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Abstract
We introduce a set of speaker dependent features derived from
the positions of vowels in Mel-Frequency Cepstral Coefficient
(MFCC) space relative to a reference vowel. The MFCCs for a
particular speaker are transformed using simple operations into
features that can be used to classify vowels from a common ref-
erence point. Classification performance of vowels using Gaus-
sian Mixture Models (GMMs) is significantly improved, regard-
less of which vowel is used as the target among /A/, /i/, /u/, or
/@/. We discuss how this technique can be applied to assess pro-
nunciation with respect to vowel structure rather than agreement
with absolute position in MFCC space.
Index Terms: vowel assessment, classification, normalization

1. Introduction
Pronunciation assessment is an important component of Com-
puter Aided Language Learning (CALL) systems. CALL sys-
tems frequently employ model scores to produce some mea-
sure of pronunciation quality. However, these scores can be
very sensitive to intrinsic speaker differences that may not be
the result of mispronunciation. Native and non-native speak-
ers exhibit systematic differences in pronunciation. We explore
here the possibility of exploiting these systematic differences
to improve classification and measure pronunciation quality of
non-native speech. We propose a simple normalization proce-
dure that anchors the MFCC spaces of individual speakers to a
common reference point. We justify this normalization for as-
sessment by showing improved classification performance and
improved correlation of statistical model distances to the rates
of vowel substitutions provided by expert human labelers.

2. Background
Numerous approaches have been proposed to normalize speech
to account for speaker dependent variation. Vocal tract normal-
ization (VTLN) techniques model the length of the vocal tract
and warp the acoustic signal to match a reference. In previ-
ous work, Nordstrom and Lindblom [1] scale the formants of
the signal by a constant factor determined by an estimate of
the vocal tract length from measurements of F3. Fant [2] ex-
tended this by making the scale factor dependent on formant
number and vowel class. These methods require knowledge of
the formant number and frequencies. More recently, Umesh et
al. [3, 4] introduced two automatic methods: one uses a fre-
quency dependent scale factor that does not require knowledge
of the formant number, and another based on fitting a model re-
lating the frequencies of a reference speaker to frequencies of a
subject speaker.

In contrast to operating on the acoustic signal, Maximum
Likelihood Linear Regression (MLLR) [5] attempts to accomo-
date speaker to speaker variation by adapting the means and

variances of existing acoustic models given a relatively small
amount of adaptation data. It accomplishes this by estimat-
ing linear transformations of model parameters to maximize
the likelihood of the adaptation data. Some normalization ap-
proaches work directly on the MFCCs extracted as features for
speech recognition. Cox [6] implements speaker normalization
in the MFCC domain utilizing a filterbank approach to shift
MFCCs up and down in the spectrum. He shows that this is
a form of vocal tract normalization, and has similarities to a
constrained MLLR. Pitz and Ney [7] showed that frequency
warping vocal tract normalization can be implemented as lin-
ear transformations of MFCCs.

Our approach is inspired by the work presented in [8, 9],
which used the Bhattacharyya Distance [10] to compute the
overall structure of speakers’ phonetic spaces. This was con-
ducted in the spirit of work by Jakobson [11] who argued that
the study of the sounds of a language must consider the structure
of the sound system as a whole. Thus, the structure created by
Minematsu et al. modeled a phonetic space in a holistic fashion,
as opposed to the typical method for modeling acoustic spaces
using MFCCs or other localized features. They used this struc-
ture to measure the distortion between Japanese accented En-
glish and General American English and found a positive cor-
relation with human assessments of pronunciation quality. One
of the limitations of their technique was that it was unable to
individually classify or assess sounds.

3. Approach
We hypothesize that vowels may be produced by humans via an
internal relativistic model that attempts to maximize discrim-
inability, akin to the principles in [12]. With this idea in mind,
we decided to investigate a very simple normalization method
based on relativizing the Cepstral coefficiants to those of a tar-
get reference vowel. We therefore propose a simple scheme that
intuitively works by anchoring vowel spaces to a common ref-
erence point on a per speaker basis. Since speakers are using
a common language, common phonetic inventory, and hence a
similar vowel space shape, this anchoring should have the effect
of shifting speaker vowel spaces into closer proximity.

We consider anchoring points at the vowels /A/, /i/, and /u/,
as these quantal vowels [13] exist at relative extremes in the
Universal Vowel Space [12], are found in nearly all languages,
and should provide relatively stable points of reference. We
also considered the use of /@/ as an anchor, as Puppel and Jahr
argue that one of the forces acting on the location of /A/, /i/, and
/u/ is a thrust away from the neutral /@/ in order to maximize
discriminability and Diehl [14] notes that in some respects, /@/
is slightly more stable.

Anchoring the vowel space entails computing the difference
between the mean MFCC values for each anchoring vowel and
the MFCCs for a sample under consideration. Mathematically,



∆MFCCi,A = Si −MFCCA

∆MFCCi,i = Si −MFCCi

∆MFCCi,u = Si −MFCCu

∆MFCCi,@ = Si −MFCC@

(1)

where Si is the MFCC sample at segment i and MFCCA,
MFCCi, MFCCu, MFCC@ are the mean MFCCs for a
speaker’s productions of /A/, /i/, /u/, and /@/, respectively.

Our data come from two corpora. The first corpus is the
TIMIT corpus [15], consisting of 4,620 (3,260 male, 1,360 fe-
male) training utterances and 1,180 (800 male, 380 female)
test utterances from native English speakers. The second cor-
pus is the Chinese University Chinese Learners of English
(CU-CHLOE) corpus [16], consisting of 33,026 (16,511 male,
16,515 female) training utterances and 3,760 (1,835 male, 1,835
female) test utterances. Speakers in training sets did not appear
in the test sets. Recordings were sampled at 16kHz using close-
talking microphones.

The data were force-aligned using a standard SUM-
MIT [17] recognizer with native English landmark models to
obtain a segmentation and assigned reference label for each tar-
get vowel. We averaged the MFCCs (14 dimensions) at five
regions relative to the vowel endpoints for each segment: 30ms-
0ms before the segment (pre), at 0%-30% (start), 30%-70%
(middle), and 70%-100% (end) through the segment, and to
30ms after the segment (post). We computed the mean MFCC
value for the anchor vowels, /A/, /i/, /u/, and /@/ of each speaker.
For each measurement, we computed the difference between the
measured MFCCs and the mean of a speaker’s anchor vowel as
shown in Equation 1 at the corresponding part of the segment.
The measurements from all five regions plus the log duration of
the segment were combined into a 71-dimension feature vector.

Some speakers did not have enough instances of an anchor
vowel. In the cases where there were fewer than 5 samples of
the anchor vowel, we used a fallback model consisting of the
mean of all the training data for the anchor vowel. This was
critical in the TIMIT data where each speaker spoke only 10
utterances and some of the anchor vowels suffered from data
sparseness issues on a per speaker basis.

We created a number of different feature sets based on these
measurements for use in our experiments. The MFCCs (base-
line), /A/-anchor, /i/, /u/, and /@/ anchor features (Table 1) were
used to train Gaussian Mixture Model (GMM) classifiers using
k-means clustering.

To evaluate the effect of the anchoring, three classifica-
tion experiments were then performed for each feature: native
test data with native-trained models, non-native test data with
non-native-trained models, and non-native test data with native
trained models. We also qualitatively and quantitatively evalu-
ated the effect of the transformation on the anchor feature distri-
bution at the middle of the sound events. Finally, we measured
correlation of native and non-native model distances for each
vowel with human error assessment.

4. Results
The results for our classification experiments are presented in
Table 1. Our baselines for comparison are features from Table 1
row (a). These are standard sets of MFCCs used for segment
models in our classifier. The poor performance for CHLOE,
particularly when TIMIT is used for training, reflects the diffi-
culting in pronouncing a non-native vowel.

Table 1 presents the error rates when the means of the an-

Training Data TIMIT CHLOE TIMIT
Test Data TIMIT CHLOE CHLOE

Fe
at

ur
es

a MFCCs 33.0% 38.3% 48.8%
b /A/-anchor 28.7% 33.9% 44.6%
c /i/-anchor 29.0% 34.2% 44.4%
d /u/-anchor 29.3% 34.1% 45.2%
e /@/-anchor 29.0% 34.2% 44.0%

Table 1: Percent error vowel classification. The classification
error decreases significantly with normalization with respect to
any vowel.

chor vowel MFCCs are computed from the labeled test data.
The relative performance increases range from 11.2% to 13.0%
for the native classifier with native speech, 10.7% to 11.5% for
non-native speech with non-native classifier, and 8.6% to 9.8%
for non-native speech with the native classifier.

Diehl [14] points out that some studies have found that /@/
actually has smaller F2 variance than some of the quantal vow-
els. The reason for this is that the cross-sectional area of the vo-
cal cavity is more uniform when /@/ is produced. In contrast, /A/,
/i/, and /u/ all have non-uniform cross-sectional areas, caused
by tongue and jaw position. The classification results in Table 1
rows b-e confirm that /@/ as an anchor performs comparably to
the other vowels. When these facts are considered, along with
its high usage frequency, a strong case can be made for using /@/
as an anchor vowel.
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Figure 1: Distributions of the first two dimensions of the feature
vectors for /Ay/ spoken by native and non-native speakers.

To qualitatively understand why we see these performance
improvements and why this scheme may be beneficial for as-



sessment, it is helpful to visualize the transformation. Figure 1
depicts the effect of the transformation on the native and non-
native data for MFCCs 1 and 2 for the dipthong /Ay/. As can
be seen from the figure, the mean of the non-native distribution
is shifted closer to the native mean. This effect was seen for
almost all pairs of vowel distributions. Note that MFCC 1 cap-
tures the total energy of the MFCC spectrum, so this normaliza-
tion effectively corrects for differences in microphone gain as
well. By using only one vowel as the reference point, we are es-
sentially shifting the entirety of the speaker’s vowel space with-
out affecting its shape. This creates a feature space in which the
samples still exist in the same relative proximity to each other.
This would be important for pronunciation assessment of indi-
vidual vowels.

We can quantitatively confirm that the distributions be-
tween native and non-native speakers have moved closer to-
gether by measuring the Bhattacharyya distance between native
and non-native single gaussian distributions of MFCC values
taken from the middle of the segments and the distance between
native and non-native single gaussian distributions normalized
with /@/-anchors (see Table 2). We are specifically interested in
Bhattacharyya distance, because this was the major normalizing
component in Minematsu’s work [8] on sound structure.

Table 2 also shows the rate of substitution (the number of
times another vowel was substituted for the correct vowel) for
each of the vowels, as judged by experts. To obtain this infor-
mation, we compared the results of the forced alignment from
the recognizer, which we considered the baseline truth of the
sounds the speakers should have produced, with the human la-
beled data. It is interesting to note that the two vowels with
highest error as judged by humans, /Ä/ and /I/ are also the only
two vowels whose Bhattacharyya distance increased after nor-
malization. These two vowels are both missing from the Can-
tonese vowel inventory.

The sample normalized correlations between human judged
substitution rate and the Bhattacharyya distances, and the dis-
tance of the normalized distributions were computed using
C(X,Y ) =

∑
xy√∑

x2
∑
y2

. Normalized distributions have sig-

nificantly higher correlation (0.916) than MFCC distributions
(0.824). What these results show is that, by normalizing the
data, we are better able to correlate the distances between na-
tive speakers and non-native speakers at a phonemic level with
how frequently the phones are mispronounced.

The vowel /Ä/, for example, is most frequently mispro-
nounced by a significant margin and correspondingly has a very
large distance (0.736) distance. We hypothesize that anchoring
each of the speaker’s vowel spaces to a common reference point
may have some relation to a normalization process that occurs
when humans perceive non-native speech.

If we compute the overall human error rate, vowels are sub-
stituted at a rate of 0.215. If we ignore the common case of
vowels reduced to /@/, which are not necessarily pronunciation
errors, then the human error rate is 0.139. If we consider the
substitution of /@/ for /Ä/ a pronunciation error, then the overall
human error rate is 0.189. The difference in classification error
rate between native and non-native data using TIMIT trained
models with MFCCs as a feature is 15.8% (33.0% vs 48.8%).
This difference is very close to the human error rates. We can in-
terpret this to mean that the difference in classifier performance
is largely explained by mispronunciation of vowels by the non-
native speakers.

One might imagine that the distance between the distribu-
tions of native and non-native models would be a good mea-

Vowel Human Error Rate MFCC /@/-anchor
/A/ [aa] 0.076 0.407 0.247
/æ/ [ae] 0.229 0.324 0.155
/2/ [ah] 0.135 0.294 0.072
/O/ [ao] 0.074 0.282 0.223

/Aw/ [aw] 0.134 0.468 0.269
/Ay/ [ay] 0.111 0.378 0.204
/E/ [eh] 0.289 0.332 0.225
/Ä/ [er] 0.674 0.678 0.736
/e/ [ey] 0.156 0.419 0.319
/I/ [ih] 0.353 0.299 0.336
/i/ [iy] 0.140 0.404 0.279

/o/ [ow] 0.134 0.256 0.138
/Oy/ [oy] 0.045 0.542 0.298
/U/ [uh] 0.149 0.233 0.163
/u/ [uw] 0.063 0.307 0.210

Correlation 0.824 0.916

Table 2: Bhattacharyya distances between native and non-native
models trained on different feature sets and their correlations
with vowel substitution rate provided by human expert labelers.

sure of the degree of difficulty non-native speakers have with
that particular vowel. Figure 2a depicts a representation of the
MFCC vowel spaces of native and non-native speakers. The
points represent the means of a subset of the vowel distributions
for both sets of speakers. Figure 2b depicts the vowel spaces af-
ter they have been anchored by /@/.

The overall shapes of the spaces have not been affected by
the anchoring, but the spaces now directly overlap each other.
The anchoring provides a direct comparison of the vowel spaces
when the relative positions of the vowels are considered. For
example, we can clearly see /Ä/, the sound that is most often
mispronounced by the non-native speakers, is located in very
different relative positions between the native and non-native
populations. Additionally, /æ/ and /E/ are all clustered together
and the non-native /E/ exists in a different position relative to the
non-native /æ/ when compared with the relative positions of the
native equivalents.

5. Discussion and Future work
This work introduced a simple feature normalization scheme
for vowel classification and subsequent vowel assessment of
non-native speakers. The MFCC features for particular speak-
ers were transformed using simple operations into features an-
chored at a common reference point. We showed that this re-
sults in increased classifier performance. We examined the ef-
fect of the transformation on the distributions and the shape of
the vowel space, and showed that it resulted in better correlation
with human assessment.

Our fallback models until this point have been based on the
overall anchor vowel MFCC means for the entire training set.
For the purposes of evaluation this may prove inadequate: we
could try separating speakers by gender or performing a more
refined clustering. An intermediate step would determine the
best fallback model to apply to a given speaker.

The transformation performed is similar to the MLLR tech-
nique developed in [18], with the transformation matrix set to
the identity matrix. The attraction of transforming the MFCCs
using our technique is that it is very simple to implement and
only requires instances of a speaker’s common anchor vowels
in order to be applied. Future work includes comparing the per-
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Figure 2: Comparison of feature space for the first two dimen-
sions. The large points represent the means of the features mea-
sured at the mid-point for the corresponding vowel. The out-
lined shapes (red and blue) form the convex hull of the space.

formance of our transformation with the MLLR technique and
exploring simple methods that account for variance in our tech-
nique. We should also compare our technique with VTLN, al-
though, because VTLN shows the most significant gains when
normalizing for child speech and between genders, we are not
sure how it will perform when moving between native and non-
native speakers.

We anticipate the transformation to be useful for assessing
the pronunciation quality of non-native speakers. Because the
transformation effectively positions the vowel spaces of non-
native speakers with native speakers, we should be able to use
this to help pinpoint and assess pronunciation errors in non-
native speech using the log-likelihood scores from the classifier.

6. Acknowledgements
This research was supported by Industrial Technology Research
Institute (ITRI) in Taiwan. We would like to thank Prof. Helen
Meng at the Chinese University of Hong Kong for providing the
non-native data used for this research.

7. References
[1] P. NORDSTROM and B. LINDBLOM, “A Normalization Proce-

dure For Vowel Formant Data,” in The International Congress Of
Phonetic Sciences, Leeds, Aug. 1975.

[2] G. Fant, “Non-uniform vowel normalization,” Speech Trans.
Lab. Q. Prog. Stat. Rep, pp. 2–3, 1975. [Online]. Avail-
able: http://www.speech.kth.se/prod/publications/files/qpsr/1975/
1975\ 16\ 2-3\ 001-019.pdf

[3] S. Umesh, S. Kumar, M. Vinay, R. Sharma, and R. Sinha,
“A SIMPLE APPROACH TO NON-UNIFORM VOWEL NOR-
MALIZATION,” in IEEE INTERNATIONAL CONFERENCE ON
ACOUSTICS SPEECH AND SIGNAL PROCESSING. Citeseer,
2002. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.5.8157\&amp;rep=rep1\&amp;type=pdf

[4] S. V. B. Kumar and S. Umesh, “NON-UNIFORM SPEAKER
NORMALIZATION USING FREQUENCY-DEPENDENT
SCALING FUNCTION,” in Proc. of International Conference
on Signal Processing and Communications (SPCOM), 2004.

[5] M. Gales, D. Pye, and P. Woodland, “Variance Compensation
within the MLLR Framework for Robust Speech Recognition and
Speaker Adaptation,” in Proc. ICSLP ’96, vol. 3, Philadelphia,
PA, USA, Oct. 1996, pp. 1832–1835.

[6] S. Cox, “SPEAKER NORMALIZATION IN THE MFCC
DOMAIN,” in Sixth International Conference on Spo-
ken Language Processing, 2000, pp. 4–7. [On-
line]. Available: http://fizz.cmp.uea.ac.uk/Research/speechgroup/
cox-pub-archive/cox-vocal-icslp00.pdf

[7] M. Pitz and H. Ney, “Vocal tract normalization as linear
transformation of MFCC,” in Eighth European Conference on
Speech Communication and Technology, no. Cc. Citeseer,
2003. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.72.3962\&amp;rep=rep1\&amp;type=pdf

[8] N. Minematsu, “Yet another acoustic representation of speech
sounds,” in Proc. ICASSP, 2004, pp. 585–588. [Online].
Available: http://www.ece.umassd.edu/Faculty/acosta/ICASSP/
Icassp\ 2004/pdfs/0100585.pdf

[9] M. Suzuki, L. Dean, N. Minematsu, and K. Hirose, “Improved
Structure-based Automatic Estimation of Pronunciation Profi-
ciency,” in Proc. SLaTE, vol. 5, 2009. [Online]. Available: http://
www.eee.bham.ac.uk/SLaTE2009/papers/SLaTE2009-21-v2.pdf

[10] A. Bhattacharyya, “On a measure of divergence between two
statistical populations defined by their probability distributions,”
Bulletin of the Calcutta Mathematical Society, vol. 35, pp. 99–
109, 1943.

[11] R. Jakobson and L. Waugh, The sound shape of
language. Mouton de Gruyter, 1987. [Online]. Avail-
able: http://scholar.google.com/scholar?hl=en\&btnG=Search\
&q=intitle:The+Sound+Shape+of+Language\#0

[12] S. Puppel and E. H. Jahr, The theory of universal vowel space and
the Norwegian and Polish vowel systems. Berlin: Mouton de
Gruyter, 1997, vol. 2, pp. 1301—-1324.

[13] K. N. Stevens, “The Quantal Nature of Speech: {E}vidence from
Articulatory-Acoustic Data,” in Human Communication: A Uni-
fied View, E. E. David Jr. and P. B. Denes, Eds. New York:
McGraw-Hill, 1972.

[14] R. L. Diehl, “Acoustic and auditory phonetics: the adaptive
design of speech sound systems.” Philosophical transactions
of the Royal Society of London. Series B, Biological sciences,
vol. 363, no. 1493, pp. 965–78, 2008. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/17827108

[15] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pal-
lett, and N. L. Dahlgren, “{DARPA TIMIT} Acoustic-Phonetic
Continuous Speech Corpus {CD-ROM},” Gaithersburg, MD,
1993.

[16] H. Meng, Y. Y. Lo, L. Wang, and W. Y. Lau, “Deriving salient
learners’ mispronunciations from cross-language phonological
comparisons,” in Proc. of ASRU, 2007.

[17] V. Zue, J. R. Glass, D. Goodine, M. Phillips, and S. Seneff, “The
{SUMMIT} Speech Recognition System: Phonological Model-
ing and Lexical Access,” in Proc. ICASSP, 1990, pp. 49–52.

[18] D. Giuliani, M. Gerosa, and F. Brugnara, “Speaker normalization
through constrained MLLR based transforms,” in Proc. ICSLP,
vol. 1, no. 2, p. 3. [Online]. Available: http://pfstar.itc.it/public/
publications/itc-Icslp-2004-1.pdf


