vocabulary words for each coverage level are selected by

decreasing frequency in the lecture training corpus. Table 5.1 shows the vocabulary

sizes of the hybrid recognizers, as well as the corresponding vocabulary coverage levels

on training and test sets. Finally, we also build a word-only recognizer using 100%

of the training vocabulary.

For building a word-only recognizer, pronunciations are needed for all words that

are considered to be in-vocabulary. Most of the 49.3k words in the training dictionary

are found in the SLS pronunciation dictionary, but 4.2k of those words are missing

pronunciations. For those words, a graphone letter-to-sound converter (L = 1, N = 8,

trained on the SLS dictionary) is used to automatically generate one pronunciation for

each word. For the hybrid recognizer, OOV words in the training corpus are replaced

by their graphone representations using a letter-to-graphone (L2G) converter, which

is trained on the SLS dictionary with L = 4 and N = 5. These graphones are also

added to the recognizer’s lexicon. For both word-only and hybrid models, we use

the SRI Language Modeling Tookit (SRILM) [36] to build their recognizer language

models. For this step, a trigram model is built on the training corpus using Witten-
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Vocabulary Size Training Coverage Test Coverage

1320 88.0% 85.6%
1780 90.0% 88.4%
2468 92.0% 90.4%
3594 94.0% 93.0%
5661 96.0% 95.0%
10633 98.0% 97.2%
17374 99.0% 98.4%

Table 5.1: Vocabulary sizes for the hybrid recognizer, and corresponding vocabulary
coverage levels on the training and test sets.

Bell smoothing and a N-gram pruning threshold of 0.000001. The acoustic models for

this experiment are the same as those in the original lecture transcription recognizer,

which is trained from about 121 hours of speech from MIT lectures. This recognizer

also already has models for common non-speech utterances such as <um>, <laugh>,

<cough>, etc.

These recognizers are tested on new data from lectures not in the training set.

Recognition performance are measured by computing word error rate (WER), sen-

tence error rate (SER), and letter error rate (LER) for each recognizers’s output.

For LER, all spaces in the recognizer’s output and the reference text are replaced

by a special token to take into account of whether consecutive words are separated

correctly in the recognizer’s output.

5.3 Results and Discussion

The hybrid model performs well when compared to word-only recognizers with the

same vocabulary coverage. The raw data for all graphs in this section is available in

Appendix C. Figure 5-1 shows WER for a) the word-only recognizer, b) replacing

each graphone sequence in the recognizer output with an OOV tag (Word & OOV),

and c) concatenating consecutive graphones in the output to spell out OOV words

(Word & Graphone). The trend here is similar to the ones depicted in Chapter 4

for lyrics recognition. The difference between word-only and replacing by an OOV

tag shows that graphones help us reduce mistakes near OOV words. The difference

63



Word-Only Recognizer Hybrid Recognizer Reference

whatever they’re using job
that now i guess <uh> to
do way lower

whatever they’re using
[java] now i guess <uh>
to do [eul|er]

whatever they’re using
java now i guess to do
euler

these different kinds of like
rocks old and hydrogen

these different kinds
of a [hydr|ox|al|s] and
[hydr|ogen|s]

these different kinds of
hydroxyls and hydrogens

artistic models are made
out of <uh> gauss in mix-
ture switch

are [acou|stic] models
are made up of <uh>
[gaus|s|ian] makes [ture|s]
which

our acoustic models are
made up of <uh> gaus-
sian mixtures which

the right missiles are re-
sponsible for proteins and
this is

the [ribo|some|s] are
responsible for protein
[syn|thes|is]

the ribosomes are re-
sponsible for protein
synthesis

individual molecules and
the scientist kelvin

individual molecules and
the [cyto|skel|eton]

individual molecules and
the cytoskeleton

Table 5.2: Example recognizer output for the hybrid and word-only recognizers at
96% training corpus coverage, along with reference transcriptions. Square brackets
indicate concatenation of graphones (only letter part shown). Vertical bars denote
graphone boundaries.

between replacing by an OOV tag and concatenating graphones shows that we can

spell some OOV words correctly using graphones. The performance benefit of using

graphones diminishes as we increase the recognizer’s coverage. The more coverage

we use, the less OOV words we have to segment into graphones, causing the hybrid

language model to have less data about graphone-to-graphone transitions, as well as

word-to-graphone transitions. Table 5.2 shows some examples of the hybrid recognizer

correctly or almost-correctly spelling OOV words. This hybrid recognizer has 96%

training corpus coverage, equivalent to 95% test corpus coverage. Also note that

sometimes the hybrid recognizer will recognize an in-vocabulary word as a sequence

of graphones, but usually with the correct spelling.

The comparison for SER is shown in Figure 5-2. One trend is that replacing

by the OOV tag consistently does slightly worse than word-only recognition. This

could mean that some in-vocabulary words are consistently recognized into their

equivalent graphone form. Replacing by the OOV tag does not turn these words back

to their original spelling, so the sentences are counted as incorrect. However, after
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Figure 5-1: Recognition word error rate (WER) for 88-99% training vocabulary cover-
ages. Word & OOV is replacing each output graphone sequence by an OOV tag. Word
& Graphone is concatenating consecutive output graphones to spell OOV words.

the graphones are concatenated into words, almost all of these words are correctly

spelled back into their original form.

By inspecting the hybrid recognizer’s output, we notice that the hybrid recognizer

is very good at spelling words that are also in the training corpus, but are considered

as OOV based on the chosen vocabulary coverage. Since these graphone N-grams

exist in the training corpus, the recognition process is much easier. For OOV words

that do not occur in the training corpus, the task of spelling them with graphones is

much harder. In most cases, the recognizer only produces a partially-correct spelling

for these OOVs, which is counted as incorrect when calculating WER. To reward

partially-correct spellings, LER is calculated for word-only and hybrid recognizers, as

shown in Figure 5-3. The LER results show significant improvements for using the

hybrid model. The curve for the hybrid model is also very flat, which indicates that

even at lower vocabulary coverage levels, graphones are still effective in spelling many

words mostly correctly.

Finally, we also note that none of these hybrids outperform a word-only recognizer
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Figure 5-2: Recognition sentence error rate (SER) for 88-99% training vocabulary
coverages. Word & OOV is replacing each output graphone sequence by an OOV
tag. Word & Graphone is concatenating consecutive output graphones to spell OOV
words.

Figure 5-3: Recognition letter error rate (LER) for 88-99% training vocabulary cov-
erages. Word & Graphone is concatenating output graphone sequences to spell OOV
words.
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with 100% training corpus vocabulary coverage, which includes 49.3k words with 4.2k

pronunciations automatically generated by graphone L2S. As shown in Table C.1, the

performance measures for this full-coverage word recognizer are: WER of 31.1%, SER

72.0%, and LER of 17.6%. The 99% hybrid has a WER 31.8%, SER 72.7%, and LER

17.8%. The 98% hybrid has a WER of 32.2%, SER 73.0%, and LER 18.0%. One

factor could be that although the training and test corpora are from different lectures,

the training corpus can still cover most of the words in the test corpus, so truly OOV

words are not abundant in the test corpus. In fact, only 204 of the 4k unique words in

the test set are not in the training corpus. Occurrences of these words account for 440

of the 72k total words in the test set. In this case, running with a large-vocabulary

recognizer can offer more constructive constraints in the search space. The results

however, are still very close between the full-coverage word-only recognizer and high-

coverage hybrid recognizers.

Although the measured performance of hybrid recognizers is not better than the

full-coverage word-only recognizer, there are still important advantages for choosing

the hybrid approach. One advantage is vocabulary size. For the 98% hybrid rec-

ognizer, even with the graphones added, the recognizer’s lexicon is still 20k smaller

than the full-coverage word recognizer’s, which can offer computational resource ad-

vantages. The big difference in vocabulary size is not limited to the lectures domain

because data sparsity is an issue for many domains. The hybrid model also has the

advantage of hypothesizing spellings of OOV words, rather than recognizing it into

a completely different in-vocabulary word. This is important if the OOV word is a

keyword for the lecture. In Table 5.3, we show some examples of 100% word-only

recognition output and the 98% coverage hybrid, especially when the hybrid model’s

ability to hypothesize arbitrary words is useful. In addition, the hybrid model maybe

be more useful if the training corpus is more limited. In this task, we have the luxury

of training with a fairly large training corpus of transcribed lectures, but such cor-

pora are not available for many applications. With a smaller corpus, even if we get

pronunciations for all the words in the corpus, we still may not be able to account

for a significant number of words in the test data, in which case open-vocabulary
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Word-Only Recognizer Hybrid Recognizer Reference
(100% Coverage) (98% Coverage)

linda was on great got
their names attach to a
version of this algorithm

[lind|ouzo] and great got their
names attach to a version of
this algorithm

linde buzo and gray got
their names attached to a
version of this <uh> algo-
rithm

the outside it molecule the [leph|atic] molecule the allophatic molecule
this kind of reaction jus-
tification is the kind of
linking

this kind of reaction
[ysti|fica|tion] is the kind
of linking

this kind of reaction esterifi-
cation is the kind of linkage

in the cepstral domain we
see that disputes

in the [ceps|tral] domain we see
that the speed [s]

in the cepstral domain we
see that the speech

the mitochondrial d n a
from snort meander full
bones

the mitochondria [l] d n a from
[son] art [nea|nder|thal] bones

the mitochondrial d n a
from <partial> <partial>
neanderthal bones

here’s the tube lists are
also once again here’s the
phosphate

here’s the two [glyc|er|oles]
once again here’s the phos-
phate

here’s the two glycerols once
again here’s the phosphate

Table 5.3: Examples of recognition output for 100% coverage word-only recognizer
and a 98% coverage hybrid recognizer, along with the corresponding reference tran-
scriptions. Square brackets denote concatenated graphones. Vertical bars show gra-
phone boundaries. Note that this table differs from Table 5.2 in that the hybrid and
word-only recognizers have different coverage levels.

recognition may perform better.

5.4 Controlling the Number of Graphones

For the full L = 4 graphone model, 19k unique graphones are needed to segment all

words in the corpus into graphones. These 19k graphones are added to the speech

recognizer’s lexicon, thus significantly increasing the size of the lexicon. In fact, for

the coverage levels explored in the lecture experiments (88% - 99%), the majority of

the lexicon is actually graphones. This leads to the question of whether we can trim

the graphone set and still preserve performance for open-vocabulary recognition. The

graphone set trimming process is described in Section 4.4.

For this experiment, 96% coverage hybrid recognizers are built with trimmed gra-

phone sets of 4k and 2k. These recognizers are then evaluated on the test set. The
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Full Graphone 4k Graphone 2k Graphone Word-Only

WER 32.8% 33.6% 34.8% 36.8%
SER 73.5% 73.6% 74.5% 75.1%
LER 18.2% 18.6% 19.1% 20.7%

Table 5.4: Comparison of recognition performance for the full graphone hybrid model
and trimmed graphone models (4k and 2k graphone set size). Results are also shown
for the word-only recognizer. All of these recognizers have 96% vocabulary coverage
on the training corpus.

results of these recognition experiments are shown in Table 5.4. The speech recogni-

tion performance only degrades slightly when the graphone set is trimmed down from

19k to 4k. The difference between these two setups are less than 1 percentage point

for all three metrics. Therefore, the complexity of the recognizer can be significantly

reduced while maintaining a similar level of recognition performance.

5.5 Hybrid Recognition with Full Vocabulary

Choosing a vocabulary coverage for the hybrid model has a trade-off. For higher

vocabulary coverage, more words are in-vocabulary, but there is also less graphone-to-

graphone transitions available in the training corpus for learning. This can reduce the

graphones’ ability to spell OOV words. For lower vocabulary coverage, although there

are more graphone-graphone transitions available, a smaller vocabulary decreases

overall performance. The goal of this section is to build a recognizer that has 100%

vocabulary coverage of the training corpus, but also has hybrid model knowledge to

help it perform even better.

In order to do this, the recognizer must learn N-grams of all words in the training

corpus, as well as N-grams containing graphones. We can accomplish this by training

a hybrid recognizer on the concatenation of two copies of the language model corpus.

The first copy is the original corpus, and the second copy is a hybrid corpus at a

chosen vocabulary coverage. The first copy gives us full vocabulary coverage, and the

second copy incorporates word-graphone and graphone-graphone transitions into the

language model.
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Figure 5-4: Test set perplexity of language models trained on a replicated training
corpus.

However, care must be taken when concatenating a language model corpus with

itself. Depending on the effects of smoothing, the language model estimated on the

same text replicated twice or more times can lead to a different, and perhaps better

model. For example, if a graphone model trained on two copies of the training corpus

(1 word-only, 1 hybrid) does better than the word-only recognizer, then we are still

not sure if the improvement is due to having some sentences appear twice, or from

the addition of graphones. In order to have a fair comparison with the proposed

graphone model, we must find a point where concatenating additional copies of the

language model corpus no longer increases the quality of the language model. To do

this, language models are trained on replicated word-only lecture corpora of varying

number of copies. Then, their perplexities on the lecture test set are calculated

using SRILM. Figure 5-4 shows the result of this perplexity calculation. Because the

perplexity curve flattens as we get to 10 copies of the training corpus, we use this

configuration to test the full-vocabulary graphone model. For practical applications,

these perplexity calculations can be done on a development set.
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Word-only Word-only 96% Hybrid 98% Hybrid 99% Hybrid
1x 10x OOV Gr OOV Gr OOV Gr

WER 31.1% 29.0% 29.3% 29.3% 29.2% 29.2% 29.1% 29.1%
SER 72.0% 69.7% 70.1% 70.1% 69.9% 69.9% 69.8% 69.8%
LER 17.6% 16.5% - 16.5% - 16.5% - 16.5%

Table 5.5: Performance of hybrid recognizers with full vocabulary compared to the
full-coverage baseline word-only recognizers. Word-only 1x and 10x are built with one
and ten copies of the training corpus, respectively. The OOV column is for replacing
graphone sequences by OOV tags. The Gr column is for concatenating graphones
together to form words.

For this experiment, nine copies of the original corpora are concatenated with one

copy of the hybrid corpus at a given coverage level (96%, 98%, or 99%). The 4k gra-

phone model (L = 4) as described in Section 5.4 is used for graphonizing OOV words

in the training corpus. This trimmed graphone set is used because these graphones

are added to an already-huge dictionary of 49.3k words. The hybrid recognizer built

on the resulting training corpus has 100% training vocabulary coverage, plus knowl-

edge about graphones. The hybrid results are compared to a word-only recognizer

trained on 10 copies of the original corpora. Table 5.5 shows results of this experi-

ment. For reference, this table also includes the results of the word-only recognizer

trained on one copy of the training corpus. These results show that as predicted from

perplexity calculations, replicating the training corpus does increase performance, but

this is likely to be a side-effect of smoothing. Comparing the 10x word-only language

model and corresponding hybrid recognizers (1x hybrid + 9x word-only corpus), we

do not see any gains with the hybrid recognizers. We also do not see much decrease

in recognition either, especially in LER. Comparing the columns for replacing by an

OOV tag and for concatenating graphones, we see that at such a high coverage level,

the graphones rarely spell OOV words correctly. Because the training set’s coverage

of test set words is very high for this task, it is also good too see that adding gra-

phones to a full-coverage recognizer does not significantly degrade recognition. If this

full-vocabulary hybrid were built for a different task where the training corpus has

a much lower coverage of the test corpus, then the full-vocabulary hybrid has much

greater potential for outperforming the full-coverage word-only recognizer.
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5.6 Hierarchical Alternative for Hybrid Model

So far, when we mention hybrid models, we have been referring to flat hybrid models.

However, there are alternatives to the flat approach for building a hybrid model. In

this section, we experiment with hierarchical hybrid models, or simply hierarchical

models for short. These models are hierarchical because they model the language

corpus at two levels: the word level and the subword level. At the word-level, OOV

words are replaced by OOV tokens during language model training. The subword-

level model is trained on an arbitrary pronunciation dictionary, and serves as the

OOV model. During recognition, the top-level recognizer decides whether an OOV

word has occurred, and if so, the recognizer uses the subword OOV model to find the

most-likely OOV word (see Figure 5-5). A cost factor, Coov, is applied whenever the

recognizer uses the OOV model, which can be seen as a normalizing factor between

the OOV model and the word-level model. This cost is additive in the log-probability

domain, so it is multiplicative in the probability domain. Bazzi and Glass have used

phonemes for the OOV model in the hierarchical framework to generate phonetic

sequences for OOV words [4]. We build on previous work by using graphones in the

OOV model to spell OOV words.

There are pros and cons of using a hierarchical model versus a flat model to detect

and hypothesize OOVs. The flat model knows about transitions from words to the

beginning graphone of an OOV, as well as the transition from the ending graphone

of an OOV to the next word. When there are consecutive OOVs in the training

corpus, the flat model also learns transitions between graphones at the boundary of

the OOVs. The hierarchical model may have better generalizability for spelling OOV

words because its OOV model can be trained on a large dictionary that is independent

of the language model training corpus for the recognizer. The flat hybrid on the

other hand, only learns how to spell OOV words from the segmented words in the

language model training corpus. At high vocabulary coverages, this is usually a much

smaller data set than a large training dictionary. The hierarchical model can capture

probabilities that span words on both sides of the OOV token, but the flat model
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Figure 5-5: Hierarchical OOV model framework (from [2]). WOOV represents the
OOV token.

cannot, unless the OOV word is very short. The flat model doesn’t require parameter

tuning, while the flat hybrid model requires tuning of Coov on a development set.

However, tuning this parameter also gives us more control of how often to go into the

OOV model, which can help us prevent in-vocabulary words from being recognized

as OOVs.

To build the hierarchical model for this experiment, a graphone model is trained

on the SLS pronunciation dictionary with parameters L = 3, N = 3, resulting in

a set of 19.6k graphones. This model is then converted to an FST using the MIT

Finite-State Transducer Toolkit [26]. The Coov factor is added by inserting a node at

the beginning of this FST. For the word-level model, the language model is estimated

using SRILM at 98% training set vocabulary coverage, replacing OOV words by an

OOV token. This language model is then converted to an FST where the OOV token

is converted to a dynamic class that points to the OOV model’s FST. A 400-utterance

development set is used to tune Coov by optimizing on WER. The best Coov found

for this model is -7.5 (FST scores are negative-log probabilities). This negative cost
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is needed because a hypothesized word generated by the OOV model has a much

higher score than a normal word. The word-transition-weight for the hierarchical

recognizer is also adjusted slightly to compensate for the addition of the OOV model.

Performing a backward pass on the top-level model is tricky because we need to skip

over all the OOV tokens. For this proof-of-concept experiment, we run a forward

trigram and widen the search beam by a factor of 5 to compensate for the much

larger search space. We plan to implement the bigram forward pass and a trigram

backward pass for this model in the near future.

For evaluation, the hierarchical and flat hybrids, along with a word-only recognizer

on a 7k test set. The flat hybrid uses a L = 3, N = 5 L2G converter for graphonizing

OOV words in the training set. All of these recognizers have a vocabulary coverage

of 98% on the training set. The recognition results are shown Table 5.6. These

results show that the hierarchical and flat hybrid models have similar performance,

and both significantly outperform the word-only recognizer at this coverage level.

Several examples of recognition output for the three types of recognizers are shown

in Table 5.7. These examples show that although the flat hybrid model and the top-

level N-gram of the hierarchical model are trained on corpora with the same OOV

locations, the recognition output can still vary in where OOV words are detected.

The hypothesized spellings are often different for the two hybrid models because the

training data for the graphone part of these models are different.

Although the LER of the hierarchical model is slightly worse than the hybrid

recognizer, a closer examination of the recognizers’ output actually reveals that the

hierarchical model generalizes better to truly unseen data. There are 204 unique

words in the test set that occur nowhere in the training corpus. Out of those unseen

words, the flat hybrid spells 10 of those words correctly (including placing the word

boundaries correctly) at least once in the test set. The hierarchical hybrid however,

spells 41 of those truly unseen words correctly at least once in the test set. This

shows that if the OOV position is hypothesized correctly, then the hierarchical hybrid

is more capable of spelling the OOV word. This is expected because the hierarchical

OOV model is trained on a 150k-word dictionary rather than only the words that
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Word-only Flat Hierarchical

WER 33.6% 32.5% 32.5%
SER 73.2% 72.8% 72.8%
LER 19.0% 18.2% 18.3%

Table 5.6: Comparison of hybrid approaches for the lecture transcription task at 98%
vocabulary coverage.

get graphonized at the 98% coverage level on the training corpus. In addition, EM

with smoothing is run for all N-gram sizes when building the graphone model for the

hierarchical hybrid, which is not the case for graphone N-grams in the flat hybrid.

Therefore, this confirms one strength of hierarchical OOV models over flat hybrid

models.

5.7 Summary

In this chapter, we built a hybrid recognizer for the lectures domain and demonstrated

significant improvements over the word-only baseline recognizer. We also showed that

trimming the set down to 4k graphones does not significantly impact performance. A

full-coverage hybrid recognizer was also built and shown to produce less errors than

the full-coverage word-only recognizer. Finally, we presented a hierarchical graphone

model that yields similar performance as the flat hybrid graphone model.
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Hierarchical Flat Word-only Reference

<uh> represents
[cor|bel|hyd|ra|tes]

<uh> represents
[car|bo|hyd|ra|tes]

<uh> represents
car behind rates

<uh> represents
carbohydrates

summary tell me
[asy|mpt|ot|ica|lly]

summary tell me
[asy|mpt|ot|ica|lly]

summary tell me
hasn’t ironically

somebody tell me
asymptotically

here’s the
[gol|gi|ap|br|ede|son]
the gold yet
[app|ara|tus] up
here

here’s the goal
g [app|ara|tus]
in the gold yet
[app|ara|tus] up
here

here’s the goal of
yep bread so the
gold yet <uh>
bread is up here

here’s the golgi ap-
paratus and the
golgi <uh> appa-
ratus up here

this so late of the
triangle this the
[hyp|ot|enu|se] have
flow a and

this so late of the
triangle this the
hype understand
flow a and

this so late of the
triangle this the
hype understand
flow a and

this side of the tri-
angle this the hy-
potenuse has slope
an

and the truth things
that vast numbers
of [bio|che|mic|a|lly]
catches are made by
[esp|iri|fic|ati|on] re-
actions and reversed
by reactions that
are called simply
[hyd|r|oly|sis]

and the truth
things that vast
numbers of bio-
chemical [ink|a|ges]
are made by us
[ver|ifi|cat|ion] reac-
tions and reversed
by reactions that
are called simply
[hyd|ro|sis]

and the truth
things that vast
numbers of bio-
chemical the
teachers are made
by a spirit va-
cation reactions
and reversed by
reactions that are
called simply high
gross is

and the truth is
that vast numbers
of biochemical
linkages are made
by esterification
reactions and re-
versed by reactions
that are called
simply hydrolysis

Table 5.7: Examples of recognition output from hierarchical, flat, and word-only
models. All recognizers have a 98% training corpus coverage. Square brackets denote
concatenated graphones (only letter parts shown). Vertical bars show boundaries
between graphones.
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Chapter 6

Summary and Future Directions

In this thesis, we explored using graphones for letter-to-sound (L2S) as well as hybrid

recognition tasks, in several applications with practical use cases. We discussed L2S

conversion in context of generating restaurant and street names for a mobile restau-

rant guide application, and produced results slightly better than similar subword

approaches. We then presented results of using graphone flat hybrid recognition

to recognize lyrics queries issued by users with the goal of finding songs. Finally,

we applied graphones to transcribing spoken lectures in an open vocabulary setting.

Overall, we conclude that the flat hybrid model is effective when compared to word-

only models with the same vocabulary coverage. We have also seen that trimming

the graphone set does not significantly degrade recognition performance, especially

for the open vocabulary task. Finally we explored some improvements to the stan-

dard flat hybrid model by incorporating all the words in the vocabulary, as well as

building a hierarchical hybrid instead of a flat hybrid.

6.1 Future Directions

One future area of focus is improving the flat hybrid model. We can add a word

boundary token to graphonized OOVs in the language model training corpus so that

we can easily separate consecutive OOV words in the recognition output. This can

be especially useful if the OOV rate is high. Also, the graphone size parameters

77



has trade-offs for hybrid recognition performance because large graphones are good

for recognition, but are not as good as smaller graphones for graphonizing words

accurately. However this trade-off may be mitigated by using a long N-gram L2S

to get pronunciations for OOV words, and then jointly segmenting the OOV words

into graphones [39]. Although Vertanen does not find improvements for using this

technique on the WSJ task, the performance of this technique might be domain

dependent. For future work, we can explore this technique for the lecture and lyrics

domains.

We also presented a hierarchical graphone model in this work, but there is much

more to be studied in this area. We can dynamically adapt OOV models for the

hierarchical hybrid recognizer to improve its ability to hypothesize OOV spellings.

The hierarchical model can also be combined with a flat hybrid approach through a

two-stage configuration. In this system, the first stage uses a flat hybrid model to

identify OOV regions. The second stage rescores these regions with a more powerful

graphone-only OOV model similar to the one used for the hierarchical hybrid.

Although building a hybrid model allows us to detect OOVs, we also lose training

corpus words from the vocabulary when we decide on a vocabulary coverage for the

hybrid model (applies to both flat and hierarchical models). The words excluded from

the hybrid model could have been added to the speech recognizer’s vocabulary after

L2S conversion. The best solution should have the best of both worlds. It should

allow the recognizer to use pronunciations of all words in the training corpus, plus

information offered by a hybrid model. In this work, we explored a preliminary ap-

proach, which is to simply concatenate the word-only corpus with a hybrid corpus for

LM training. However, more advanced techniques can be used. One approach could

be to merge a large-vocabulary word-only model and a flat-hybrid model through

language modeling techniques. Another approach could consider every word in the

training corpus to have a some partial probability of being considered as OOV, so

that we can effectively learn word-to-word and word-to-graphone transitions for all

words in the training corpus.

When the graphones are trained by maximum-likelihood training, we have seen
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that the L2S models with larger graphones do not perform as well as the ones with tiny

graphones. Ideally, the model with bigger graphones should contain the model with

the smaller graphones. If the best model were the model with the smaller graphones,

then the ideal training process should always produce the smaller-graphone model,

regardless of the specified graphone size upper limit. In the current training process,

the smaller graphones are able to take significant advantage of language modeling

techniques, but bigger graphones don’t get as much benefit because each word does

not contain as many big graphones. One possibility is to introduce some form of

backoff and smoothing along the graphone size dimension in a manner analogous

to the existing backoff and smoothing along the N-gram size dimension. Another

possibility is to use a prior based on linguistic knowledge and turn the maximum-

likelihood training into a maximum a posteriori training process. This will be helpful

for languages where we have some linguistic knowledge about syllable size or structure.
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Appendix A

Data Tables: Restaurant and

Street Name Recognition
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Top 1 Pronunciation Top 2 Pronunciations
L N All Seen Unseen All Seen Unseen

1 1 65.0 65.5 64.8 65.5 65.8 65.4
1 2 47.2 47.3 47.1 42.9 43.3 42.8
1 3 38.9 41.2 37.8 35.2 36.6 34.6
1 4 38.2 38.7 38.0 33.1 31.8 33.7
1 5 36.0 36.6 35.7 32.5 31.0 33.2
1 6 35.2 35.8 34.9 31.6 30.0 32.4
1 7 35.6 35.5 35.7 32.0 30.7 32.6
1 8 35.6 35.5 35.7 32.0 30.8 32.6
2 1 58.3 60.2 57.5 55.0 55.9 54.5
2 2 38.8 39.8 38.4 33.5 33.5 33.5
2 3 37.4 37.2 37.6 33.1 31.0 34.1
2 4 37.0 36.6 37.3 33.1 32.4 33.5
2 5 36.8 36.4 37.0 32.9 32.4 33.2
2 6 36.8 36.4 37.0 32.9 32.4 33.2
3 1 51.7 51.8 51.7 45.5 45.7 45.4
3 2 37.5 36.6 37.9 34.0 34.0 34.0
3 3 36.6 35.6 37.0 33.8 32.9 34.3
3 4 36.6 35.6 37.0 33.8 32.9 34.3
3 5 36.6 35.6 37.0 33.8 32.9 34.3
4 1 44.4 43.0 45.1 40.2 39.6 40.5
4 2 37.8 36.4 38.4 34.5 32.9 35.2
4 3 37.6 36.1 38.2 34.4 32.7 35.1
4 4 37.5 36.1 38.1 34.4 32.7 35.1
4 5 37.5 36.1 38.1 34.4 32.7 35.1

Table A.1: Word recognition performance using automatically-generated pronuncia-
tions for restaurant and street names. Graphone L2S converters with various L and
N values are used to generate pronunciations. Results are shown in WER (%). This
data is used to generate Figures 3-1, 3-2, 3-4, 3-5, 3-6, and 3-7.

Num. Pron. Graphone Spellneme
1 35.2 37.1
2 31.6 32.1
3 30.6 30.6
5 30.3 30.2
10 30.0 29.7
20 30.3 30.4
50 32.3 31.1

Table A.2: Word recognition performance with various number of pronunciations.
The graphone converter is trained with L = 1, and N = 6. The spellneme data is
from [13]. Results are shown in WER (%). This data corresponds to Figure 3-3.
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Recognition
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Word-only Word & OOV Word & Graphone
Ctrain Ctest |V | WER SER LER WER SER WER SER LER

50.0 53.0 68 88.1 99.3 55.5 63.4 99.4 48.6 89.5 23.9
60.0 63.5 120 79.4 97.5 51.2 55.9 98.0 41.8 84.3 21.9
70.0 74.3 233 65.3 93.7 41.9 47.3 94.3 35.8 77.9 20.1
80.0 84.5 492 50.1 86.0 32.6 39.1 87.3 31.6 72.7 18.8
90.0 93.4 1443 36.9 75.7 23.9 31.7 76.2 28.5 67.9 17.6
92.0 94.9 1942 34.8 73.3 22.3 30.5 74.3 28.0 67.4 17.4
94.0 96.4 2766 32.5 71.1 21.1 29.2 70.9 27.5 66.8 17.2
96.0 97.7 4386 30.5 68.9 19.9 28.0 68.9 27.1 66.2 17.0
98.0 99.0 8572 29.2 67.5 19.0 27.3 66.4 27.0 65.4 16.9
99.0 99.4 14532 28.6 67.5 18.6 26.6 65.8 26.4 65.5 16.6
100.0 99.8 46937 28.4 67.5 18.5 - - - - -

Table B.1: Performance of the flat hybrid recognizer on music lyrics. Ctrain and Ctest

are vocabulary coverages (%) on the training and test sets, respectively. |V | is the
vocabulary size. Word & OOV is replacing each graphone sequence in the recognizer’s
output by an OOV tag. Word & Graphone is concatenating graphones to spell OOV
words. All error rates are in percentages. This data corresponds to Figures 4-1, 4-2,
and 4-3.
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Appendix C

Data Tables: Spoken Lecture

Transcription
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Word-only Word & OOV Word & Graphone
Ctrain Ctest |V | WER SER LER WER SER WER SER LER

88.0 85.6 1320 52.5 80.3 29.9 41.9 80.7 36.2 75.5 19.3
90.0 88.4 1780 47.5 78.6 26.9 39.8 79.1 35.0 74.5 18.9
92.0 90.4 2468 43.9 77.7 24.7 38.2 78.2 34.3 74.0 18.7
94.0 93.0 3594 39.6 76.3 22.1 36.3 76.7 33.6 73.8 18.4
96.0 95.0 5661 36.8 75.1 20.7 34.7 75.5 32.8 73.5 18.2
98.0 97.2 10634 36.6 73.4 18.9 33.0 73.8 32.2 73.0 18.0
99.0 98.4 17374 32.1 72.5 18.1 32.1 72.8 31.8 72.7 17.8
100.0 99.4 49333 31.1 72.0 17.6 - - - - -

Table C.1: Performance of the flat hybrid recognizer on transcribing spoken lectures.
Ctrain and Ctest are vocabulary coverages (%) on training and test sets, respectively.
|V | is the vocabulary size. Word & OOV is replacing each graphone sequence in the
recognizer’s output by an OOV tag. Word & Graphone is concatenating graphones
to spell OOV words. All error rates are in percentages. This data corresponds to
Figures 5-1, 5-2, and 5-3.
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