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Abstract

In many ways, the lexicon remains the Achilles heel of modern automatic speech recogniz-
ers (ASRs). Unlike stochastic acoustic and language models that learn the values of their
parameters from training data, the baseform pronunciations of words in an ASR vocabulary
are typically specified manually, and do not change, unless they are edited by an expert.
Our work presents a novel generative framework that uses speech data to learn stochastic
lexicons, thereby taking a step towards alleviating the need for manual intervention and au-
tomatically learning high-quality baseform pronunciations for words. We test our model on
a variety of domains: an isolated-word telephone speech corpus, a weather query corpus and
an academic lecture corpus. We show significant improvements of 25%, 15% and 2% over
expert-pronunciation lexicons, respectively. We also show that further improvements can be
made by combining our pronunciation learning framework with acoustic model training.
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Chapter 1

Introduction

In many ways, the lexicon remains the Achilles heel of modern automatic speech recogniz-
ers (ASRs). Unlike stochastic acoustic and language models that learn the values of their
parameters from training data, the baseform pronunciations of words in an ASR vocabulary
are typically specified manually (usually along with the basic phoneme inventory itself), and
do not change, unless they are edited by an expert. The lexicon is usually a long list of these
hand-crafted pronunciations in the form of dictionary entries that map a word to one or more
canonical pronunciations.

A more desirable solution would be one whereby the basic linguistic units of a language,
and the associated lexical pronunciations could be determined automatically from a large
amount of speech data. In this thesis, we discuss methods for the latter, learning the lexical
pronunciations of words given both their spelling and spoken utterances of isolated-word
and/or continuous speech. This data-driven approach to lexicon generation might discard
the notion of canonicalization altogether, and instead generate a stochastic lexicon with
pronunciations weighted according to learned statistics.

Like the acoustic and language models, ideally pronunciations would be learned from
data closely matching the test domain. In our work, we use the same training data used for
Acoustic Model training to learn our pronunciations. Since this data is readily available at
no extra cost for all recognizers, we see our work as encouraging lexicon training to become
a standard procedure when building an ASR system, while taking a step towards being able

to train a speech recognizer entirely from an orthographically transcribed corpus.
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Figure 1-1: Major Components of a Speech Recognition System: The Acoustic Model, Lexi-
con and the Language Model [1]

1.1 Motivation

1.1.1 The Lexicon: A Hand-Written ASR Component

ASR is the process of decoding a spoken utterance into a string of words [10]. The spoken
utterance is usually modeled as a weighted network of sub-lexical units, which are typically
phones. A phone graph which models all speech corresponding to an input acoustic signal is
constrained by the acoustic model, the lexicon and the language model. The acoustic model
statistically models context-dependent or context-independent phones, typically Gaussian
Mixture models are used. It is trained on acoustic-phonetic measurements of transcribed
speech data. The lexicon maps words to their phonetic pronunciations, an example entry
would be colonel : k er n az [, and is typically crafted manually by experts. The language
model statistically models the probability of a word sequence and typically uses n-gram dis-

tributions to scores sentences. Figure 1-1 illustrates this process.

The fundamental equation of ASR seeks the most likely word sequence W* = w¥, ... wj

given an utterance u:

W* = arg max P(W|u) = arg max P(u|lW)P(W) (1.1)

16



Where P(u|W) is the acoustic model and P(W) is the language model. This equation im-
plicitly implies that to each word corresponds one phonetic representation. A more accurate

model would be:

2pes PW, Byu) 3 peg PW)P(BIW)P(u|B, W)

P = P(W,Blu) = 1.2
(Wlu) = 3 POW, Blu) Pl Pl (12)
BeB
Here B is a phonetic pronunciation and B is the set of all phonetic pronunciations.
P(W)P(B\W)P(u|B
P(u)

where we assume conditional independence P(u|B, W) = P(u|B). Hence:

W* = argmax P(W|u) = arg mme}xz P(u|B)P(B|W)P(W) (1.4)

BeB

P(B|W) is the lexicon. It assigns a probability to each phonetic pronunciation. Typically all
baseforms are weighed equally by setting P(B|W) = 1 for all B corresponding to W in the
lexicon, even if the lexicon admits multiple pronunciations per word [34, 25]. In this work we
propose to learn the lexicon, thereby avoiding the use of experts, as well as having to weight
all baseforms equally.

Learning the lexicon from data opens up the possibility of using discriminative training
in order to directly optimize on error rate. Discriminative training has been extensively
studied for acoustic and language models and has been shown to perform significantly better
than maximum likelihood methods. In this thesis, we explore incorporating Discriminative

training to enhance our stochastic lexicons.

1.1.2 The OOV problem and Dynamic Vocabulary Learning

Almost all speech recognizers have a finite vocabulary pronunciation dictionary. If the rec-
ognizer encounters an out of vocabulary (OOV) term, a word that is not in the lexicon,
it cannot produce a transcription for it. This limitation is detrimental in many ASR ap-

plications. Figure 1-2 demonstrates a potential outcome to an OOV word euthanasia. A

17
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Figure 1-2: Diagram of Speech Recognition System behavior when recognizing an utterance
containing an OOV words [10]

misrecognized OOV word can easily cause the surrounding words or even the whole sentence
to be misrecognized. Therefore, in order for a ASR systems to be used in the real world, tech-
niques need to be developed to handle the OOV problem. A typical approach is to increase
the vocabulary size whether manually or automatically. This cannot completely eliminate
OOVs in an open domain recognition task. Other techniques include using confidence scoring
to detect OOVs [14], as well as, filler models to hypothesize the pronunciation of an OOV
word [6]. In our work, we focus on automatically learning quality baseforms for OOV words
in order to expand our lexicon.

The rate of OOV occurrence is tied to the design of the ASR vocabulary. Since con-
stantly increasing the vocabulary size is bound to introduce acoustic ambiguity, ASRs should
undergo a paradigm shift from vocabulary design to that of an adaptive system that can
dynamically detect and learn new words. In a typical scenario, a speech recognizer remains
static while it is deployed. Its acoustic models, language models and lexicon are trained or
specified beforehand and remain unchanged while the recognizer is used. In our work, we
explore techniques to dynamically expand a recognizer’s lexicon, as well as, improve on the
pronunciations already present in the lexicon. This will be done by either automatically
collecting new data to be used to retrain the lexicon or using the speech data collected from

our speech recognizer’s tasks.
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1.2 Contributions of this Thesis

This thesis offers the following specific contributions:

e A method for learning better-than-expert word pronunciations given their spellings, as

well as, spoken utterances.

— This method can learn from both isolated-word and continuous speech.
— This method is robust and hence can learn from cheaply collect noisy speech.

— This method can supplement the Acoustic and Language models without the use

of any additional training data.

e A method for discriminatively training lexicon pronunciation weights for isolated word

recognition.

e A method for iteratively training the Acoustic Models, as well as, the Lexicon.

1.3 Summary of Each Chapter

The rest of this thesis is organized into 4 chapters. The content of each of the remaining

chapters is summarized next:

e Chapter 2: Background
Chapter 2 starts with a description of how pronunciation variability is handled in
current ASR systems. It then presents a review of the major advances in pronunciation
learning for ASR. It also explains some of the mathematical frameworks applied in this

thesis.

e Chapter 3: Learning Pronunciations from Isolated-Word Spoken Examples
This chapter presents two Bayesian models that learn pronunciations from isolated word
examples. It reports on experiments that produce better-than-expert pronunciations
for isolated word recognition, as well as, an inherent robustness to real world noisy

data.
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e Chapter 4: Discriminative Pronunciation Training for Isolated-Word Speech
Recognition
In this chapter, we improve on our results for isolated-word recognition by discriminat-

evly training our learned pronunciations to minimize WER.

e Chapter 5: Learning Pronunciations from Continuous Speech
Here, we explore the use of continuous speech data to learn stochastic lexicons. Building
on the work of the previous chapter, we extend our framework to two domains contain-
ing spontaneous speech: a weather information retrieval spoken dialogue system and
an academic lectures domain. We find that our learned lexicons out-perform expert,
hand-crafted lexicons in each domain. We also explore the relationship between the
Lexicon and the Acoustic Models by iteratively re-training them. We show improve-
ments on a Book Titles corpus and discuss limitations that should be addressed for

these scenarios.

e Chapter 6: Summary and Future Direction

This chapter concludes the thesis, and suggests some ideas for future research.

20



Chapter 2

Background

2.1 Pronunciation Modeling

Pronunciation variation has been identified as a major cause of errors for a variety of ASR
tasks [26]. Pronunciations are typically modeled in a speech recognizer by a phonemic dic-
tionary which may be accompanied by a set of rewrite rules to account for phonological
variation.

The ASR system used in this paper incorporates manually crafted phonological rules that
account for segmental mismatches between the underlying phonemic baseforms and surface-
level phonetic units. These rules have been shown to outperform relying on context-dependent
acoustic models to implicitly model phonetic variation [18].

In this work, we model the ASR’s search space using a weighted finite-state transducer
(FST) [20]. The FST search space has four primary hierarchical components: the language
model (G), the phoneme lexicon (L), the phonological rules (P) that expand the phoneme
pronunciations to their phone variations, and the mapping from phone sequences to context-
dependent model labels (C'). The full network can be represented as a composition of these

components:

N=CoPoLoG (2.1)

In this work, we experiment with learning context-independent phoneme pronunciations

along with their weights. That is, we try to replace the manually crafted FST L while keeping
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the pronunciations rules FST P unchanged. We also explore learning phone pronunciations

directly, thus avoiding the use of the phonological rewrite rules altogether.

2.2 Letter-to-Sound Models

Generating pronunciations for new words has been the subject of much work [9, 7, 22, 33,
28, 5, 23, 21] . The common approach is to use a form of letter-to-sound model to predict
the pronunciations of new words using only their spelling. Despite the fact that for some
languages, mapping a spelling to a pronunciation is relatively straightforward, English has
shown itself to be rather challenging. Many models have been used for this task: in our work,
we compare our results to the graphone model which has been shown to produce state of the
art scores for letter-to-sound tasks [7, 36]. We address the mathematical formulation of the

graphone model in this next section.

2.2.1 The Graphoneme model

We utilize the joint-multigram approach employed in [9, 7] to model the relationship between
graphemes and phonetic units. In this work, we use the term graphone to denote a model
that maps graphemes to phones, and graphoneme to refer to a model that maps graphemes
to phonemes.

We begin by constructing an n-gram model over graphoneme sequences. We let w denote
a grapheme sequence drawn from the set of all possible grapheme sequences VW and b denote
a phoneme sequence drawn from the set of all possible phoneme sequences, B. A joint model

of the letter-to-sound task can be formalized as:

b* = arg max P(w, b) (2.2)

beB

Generally speaking, a graphoneme, g = (w,b) € G C W x B, is a sub-word unit that
maps a grapheme subsequence, w, to a phoneme subsequence, b. By analogy, a graphone is
an alternative sub-word unit that maps a grapheme subsequence to a phone subsequence.

In this work, we restrict our attention to singular graphones or graphonemes, in which a

22



mapping is made between at most one grapheme and at most one phonetic unit. The empty
subsequence ¢ is allowed, however a mapping from € to € is omitted. Taken together, a
sequence of graphonemes, ¢, inherently specifies a unique sequence of graphemes w and
phonemes b; however, there may be multiple ways to align the pair (w, b) into various
graphoneme sequences g € S(w,b). The following table shows two possible graphoneme

segmentations of the word “couple”.

w = cC o u p 1 e
b = k ah p ax 1

= k ah p ax |1
g1 = c¢/k o/ahu/e p/p €/ax1/l e/e
g2 = c¢/k o/e u/ahp/p €/ax1/l e/e

Given this ambiguity, employing graphonemes in our joint model requires us to marginal-
ize over all possible segmentations. Fortunately, the standard Viterbi approximation has

been shown to incur only minor degradation in performance [7].

P(w,b) = ges%yb) Pg)~ max P(g) (2.3)

In our work, we use the open source implementation provided by [7], which runs the
Expectation-Maximization (EM) algorithm on a training corpus of word-phoneme pronunci-
ation pairs to automatically infer graphoneme alignments. We then train a standard 5-gram
language model over the automatically segmented corpus of graphonemes. This configuration

has been shown to produce good results for singular graphonemes [36].

2.2.2 Other Work on Letter-to-Sound Prediction

While original work in Grapheme-to-Phoneme conversion consisted of rule-based methods [22],
these quickly became overly complicated and tedious for practical use and were soon replaced
by data-driven methods. An example of work that utilizes knowledge-based formal linguistic
methods in a statistical framework is [33]. As a first step, a hand-written grammar parses

words into a set of hand-written linguistically motivated sub-word “spellneme” units. Then,
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after parsing a large lexicon into these segmented words, a statistical n-gram model is trained

and used later for decoding.

Most other work on letter-to-sound generation can be classified as using a pronunciation
by analogy technique or local classification technique. Local classification processes a word
spelling sequentially from left-to-right. For each input character a decision is made by looking
at the letter’s context using decision trees [30] or neural networks [17]. As for pronunciation
by analogy, the main theme is to scan the training lexicon for words or part-of-words that
are in some sense similar to the word to be transcribed [28, 5]. The output pronunciation is

then chosen to be analogous to the retrieved examples.

While the most recent state-of-the-art work has been on probabilistic approaches such
as the joint-sequence model discussed in the previous section. Some have also explored
discriminative training in a joint-sequence setting [21], as well as, grapheme-to-phoneme

conversion using a Statistical Machine Translation system (SMT) [23].

2.3 Using Acoustics to Learn Pronunciations

Other relevant work extends on the idea of letter-to-sound generation by incorporating spoken
examples to refine the generated pronunciations [27, 11]. The work of [4] deduces the baseform
b* given a word or grapheme sequence w and an utterance u of the spoken word w. In this
work, a decision tree is used to model P(w,b) which was later shown to produce poorer
results when compared to graphone models.

The work of [24] adapts the graphone model parameters using acoustic data and is applied
to a name recognition task. Given a training set (u;,w;) of pairs of words w and spoken

examples w, they maximize the likelihood of their data:
M M
> log py(us,w;0) = log > pp(us, w,b)
i=1 i=1 beB
by using the standard EM algorithm to adjust €, the graphone n-gram parameters. They
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initially set the parameters of 6 to those of the graphone model and iterate until convergence.
They also experiment with discriminative training and show that it produces better results
than MLE. In our work, we use a similar framework to MLE geared towards predicting a
pronunciation for a single word given multiple example utterances.

The work of [35] uses the forced alignment of a phonetic decoder to generate a list of possi-
ble pronunciations for words, and then assigns weights using a Minimum-Classification-Error
criterion. They then test on a business name query corpus. Curiously, work on pronunciation
learning using acoustic examples is rarely applied across the entire lexicon to regularize the
pronunciations with respect to the underlying acoustic models. By contrast, in our work we
learn pronunciations across all lexical entries rather than the few out-of-vocabulary words
for which we do not have an expert opinion. Thus, our test experiments directly compare a

learned stochastic lexicon with manually-crafted pronunciations.

2.4 Global Linear Models

Here we describe a general framework of linear models that can be applied to a diverse range
of tasks, e.g. parsing or ASR hypothesis reranking. We will be modifying this framework to
train our pronunciation lexicon.

The framework is outlined in [12]. We learn a mapping from inputs x € X to outputs

y € Y by assuming:
e A set of training examples (z;,y;) for i =1--- N
e A function GEN which enumerates at set of candidates GEN (z) for input
e A representation ® mapping (z,y) to a feature vector ®(z,y) € R?
e A parameter vector a € R¢

We define a mapping from an input x to an output F(z)

F = ) . 2.4
(x) argyeanEajsf((I) (z,y) -« (2.4)

25



To illustrate how Global Linear Models can be applied to discriminative language model

training for ASR, we reference the work of [32].
e Each (z;,y;) is an utterance and its reference transcription
e GEN(x) is the outputed word-lattice from a baseline recognizer

o O(z,y) tracks unigram, bigram and trigram word counts in y, as well as, the score for

(z,y) under the baseline recognizer

To optimize the parameters «, we consider this variant of the perceptron algorithm:

INPUT: Training examples (z;, y;)
INITTALIZATION: Set o« = 0
ALGORITHM:
fort=1---T,i=1---N do
2; = arg MaX.cGeN(z,) P(:, 2) -«
if 2; # y; then
a=a+ d(x;,y) — P(x, 2)
end if
end for
OUTPUT: «
For a complete discussion regarding the convergence of this algorithm, as well as, gener-

alization to unseen data, we refer the reader to [12].

2.5 Summary

In this chapter, we presented a survey of approaches that handle pronunciation prediction
from word spellings, as well as, word spelling supplemented with acoustic examples. We also
explained how pronunciation variability is handled in the ASR system used in this thesis.
We concluded with a description of Global Linear Models, a mathematical framework used

for Discriminative training.
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Chapter 3

Learning Pronunciations from

Isolated-Word Spoken Examples

We first tackle the simplified task of learning word pronunciations from isolated-word speech
and testing on isolated-word speech. Our research differs from previous work in the stochastic
learning framework. In our case, we use an n-gram graphoneme-based model as the basis for
our initial estimate of a pronunciation. The graphoneme model is used as a form of prior
to condition our expectation of possible pronunciations of a new word, given its spelling.
We then use spoken examples to further refine the pronunciations, and explore two different
stochastic pronunciation models: the first cascades all the examples to find a single best
pronunciation, while the second creates a pronunciation mixture model (PMM) to consider
multiple pronunciations. We compare both approaches on the telephone-based PhoneBook
corpus of isolated words [2] and find that they are able to recover expert-level pronunciation

baseforms with relatively few example utterances.

3.1 Graphone-guided Phonetic Recognition

We begin by exploring a model which incorporates one example utterance with the gra-
phoneme model to find a single high probability baseform. Given a word with grapheme

sequence w and an example utterance of the word u, we deduce the baseform for b* using a
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similar framework to that described in [4].

b* = arg max P(blw,u) = arg max P(b, w)p(ulb,w) (3.1)

We replace the decision tree originally described in [4] with a graphoneme N-gram model

using independence assumptions and the Viterbi approximation.

b* ~ ar max ulb) P 3.2
8 e p(ulb)Plg) (3.2)
For each word, w, a recognizer, R,,, can be constructed using weighted finite state trans-

ducers (FSTs) to model the mapping of acoustic model labels to phoneme sequences, weighted

by graphoneme n-gram parameters.

The procedure described above only incorporates a single example utterance into the pro-
nunciation generation framework. The following sections introduce two methods of utilizing

a set of M example utterances, u}?, of a given word, w.

3.1.1 Cascading Recognizers

As in Equation 3.1, we apply Bayes rule with the additional assumption of independence
between example utterances given their pronunciations to model the probability of a baseform
given the data:

M

. My _ ‘
b* = arg max P(blw,u;") = arg max P(b,w) Hp(uzﬂ), w)

This multiple utterance recognizer can be implemented as a cascade of single utterance
recognizers. Figure 3-1 illustrates this approach. While this framework ties up all utterances
to predict a single baseform, in this next section, we explore a more parallel approach that

can model multiple pronunciations simultaneously.
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U, +de=-e- ASR

U, e R b

Figure 3-1: Diagram of Cascading Recognizers Model: Each utterance uses recognition results
of preceding utterances to decode.

3.1.2 Pronunciation Mixture Model

A second formulation of pronunciation generation informed by multiple example utterances is
that of a pronunciation mizture model (PMM). We parametrize our model with 6, ,, = P (b, w)
under the assumption that a particular word w and baseform b have some joint probability,
however small, of mapping to one another. In a setup similar to the work described in [24],
expectation maximization is used to update these parameters based on the data (ul, w).
Whereas Li et al. optimize graphoneme language model parameters, our goal here is to

directly learn weights for word pronunciations, hence the PMM characterization. We begin

by characterizing the log-likelihood of the data.

M M
L(0) = Zlog p(us, w; 0) = Zlogzew,b - p(u;|w, b)

=1 i=1 beB

The parameters, 6, are initialized to our graphoneme n-gram model scores and run mul-
tiple iterations of the EM algorithm. The following equations specify the expectation and

maximization steps respectively:
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Uy, +4¢-e- —>[ AR ]

Figure 3-2: Diagram of Pronunciation Mixture Model: Pronunciation weights are initialized
with graphoneme letter-to-sound model. All utterances vote in parallel to assign weights for
pronunciations (E-step), Votes are then summed and normalized (M-step). New weights are
used to initialize the next iteration.

ew,b : p(uz|b7 ’LU)

E-step: P(blu;, w;0) =
22 Oy - puilb, w)
LM
M-step: b = i ; P(bluj, w; 0)

We illustrate this parallel approach in Figure 3-2.

As an initial experiment we pick the baseform b with the highest weight as the pronun-

ciation of w and use it unweighted i.e. with a probability of 1.

b* = arg max P(w,b;0") = arg r?&xewvb (3.3)

In later experiments, we use multiple pronunciations weighted by their mixture probabil-

ities in a stochastic lexicon.
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3.2 Experimental Setup and Results

3.2.1 Experimental Setup

To experiment with the two pronunciation models, we use a landmark-based speech rec-
ognizer [15]. MFCC averages are computed over varying durations around hypothesized
acoustic-phonetic landmarks to generate 112-dimensional feature vectors, which are then
whitened via a PCA rotation. The first 50 principal components are kept as the feature
space over which diphone acoustic models are built. Each model is a diagonal Gaussian
mixture with up to 75 mixture components trained on a separate corpus of telephone speech.
The search space in the recognizer is modeled using a flexible weighted FST toolkit [20].

We consider the task of isolated word recognition using the NYNEX PhoneBook cor-
pus. PhoneBook is a phonetically-rich, isolated-word, telephone-speech database of Amer-
ican English spanning a variety of talkers and telephone transmission characteristics. The
core section of PhoneBook consists of a total of 93,667 isolated-word utterances, totalling
23 hours of speech. This breaks down to 7,979 distinct words, each said by an average of
11.7 talkers, with 1,358 talkers each saying up to 75 words. All data were collected in 8-bit
mu-law digital form directly from a T1 telephone line. Talkers were adult native speakers of
American English chosen to be demographically representative of the U.S [2].

To insure adequate data for our baseline experiments, we chose 2,000 words at random
from the subset of the corpus that had example utterances from at least 13 distinct speakers.
We held out two of the 13 utterances, one from a male speaker the other from a female
speaker, to generate a 4,000 utterance test set.

While the individual recognition experiments described in the next section are limited to
the 2,000 selected words, a far larger lexicon was used to train the initial graphone language
model parameters. For this work we used an internal dictionary that contains over 150,000
manually generated entries. To simulate the out-of-vocabulary scenario for which graphones
are typically employed, we removed the 2,000 trial words from our lexicon, and further
pruned similarly spelled words using a simple edit distance criterion. We then trained a
5-gram graphone language model according to the procedures described in [36].

We conduct two baseline experiments to frame our remaining results. The first is a
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graphoneme-only baseline in which we performed isolated word recognition over the 4,000
test utterances using a 2,000 word lexicon generated from the graphoneme model alone
according to Equation 2.3. Since no acoustic information was used, this provides us with
an upper-bound on word error rate (WER) of 16.7%. The second baseline was again the
2,000 word-recognition task; however, this time we explicitly used the manually generated
pronunciations originally found in our lexicon [3], giving us a target WER of 12.4%, achievable
directly by experts.

It should be noted that about 160 words in the expert-lexicon had multiple baseforms
associated with them. For example, the word “youths” was represented as both y uw dh z
and y uw th s. Initial experiments indicated that allowing multiple baseforms could give an
advantage to the expert-lexicon that could be leveraged in the other frameworks. We begin
however by choosing only a single pronunciation for inclusion in an automatically generated
lexicon. Even so, were able to show the feasibility of recovering and even surpassing the

performance of manually generated baseforms.

3.2.2 Results using Un-Weighted Pronunciations

Having established our baseline experiments, we evaluated both the cascading recognizer
approach and the PMM by varying the number of training utterances for each, and evaluating
the WER of the test set against the lexicons produced under each condition. The resulting
plot is shown in Figure 3-3. It is encouraging to note that both models perform admirably,
achieving expert-level pronunciations with just three example utterances per word.

The cascading recognizer approach of Section 3.1.1 improves slightly faster than the PMM
technique. With seven utterances, this model surpasses the expert baseform WER by nearly
1%.

An inherent assumption of this model is that there is a single, correct underlying pro-
nunciation. This fact may explain the slight advantage that this approach has, since our
experimental design only allows a single baseform for each word in our automatically gen-
erated lexicon. A model which directly computes the single most likely baseform given the
data is thus particularly well-suited to the task.

Ideally, a pronunciation generation model would be able to cope with words that have
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Lexicon Adaptation using Acoustic Examples
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Figure 3-3: Word Error Rate (WER) as a function of the number of example utterances used
to adapt the underlying lexicon. We show results for using the Cascaded Recognizers Model,
the PMM, the Graphone model and the Expert Dictionary

T 0.2 0.1 0.05
Avg. # bperw | 1.25 210 2.21
WER (%) 112 11.0 115

Table 3.1: By varying a threshold 7 over the weights learned in the PMM, we can incorporate
multiple baseform pronunciations for individual words.

multiple pronunciations, such as “either”. It probably does not make sense, for example,
to be multiplying the acoustic scores of one utterance pronounced iy dh er with a second
pronounced ay dh er.

Lastly, another potential pitfall of the cascaded recognizers approach is that unless special
care is taken to customize the pruning procedure, acoustic variation will inherently cause the
pronunciation search space to become successively smaller as the compositions prune low-
probability paths. This is especially problematic when considering noisy utterances. Indeed,
even with the clean speech comprising the PhoneBook corpus, by the 11th utterance, N-best
lists produced by the cascaded recognizers contained an average of just 10.7 entries.

To illustrate the performance of the PMM, we show in Figure 3-3 the WER obtained
by generating a lexicon according to Equation 3.3 (i.e. taking the highest scoring pronun-

ciation and using it unweighted in the lexicon) after two iterations of EM. This stopping
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criterion was determined by constructing a development set of 1,500 previously discarded
PhoneBook utterances and running recognition using lexicons generated after each EM iter-
ation. Alternatively, EM could have been run to convergence and then smoothed, again with
the aid of a development set.

While the PMM requires slightly more data to achieve the lowest reported WER of the
cascade approach (11.5%), it is eventually able to do so once all 11 training utterance are
incorporated into the mix. It is clear from the figure that with only a single training example
EM begins to over-fit the acoustic idiosyncrasies of that particular example. Though not
shown in the figure, this effect is magnified for small amounts of training data when EM is
run for a third and fourth iteration.

One big advantage of the PMM approach is that it directly models multiple pronunciations
for a single word, an avenue we begin to explore with a second set of experiments. We use a
simple weight threshold 6,,;, > 7, to choose baseforms for inclusion. As in the single baseform
case, we initially discard the weights once the baseforms have been chosen, but we ultimately
use them during decoding later on in experiments with stochastic lexicons.

Table 3.1 shows WER obtained by recognizers with lexicons trained with all 11 utterances
generated under varying values of 7. Choosing 7 = 0.1 yields the best reported WER of
11.0%, a 1.4% absolute improvement over the expert-baseline. It’s interesting to note that
this threshold implies an average of 2.1 pronunciations per word, almost double that of the
expert lexicon which has 1.08. We also plot WER using varying thresholds as a function of
the number of training utterances used in Figure 3-4. As can be seen, WER improves when

using 7 = 0.1 even with less than 11 utterances.

3.2.3 Results using Stochastic Lexicon

So far we have been using a threshold to figure out how many baseforms to include per
word. During decoding we throw out each baseform’s associated score and weight all of
them equally. In this part we experiment with including as many baseforms as possible while
keeping their associated weight.

We run our experiments on the same test set as before by including the top 100 baseforms.

The intuition is that since most of the weight will be concentrated on the top 5 baseforms
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Lexicon Adaptation using Acoustic Examples
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Figure 3-4: Word Error Rate (WER) as a function of the number of example utterances
used to adapt the underlying lexicon. We show results for using the un-weighted learned
pronunciations while varying the 7 threshold, as well as, using the PMM (stochastic lexicon)

including an arbitrary large amount should not hurt our scores. Again we notice improve-
ments: the WER for the phoneme PMM drops to 10.6 while the WER for the phone PMM
drops to 9.9 which results in a 25% relative improvement over the expert-crafted lexicon.
Figure 3-4 plots WER using the stochastic lexicon while training on less than 11 utterances.
As can be seen, the stochastic lexicon out-performs using an unweighted lexicon and requires

only 6 training examples to achieve its best score.

3.3 Training Pronunciations using Noisy Acoustic Ex-

amples

While the PhoneBook data used for training simulated ideal training conditions by matching
the test data and the AM used, we now show the utility of un-matched speech collected

cheaply from a cloud-service in generating high-quality pronunciations in a fully automatic
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fashion. Models that incorporate acoustic information into lexicon adaptation become partic-
ularly useful in domains where acoustic data is cheaper to obtain than expert input. In [24],
example utterances of spoken names are obtained in an unsupervised fashion for a voice-
dialing application by filtering for interactions where the user confirmed that a call should
be placed. Unfortunately, not all domains are amenable to such a convenient context-filter

to find self-labeled utterances.

To collect arbitrary acoustic data, we turned to the Amazon Mechanical Turk (AMT)
cloud-service. AMT has been described as a work-force in the cloud since it enables requesters
to post web-based tasks to any workers willing to accept micro-payments of as little as
$0.005 upon completion. The service has become popular in the natural language processing
community for collecting and annotating corpora, and has recently been gaining use in the
speech community. In [29], we were able to collect over 100 hours of read speech, in under

four days.

In this work, we used a similar procedure to augment our PhoneBook corpus with another
10 example utterances for each of its 2,000 words at a cost of $0.01 per utterance. Whereas
in [29] we took care to filter the collected speech to obtain high-quality sub-corpora, we
took no such precautions when collecting these example utterances. Thus, in addition to
other sources of mismatch between the data and our acoustic model, this noisy data poses
a challenge to even a recognizer built on expert pronunciations. Due to acoustic mismatch
between the utterances and our acoutic models, running the expert baseline recognizer over
these 20,000 utterances yields a very high WER of 50.1%. Of course, since we could make

no guarantees that the worker even read the word, the true error rate is unknown.

It might seem, then, that using this data to generate valid pronunciations is a dubious
exercise. Indeed, this data set confounds the cascading recognizer configuration since a single
noisy utterance can throw off the entire cascade. Fortunately, the PMM approach has the
nice property that a few noisy scores do not significantly affect the totals.

Repeating a subset of the experiments of the previous section, we again show four itera-
tions of the PMM approach, using the PhoneBook utterances alone, AMT-PhoneBook com-
bined utterances, and the AMT-collected corpus alone. Despite the noisy nature of the

cloud-collected corpus, Table 3.2 shows that there is little degradation in WER when using
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# Utts. | Iter.1 2 3 4

Phonebook 11 12.3 115 11.7 12.0
AMT 10 12.3  12.0 13.0 15.3
Phonebook+AMT 21 123  11.6 11.6 12.0

Table 3.2: PMM results incorporating spoken examples collected via Amazon Mechanical
Turk.

all 21 utterances for every word. Perhaps more pleasing is the fact that generating pronunci-
ations based on just the AMT-data still manages to out-perform even the expert generated
pronunciations, achieving a WER of 12.0% when using the top un-weighted learned baseform,

compared with 12.4% for the experts.

3.4 Analysis of Learned Baseforms

In order to quantify some of the differences between the expert and learned baseforms, we ran
NIST align software to tabulate differences between the reference expert baseform, and the
top choice hypothesis of the PMM model. Of the 2000 baseform pairs, 83% were identical,
while the remainder mostly contained a single substitution. Most of the substitutions involved
vowels, typically a schwa. Only 2% of the data contained an additional insertion or deletion.
Most of these involved retroflexed vowel sequences.

Table 3.3 shows examples of common confusions including vowel and consonant substi-
tutions, vowel/semi-vowel sequence perturbations, syllable deletions, and outright pronun-
ciation corrections. Although the latter were few, it was encouraging to see that they did
occur.

Table 3.4 shows the top 10 most confused phoneme pairs, while Table 3.5 and Table 3.6

show the most deleted and inserted phonemes.

3.5 Phone Versus Phoneme Pronunciations

As described in Section 2.1, our recognizer uses a lexicon of phoneme transcriptions to decode.
This is made possible by the use of a manually crafted pronunciation rules FST [19] that

expands sequences of phonemes to all their possible phone realizations. Given the promising
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Word Dictionary Baseform Top PMM Baseform
parishoners [sic] | p AErihshaxnerz|p AXrihshaxnerz
traumatic tr r AO m ae tf ax kd | tr r AX m ae tf ax kd
winnifred wihnaxfr AX dd wihnax fr EH dd
crosby kraoZbiy kraaSbiy

melrose mehlrowZ mehlrowS

arenas ER iy n ax z AX Riyn ax z
billowy b ih 1 OW iy bihl AX W iy
whitener way TF AX ner way TD n er
airsickness ehr SHihkdn EHs |ehrSihkdn AX s
Isabel AX S AAbehl IHZ AX behl

Table 3.3: Example baseform changes between expert dictionary and top PMM hypothesis.
Phonemes involved in the difference have been capitalized.

Confusion Pairs | # of Occurences
AX ==>TH 37
AO ==> AA 31

ER ==>R 26
R ==> ER 23
AX ==> EH 10
Z ==>S 10
AX ==> AA 10
[H ==> AX 9
AX ==> AH 9
AH ==> AX 6

Table 3.4: Top 10 phoneme confusion pairs for Phonebook lexicon

Deleted Phonemes | # of Occurences
AX 12
TD 5
Y 4
S 3
AO 2

Table 3.5: Top 5 Deleted Phonemes in Phonebook lexicon
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Inserted Phonemes | # of Occurences
AO 18
AX 11
N 4
TD 2
L 2

Table 3.6: Top 5 Inserted Phonemes in Phonebook lexicon

T Iter 1 2 3 4
0.2 13.2

0.15 128 119 11.7

0.1 11.5 11.1 11.1
0.05 11,5 10.7 11.0
0.025 10.3 11.0
0.01 10.8 11.0

Table 3.7: PMM results for learning phone pronunciations from PhoneBook corpus.

results shown in previous sections, we set out to learn phone transcriptions of words which
would allow us to bypass the pronunciations rules file and move closer to a fully automati-
cally learned speech recognizer. The FST implementation of the recognizer would then be
simplified to R = C' o L o G where L is now a lexicon FST that maps phone sequences to
words. Note that since we are learning pronunciation in an isolated word setting we avoid

having to worry about cross-word pronunciation variation.

To automatically learn phone transcriptions of words we first have to train a graphone
model instead of the graphoneme model we were using previously. This is done by using the
pronunciation rules files to expand all the 200k phoneme transcriptions in our expert crafted
lexicon to all their phone realizations and train our graphone model on this phone lexicon.
We proceed by using our trained graphone model with a modified PMM implementation to
learn phone transcriptions. The results are displayed in Table 3.7. The table displays WER
scores by varying thresholds for baseform inclusion and number of EM iterations.

We notice that by using a threshold of 7 > 0.025 we achieve significant gains over the
phoneme PMM. It is interesting to note that our best phoneme PMM lexicon contained
on average 2.1 baseforms per word. When we used the pronunciations rules file to expand

these baseforms we ended up with an average of 5.3 baseforms per word. Our new phone
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PMM lexicon contains an average of 5.1 baseforms per word which could indicate that our
pronuciations rules file tends to overgenerate phone realizations which in turn expands the

search space and leads to lower scores.

3.6 Summary

In this chapter, we have presented two Bayesian models that learn pronunciations from
isolated word examples: The Cascaded Recognizer and the Pronunciation Mixture Model
(PMM). We reported on experiments that produce better-than-expert pronunciations for
isolated word recognition. We also showed an inherent robustness to real world noisy data
when using the PMM. We experimented with using our learned pronunciations in both an
unweighted dictionary, as well as, a stochastic lexicon. To understand why our learned
pronuciations outperform expert baseforms, we also described some of the differences between

our learned pronunciations and the expert pronunciations.

40



Chapter 4

Discriminative Pronunciation Training

for Isolated-Word Speech Recognition

As a refinement step, we attempted to adjust the pronunciation weights proposed by the
phoneme PMM using discriminative training to directly minimize errors. These new weights
are then to be used in a stochastic lexicon during decoding. The hope is that discriminative

training can address some of the concerns that maximum likelihood training cannot:

e Word Confusability: On average the PMM introduces more pronunciations then the
expert lexicon without taking into account that these extra pronunciations might be
close to or the same as pronunciations for other words. Hence, the PMM could poten-

tially be increasing word-confusability and therefore increasing WER during testing.

e Viterbi Decoding: Our ASR system uses the Viterbi approximation while decoding
i.e. it does not marginalize or sum over the probabilities of all pronunciations mapping
to a word hypotheses. The Viterbi approximation forces the decoder to select the high-
est scoring pronunciation for any given word hypotheses. Since the PMM marginalizes
over all pronunciations to maximize data likelihood, there is mismatch between our

decoding and our training method.
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4.1 Global Linear Models for Lexicon Learning

In this section, we adapt the approach presented in section 2.4 to discriminatively train the
weights of our pronunciation lexicon. Without loss of generality, we can modify Equation 3.1

as follows.
w*, b* ~ arg max P(u|b)P(b,w) (4.1)

We now recognize word-pronunciation pairs instead of plain words.

For discriminative training, we consider the model below:

w*, b* ~ arg max < a, P(u, b, w) > (4.2)

w,b

While ®(u, b, w) can represent some complex features such as word, letter, phoneme or letter-

phoneme pair ngrams, we only use the ones listed below:

o Oy(u,b,w) = log P(u|w)+log P(b,w) the acoustic model score and pronunciations score

under our our PMM-lexicon recognizer. We define the rest of the features as:

1 if b=pand w=1
(I)p»l<u> ba w) = (43)

0 otherwise
This reduces equation 4.2 to the following:
w*, b* ~ arg max ap(log P(ulb) + log P(b,w)) + (4.4)

The rest of our model is described as follows:

e Our training examples are (u;, w;). We use the same training set used in our MLE
approach, except that now we consider an utterance and its transcription individually,

i.e we do not group all utterances of the same word together.

e GEN(u) is an n-best list or lattice of recognized word-pronunciation pairs (b, w), we

use our MLE PMM recognizer to generate GEN (u).

We optimize the parameters « as follows:
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INPUT: Training examples (u;, w;)
INITTALIZATION: Set a« = 0
ALGORITHM:
fort=1---T,i=1---N do
(b*, w*) = arg maxpuw)eaen (u;) P(usi, b, w) -
(Doracte, wi) = arg max(p,w)ecEn (u;) L(ui, b, w) - o
if w* £ w; then o
a = o+ P(u;, boracte, wi) — P(uy, b, w*)
end if

end for

OUTPUT: «
Proof of convergence:

Let GEN(u;) = GEN(u;) — {(b,w) | w = w;}. In other words GEN (u;) is the set of
incorrect candidates for an utterance uw;. We will say that a training sequence (u;, w;) for
i =1---M is separable with margin o > 0 if there exists some vector U with ||U|| = 1 such

that
Vi,V(p,l) € GEN (u;),Vb s.t. (byw;) € GEN(w;) U - ®(uy, b,w;) — U - ®(uy,p, 1) > o (4.5)

The proof is adapted from proofs for the tagging case in [12]. Let o* be the weights before
the k’th mistake is made. It follows that a' = 0. Suppose the k'th mistake is made at
the i'th example. Take (b*,w*) to be the output proposed at this example, (b*,w*) =
arg MaxX(p uw)eGEN (u;) P (s, b, w) - a® and byyqeee to be the highest scoring correct pronunciation

under this model, (boracte, ws) = argmaxp,wyccen (u) P (s, b, w) - a. Tt follows from the

wW=w,

algorithm updates that o' = o* + ®(u;, boracie, w;) — P (u;, b*, w*). We take inner products
g

of both sides with the vector U:

U. Oék+1 =U- Oék + U- CI)(U“ boracle; wl) -U- CI)(u“ b*u w*) Z U- ak to (46>
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where the inequality follows because of the property of U. Because a! = 0, and therefore

U - a! =0, it follows by induction on k that for all k£, U - o**! > ko. Because U - off! <

[[U]|[|a*+||, it follows that [|a*TY|| > ko.

We also derive an upper bound for ||a*+1||2:

[P = (1] + (19 (wi, boracte, wi) — @ (us, b, w) ||
+20F - (D (ui, boracte, W) — P (ug, b*, w*))

< |o®|]* + R?
Where R is a constant such that

Vi,¥(p,1) € GEN (u;),¥(b,w) s.t. w = w; and (b,w) € GEN(u;) ,  ||®(u;, b, w)—®(us,p,1)|| < R
(4.7)
Note that 20 - (®(u;, boracte, i) — ®(us, b*, w*)) < 0 because (b*,w*) is the highest scoring
candidate for u; under the parameters o”. It follows by induction that [|a*1||? < kR
Combining the bounds ||[af*1|| > ko and ||a**!|| < kR? give the results for all k that

2
K0 < |l P < kR = k< (4.8)
ag

4.2 Implementing the Algorithm as an FST

Our current implementation of the perceptron relies heavily on the FST toolkit [20].

We first build an FST T that expands a word to all possible word-pronunciations present
in the PMM lexicon. Here a word-pronunciation is basically one entry that is a word concate-
nated with its pronunciation, i.e. apple — apple_ae p_ax 1. By inverting the FST, inv(T),
we now have an FST that can map word-pronunciations back to words.

GEN (u) is represented as a lattice of word pronunciation pairs D, generated by a rec-
ognizer that uses the PMM lexicon but is modified so as to hypothesize both a word and
its pronunciation. We model the search space of this recognizer in a similar manner to that
described in section 2.1:

N=CoPolL oGy (4.9)
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Where C' is the context-dependent labels and P are the pronunciation rules. We modify
the baseforms FST L’ so that it can map a string of phones to a word-pronunciation where
the pronunciation side matches the input string of phones. Each mapping is weighted by its
PMM weight P(blw). We now have to modify the LM FST so that the LM score is still used
while maintaining the hypothesized word-pronunciation. This is done by composing G with

inv(T) and then projecting its input to its output. We call this FST Gr.

We can also represent our feature vector weights as an FST. We build an FST L that maps
every word-pronunciation w_p to itself weighted by oy, ). We can now represent Equation 4.2
as:

w*, b* = bestpath(agL o D) (4.10)

Where bestpath(.) finds the highest scoring path in a lattice.

Our perceptron algorithm is now implemented as follows:

INPUT: Training examples (u;, w;)
INITTALIZATION: Set all arcs weights in L to zero and ap = 1
ALGORITHM:
fort=1---T,:=1---N do
(b*, w*) = bestpath(agL o D,,)
if w* # w; then
(boracie, wi) = bestpath(agL o D,, o F,)
Update o and L appropriately.
end if

end for

Where F,, is an FST that only accepts word-pronunciations such that the word side

matches w;.
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iter. | Train | Test | Test-Avg
0 4.7 | 10.6 n/a
1 4.0 10.2 10.4
2 3.9 10.1 104
3 3.0 |10.7 10.3
4 2.7 1104 10.3
5) 2.7 | 10.5 10.2
6 2.6 10.4 10.2
7 2.7 | 10.9 10.1
8 2.5 | 10.7 10.1
9 2.6 | 10.3 10.2
10 2.5 10.4 10.1

Table 4.1: Results for Discriminative training in WER on PhoneBook corpus.

4.3 Experimental Setup and Results

We ran the perceptron for multiple iterations on the training set. We report word error rates
on the training set and test set. We also test on a refinement of the perceptron algorithm
called the “average parameters” method. We define a®* to be the value for the s’th parameter

after the ¢’th training example has been processed in pass ¢ over the training data. Using the

ti

2" has been shown to perform significantly

“averaged parameters” o, = 1/nT thl“T’i:lmn «
better than the final parameters a?*". The results are shown in Table 4.1. Note here that
iteration zero corresponds to using the same lexicon weights learned using the phoneme
PMM discussed in section 3.2.3. As expected, WER on the training set goes down with
every iteration since we are directly optimizing the feature weights on the training set. WER
on the test set goes down until iteration 3 where we begin overfitting. Since the averaged

parameters method corresponds to a smoothed out version of the learned parameters, we see

a steady decline in WER. The best achievable score is 10.1%.

Using the above described discriminative model results in an improvement in WER. While
these results are very promising, we leave further investigations into the approach for future

work.
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4.4 Summary

In this chapter, we introduced a novel mathematical framework for discriminatively training
lexicon weights, along with convergence guarantees. We showed that more WER reductions
could be acheived using this method. We leave further experiments using more complex

features for future work.
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Chapter 5

Pronunciation Mixture Model for

Continuous Speech Recognition

In this chapter, we extend our approach to the more complex task of learning pronuncia-
tions from continuous speech and testing on continuous speech. This is a more attractive

application than isolated-word speech since continuous data is more readily available.

To extend our isolated-word PMM requires additional considerations. We once again

model the sequence of phonetic units as a hidden variable, however, the general ASR problem

is now a search for the most likely string of words W* = w7, --- ,w;} given an utterance u:
W* = P(Wlu) = P(W,B 5.1
arg max P(W|u) = arg mvaX;eB (W, Blu) (5.1)

where now, B € B is a sequence of phonemes or phones that might span multiple words
and include silence. Thus, for the continuous case, we consider silence to be a phonetic unit
and denote it with a ‘-’. For example, a possible phoneme sequence B for an utterance with

transcription “the boy ate the apple” could be “dh ax b oy - - ey td - dh ah ae p ax 1”.

Equation 5.1 can be decomposed as follows:

W* = arg max > P(W)P(B|W)P(u|W, B) (5.2)

BeB
Where P(W) is the language model, P(B|WW) can be computed using a stochastic lexicon
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and P(u|W, B) can be approximated with the acoustic model P(u|B). Note that the speech
recognizer used in this thesis uses standard Viterbi approximations during decoding. This

reduces Equation 5.2 to the following:

W = argrvnvfaécP(W)P(B|W)P(u|B) (5.3)

5.1 EM for Estimating Phoneme Pronunciations

We now extend the Pronunciation Mixture Model (PMM) framework developed for isolated
word recognition in Chapter 3 to learn the appropriate weights that can model P(B|W) in
continuous speech.

Our training data is comprised of M utterances and their transcriptions {u;, W;} where

Wi =w}, - ,w, . We parameterize the log-likelihood as follows:

M
> “log P(u;, W;]0) = Zlogz > P(ui,Wi,B,M@)
=1

i=1 BeB e¥(W;,B

where 1) is an additional hidden variable defined to segment the phonetic sequence B
into k baseforms while deleting the silences. Thus, 1 is drawn from possible segmentations

U(W;, B) and can be indexed to retrieve a particular word-baseform pair. For example:

e 1(dh ax b oy - - ey td - dh ah ae p ax 1) = dh ax
e Yy(dh ax b oy - - ey td - dh ah ae p ax 1) = b oy

e Y3(dh ax b oy - - ey td - dh ah ae p ax 1) = ey td
e Yy(dh ax b oy - - ey td - dh ah ae p ax 1) = dh ah

e Ys5(dh ax b oy - - ey td - dh ah ae p ax 1) = ae p ax |
We can now further decompose the term as follows:

P(uiathaqu)) = P(UZ’B)P(U}?[? 7w;‘f¢ab17"' 7bk1>
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where b; = 1;(B). Our acoustic models are trained such that when B is the phoneme
alphabet, a pronunciation b; is context independent and the equation above can be rewritten

as:

P(u;, W;, B,) = P(u;| B) Hew s (5.4)

where 0, ), = P(w}, b;). Our log-likelihood then becomes:

M ki
ZlogP(ui,VVi](‘) Zlogz Z (Ui|B)H9w§-,wj(B)
=1

i=1 i=1 BeB ¢e¥(W;,B)

The parameters, 6, are initialized to our graphoneme n-gram model scores and multiple

iterations of the EM algorithm are run.

E-step:

M
=) S P(B.lui, Wi 0)Mp, w, Wi, B, ¢

i=1 BEBYeU(W;,B)
M-step:

MG [U}, p]
Zw’,p’erB My [w/’ p/]

* _
ewm -

where M([p, w, W;, B, ] is the number of times word w appears in W; aligned with the pro-

nunciation p.

M(p, w, Wi, B,¢)] = [{j : ¥;(B) = p and w; = w}| (5.5)

The weights learned are directly used in a stochastic lexicon for decoding continuous

speech. The term P(B|WW) in Equation 5.2 can be computed as:

PBW)= > HZ“’“"J (5.6)

’(/16\11 WZ pEB wJ P
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5.1.1 EM for Estimating Phone Pronunciations

The phonetic rules our recognizer applies between the phoneme-based lexicon and the context-
dependent acoustic models create context dependencies across words at the phone level. A
misguided attempt to apply the PMM directly to learning phone pronunciations would ignore
the independence assumption made in Equation 5.4, which is no longer valid. In this section,
we explore a model that assigns a probability to a word-pronunciation pair given the last

phoneme of the previous word’s pronunciation:

P(wl,bl,...,wn,bn) = P(wi,bi|w1,b1,...,wi_l,bi_l)

I s
o E

Q

s
Il
i

P(wiabi|bi—1)

Q

@
I
—

Where LAST(b) is the last phone in the phone sequence b. Here we make several indepen-
dence assumptions, the first is similar to the Markov assumption made in n-gram language
modeling, the second references the fact that only the ending of the previous word’s pro-
nunciation can affect the current word’s pronunciation. Our new features 6, ;, = P(w, b|p),
where b € B and p is a single phone, can now be used in equation 5.4 as follows:

[Wil
P(ui, Wi, B,) = P(uy| B) H 05(B),wi |LAST (651 (b)) (5.7)

Jj=1

5.2 Implementation Details

Here we discuss some of the issues faced when implementing the continuous speech PPM for
phoneme pronunciations. The framework is split into two steps: we first build a constrained-
graphoneme recognizer and run it on each training utterance to generate an n-best list of
graphoneme hypotheses for the entire utterance. After creating an n-best list of graphoneme
hypothesis for each utterance, we iterate through the entire list computing expected counts

for every word and its pronunciation (E-step) and then normalizing the expected counts into
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a probability distributions (M-step).

We first build a graphoneme recognizer for continuous speech. The search space is mod-

elled by the following FST:

GR=CoPoGP* (5.8)

Where C' maps phones to context-dependent model labels and P are the pronunciation
rules. Here GP* is our graphoneme n-gram that has been expanded to allow the recognition
of multiple words. This is done by taking the graphoneme n-gram used for the isolated-word
PMM, concatenating it with an FST that emits a # symbol and then performing closure on
this new FST. The # symbol is used as a word boundary. One problem with this approach
was that the GP* FST was too big to build. To overcome this problem, we pruned out all the
paths in the graphoneme n-gram that do not appear in the top 700 pronunciations for any
word in our training set. This significantly reduced the size of GP* so that the recognizer

search space could be efficiently built.

We then distributively process each utterance and its word-transcription in the training
set. We first expand the word transcription into all graphoneme sequences whose letter side
match the letters of the transcription and encode those paths as an FST L. This FST is then
composed with the GR FST in Equation 5.8 to constrain the search space of the graphoneme
recognizer. We call this recognizer the constrained-graphoneme recognizer. Recognition is
performed on the utterance in question and an n-best list of 5000 hypotheses is stored on
disk. Figure 5-1 shows an example n-best list for the utterance: “houston texas”. The three
scores at the beginning of each line represent the total score, the acoustic model score and the
graphoneme n-gram score respectively. The total score is the log-domain joint probability
P(u;, W;, B,) used in Equation 5.4, the AM score is P(u;|B) and the graphoneme n-gram
score is []; P(wy, b;).

After generating an n-best list for each utterance in our training data, we can proceed
with the E-step of the first EM iteration. We keep a double hash table for every word and
pronunciation that maps to the expected counts of seeing that word aligned with that specific

pronunciation. For every n-best list, we first normalize the total scores to sum to one by
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59.0655 83.9573 -24.8918 h/hh o/ /y u/uw s/s t/t o/ax n/n # t/t e/eh x/kd /s a/ax s/s
55.4080 83.1458 -27.7378 h/hh o/ /y u/uw s/s t/t o/ax n/n # t/t e/ey x/kd /s a/ax s/s
54.4675 83.9573 -29.4899 h/hh o/ /y u/uw s/s t/t- o/ax n/n # t/t e/eh x/kd /s a/ax s/s
50.8100 83.1458 -32.3359 h/hh o/ /y u/uw s/s t/t- o/ax n/n # t/t e/ey x/kd /s a/ax s/s
49.5057 78.9219 -29.4162 h/hh o/ /¥ u/uw s/s t/t o/ax n/n # t/t e/eh x/kd /s a/ax s/z
47.5087 83.4593 -35.9506 h/hh o/ /y u/uw s/s t/t o/ax n/m # t/t e/eh x/kd /s a/ax s/s
47.2153 83.9573 -36.7420 h/hh o/ /y u/uw s/s t/t o/ax n/n # t/tf e/eh x/kd /s a/ax s/s
47.0608 78.0224 -30.9616 h/hh o/ u/uw s/s t/t o/ax n/n # t/t e/eh x/kd /s a/ax s/s
46.9454 83.9573 -37.0119 h/hh o/ /y u/uw s/s t/tq o/ n/en # t/t e/eh x/kd /s a/ax s/s
46.8134 77.7686 -30.9552 h/ /y o/ u/uw s/s t/t- o/ax n/n # t/t e/eh x/kd /s a/ax s/s

Figure 5-1: Constrained Graphoneme Recognizer n-best hypothesis for “houston texas” along
with total, AM and LM score.

i _ P(ui,Wi,B ) . .
computing P(B,¥|u;, W;) = S0 Pl WP We then iterate through the n-best list and
increment the double hashtable for every aligned word-pronunciation with its normalized
total score. After computing all the expected counts across all the generated n-best lists,
we normalize the counts according to the M-step equation. We now have a joint-probability

distribution for word-pronunciations i.e. P(w,b) = 6y,.

To compute the remaining EM iterations, we again iterate through all the n-best lists to

compute:

P(B, 4, u;, W;) = P(Blu;)P(B, ¢, W) = P(Blu;) [ [ 0w, s, (5.9)

Where P(B|u;) is the AM score extracted from the n-best list and 6,5, are the parameters

computed during the previous EM iterations.

After computing this joint probability for every hypothesis, we again normalize these prob-
abilities to sum to one and compute expected counts for all the aligned word-pronunciations
in the n-best lists in a similar manner to what was described before. Finally, we once again

compute the updated features € using the M-step equation.
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5.3 Experimental Setup

Experiments using the SUMMIT landmark-based speech recognizer [15] were conducted in

two domains: a weather query corpus [13] and an academic lecture corpus [31].

5.3.1 Experimental Procedure

To evaluate the performance of our PMM model we used the following procedure for both
the weather and lecture domains. We begin by cleaning the acoustic model training set by
removing utterances with non-speech artifacts to generate a training set for PMM pronunci-
ations. We then prepare two recognizers, the first based on manually created pronunciations
of all the words in the training set and the second a learned PMM recognizer that contains
all the pronunciations generated by our PMM model. We then compare the Word Error Rate
(WER) of both recognizers on a common test set. Thus, both recognizers use precisely the
same vocabulary, but the pronunciations are chosen or weighted either by human or machine.
Although the expert-lexicon leaves pronunciations unweighted, it does include a number of
entries with multiple pronunciations. To keep the number of PMM pronunciations included
in the search space to a reasonable size we use a 0.005 threshold to prune out low probability
pronunciations.

The weather query corpus is comprised of relatively short utterances, with an average
of 6 words per utterance. After pruning the original training and test sets of all utterances
containing non-speech artifacts, we ended up with a 87,600 utterance training set with an
1,805 word vocabulary and a 3,497 utterance test set. The acoustic models used with this
corpus were trained on a large data set of telephone speech of which this corpus is a subset.

The lecture corpus contains audio recordings and manual transcriptions for approximately
300 hours of MIT lectures from eight different courses and nearly 100 MITWorld seminars
given on a variety of topics [31]. The lecture corpus is a difficult data set for ASR systems
because it contains many disfluencies, poorly organized or ungrammatical sentences, and
lecture specific keywords [8]. Compared to the weather corpus the sentences are much longer,
with about 20 words per utterance on average.

As in the weather domain, we discard utterances that contain non-speech artifacts from
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the training set used to train the acoustic model and end up with a 50K utterance training
set. We then cleaned the remaining utterances to create a 6,822 utterance test set. We report
results on training pronunciations and decoding with back-off maximum likelihood trained
Acoustic Models [8]. We leave the use of discriminatively trained models for future work.
The back-off maximum likelihood model uses a set of broad phonetic classes to divide the
classification problem originating from context-dependent modeling into a set of subproblems.
The reported results differ from those in [8] because we use a 25K word vocabulary of all the
words in our training set. The original paper uses a 35K word vocabulary with some words

absent from the training set.

Graphone/Graphoneme Training

A 150,000 word dictionary of manually generated phoneme pronunciations was used to train
the graphoneme n-gram parameters according to the procedures described in [36].

To train our graphone model, one might be tempted to simply expand the phoneme-based
lexicon according to the pronunciation rules learned in Section 2.1. Unfortunately, given the
manner in which our acoustic models were trained, the beginnings and endings of pronun-
ciations are context-dependent at the phone level. Thus, we must expand all the sentences
in our weather and lecture training corpora first to their phoneme pronunciations using the
manually crafted dictionary and then to their phone variations using the pronunciation rules.
These phone pronunciations were properly generated since the pronunciation rules had access

to the context of a word in a sentence.

5.3.2 Experimental Results

The results for learning pronunciations can be seen in Figure 5.1. A baseline using a lexicon
generated directly from graphonemes is shown to be significantly worse than both experts and
the PMM. More interestingly, phoneme PMM pronunciations achieve more than a 1.2% WER
reduction on the weather test set and a 0.4% WER reductions on the lectures test set over the
hand-crafted lexicon. Both results were deemed statistically significant (p<0.001) using the
Matched Pair Sentence Segment Word Error test. These results were achieved by running the

EM algorithm until convergence which took around 8 iterations. It is important to note that
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Weather | Lectures
Graphoneme L2S 11.2 47.6
Expert 9.5 36.7
Phoneme PMM 8.3 36.3
Phone PMM 8.3 36.1
Context PMM 8.3 37.7

Table 5.1: Results in WER on both the Weather and Lecture corpora using the PMM, the
expert dictionary and the Graphoneme model (%)

we are learning these pronunciations without human supervision and hence this technique
can be reliably used to predict pronunciations for out-of-vocabulary words from continuous
speech. We also show improvement over a baseline of expert crafted pronunciations by
training on the same data used for training our acoustic models. This suggests that not only
are we learning better-than-expert pronunciations, we are also allowing more information to
be extracted from the training set that can complement the acoustic models. This smaller
size vocabulary of the weather domain could explain the higher gains achieved: since the
PMM includes multiple pronunciations per word, this might make them more confusable a
fact that is more apparent in the 25k vocabulary Lecture domain. Another disadvantage of
the PMM approach when applied to the Lecture domain is due to the longer sentences present
in that corpus. The sheer size of some of the sentences caused the constrained graphoneme
recognition step to fail. This happened to about 2k utterances of our 50k utterance training
set because no complete path could be found through the FST lattice.

We also test on learning phone pronunciations in a similar context-independent setup as
that of phonemes (Section 5.1). The results are referenced as “Phone PMM” in Table 5.1.
One advantage of learning phone pronunciations in a context-independent setup is that we are
no longer using the pronunciation rules that might be over-expanding the search space. This
fact is made apparent in Table 5.2 where we see an increase in the number of pronunciations
per word but a smaller search space.

A second reason to favor removal of phonological rules from the recognizer is simply that,
when the lexicon is trained appropriately, they appear to be an unnecessary complication.
It is also interesting to note that Phone PMM training is faster and requires only 4 EM

iterations to achieve convergence. The disadvantage of the direct expansion approach we
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Weather Lexicon | Avg # Prons # States # Arcs Size

Expert 1.2 32K 152K 3.5 MB
Phoneme PMM 3.15 51K 350K 7.5 MB
Phone PMM 4.0 47K 231K 5.2 MB
Context PMM 63 253K 936K 22 MB
Lecture Lexicon | Avg. # Prons +# States # Arcs Size

Expert 1.2 226K 1.6M 36 MB
Phoneme PMM 1.8 501K 7.6M 154 MB
Phone PMM 2.3 243K 1.2M 28 MB
Context PMM 8.9 565K 2.7TM 61MB

Table 5.2: Lexicon statistics for the weather and lecture domains.

have described so far is that phone pronunciations are context-dependent with respect to the
underlying acoustic models, a fact that is not represented in the learned lexicon.

We tried to model these cross-word dependencies by using the context-dependent model
described in section 5.1.1. Whereas the move from graphonemes to graphones reduces the
complexity of our recognizer, incorporating context dependent models grows the search space,
as seen in Table 5.2. From the results in Table 5.1, however, it is clear that they are an un-
necessary complication, and even hurt performance in the lectures domain. The degradation
is likely due to a problem of context sparsity, which is caused by a greater mismatch between

training and test in the lecture corpus.

5.4 Analysis of Learned Baseforms

We first attempt to measure how much of the expert lexicon the PMM was able to recover.
For the 1.8k words in the Weather Corpus vocabulary, the expert lexicon contained 2252
pronunciations (since the expert lexicon allowed multiple pronunciations for some words)
of these, 2002 or 88.9% were present in the PMM lexicon with a threshold of 0.005 (all
pronunciations with weights less than 0.005 were were not included in the PMM lexicon).
The average rank of the pronunciations that were found in the PMM lexicon was 1.2 and the
average weight was 0.73 . Given that most of the expert pronunciations were included in the
PMM with a relatively high weight, we believe that little gain can be achieved by combining
the expert lexicon and the PMM lexicon.
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Confusion Pairs | # of Occurences
AX ==> 1Y 22
AX ==>TH 19
AA ==> AE 16
R ==> ER 15
ER ==> R 14
AA ==> AX 10

IY ==>Y 9
AX ==> EH 9

UW ==> AX 9

AX ==> AA 8

Table 5.3: Top 10 confusion pairs for Weather Domain lexicon

Deleted Phonemes | # of Occurences
AX 15
AO 13
TD 4
R 3
AA 3

Table 5.4: Top 5 Deleted Phonemes for Weather Corpus lexicon

Similarly to Chapter 3, we again try to quantify some of the differences between the
expert and learned baseforms. We run NIST align software to tabulate differences between
the reference expert baseform, and the top choice hypothesis of the PMM model for the
Weather Corpus lexicon (A list of learned pronunciations is listed in Appendix A). Of the
1805 baseform pairs, 81.5% were identical, while the remainder mostly contained a single
substitution. We found the alignment results to be similar to the ones conducted on the
isolated-word PMM lexicon. Again, most of the substitutions involved vowels, typically a
schwa.

Table 5.3 shows the top 10 most confused phoneme pairs, while Table 5.4 and Table 5.5
show the most deleted and inserted phonemes. About 3.4% and 3.1% of the data contained
an additional insertion or deletion, respectively, more than three times the amount observed
for the isolated-word case. We found that the increase in deletions could be explained by
the fact that during continuous speech speakers are more likely to skip phonemes. Table 5.6

shows some examples where the PMM learned pronunciations with plausible deletions.
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Inserted Phonemes | # of Occurences
AX 13
Y 7
HH 7
Iy 6
AO 5

Table 5.5: Top 5 Inserted Phonemes for Weather Corpus lexicon

Word Dictionary Baseform Top PMM Baseform
already ao L r eh df iy aa r eh df iy
antarctica | ae nt aa r KD t ax k ax | ae nt aa r tf ax k ax
asked ae s KD t ae s td

barbara baarb AX r ah baarbrax
bratislava | br AAtfaxslaavax |brtfaxzlaavax
clothes k1low DH z k1lowz

Table 5.6: Example phoneme deletions between expert dictionary and top PMM hypothesis
for Weather Corpus.

When taking a closer look at the data to explain the increase in insertions, we found that
out of the 62 insertions in our PMM lexicon about 16 were either at the beginning or at the
end of the pronunciation. Upon closer examination, we found that most of these insertions
were happening to words with a low number of occurrence in the training data and were
erroneous. We believe that these mistakes are due to words absorbing the pronunciations
of other surrounding words. For example, the word “missed” only appeared 3 times in
the training set. Of the 3 occurrences, 2 were preceded by the word “I”. In this case, the
PMM gave a high probability to the pronunciation “ax m ih s td” i.e. the pronunciation of
“I” concatenated with the pronunciation of “missed”. Table 5.7 contains examples of some
reasonable insertions, as well as, many erroneous insertions. We also compare the number of

times these examples appear in the training set.

5.4.1 Non-Native Speaker Pronunciation

In this section, we use the PMM to try to analyze pronunciation differences between native
and non-native speakers. We train two PMM lexicons, one on 3k utterances of lectures given

by an Indian accented English speaker and the other on 30k utterances of lectures given by
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Word Dictionary Baseform | Top PMM Baseform # of Occurrences
iran ax r aan AY axraen 16
WOW W aw w AY aw 19
deep d iy pd diyp AX L 2
guadaloupe | gw aa df ax luw pd | gw aa df ax 1l uw P EY 2
towards t aor dd z taordd STY 1
missed m ih s td AX m ih s td 3
rotterdam | r aa tf er d ae m AX raatferdaem 1
snowbase snowbeys EHsnowbeys 1
sea s iy S IY s iy 2

Table 5.7: Example of phoneme insertions between expert dictionary and top PMM hypoth-
esis for Weather Corpus.

Confusion Pairs | # of Occurences
[H ==> AX 8
AE ==> AA 5
S==>17 4
AE ==> EH 3
P ==> PD 3

Table 5.8: Top 5 phoneme confusion pairs for Indian accented non-native talker

a Dutch accented English speaker. Note that this data was not part of our original Lecture
corpus training set.

We again run NIST alignment on the top pronunciations learned from both speakers
with the top pronunciations learned from the entire Lecture corpus. To make sure that the
pronunciations learned from the lectures were correctly estimated, we restricted our analysis
to words that had at least 5 examples in the training set. For Indian accented speech, we
found that out of the 400 words we compared, about 87% of the pronunciations were the
same while 12.3% contained substitutions. Only a small fraction of the differences were due to
insertions or deletions. Table 5.8 lists the top 5 confusion pairs, mainly vowel substitutions,
while Table 5.9 lists 4 word pronunciations that illustrates differences between the native and
non-native speaker baseforms. As for Dutch accented speech, we found that out of the 2.5k
words we compared, 88.8% of the pronunciations were similar and that most of the changes
were again due to substitutions. Table 5.10 lists the top 5 confusion pairs, while Table 5.11

lists some examples.
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Word Native Speaker Pronunciation | Non-Native Speaker Pronunciations
dependent | d AX p EH N D ax n td dIY p AX DF ax n td

therefore | dhehrfaor dhehr AX faor

vary v AE riy v EH riy

various v AE r iy ax s vEH riyaxs

only OW nliy AO nliy

simple sIHm p ax 1 s AX mpaxl

within w IH dh IH n w AX dh AX n

Table 5.9: Example of differences between native and Indian accented non-native speaker

pronunciations.

Confusion Pairs | # of Occurences
AX ==> 1Y 8
AX ==>TH 5
DD ==>TD 4
Z ==> S 3
AA ==> OW 3

Table 5.10: Top 5 phoneme confusion pairs for Dutch accented non-native talker

Word Native Speaker Pronunciation | Non-Native Speaker Pronunciations
fluid fluw AX DD fluw IH TD

estimate | eh s t ax m AX td eh st ax m EY td

reverse |r AX vers rIY vers

pops p AA pds p OW pds

Table 5.11: Example of differences between native and Dutch accented non-native speaker

pronunciations.
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5.4.2 Slow vs. Fast Speech

We now try to quantify the differences of word pronunciations during fast and slow speech.
We conducted the following experiment: We ranked every training utterance in our Lecture
corpus training set by its average word duration i.e we divided the total duration of the
utterance by the number of words in its reference transcription to compute the average word

duration. We then split the training corpus into two parts:

e The “fast speech” training set contained the 25% of the data with the shortest word

duration.

e The “slow speech” training set contained the 25% of the data with the longest word

duration.

We discarded the remainder of the training data.

After running the PMM on both training sets, we then used the NIST alignment software
on the learned baseforms provided they had appeared at least 4 times in both training set.
We ended up with a lexicon of 1783 words.

Only about 32% of the baseforms were the same in both the “fast speech” and “slow
speech” lexicon. 46% had substitutions, 21% of the baseforms in the “fast speech” lexicon had
deletions and 14% had insertions. On average, fast pronunciations contained 5.2 phonemes
while slow pronunciations contained 5.4 phonemes. Table 5.12, Table 5.13 and Table 5.14 list
some of the top confusion pairs, insertions and deletions. We also tabulate some the example

differences in Table 5.15.

5.4.3 Word Confusion in Weather Domain and Lecture Domain

Lexicon

Since our PMM defines a conditional distribution over words and pronunciations P(bjw), by
assuming that all words are equally likely i.e. P(w) = 1/|V| where V' is our vocabulary, we

can compute the conditional entropy H (b|w) and H (w|b).

e H(blw) is a measure of disorder when trying to predict a pronunciation given a word.

Hence, it is related to how many pronunciations are allowed per word and how uniform
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Confusion Pairs | # of Occurences

S==>17 46
IY ==> AX 38
IH ==> AX 35
R ==> ER 35
AX ==> EH 35
AX ==>TH 33

Z ==>S 26
EH ==> AX 26
ER ==> R 25
IY ==>1TH 20

)

Table 5.12: Top 10 phoneme confusion pairs between “fast” speech and “slow” speech

Inserted Phonemes | # of Occurences
AX 51
TD 40
DD 20
EH 15
N 14

Table 5.13: Top 5 inserted phonemes in “fast” speech pronunciations

Deleted Phonemes | # of Occurences
AX 130
Iy 33
L 33
TD 27
S 27

Table 5.14: Top 5 deleted phonemes in “fast” speech pronunciations

Word “Slow” Pronunciation “Fast” Pronunciation
leadership | 1 iy df er sh IH PD liy df er sh AX
obviously | aa bd viy ax S 1iy aa bd viy S ax 1 iy
learned lEH Rndd ]l ER n dd

thousand | th OW Y AX zaxndd | th AW z ax n dd

Table 5.15: Examples of pronunciation differences between fast and slow speech pronuncia-
tions.
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Figure 5-2: Plot of H(w|b) and H(blw) as a function of EM iterations for both the Weather
and Lecture domain.

their distribution is.

e H(w|b) is a measure of disorder when trying to predict a word given a pronunciation.
This is a measure of how confusable words are when using a stochastic lexicon. In
our lexicons we allow different words to map to the same pronunciation, hence H(w|b)
allows us to measure the uncertainty of being able to map back from a pronunciation

to the word that generated it.

Figure 5-2 plots H(w|b) and H (b|w) as a function of EM iterations for both the Weather
lexicon and the Lecture lexicon. As can be seen, while the Weather domain lexicon has a
higher H(blw) that seems to be increasing with EM iterations, it has a much lower H (w|b)
than the Lecture domain. This confirms our initial concerns that the Lecture domain lexicon

allowed for more confusion between words due to its large vocabulary size.
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5.5 Acoustic Model and Lexicon Co-Training

One of the research activities currently undertaken by the Spoken Language Systems (SLS)
research group is utilizing crowd-sourcing for data collection. In this section, we describe
applying our PMM model to the E-book (electronic book) corpus. This corpus was collected
using Amazon Mechanical Turk (AMT) and contains a large variety of words, including
many that have never been used in SLS’s prior speech applications. We first describe the

data collection process and then discuss some of the experiments performed on this corpus.

5.5.1 Real-World Data

The E-book corpus contains a list of 10K book titles, containing 30K individual words and
about 9.5K unique words. The speech data was collected using the WAMI toolkit infrastruc-
ture [16] on Amazon Mechanical Turk (AMT). 10 utterances from 10 different speakers were
collected for each book title resulting in a total of 100K utterances.

As a final step, the data was then split up into a training set, development set and test
set. For each of the 10K titles, 7 utterances from different speakers were kept for training, 1

utterance was used in the development set and the last 2 were held out for testing.

5.5.2 Baseline Approach

In this part, we describe the usual procedure to build a speech recognizer for the E-book
corpus. As a first attempt, we used our generic Acoustic Models (genericAM) trained on
telephone speech, the expert dictionary (expertLexicon) to provide pronunciations for the
9.5K vocabulary, as well as, a Language Model n-gram trained on the training data. This
approach has two limitations: the generic Acoustic Models used do not match the E-book
data because they have been trained on a different domain. The other limitation is due to the
pronunciation dictionary: about 16% of the 9.5K vocabulary is out-of-vocabulary (OOV),
hence the expert dictionary does not contain a pronunciation for those words. To better
evaluate the performance of this recognizer, we split our test set into a 17K-utterance in-
vocabulary test set (IV-test) where none of the words are OOV and a 3K-utterance OOV test

set (OOV-test) where each utterance has at least one OOV word in its reference. Running
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the now 8K-vocabulary generic-AM recognizer on the test set we end up with a fairly poor

WER of 24.7% on the IV-test and 98.1% on the OOV-test.

In order to improve our baseline performance, we attempt to retrain our AMs using the E-
book training set. Retraining AMs requires a training set of utterances and phone-transcribed
references. To generate the phone-transcriptions from the original word-transcription, we use
a forced-alignment recognizer using our expert dictionary and our generic models. Again since
about 16% of the words are OOV, we fail to generate forced-alignments for about 15K of
our training utterances. Using these new phone alignments, we can now retrain our Acoustic
Models (referred to as expertAM). A significant WER reduction can now be achieved: 11.1%
on the IV-test and 90.0% on the OOV-test. The WER on the OOV test set remains high

since each utterance has at least one word that is not in the ASR system’s vocabulary.

5.5.3 PMM Approach

In this section, we combine our PMM pronunciation acquisition framework with AM training
and show improvements over the baseline approach. Using our generic AM, we first run the
PMM for two EM iterations on our training set to generate pronunications for the 9.5K words
in our vocabulary. We refer to this lexicon as pmmlem2. We then use this new lexicon and
the generic AM to run phone forced-alignment on the training set and retrain new acoustic
models (referred to as pmmlem2AM). As a final step we again run the PMM for several

iterations using the new retrained AM.

We report our results in Table 5.16. Each row reports on WER for both the in-vocabulary
and OOV test set using different AM models and different lexicons. Here pmmlem2AM are
the acoustic models trained by running phone forced-alignment using the genericAM and the
learned PMM lexicon from EM iteration 2. pmm2em3 is the lexicon learned by running the
PMM until EM iteration 3 using the pmmlem2AM Acoustic Models. As can be seen, using
this PMM and Acoustic Model Retraining framework can achieve a significant reduction in

WER on both the OOV and the IV test sets.
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[V-test OOV-test
genericAM + expertLexicon 24.7 98.1
expert AM + expertLexicon 11.1 90.0
genericAM + pmmlem1 25.6 26.6
genericAM + pmmlem?2 24.1 24.6
genericAM + pmmlem3 23.5 24.6
genericAM + pmmlem4 23.5 24.6
genericAM + pmmlemb 23.3 24.9
genericAM + pmmlem6 23.1 24.9
genericAM + pmmlem?7 23.0 25.0
pmmlem2AM + pmmlem?2 10.6 14.6
pmmlem2AM + pmm2eml 10.6 13.6
pmmlem2AM + pmm2em?2 10.4 13.8
pmmlem2AM 4+ pmm2em3 10.3 14.0
pmmlem2AM + pmm2em4 10.4 14.2

Table 5.16: WER in percentage for E-book domain by iteratively training the acoustic models
and the lexicon. A gradual reduction in WER can be observed.

IV-test OOV-test
pmmlem2AM + pmm2em3 10.3 14.0
pmmlem4AM + pmmlem4 10.8 14.6
pmmlem3AM + pmm2eml 11.0 13.6
pmmlem3AM + pmm2em?2 10.7 13.9
pmmlem3AM + pmm2em3 10.7 14.0

Table 5.17: WER in percentage for E-book domain using pmmlem3. An increase in WER
is observed possibly due to overfitting

Overfitting Concerns

One important issue to address when considering PMM-AM co-training is overfitting. To
illustrate this point, we also tried using pmmlem4 to retrain the AMs and observed degra-
dation in performance. The results can be seen in Table 5.17. These initial results indicate

that further research into this approach is needed.

5.6 Summary

In this Chapter, we generalized our PMM approach to training and testing on continuous

speech. We tested and showed WER improvements on both a weather query corpus and
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an academic Lecture corpus. After quantifying some of the differences between baseforms
learned from continuous speech and expert pronunciations, we used our PMM approach to
analyze baseforms learned from fast versus slow speech, as well as, non-native speakers. As
a final experiment, we introduced the notion of iteratively co-training the acoutic model and
the lexicon using the PMM. After testing on a corpus of book titles collected from AMT, we

showed that further improvements can be achieved through this method.

69



70



Chapter 6

Summary and Future Work

This work has introduced and compared several approaches to generating pronunciations by
combining graphone techniques with acoustic examples. Furthermore, we have shown that
even in the presence of significant noise, a pronunciation mixture model can reliably generate
improved baseform pronunciations over those generated by experts given both isolated-word
and continuous speech. Regardless, we believe that wrapping the lexicon into a statistical
framework is a constructive step, which presents exciting new avenues of exploration. We
have also shown that the PMM can be trained on the same data as the AM and LM, and
hence requires no additional training data to build. These properties make pronunciation
training a cheap and effective additional step to building an ASR system. We hope that this
thesis, encourages the training of a matched lexicon when training AMs.

Since our findings seem to extend to multiple corpora, the possibility of learning better-
than-expert baseforms in arbitrary domains opens up many possibilities for future work. For
example, when faced with an out-of-vocabulary word with a known spelling, any system
could programmatically post a task to AMT and collect example utterances to generate a
high quality entry in the lexicon.

There are two clear directions in which we hope to further this work. The first is to
explore acoustic model and lexicon co-training in an iterative fashion, effectively taking a
maximum-likelihood step along a set of coordinates in the probability space represented by the
recognizer. The second is to move beyond maximum-likelihood, and explore discriminative

approaches to pronunciation learning on continuous speech. While we have only talked about
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discriminatively training lexicon weights for isolated-word, we hope to generalize this work
for continuous speech by developing a framework for simultaneously discriminatively training
LM weights, lexicon weights, as well as, word boundary and phone n-gram weights.

Long term, the ultimate goal of this research might be to infer a phoneme set and learn
pronunciations from orthographically transcribed data only. If it were feasible to simultane-
ously train the lexicon and the acoustic model, large vocabulary speech recognizers could be
built for many different languages with little to no expert input, if given enough orthograph-

ically transcribed data.
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Appendix A

Weather Domain Lexicon

The table below lists the 1.8K words present in the Weather Query corpus vocabulary, along

with their top PMM pronunciations, associated mixture weights and expert baseforms. We

underline the words whose top PMM pronunciation does not match its expert counterpart.

[ ‘Word [ PMM Baseforms Weight [ Expert Baseform “[ Word [ PMM Baseforms Weight [ Expert Baseform
<oh> ow 1 ow <uh> ah_fp 1 ah_fp
<um> ah_fp m 1 ah_fp m a ax 0.64 (ax|ey)
aalten aaltiyn 0.58 aaltqen ey 0.34
ao 1 tq en 0.27 ababa ax b ae b aa 0.20 (aa|ae)b (aa|ax)
b (aa|ax)
aoltfax n 0.10 aa b ax b aa 0.19
aberdeen aeberdiyn 0.99 aeberdiyn ae b ae b ax 0.18
abilene aebaxliyn 0.97 aebaxliyn ae b ax b ax 0.16
about ax b aw td 0.99 ax b aw td ax b aa b ax 0.15
abu aa b uw 0.98 aa b uw abidjan | ae b iy jh aan 0.90 aabiy (jh|zh)aan
accent ae kd s ax n td 0.99 ae kd s eh n td able ey b axl 0.86 ey b ax1
accumulated | ax k yuwmy axl ey  0.98 ax kyuwmy ax l ey yax b axl 0.12
tf ax dd tf ax dd
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Word [ PMM Baseforms Weight [ Expert Baseform [“ Word PMM Baseforms Weight [ Expert Baseform
accumulations | ax k yuw my ax l ey  0.89 ax kyuw my ax |l ey above ax b ah v 0.99 ax b ah v
shaxns sh ax n z
axkyuwmyaxley 0.10 acapulco aa k ax paxlk ow 0.31 (aa|ae)kaxp (ow|
sh ax n z uh 1) k ow
activity ae kd t ih v ax tf iy 0.99 ae kd t ih v ax tf iy aa k ax p ow k ow 0.29
addis aa df iy s 0.37 (aa|ae)dfaxs aek ax pax 1 k ow 0.11
aa df ax s 0.20 ow k ax p ow k ow 0.11
ae df ax s 0.16 accumulate ax kyuwmyaxley 0.99 ax k yuw my ax l ey
td td
aediyz 0.13 accumulation | ax k yuw m y axley 0.94 ax kyuw my ax ley
sh ax n sh ax n
ae df iy z 0.09 active aekd tiy v 0.52 aekdtax v
address aedrrehs 0.99 (ae|ax)drrehs ackd t ax v 0.39
advisories aedd vayzaxriyz 0.93 aedd vayzaxriy z actually ae kd ch uw 1 iy 0.47 ae kd ch (uw ax 1| uw
l]ax1) iy
afghanistan aefgaenaxstaen 0.85 aefgaenaxstaen ae kd ch ax 1 iy 0.36
after aefter 0.97 aefter ae kd ch uw ax 1 iy 0.13
again ax gehn 0.95 ax gehn additional ax d ih sh ax n ax 1 0.99 ax d ih sh ax n ax 1
ahead ax hh eh dd 0.74 ax hh eh dd adelaide ae df ax 1 ey dd 0.35 ae df ax 1 ey dd
eh dd 0.23 ae df ax 1 ay dd 0.15
air ehr 0.99 ehr aeddley dd 0.15
airline ehrlayn 0.99 ehrlayn ae dd 1 ay dd 0.15
airplane ehrpleyn 0.92 ehrpleyn advisory ae dd v ay z ax r iy 0.87 ae dd v ay z ax r iy
akron aekdraxn 0.98 aekdraxn africa ae fr ax k ax 0.98 ae fraxk ax
alamos aelax mow s 0.65 aclaxmow (z|s) afternoon aefternuwn 0.97 aefternuwn
aalax m ow s 0.17 ago ax g ow 0.97 ax g ow
albania aelbeyniyyax 0.47 ae l b ey niy ax ainsworth ey nzwer th 0.99 ey nzwer th
aelbeyniy ax 0.39 aires ehriyz 0.25 (eh|ae)r (iy|eh)z
aalbeyny ax 0.09 aeriy z 0.14
alberta ae 1l b er tf ax 0.99 ae l b er tf ax ay r iy z 0.11
alert ax ler td 0.99 ax ler td airlines ehrlaynz 0.99 ehrlaynz
alexandria aclaxgdzaendrriy 0.81 aelax (gdz|kds) ae airport ehrpaortd 0.99 ehrpaortd
ax n drr iy ax
aclaxkdsaendrriy 0.10 alabama ae l ax b ae m ax 0.89 ae lax b ae m ax
ax
algiers acljhyihrz 0.37 aeljhihrz aclax b ae m aa 0.09
aeljhyerz 0.30 alaska ax laes k ax 0.92 ax laes k ax
aaljhyerz 0.19 albany aolb axniy 0.94 aolb axniy
all ao 1 0.92 aol albuquerque aelbax ker k iy 0.93 aelbax ker k iy
along ax |l ao ng 0.98 ax | ao ng alerts ax lertds 0.73 ax lertds
already aa r eh df iy 0.98 ao |l r eh df iy raxlertds 0.17
also aols ow 0.73 aols ow algeria ae l jh ih r iy ax 0.78 ae l jh ih r iy ax
aolsax 0.15 aelz jhihriy ax 0.10
altoona aelt uw n ax 0.91 aelt uw n ax aoljh ax riy ax 0.10
altus aeltfaxs 0.35 aoltf ax s algonquin aeclgaangkwaxn 0.90 (ae|ax)1lg (aa]ah
)ngk waxn
aaltd 0.33 axlgaangkwaxn 0.09
aelt uh z 0.18 allentown aelaxntawn 0.99 aelaxntawn
amarillo ae m ax r ih 1 ow 0.82 aem ax r ih |1 ow alot ax | aa td 0.85 ax | aa td
american ax mehrax k ax n 0.99 axmehr (ax |ih ) k 1 aa td 0.11
ax n
amman ax m aa n 0.80 ax m aa n alright ao lr ay td 0.74 ao l r ay td
ae m aa n 0.11 ax lray td 0.11
amsterdam aem s t- er d ae m 0.83 aems t- er d ae m alto aa | tf ow 0.87 (ae|aa)ltow
anaheim ae n ax hh ay m 0.99 ae n ax hh ay m altos aaltfow zs 0.49 (ae|aa)ltowz
anchorage ae ng k r ax jh 0.88 aeng k (er | r) ax jh aeltf ow z 0.39
anderson aecndersaxn 0.51 aendersaxn am ae m 0.82 ae m
ihndersaxn 0.48 m 0.13
angola ae ng g ow ax 1l aa 0.52 ae ng g ow | ax america ax m eh r ax k ax 0.99 ax mehr (ax |ih ) k
ax
ae ng g ow | ao 0.46 ambherst ae m hh er s td 0.65 aem (hher|er)std
ann ae n 0.99 ae n ae m er s td 0.29
anniston aenaxstaxn 0.90 aenaxstaxn amount ax m aw n td 0.92 ax m aw n td
another ax n ah dh er 0.99 ax n ah dh er an ax n 0.85 (ax|ae)n
antarctica ae nt aa r tf ax k ax 0.60 aentaar (tf|kdt) aen 0.12
ax k ax
aentaarkdtaxkax 0.38 analog ae n ax 1 aa gd 0.84 ae n ax 1 aa gd
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[ Word [ PMM Baseforms Weight [ Expert Baseform [“ Word [ PMM Baseforms Weight [ Expert Baseform
antonio ae n t ow n iy ow 0.78 ae n t ow n iy ow aen ax lao gd 0.15
ax n t ow n iy ow 0.19 and ae n dd 0.61 (ax | ae)ndd
anything eh n iy th ih ng 0.92 eh n iy th ih ng ax n dd 0.18
anywhere ehniywehr 0.99 ehniywehr ae n 0.10
appreciate | ax pr iy sh iy ey td 0.45 ax pr iy sh iy ey td angeles aen jh axlaxs 0.97 aen jhaxlaxs
priyshiyeytd 0.34 ankara ae ng k ax r ax 0.45 ae ng k ax r ax
ax p r ax sh iy ey td 0.20 aa ng k ax r ow 0.18
april ey pdraxl 0.98 ey pdraxl aan k aar ax 0.12
arabia ax r ey b iy ax 0.99 ax r ey b iy ax aen k aer ax 0.11
arctic aar kd t ax kd 0.76 aar (tf|kd t) ax kd ae ng kd y ax r ax 0.09
aa r tf ax kd 0.10 annapolis axnaepaxlaxs 0.97 axnaepaxlaxs
aa r tf ih kd 0.10 annual aeny uw ax | 0.60 aen (yuhl|yuw ax
)
area eh r iy ax 0.99 eh r iy ax aeny uhl 0.13
argentina aarjhaxntiynax 0.97 aarjhaxntiynax aeny uw w ax 1 0.09
arkansas aar kaxns ao 0.74 aar k axns ao aeny ax | 0.09
aar k ax n s ax 0.13 answer aenser 0.71 aenser
aar kaxns aa 0.09 antigua aentiy gd w ax 0.77 aentiy gd w ax
around ax r aw n dd 0.96 axr aw n dd ae nt iy g ax 0.15
arthur aar th er 0.99 aar th er any eh n iy 0.97 eh n iy
as ax z 0.75 (ax|ae)z anytime ehniy t ay m 0.86 ehniytay m
ae z 0.22 appleton aepaxltfaxn 0.75 aepaxltfaxn
asia ey zh ax 0.92 ey zh ax ae pd 1 tf ax n 0.13
asked ae s td 0.73 ae s kd td approximate | ax pr aakd sax m ax 0.99 ax praakd s ax m (
td ey | ax ) td
ae s kd td 0.19 arab aer ax bd 0.99 aer ax bd
aspen aespaxn 0.97 aespaxn arbor aar ber 0.99 aar ber
astoria ax st aor iy ax 0.55 ae st aor iy ax are aar 0.97 aar
ax s t- ao r iy ax 0.44 areas ehriy ax z 0.86 ehriyaxz
at ae td 0.95 ae td arizona aer ax z Ow n ax 0.98 aer ax z Ow n ax
atlanta ae td 1 ae nt ax 0.79 (ax | ae) td 1 ae nt ax arlington aarlihngtaxn 0.99 aarlihngtaxn
ax td 1 ae nt ax 0.20 arrowhead ae r ow hh eh dd 0.90 ae r ow hh eh dd
au ow 0.79 ow | ao aruba ax r uw b ax 0.93 ax r uw b ax
august ao g ax s td 0.62 ao g (ah|ax)std asheville ae sh v ih 1 0.92 ae sh v ih 1
ao g ah s td 0.17 ask ae s kd 0.96 ae s kd
aa gax s td 0.15 asking ae s k ih ng 0.97 ae s k ih ng
austin aostaxn 0.83 aostaxn assistance axsihstaxns 0.96 axsihstaxns
aastaxn 0.10 asuncion ax s ahnsiy own 0.27 ax s ahnsiy own
austria ao s tr r iy ax 0.79 ao s tr r iy ax ax s ah n ch ow n 0.23
aa s trr iy ax 0.20 aesaxnzhaxn 0.23
average ae vr ax jh 0.90 aevrax (jh|zh) ax s ah n sh ax n 0.22
aware wehr 0.68 ax wehr athens ae th ax n z 0.93 aeth axnz
ax weh r 0.31 atlantic ae td 1 ae nt ax kd 0.49 (ax|ae) td1ae nt ax
kd
back b ae kd 0.99 b ae kd ax td 1 ae nt ax kd 0.47
baghdad b ae gd d ae dd 0.92 b ae gd d ae dd auckland ao kd 1 ax n dd 0.44 ao kd 1 ax n dd
bahrain baareyn 0.74 baareyn aa kd l ax n dd 0.41
b aa hh axrey n 0.16 augusta ax g ah s t ax 0.73 (ao|ax ) gahstax
bakersfield | bey kerz fiyldd 0.88 beykerzfiyldd aa gahstax 0.14
baltimore baoltfaxmaor 0.98 baoltfaxmaor australia aostrreyly ax 0.78 aostrreyly ax
bangkok b ae ng k aa kd 0.94 b ae ng k aa kd available ax vey lax bax1 0.65 ax veylaxbax]l
bangor b ae ng gaor 0.75 baengg (aor|er) ax veylbaxl 0.34
b ae ng g er 0.12 aviv ax viy v 0.95 ax viy v
barbados baarbeydows 0.83 baarbeydows b b iy 0.99 b iy
b aar b iy df ow z 0.10 bad b ae dd 0.99 b ae dd
barcelona baarsax]lown ax 0.93 baarsax]lown ax bahamas b ax hh aa m ax s 0.72 b ax hh aa m ax z
baseball beysbaol 0.62 beysbaol b ax hh aa m ax z 0.26
beyzaxkdbaol 0.21 baja b aa hh aa 0.99 b aa hh aa
mbeysbaol 0.12 bali b aaliy 0.98 b aaliy
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[ ‘Word [ PMM Baseforms Weight [ Expert Baseform “[ Word [ PMM Baseforms Weight [ Expert Baseform
baton b ae tq en 0.92 (baetqen|baxtaa bangalore baenggaxlaor 0.75 baanggaxlaor
n
)
be b iy 0.99 b iy bayihnggaxlaor 0.23
beaumont b ow m aa n td 0.81 b ow m aa n td bangladesh b ae ng g | ax d eh sh 0.79 b ae ng g 1 ax d eh sh
b aw m ah td 0.11 bar baar 0.99 baar
bedford b eh dd ferdd 0.99 beh dd ferdd barbara baarbrax 0.56 baarb (er|axr|r)
(ah | ax)
before biy faor 0.79 b(ax|iy)faor baarbaxrax 0.38
baxfaor 0.20 barometric baeraxmehtrrax 0.97 b ae r ax m eh tr r ax
kd kd
beginning b ax g ih n ih ng 0.99 b ax g ih n ih ng basel b aa z ax 1 0.58 b(aa]ae)zaxl
beirut b ey r uw td 0.44 b eh r uw td beyzax]l 0.11
b ey uw td 0.27 bay b ey 0.96 b ey
b eh r uw td 0.17 beach b iy ch 0.97 b iy ch
belfast behlfaestd 0.70 behlfaestd become b ax k ax m 0.97 b (ax|iy ) kahm
behlfaes 0.14 been b ih n 0.96 bih n
behlfraxstd 0.13 begin b ax gihn 0.99 b ax gihn
belgrade behlgdreydd 0.49 behlgr (aaley)dd beijing b ey zh ih ng 0.57 bey (zh|jh) ih ng
behlgreydd 0.29 b ey jh ih ng 0.39
bellevue behlvyuw 0.97 behlvyuw belarus behlaxruws 0.75 b(ehl|eyl)axruw
S
belmont behlmaan td 0.98 behlm aan td biyehlaxruws 0.23
bend b eh n dd 0.93 b eh n dd belgium behljhax m 0.93 b ehljh ax m
berlin berlihn 0.63 berlihn belize baxliyz 0.79 behliy z
berlaen 0.19 behliyz 0.10
berlaxn 0.09 bd 1liy z 0.09
bern bern 0.96 bern bellingham b eh 1 ih ng hh ae m 0.77 b ehlih ng (hh ae| hh
ax | ax ) m
besides b ax s ay dd z 0.67 b (ax|iy)sayddz b eh 1 ih ng hh ax m 0.18
biy say dd z 0.30 below b ax | ow 0.87 b ax | ow
bethesda b ax theh zd ax 0.49 b ax th eh z d ax berkeley ber kd 1iy 0.95 b er kd 1 iy
baxtaxzdax 0.26 bermuda b er m y uw df ax 0.87 b er m y uw df ax
baxsthehzdax 0.22 bernardino bernaxdiynow 0.84 bern (aar|er|ax)
d iy n ow
between baxtwiyn 0.95 baxtwiyn best b eh s td 0.99 b eh s td
billings b ih 1ih ngz 0.99 b ih 1ih ng z better b eh tf er 0.98 b eh tf er
birmingham | b er m ih ng hh ae m 0.92 b er m ih ng ( hh ae | big b ih gd 0.44 b ih gd
hh ax | ax ) m
blah b1laa 0.98 b 1aa b ey gd 0.17
bloomington | b1l uw m ih ngt axn 0.95 bluw mihngtaxn b ax gd 0.10
boca b ow k ax 0.99 b ow k ax binghamton | bihng hh axmtaxn 0.50 bihng (hhax |ax ) m
taxn
boise b oy s iy 0.69 boy (z]s)iy bih ng ax m t ax n 0.44
b oy z iy 0.24 bismarck b ih z m aa r kd 0.99 b ih z m aa r kd
bombay b aa m b ey 0.94 b aam b ey blizzard blih z er dd 0.99 b lih z er dd
bordeaux b aord ow 0.88 baordow bluff blahf 0.43 blahf
bosnia b aa z n iy ax 0.40 b aa z n iy ax blaxf 0.31
b aa z n iy y ax 0.36 blaof 0.11
baazny ax 0.13 bogota bow gaxt aa 0.50 bow gaxt aa
both b ow th 0.82 b ow th b ow gd ax t aa 0.21
ow th 0.16 b ow g ax tf aa 0.12
bowling b ow 1 ih ng 0.97 b ow | ih ng bolivia b ax 1 ih v iy ax 0.62 b(owl|ax1)ihviy
ax
bozeman bowzmaxn 0.99 bowzmaxn b ow l ih v iy ax 0.24
brasilia braxzihly ax 0.33 braxzihl (y ax|iy bonn b aan 0.99 b aan
ax )
brax z ax liy ax 0.25 borneo b aor n iy ow 0.99 b aor n iy ow
braxzihliy ax 0.20 boston baostaxn 0.71 b(aa]ao)staxn
b rax siyliy ax 0.19 baastaxn 0.27
brazil braxzihl 0.98 braxzihl boulder b ow 1df er 0.98 b ow 1 df er
breezy briyziy 0.98 briyziy boy b oy 0.74 b oy
bring b r ih ng 0.99 b r ih ng boysaxtds 0.11
bristol braxst-ax]l 0.50 brihstaxl boyshaxns 0.09
brihstaxl 0.32 bradford braeddferdd 0.96 braedd ferdd
british b rih tf ax sh 0.82 b r ih tf ax sh bratislava | brtfaxzlaavax 0.68 br(aa|ae)tfax (s
|z)laavax
b r ax tf ax sh 0.13 braatfaxzlaav 0.29
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brooklyn bruhkdlaxn 0.99 bruhkdlaxn breckenridge brehkaxnrihjh 0.97 breh kax nrihjh
brunswick brahnzwih kd 0.71 brahnzw(ax|ih) bridgeport b rih jh p aortd 0.97 brihjhpaortd

kd
brahnzwaxkd 0.28 brisbane braxzbaxn 0.44 brihzb (ax|ey)n
bucharest buw k axreh s td 0.92 buw k ax r eh s td brihzbeyn 0.37
buenos bwehnaxs 0.59 bweyn (ax|ow)s brihzbaxn 0.09
bweynows 0.19 britain b r ih tq en 0.99 b rih tq en
bweynaxs 0.11 brookline bruhkd!layn 0.52 bruhkd!layn
bulgaria bax1gehriy ax 0.99 bax1lgehriy ax buhkdlayn 0.16
burlington berlihngtaxn 0.96 berlihngtaxn bdr uh kd l ay n 0.11
but b ah td 0.81 b ah td braxklayn 0.09
b ax td 0.10 brownsville brawnzvihl 0.87 brawnzvihl
buzzards b ahzerddz 0.51 bahzerddz brussels brahsaxlz 0.90 brahsaxlz
baozerddz 0.48 budapest b uw df ax p eh s td 0.93 b uw df ax p eh s td
bye b ay 0.98 b ay buffalo b ah fax 1 ow 0.96 b ah fax 1 ow
cairo k ay r ow 0.90 k ay r ow burbank b er b ae ng kd 0.99 b er b ae ng kd
caledonia k ae l ax d ow n iy ax 0.71 k ae l ax d ow n iy ax burma b er m aa 0.53 b er m ax
kaelaxdowny ax 0.28 b er m ah 0.33
cali k aaliy 0.78 k aaliy b aor m aa 0.13
k ael iy 0.21 butte by uw td 0.99 by uw td
call k aol 0.99 kaol by b ay 0.86 b ay
calling k ao 1 ih ng 0.97 k ao 1 ih ng ¢ s iy 0.98 s iy
cambridge | k ey m bd r ih jh 0.65 k ey m b rih jh calcutta k ae 1 k ah tf ax 0.53 k ae 1 k ah tf ax
k ey m b r ih jh 0.27 k ae l k aa tf ax 0.38
can k aen 0.64 k(ae|ax)n calgary kaelgaxriy 0.73 kaelgaxriy
k ax n 0.34 kaelgdriy 0.16
canberra kaen behrax 0.89 kaenb (ehr|er) ax california kaelaxfaorny ax 0.99 kaelaxfaorny ax
cannes k aa n 0.59 k (aen|aenz]|aan ||| called k aoldd 0.90 k aoldd
kaenz 0.19 kaaldd 0.09
kaanz 0.13 cambodia k ae m b ow df iy ax 0.99 k ae m b ow df iy ax
canyon kaenyaxn 0.85 kaenyaxn camden kaemdaxn 0.99 kaemdaxn
keynyaxn 0.10 canada k ae n ax df ax 0.99 k ae n ax df ax
capital k ae p ax tf ax 1 0.99 k ae p ax tf ax 1 cancun kaen k uw n 0.66 kaen k uwn
caracas kaxraakaxs 0.75 kaxraakaxs kaen k own 0.30
kaeraekaxs 0.11 canton k ae n tq en 0.92 k ae n tq en
caribbean k ax rih b iy ax n 0.55 k(aerax|axrih )b cape k ey pd 0.99 k ey pd
iy ax n
kaeraxbiyaxn 0.19 car kaar 0.99 kaar
k aer ax b iy ae n 0.13 care kehr 0.83 kehr
kaxrihbiy aen 0.10 kyehr 0.16
carlo kaarlow 0.99 kaarlow caribou k ae r ax b uw 0.96 k aerax b uw
carolina kaeraxlayn ax 0.99 kaeraxlayn ax carmel kaarmehl 0.53 kaarm (ax1l|ehl)
casablanca kaesaxblaengkax 0.27 k aesax blaengkax kaarmax]l 0.46
kaesaxblaankax 0.19 carson kaarsaxn 0.99 kaarsaxn
kaesaxblaankae 0.19 casper kaes per 0.99 kaesper
k aa s ax bd 1 aa ng k 0.12 cayenne k ay ae n tf ax dd 0.99 kay (ae|eh)n
ax
kaesax bdlaengk 0.11 cedar s iy df er 0.86 s iy df er
ax
causes k aazax z 0.90 kaozaxz s iy df er uw 0.10
kayzaxz 0.09 center s eh nt er 0.99 s eh nt er
cayman keymaxn 0.81 keymaxn centigrades sehntiygdreyddz 0.39 sehnt ax greyddz
key mehn 0.11 sehntax greyddz 0.34
celsius sehlsiyaxs 0.98 sehlsiyaxs sehntiygreyddz 0.11
centigrade sehnt ax gr ey dd 0.99 s eh nt ax g r ey dd sehntiy greyddz 0.09
central sehntrraxl 0.86 sehntrraxl champaign shaempeyn 0.96 shaempeyn
chance chaens 0.98 chaens chances chaensaxz 0.99 chaensaxz
change ch ey n jh 0.99 ch ey n jh chapel ch ae p ax 1 0.98 ch ae p ax 1
charleston | chaarlst- axn 0.65 chaarl(s|z)taxn charlotte sh aa r 1 ax td 0.99 sh aar 1 ax td
chaarlstaxn 0.32 charlottetown | sherlaxtawn 0.54 shaarlaxtawn
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charlottesville | shaarlaxtdsvihl 0.93 shaarlaxtdsvihl shaerlaxtawn 0.42
chatham ch ae tf ax m 0.86 ch ae tf ax m chattanooga ch ae tf ax n uw g ax 0.99 ch ae tf ax n uw g ax
k ae tf ax m 0.09 checking ch eh k ih ng 0.95 ch eh k ih ng
check ch eh kd 0.97 ch eh kd chi ch iy 0.46 k ay
cheyenne sh ay ae n 0.42 sh ay eh n ch ay 0.36
s ay eh n 0.14 chile ch ih 1 iy 0.56 ch (iyley|ihley |ih
liy )
chicago sh ax k aa g ow 0.99 sh ax k aa g ow ch ih 1 ey 0.24
chill chihl 0.97 chih1 ch iy | ey 0.13
chinese chayniyz 0.72 chayniyz china ch ay n ax 0.96 ch ay n ax
chayniyzyaxtfax 0.17 christchurch | kr ay s td ch er ch 0.94 k r ay s ch er ch
%
christi krihstiy 0.99 krihstiy christmas krihsmaxs 0.95 krihsmaxs
church ch er ch 0.99 ch er ch cincinnati sax n s ax n ae tf iy 0.84 s ih n s ax n ae tf iy
cities s ih tf iy z 0.99 s ih tf iy z s ih n s ax n ae tf iy 0.10
claire klehr 0.99 klehr city s ih tf iy 0.99 s ih tf iy
clear klihr 0.94 klihr clara k1aer ax 0.93 k1laer ax
cleveland kliyvlaxndd 0.99 kliyvlaxndd clearwater k 1ih r w aa tf er 0.58 klihrw (aa|ao | uh
) tf er
closest k1lowsaxstd 0.99 klowsaxstd klihr wao tfer 0.16
cloud klawdd 0.84 klawdd climate klay m ax td 0.99 klay m ax td
cloudy k1 aw df iy 0.89 k 1aw df iy clothes klowz 0.99 klow (dhz|z)
coastal kowstaxl 0.99 kowstax]l clouds klawdd z 0.83 klawdd z
cocoa k ow k ow 0.99 k ow k ow coast k ow s td 0.95 k ow s td
cold k ow ldd 0.98 kowldd coat k ow td 0.99 k ow td
coldest kow ldf ax s td 0.97 k ow 1 df ax s td cod k aa dd 0.92 k aa dd
college k aa l ax jh 0.99 k aa l ax jh colder k ow 1 df er 0.99 k ow 1 df er
cologne kaxlown 0.90 kaxlown collection kaxleh kdshaxn 0.99 kax1lehkd sh axn
colombo kax1lah m b ow 0.99 kax1lah mb ow collins kaalaxnz 0.89 kaalaxnz
colorado k aal ax r aa df ow 0.66 kaalaxr (ae|aa)df kaolaxnz 0.09
ow
k aa l ax r ae df ow 0.32 colombia k ax 1 ah m b iy ax 0.72 k ax1lah m b iy ax
columbus kaxlahmbaxs 0.92 kaxlahmbaxs k ax ] ah m bd iy ax 0.14
coming k ah m ih ng 0.98 k ah m ih ng k ax 1 ah m bd y ax 0.09
computer kax m p y uw tf er 0.95 kax m py uw tf er color k ah l er 0.31 k ahler
condition k ax n d ih sh ax n 0.86 k ax n d ih sh ax n kahlerz 0.20
congo k aa ng g ow 0.83 k aa ng g ow kaaler 0.16
k ao ng g ow 0.16 k ax 1 er 0.12
connecticut kaxnehtfax kax td 0.98 k ax n eh tf ax k ax td kaalrtd 0.10
copenhagen kowpaxnhheygax 0.92 k ow p ax n hh ey g ax columbia kaxlah m b iy ax 0.93 kax1lah m b iy ax
n n
cost k ao s td 0.99 k ao s td come k ah m 0.87 k ah m
could k uh dd 0.98 k (uh|ax)dd k ax m 0.12
countries kahntrriyz 0.99 kahntrriyz complete kaxmpliytd 0.99 kaxmpliy td
county k aw nt iy 0.94 k aw nt iy concord k aa ng k er dd 0.79 kaangk (er|aor)
course kaors 0.94 kaors k aa ng k ao r dd 0.16
cozumel kaazaxmehl 0.43 k (aa|ow )z ax m eh conditions kaxndihshaxnz 0.99 kaxndihshaxnz
1
kowzaxmehl 0.42 connect k ax n eh kd td 0.99 k ax n eh kd td
k aazaxmaxl 0.13 cool k ax 1 0.56 k uw 1
creek k riy kd 0.99 (kriykd | krihkd) k uw ax 1 0.17
croatia k r ow ey sh ax 0.73 kr ow ey sh ax k uw 1 0.09
k r ax w ey sh ax 0.21 corpus kaorpaxs 0.94 kaorpaxs
crosse kraas 0.56 kraos costa k ow s t ax 0.96 k ow s t ax
kraos 0.27 count k aw n td 0.97 k aw n td
k ao's 0.16 country k ah n tr r iy 0.99 k ah n trr iy
cruz kruwz 0.98 kruwz couple k ah p ax 1 0.99 kah pax]l
cupertino kuw pertiy n ow 0.95 k uw p er t iy n ow coverage k ah v r ax jh 0.99 kahv (er|r)axjh
currently keraxntdliy 0.97 keraxntdliy created k riy ey tf ax dd 0.89 kriy ey tf ax dd
cyprus say pdr ax s 0.99 say pdr ax s crete kriytd 0.97 k riy td
d d iy 0.99 d iy croix k r oy 0.98 kr oy
dakar daxkaar 0.73 daakaar cruces kruwsaxz 0.38 kruwsiyz
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daekaor 0.15 kruwsihz 0.19
dallas daelaxs 0.99 daelaxs kruwsaxs 0.17
danbury d aen behriy 0.49 daenbehriy cuba ky uw b ax 0.97 k y uw b ax
d ae m b er iy 0.31 current k er ax n td 0.96 ker ax n td
daen b eriy 0.15 cyclones | saykdlaanz 0.81 sayklownz
darwin daarwehn 0.89 daarwaxn say klaan z 0.18
daarwaxn 0.10 czech ch eh kd 0.97 ch eh kd
database deytfaxbeys 0.99 d(ey|ae)tfax bey daily deyliy 0.99 deyliy
S
davenport | d ae vax n p aor td 0.99 daevaxnpaortd dakota d ax k ow tf ax 0.94 d ax k ow tf ax
day d ey 0.96 d ey damascus | d ax maesk axs 0.99 daxmaeskaxs
days deyz 0.96 deyz danville daenvihl 0.99 daenvihl
dayton d ey tq en 0.99 d ey tq en data d ey tf ax 0.74 d (ey|ae) tfax
de d iy 0.47 d(eh|ey|iy) d ae tf ax 0.25
d ey 0.44 date d ey td 0.99 d ey td
death d eh th 0.88 d eh th davis deyvaxs 0.99 deyvaxs
t eh th 0.10 daylight deylaytd 0.99 deylaytd
deep diy pax]l 0.40 d iy pd daytime deytaym 0.99 deytaym
aa d iy pd 0.40 daytona d ey t ow n ax 0.97 d ey t ow n ax
d iy pd 0.11 dearborn dihrbaorn 0.98 dihrbaorn
degrees diygriyz 0.88 d(ax|iy)griyz december | d ax seh m b er 0.65 d(ax|iy)sehmber
daxgriy z 0.10 diysehmber 0.31
delaware dehlaxwehr 0.83 dehlaxwehr define daxfayn 0.84 d(ax|iy)fayn
delmar dehlmaar 0.98 dehlmaar daxsfayn 0.14
denver dehnver 0.99 dehnver del dehl 0.97 dehl
describe | d axskray bd dd 0.70 d(ax|iy)sk-raybd delhi dehliy 0.98 dehliy
d ax s k- r ay bd dd 0.24 denmark dehnmaarkd 0.94 dehnmaarkd
detailed diy tehldd 0.50 d(ax|iy)teyldd des d ax 0.89 d(ax|eh)
diyteyldd 0.38 detail diytehl 0.43 d(ax|iy)teyl
diy tehl 0.09 diyteyl 0.27
dew d uw 0.96 d uw diy t ael 0.23
dhabi d aa b iy 0.99 d aa b iy detroit d iy tr r oy td 0.77 d (ax|iy) trroy td
diego d iy ey g ow 0.99 d iy ey g ow d ax tr r oy td 0.20
different dih fraxn td 0.89 dihf(er|r)axntd dewey d uw iy 0.69 d uw iy
d ih f er ax 0.09 d uw r iy 0.30
direction d ax r eh kd sh ax n 0.96 d(ayr|axr)ehkd did d ih dd 0.93 d ih dd
sh ax n
distance dihstaxns 0.99 dihstaxns difference | dihfraxns 0.99 dihf(er|r)axns
djibouti jh ax b uw tf iy 0.50 jh ax b uw tf iy digital d ih jh ax tf ax 1 0.85 dih jhax t ax 1
d ih jh ax b uw tf iy 0.42 directions | d axrehkdshaxnz  0.99 d(ayr|axr)ehkd
sh axnz
dodge d aa jh 0.93 d aa jh district d ih s tr r ax kd td 0.99 d ih s tr r ax kd td
doing d uw ih ng 0.82 d uw ih ng do d 0.71 d uw
dominican | dax mihnaxkaxn  0.89 d (ax | ow ) m ih n ax d uw 0.26
k ax n
d ax m ih n ax k ax 0.10 does d ahz 0.97 d ah z
dorado d ax r aa df ow 0.56 d ax r aa df ow domingo | d ax m ih ng g ow 0.96 d ow m ih ng g ow
d axrey dow 0.19 done dahn 0.91 dahn
d ax r ey df ow 0.17 dover d ow v er 0.99 d ow v er
down d aw n 0.99 d aw n drive drrayv 0.99 drrayv
driving dr r ay v ih ng 0.99 dr r ay v ih ng dry dr r ay 0.85 dr r ay
dublin dahbdlaxn 0.97 dahbdlaxn tray 0.09
dude d uw dd 0.86 d uw dd dubuque d ax by uw kd 0.99 d ax b y uw kd
d uh dd 0.13 dulles dahlaxs 0.85 dahlaxs
duluth d ax 1 uw th 0.91 d ax 1 uw th dowlaxs 0.14
durham d aor ax m 0.64 d(er|aor)axm durango d ax r ae ng g ow 0.39 d(axr|aor)aengg
ow
d er ax m 0.13 daxreyngow 0.34
jhaxraxm 0.10 d y ao r ae ng g ow 0.10
dusseldorf | duwsaxldaorf 0.88 duwsaxldaorf during d aor ih ng 0.51 d(er|aor)ihng
daxlsaxldaorf 0.11 d er ih ng 0.27
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earlier er liy er 0.72 er liy er jh er ih ng 0.09
ehrliyer 0.21 e iy 0.95 iy
early er liy 0.99 er | iy earliest erliy ax s td 0.99 erliy ax s td
earthquake er th k w ey kd 0.89 er th k w ey kd earth er th 0.96 er th
east iy s td 0.96 iy s td earthquakes | er th k w ey kd s 0.97 er th k weykds
eat iy td 0.99 iy td eastern iystern 0.99 iystern
edinburgh | eh dd en b er ow 0.52 eh df ax n b er ( ax | ecuador ehkdwaxdaor 0.61 ehkdwaxdaor
ow | gd)
eh df ax n b er ow 0.26 eh kd wax df ao r 0.28
eh dd en b er gd 0.13 edmonton echddmaxntaxn 0.96 echddmaxntaxn
edward eh dd w er dd 0.76 eh dd w er dd effect ax f eh kd td 0.91 (ax|iy ) fehkd td
ey dd w er dd 0.11 eight ey td 0.99 ey td
egypt iy jh ax pd td 0.97 iy jh ax pd td eighth ey td th 0.72 ey (td th | th)
eighteenth ey t iy n th 0.99 ey t iy n th ey th 0.21
eighty ey tf iy 0.99 ey tf iy either ay dh er 0.47 (iy | ay ) dher
el eh 1 0.94 eh 1 iy dh er 0.34
eleventh ax leh v ax n th 0.72 axleh vaxn th eleven axleh vaxn 0.88 axlehvaxn
iy leh v ax n th 0.21 lehvaxn 0.11
elmira ehlm ayrax 0.88 ehlm ay r ax elkins ehlkaxnz 0.99 ehlkaxnz
emergency | axiymer jhaxnsiy 0.90 ax m er jh ax n s iy else ehls 0.99 ehls
end eh n dd 0.84 eh n dd emirates ehmaxraxtds 0.99 ehmaxr (ey|ax)td
s
ih n dd 0.15 england ih ng g1 ax n dd 0.98 ih ng gl ax n dd
english ih ng g1 ax sh 0.98 ih ng g1 ax sh enid iy n ih dd 0.70 iy n ax dd
enough ax n ah f 0.91 (ax |iy )nahf iy n ax dd 0.25
equator iy k w ey tf er 0.99 (ax |iy ) k wey tfer entire ihntayr 0.32 ehntayr
essen ithzehn 0.95 ehsaxn ehntayrax 0.29
estonia eh st ow n iy ax 0.44 eh st ow niy ax ih nt ay er 0.12
ehstowniyy ax 0.38 ehntayriy 0.11
eugene y uw jh iy n 0.99 y uw jh iy n erie ih r iy 0.65 ih r iy
evansville ehvaxnzvihl 0.99 ehvaxnzvihl y ih r iy 0.27
evening iy v ax n ih ng 0.78 iy v (axn|n)ihng estimated ehstaxmeytfaxdd 0.99 eh s t ax m ey tf ax dd
iy v n ih ng 0.20 ethiopia iy th iy ow p iy ax 0.42 iy th iy ow p iy ax
ever eh v er 0.92 eh v er iy th iy ow p iy y ax 0.19
every eh vriy 0.80 eh vriy iy t iy ow p iy ax 0.18
aafaxriy 0.19 europe y ao r ax pd 0.74 y (er|aor) ax pd
exact eh gd z ae kd td 0.37 eh (gd | kd ) z ae kd y er ax pd 0.11
td
ey gd z ae kd td 0.34 even iy vaxn 0.99 iy vaxn
ax gd z ae kd td 0.27 events iyvehntds 0.66 (ax|eh|iy)vehntd
s
except eh kd s eh pd 0.90 eh kd s eh pd td ax vehn tds 0.33
exit eh gd z ih td 0.33 eh (gdz|kds) axtd everett eh vraxtd 0.99 ehv (axr|r)axtd
eh kd z ih td 0.27 everything eh v r iy th ih ng 0.99 eh v r iy th ih ng
eh kd s ax s 0.17 exactly eh gd z ae kd td 1 iy 0.99 eh (gdz | kds) ae (
kd td | kd ) 1iy
eh kd s ih td 0.16 excuse kd s k- y uw z 0.63 eh kd s k- y uw z
expanded iy eh kd s p- aend ax 0.99 eh kd s p- aen d ax dd eh kd s k- y uw z 0.36
dd
expected ehkdsp-ehkdtaxdd 0.71 eh kd s p- eh kd t ax dd expand eh kd s p- ae n dd 0.56 eh kd s p- ae n dd
axkdsp-ehkdtaxdd 0.27 ax kd s p- ae n dd 0.43
expects eh kd s p- eh kd s 0.98 eh kd s p- eh kd td s expect eh kd s p- eh kd td 0.94 eh kd s p- eh kd td
extended ehkdstehndaxdd 0.75 eh kd s t- eh n d ax dd expecting eh kd s p-eh kd tihng 0.89 eh kd s p- eh kd t ih ng
ehkdst-ehndaxdd 0.19 explain ehkdsp-leyn 0.57 ehkdsp-leyn
f eh f 0.79 eh f axkdsp-leyn 0.16
eh ax f 0.13 ehkd sp-leyndd 0.12
factor faekdter 0.97 faekdter extreme eh kd s tr r iy n 0.99 eh kd s tr r iy m
fair fehr 0.99 fehr fabulous faebdyaxlaxs 0.95 faebd (yax |y uw)
lax s
fairfax fehrfaekds 0.80 fehrfaekds fahrenheit f ae r ax n hh ay td 0.80 faeraxn hh ay td
fallen faolaxn 0.99 faolaxn fehraxn hhay td 0.17
falls faolz 0.98 faolz fairbanks fehrbaengkds 0.99 fehrbaengkds
far faar 0.69 faar fall faol 0.96 faol
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faor 0.28 falling faolih ng 0.99 faolih ng
fast faestd 0.92 fae s td falmouth faw 1 m ax th 0.66 f(awl|aal)m axth
fayetteville feyyaxtdvihl 0.77 fey ax td vih 1 faalm ax th 0.16
feyaxtd vihl 0.11 fael m ax th 0.13
february feh bdy uw eh r iy 0.44 fehbd (ruw|yuw) fargo faar gow 0.97 faargow
(ehr|er)iy
feh bdruwehriy 0.32 fax faekds 0.63 faekds
feet fiy td 0.99 fiy td ffaekds 0.36
fergus fergaxs 0.56 fergaxs fe fey 0.96 fey
fergaxz 0.42 feeling fiy 1 ih ng 0.99 fiy 1l ih ng
few fyuw 0.97 fyuw fell fehl 0.99 fehl
fifth f ih th 0.51 fih (fth|th) fernando fernaendow 0.99 fernaendow
fih f th 0.46 fifteenth fih ft iy n th 0.99 fih ft iy n th
fiji fiy jh iy 0.99 fiy jh iy fifty fih ft iy 0.90 fih ft iy
find fay ndd 0.99 fay ndd finally faynliy 0.51 fay naxliy
finished fih n ax sh td 0.80 fih n ax sh td fayliy 0.30
fih n iy sh td 0.12 faynddliy 0.13
first ferstd 0.96 ferstd fine fayn 0.99 fayn
flagstaff flaegdst-aef 0.95 flaegdst-aef finland fihnlax ndd 0.85 fihnlax ndd
flight flaytd 0.99 flaytd five fay v 0.99 fay v
flint flih n td 0.69 flih n td flash f1ae sh 0.68 flaesh
flehntd 0.27 flaeshs 0.17
flooding f1ah df ih ng 0.90 f1ah df ih ng flaeshf 0.14
florence flaoraxns 0.84 flaoraxns flights flaytds 0.98 flay tds
flaoraxntds 0.13 flood flahdd 0.99 flahdd
flurries flaoriyz 0.99 fleriyz floods flahdd z 0.97 flahdd z
flying flay ih ng 0.99 flay ih ng florida flaor ax df ax 0.53 fl(aorax|aor)df
ax
foggy fao g iy 0.66 f(aa|ao) giy flaordf ax 0.38
faagiy 0.32 fly flay 0.97 flay
football fuhtd b aol 0.79 fuhtdbaol fog fao gd 0.65 f(aa|ao)gd
lax fuh td b aol 0.10 faa gd 0.28
forecast faor k aestd 0.99 faor k aes td following f aa l ow ih ng 0.99 f aalow ih ng
forecasts faorkaestds 0.94 faorkaestds for faor 0.53 f(aor|er|axr)
forget fer gehtd 0.83 f(aor|er)gehtd fer 0.42
form faorm 0.99 faorm forecasted | faor k aest ax dd 0.99 faork ae st ax dd
forty faortfiy 0.99 faortfiy foreign faoraxn 0.85 faoraxn
fourteenth faortiy nth 0.99 faortiy nth sfaoraxn 0.14
framingham freymihng hhaem 0.97 fr ey m ih ng ( hh ae | forks faorkds 0.99 faorkds
ax ) m
francisco fraxnsihskow 0.98 fr(ax|ae)nsihsk fort faortd 0.98 faortd
ow
fredericksburg | frehdrraxkdsber 0.98 frehdrraxkdsber four faor 0.97 faor
gd gd
freeze friyz 0.99 friyz fourth faorth 0.98 faorth
french frehnch 0.86 frehnch france fraens 0.55 fraens
fraen ch 0.12 fraentds 0.42
friday fraydfey 0.99 fraydfey frankfurt fraengkdfertd 0.90 fraengkdfertd
frost fraostd 0.67 fraostd free friy 0.99 friy
fraastd 0.26 freezing friy zih ng 0.99 friy z ih ng
full fax1 0.64 fuhl fresno frehznow 0.99 frehznow
faol 0.34 from fraxm 0.66 fr(ah|ax)m
funny fah n iy 0.66 fah n iy frahm 0.31
f ah n iy ey tf ax dd 0.32 fuck f ah kd 0.46 f ah kd
future fyuw cher 0.99 fyuw cher f aa kd 0.37
gadsden gaeddzdaxn 0.99 gaeddzdaxn function f ao ng kd sh ax n 0.53 f ah ng kd sh ax n
galaxy gaelax kd s iy 0.70 gaelax kd s iy f ah ng kd sh ax n 0.41
g ael ax kd s iy iy 0.29 further fer dher 0.98 fer dher
game gey m 0.99 gey m g jh iy 0.83 jh iy
gatwick g ae td w ih kd 0.61 gaetd w (ax|ih ) kd jhiy iy 0.15
g ae td w iy kd 0.37 gainesville | gey nz vihl 0.89 geynzvihl
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geneva jh ax niy v ax 0.60 jhax niy v ax geynzvihlaxl 0.09
jhih n iy v ax 0.30 galveston gaelvaxstaxn 0.95 gaelvaxstaxn
georgetown jhaorjhtawn 0.82 jhaorjhtawn garbage gaarbaxjh 0.99 gaarb axjh
jhaorzhtawn 0.16 general jhehnaxraxl 0.51 jhehn (axr|er|r)
ax 1
german jhermaxn 0.99 jhermaxn jhehnraxl 0.34
germany jher m ax n iy 0.96 jher max n iy george jhaorjh 0.99 jh aor jh
getting g eh tf ih ng 0.48 geh (tfihng | tqen) georgia jhaor jh ax 0.98 jhaor jhax
g ih tf ih ng 0.38 germantown | jhermaxntawn 0.99 jhermaxntawn
give gihv 0.98 gihv get geh td 0.97 geh td
glacier gleysher 0.86 gleysher gibraltar jhaxbraoltfer 0.99 jhaxbraoltfer
glenwood gleh n w uh dd 0.81 gleh n wuh dd giving g ih v ih ng 0.85 g ih v ih ng
glaxn wuhdd 0.17 jh ih v ih ng 0.14
going g ow ih ng 0.73 g ow ih ng glasgow glaezgow 0.27 glaezgow
g uh 0.21 glaes k- ow 0.26
got g aa td 0.65 g aa td glaesk-aw 0.11
g aa 0.22 glaas k- ow 0.10
great greytd 0.98 greytd glaasgow 0.09
green griyn 0.99 griyn go g ow 0.98 g ow
greensboro griynzberow 0.63 griynzb (er|aor) good g uh dd 0.92 g uh dd
ow
griynzbaorow 0.17 grand graendd 0.98 graendd
griynzbaarow 0.10 greece griys 0.95 griys
grenoble graxnowbaxl 0.99 graxn (ow|aa)b greenland griynlaxndd 0.48 griynlaxndd
ax 1
ground grawndd 0.99 grawndd griynlaendd 0.26
guadaloupe | gwaadfax luwpey  0.99 g w aa df ax 1 uw pd griynlayndd 0.09
guangzhou g W aa ng z ow 0.66 gwaang (z|zh|jh) greenville griynvihl 0.91 griynvihl
(aw | ow )
g w aa ng zh uw 0.25 groton graatqen 0.93 graatqen
guatemala g w aa tf ax m aa l ax 0.75 g w aa tf ax m aal ax guadalajara | gwaadfaxlax hhaa 0.36 g w aa df ax 1 ax hh aa
r ax r ax
gwaatfaxmaalaa 0.14 gwaadfaxlaahhaa 0.31
r ax
w aa tf ax m aa ]l ax 0.10 waa df ax l ax hhaar 0.10
ax
guiana gy iy ae n ax 0.30 g(ay|iy) (ae|aa) g waa df ax l ax hh ae  0.10
n ax r ax
g iy ae n ax 0.21 guam g w aa m 0.81 g waa m
g aa iy ae n ax 0.15 guardia g w aar df iy ax 0.92 gw ? aardfiy ax
iy ae n ax 0.09 guess gehs 0.99 gehs
gy aan ax 0.09 gulf gahlf 0.98 gahlf
gulfport gahlfpaortd 0.80 gahlfpaortd guy g ay 0.99 g ay
guyana gy axn ax 0.49 g(ay|iy) (aa]ae) guys g ay z 0.74 g ay z
n ax
g ay ae n ax 0.49 g ay tf ax z 0.25
h ey ch 0.91 ey ch had hh ae dd 0.95 hh ae dd
hagerstown hheygerztawn 0.84 hhey gerztawn hail hh eyl 0.83 hh eyl
haiti hh ey tf iy 0.99 hh ey tf iy halifax hh aeclax fae kd s 0.93 hh aclax faekd s
hamburg hh ae m b er gd 0.95 hh ae m b er gd hampshire hh ae m pd sh er 0.99 hh ae m pd sh er
hampton hh aem pdtaxn 0.99 hh aem pdtaxn hang hh ae ng 0.80 hh ae ng
hanoi hh ae n oy 0.74 hh (ae | ax ) n oy hanover hh ae n ow v er 0.99 hh ae n ow v er
happen hh ae p ax n 0.99 hh ae p ax n happened hh ae p ax n dd 0.99 hh ae p ax n dd
happening hh ae p ax n ih ng 0.61 hh ae p ax n ih ng harare hh ax r aar ey 0.72 hhaxraar (ey|ax)
hh ae pd n ih ng 0.18 hh ax r aa r ax 0.13
hh ae p ax n iy ng 0.12 hh ax r aa r iy 0.13
harbor hhaarber 0.92 hh aar b er harriman hh ae r ax m ih n 0.99 hh ae r ax m ax n
harrisburg hh aer ax s b er gd 0.99 hh aer ax s b er gd hartford hh aar td f er dd 0.98 hh aa r td f er dd
has hh ae z 0.96 hh ae z hatteras hh ae tf ax r ax s 0.86 hh ae tf (er | axr ) ax
s
havana hh ax v ae n ax 0.75 hh ax v ae n ax hh ae tfer s 0.12
hh ax v aa n ax 0.11 have hh ae v 0.99 hh ae v
haven hh ey vaxn 0.98 hhey vaxn having hh ae v ih ng 0.91 hh ae v ih ng
hawaii hh ax w ay iy 0.84 hh ax w ay iy head hh eh dd 0.94 hh eh dd
hh ax w ay iy iy 0.10 heard hh er dd 0.88 hh er dd
hear hhihr 0.96 hhih r hh ey dd 0.11
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heat hh iy td 0.95 hh iy td heathrow hh iy th r ow 0.52 hh iy th r ow
heavy hh eh v iy 0.63 hh eh v iy hh iy td r ow 0.18
hh ae v iy 0.33 hh iy tf r ow 0.16
heights hh ay td s 0.99 hh ay td s heidelberg hh ay df ax 1 b er gd 0.99 hh ay df ax 1 b er gd
help hh eh 1 pd 0.99 hh eh 1 pd hello hh ax | ow 0.77 hh (eh | ax )l ow
helsinki hh eh I s ih ng k iy 0.86 hh eh I s ih ng k iy hh eh 1 ow 0.21
here hhihr 0.37 hh ih r helpful hhehlpdfax]l 0.99 hhehlpdfax]l
hh y er 0.32 hemisphere hhehmaxsfihr 0.99 hhehmaxsfihr
yihr 0.11 hey hh ey 0.97 hh ey
hi hh ay 0.95 hh ay hidden hh ih dd en 0.99 hh ih dd en
high hh ay 0.98 hh ay higher hh ay er 0.42 hh ay r
highest hh ay ax s td 0.97 hh ay ax s td hh ay td er 0.29
hill hh ih 1 0.89 hh ih 1 hh ay eh r 0.22
hilo hh iy 1 ow 0.93 hh iy 1 ow highs hh ay z 0.97 hh ay z
hingham hh ih ng ax m 0.95 hh ih ng ax m hills iyls 0.37 hhihlz
hit hh ih td 0.99 hh ih td hhihlz 0.34
hobart hh ow ax b aa r td 0.38 hhowb (aar|er) td hhihls 0.16
hh ow b aa r td 0.25 iy l z 0.09
hh ow b er td 0.24 hilton hh ih 1 tq en 0.99 hh ih 1 tq en
hh ax b aa r td 0.11 history hhihstaxriy 0.34 hhihs (taxr|trr)
iy
hole hh ow 1 0.66 hh ow 1 hh ih s tr r iy 0.33
hh ow ax 1 0.31 hh ih s t er iy 0.20
hollywood hh aa l iy w uh dd 0.88 hh ao l iy w uh dd ho hh ow 0.99 hh ow
hh ao |l iy w uh dd 0.10 hold hh ow 1 dd 0.87 hh ow 1 dd
hong hh aa ng 0.76 hh (aa | ao ) ng td hh ow 1 dd 0.12
hh ao ng 0.22 holland hh aalax n dd 0.92 hh aa l ax n dd
hope hh ow pd 0.75 hh ow pd honduras hhaandaoraxs 0.79 hhaand (er|aor)
ax s
hh aw pd 0.24 hh aanderaxs 0.20
hotter hh aa tf er 0.99 hh aa tf er honolulu hh aa n ax I uw 1 uw 0.97 hh aa n ax I uw 1 uw
hours aw er z 0.66 aw er z hot hh aa td 0.99 hh aa td
how hh aw 0.99 hh aw hottest hh aa tf ax s td 0.96 hh aa tf ax s td
humidity hh y uw m ih df ax tf 0.99 hh y uw m ih df ax tf houston hhyuwstaxn 0.87 hhyuwstaxn
iy iy
hundred hh ah n d er dd 0.66 hhahn (der|drrax humid hh y uw m ax dd 0.55 hh y uw m ax dd
) dd
hh ah n dr r ax dd 0.23 hh y uw m ih dd 0.43
huntington hh ah nt ih ng t ax n 0.91 hh ah nt ih ng t ax n hummer hh ah m er 0.98 hh ah m er
hurricane hheraxkeyn 0.93 hheraxkeyn hungary hh ah ng g ax r iy 0.84 hh ah ng g ax r iy
hutchinson hh ah ch ax nsaxn 0.99 hh ah ch ax nsaxn huntsville hh ahntdsvihl 0.87 hhahntdsvihl
i ay 0.99 ay hurricanes hheraxkeynz 0.98 hheraxkeynz
iceland ay sl ax n dd 0.92 ay s | ax n dd hyannis hh ay aen ax s 0.97 hh ay aen ax s
if ih f 0.72 (ih|ax)f ice ay s 0.48 ay s
ax f 0.25 ay iy s 0.41
image ih m ax jh 0.99 ih m ax jh ay ay 0.09
in ih n 0.91 (ih]ax)n idaho ay df ax hh ow 0.95 ay df ax hh ow
inclement ihnklaxmaxntd 0.99 (ih]ax)nkl (ax| illinois ih l ax n oy 0.81 ih l ax n oy
eh )m (ax |eh ) n td
independence | ihndaxpehndax 0.74 ihndaxpehndaxn impressive axmprehsaxv 0.99 (ih|ax)mprehsax
td s S v
ihndaxpehndaxn 0.20 inches ihnchaxz 0.99 ihn ch ax z
s
india ih n d iy ax 0.93 ih n d iy ax including ih n k 1 uw df ih ng 0.96 (ih | ax ) n k1 uw df
ih ng
indianapolis ihndiyaxnaepaxl 0.96 ihndiyaxnaepaxl index ihndehkds 0.99 ihndehkds
ax s ax s
information ihnfermeyshaxn 0.87 ihnf(aor|er)mey indiana ih n d iy ae n ax 0.99 ih n d iy ae n ax
sh ax n
axnfermeyshaxn  0.09 indonesia ih n d ax n iy zh ax 0.46 ihnd (ow|ax)niy
zh ax
inquiring ax n k w ay ih ng 0.48 (thng|ihn)kwayr ih n d ow n iy zh ax 0.33
ih ng
iy n k w ay r ih ng 0.24 innsbruck ithnzbraxkd 0.91 ihnzbr (uh|ax)kd
ih n k w ay er ih ng 0.18 instead axnst-eh dd 0.73 (ih | ax ) ns t- eh dd
interested ihntrraxstaxdd 0.84 ih (ntax |ntr)r(eh international | ih nt er n aeshaxnax 0.78 ih nt er n ae ( sh ax |
|ax ) staxdd 1 sh)naxl
ihntaxraxstaxdd 0.13 ih nt er n ae sh n ax 1 0.18
internet ih nt er n eh td 0.52 ih nt er n eh td iowa ay ax w ax 0.62 ay ax w ax

83




Word [ PMM Baseforms Weight [ Expert Baseform “[ Word PMM Baseforms Weight [ Expert Baseform
ih nt er n eh th td 0.17 ay ax w aa 0.17
ihnternstd 0.17 ay ow W ax 0.09
ih nt er n ax td 0.10 iraq ay r ae kd 0.42 (ihr|ayr|axr) (aa
| ae ) kd
iran ay ax r ae n 0.17 (ihr|ayr|axr) (aa iy r ae kd 0.15
| ae ) n
yaxraan 0.16 ax r aa kd 0.14
iyraan 0.15 ay r aa kd 0.13
yaxraen 0.13 irvine er vayn 0.92 erv(ay|ax)n
ax r aan 0.12 islamabad | ihzlaamaxbaadd 048 ax z 1 aa m ax b aa dd
ay r ae n 0.09 ihz]laam ax b ay dd 0.31
ireland ayrlaxndd 0.81 ayrlaxndd axzlaamax baadd 0.18
ay r ax l ax n dd 0.11 islands ay lax ndd z 0.97 ay lax n dd z
is ih z 0.72 (ih|ax)z isles ay lz 0.99 aylz
s 0.25 istanbul ihstaenbax]l 0.35 ihstaanbuwl
island ay lax n dd 0.99 ay l ax n dd ihst-aenbax]l 0.20
isle ay 1 0.72 ay 1 ihstaxnbaxl 0.17
ax ay ax 1 0.22 ihstaanbaxl 0.14
israel ithzriyax]l 0.31 ithzr (iyl|iyaxl|ey italy ih tf ax 1 iy 0.93 ih tf ax 1 iy
ax 1)
ihzreyaxl 0.21 its ax td s 0.54 (ith|ax)tds
ihzreyl 0.21 ih td s 0.30
ithzriyl 0.12 ih z 0.14
it ih td 0.99 ih td j jhey 0.98 jhey
ithaca ih th ax k ax 0.95 ih th ax k ax jackson jhaekdsaxn 0.98 jhaekdsaxn
ivory ay v riy 0.95 ay vax ? riy jakarta jhax k aar tf ax 0.91 jhax k aar tf ax
jacket jh ae k ax td 0.99 jh ae k ax td janeiro zh ax n eh r ow 0.70 (zh|jh)axnehrow
jacksonville jhaekdsaxnvihl 0.95 jhaekdsaxnvihl jhaxnehrow 0.28
jamaica jh ax m ey k ax 0.94 jh ax m ey k ax japan jh ax p aen 0.94 jhax p aen
january jhaenyuwehriy 0.78 jhaenyuwehriy jersey jherziy 0.99 jherziy
jhaenyaoriy 0.10 job jh aa bd 0.80 jh aa bd
jeopardy jh eh p er df iy 0.67 jhehperdfiy john y aa n 0.66 jhaan
jh ax p er df iy 0.28 jhraan 0.33
jerusalem jhaxruwsaxlaxm 0.85 jhaxruwsaxlaxm jonesboro | jhownzbrow 0.81 jhownzberow
jhaxruwsaxlaam 0.12 jhownzberow 0.18
johannesburg | jhow hhaenaxsber 0.85 jhow hhaenaxsber jose hh ow z ey 0.98 hh ? ow z ey
gd gd
johns jhaanz 0.72 jhaanz july jhuh1ay 0.47 jh(uhl]axl) ay
jhaonz 0.15 jhax1ay 0.46
jordan jhaordden 0.84 jhaordden juneau jh uw n ow 0.99 jh uw n ow
juan W aa n 0.99 W aa n just jh ah s td 0.57 jh ah s td
june jh uw n 0.98 jh uw n jhax s td 0.34
jupiter jh uw p ax tf er 0.99 jh uw p ax tf er kabul kaabaxl 0.30 kaabuhl
k k ey 0.99 k ey kax b uw ax 1 0.17
kahului k aa hh ax | uw iy 0.85 k aa hh ax | uw iy kae b uwl 0.14
kalispell kaelax s p-ehl 0.62 kaelax s p-ehl k ax b uw 0.12
kaelaxspehl 0.32 k ax b uw | 0.10
katmandu k ae td m ae n d uw 0.79 k aetd m aen d uw kalamazoo k ae ]l ax m ax z uw 0.98 k ae ]l ax m ax z uw
kentucky k ax n t ah k iy 0.99 k (eh]ax)ntahkiy kansas k aen zaxs 0.97 kaenzaxs
key k iy 0.95 k iy kenosha k ax n ow sh ax 0.89 k ax n ow sh ax
kilimanjaro kihlaxmaxnjhaar 0.99 kihlaxmaxnjhaar k ax n ow sh s ax 0.10
ow ow
kind k ay n dd 0.89 k ay n dd kenya k eh ny ax 0.96 k(eh|iy)nyax
kingdom kihngdaxm 0.99 kihngdaxm kiev k iy eh v 0.65 kiy eh v
kinshasa k ih n sh aa s ax 0.60 k ih n sh aa s ax kiy aef 0.14
k ih n sh aa sh sh ax 0.19 killington kihlih ng t ax n 0.98 kih1lih ngt ax n
k ih n sh aa s aa td 0.19 kinds kaynddz 0.67 kaynddz
kittyhawk k ih tf iy hh ao kd 0.75 k ih tf iy hh ao kd k ay ndd 0.32
k ih tf iy hh aa 0.23 kingston kih ngst-axn 0.89 kihngstaxn
knowledge n aal ax jh 0.90 n aal ax jh kihngstaxn 0.09
knoxville n aa kd s vihl1 0.93 n aa kd s vihl kitts kih td s 0.99 kih td s
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kong k aa ng 0.70 k (aa | ao ) ng know n ow 0.99 n ow
k ao ng 0.19 knox n aa kd s 0.94 n aa kd s
kosovo k ow s ax v ow 0.53 k ow s ax v ow kodiak k ow df iy ae kd 0.39 k ow df iy ae kd
k ao s ow v ow 0.13 k ow df iy y ae kd 0.35
k ow s ow v ow 0.13 td ow df iy ae kd 0.22
kuala k w aalax 0.83 k w aalax korea k ax r iy ax 0.85 k (ax | ao ) riy ax
k waalaa 0.16 k ao r iy ax 0.12
kuwait kuw w ey td 0.92 kuw w ey td kourou k ax r uw 0.52 k uw r uw
1 ehl 0.91 ehl k ao r uw 0.26
labor leybaxr 0.99 ley ber k ow ao r uw 0.17
laconia l ax k ow n iy ax 0.68 l ax k ow n iy ax kunming k uh n m ih ng 0.64 k uh n m ih ng
lax k ow n iy y ax 0.10 k ah n m ih ng 0.35
lagos laa gows 0.59 laa g ow s kyoto k y ow tf ow 0.96 k(iy |y ) ow tf ow
ley gows 0.39 la 1 ax 0.51 1 (ax|aa)
lake ley kd 0.90 l ey kd l aa 0.32
lancaster laecng k ax st er 0.49 lae (ng | n) k (ax | laboratory | laebdraxter 0.30 laebdrax taoriy
ae ) ster
laengkaester 0.40 1 ae bd r ax tf er 0.27
lanka l aa ng k ax 0.65 l aa ng k ax lae bd r ax t er iy 0.23
1 aa ng k aa 0.18 l ae bd r ax tf er iy 0.14
large laar jh 0.67 laar jh lafayette 1 aa f iy eh td 0.42 l(aa|ae)f(ay|iy)
eh td
aa r jh 0.32 laa fey y eh td 0.14
las laas 0.94 laas l ae fiy eh td 0.10
late ley td 0.99 ley td l aa fiy y eh td 0.09
latest lay tf ax s td 0.50 ley tf ax s td lahaina 1 aa hh ay n ax 0.69 l ax hh ay n ax
ley tf ax s td 0.49 1 ax hh ay n ay iy 0.16
lauderdale | lao dferdeyl 0.72 laodferdeyl 1 aa hh ey n ax 0.14
laadferdeyl 0.21 lakes ley kd s 0.77 ley kd s
lebanon lehbaxnaan 0.84 lehbaxn (aa|ax)n lay kd s 0.22
lehbaxnaxn 0.15 languages laeng g w ax jh ax z 0.93 lae ng g w ax jh ax z
less lehs 0.99 lehs lansing 1 ae n s ih ng 0.86 1 ae n s ih ng
level lehvax]l 0.83 lehvaxl largest laar jh ax s td 0.77 laar jhaxstd
lax v ax 1 0.10 laar jh ax td 0.13
lewiston luw ax st ax n 0.75 luw ax st ax n last laestd 0.95 laes td
luw ax s t- ax n 0.24 later ley tf er 0.94 ley tfer
lhasa l aa s ax 0.92 1 (aa|ae)sax latvia l ae td v iy ax 0.51 1 (aa|ae)tdviyax
life layf 0.98 lay f l aa td v iy ax 0.48
lihue 1 ax hh uw ey 0.62 1 ax hh uw iy lawrence laoraxns 0.64 laoraxns
1 ax hh uw iy 0.09 laaraxns 0.29
likelihood lay kd 1 iy hh uh dd 0.99 l ay kd 1 iy hh uh dd leesburg liyzbergd 0.99 liy z b er gd
lima liy m ax 0.59 liy m ax let leh td 0.46 leh td
liy m aa 0.29 l ax 0.35
lisbon lihzbaxn 0.79 lihzbaxn l eh 0.09
listening lih s ax n ih ng 0.71 lihs (axn | n)ih ng levels lehvaxlz 0.77 lehvaxlz
lax st ax n ih ng 0.19 lehvwaxlz 0.15
little lih tf ax 1 0.94 lih tf ax 1 lexington lehkdsihngtaxn 0.78 lehkd sihngtaxn
liverpool | lih ver paxl 0.59 lih ver puwl libya 1ih b iy ax 0.63 lih (biy ax | bd y ax
lihverpaol 0.11 lih bd y ax 0.36
located low k ey tf ax dd 0.94 l ow k ey tf ax dd lightning l ay td n ih ng 0.99 l ay td n ih ng
locations low k ey shaxn z 0.99 lowkeyshaxnz like l ay kd 0.99 l ay kd
london lahndaxn 0.96 lahndaxn likely lay kd 11iy 0.98 lay kd 11iy
look 1 uh kd 0.98 1 uh kd lincoln lihngkaxn 0.99 lihngkaxn
looks 1 uh kd s 0.59 1 uh kd s list lih s td 0.99 lih s td
luw kd s 0.35 lithuania lihthaxweyniyax 044 lih th uw ey n iy ax
lottery 1 aa tf er iy 0.99 1 aa tf er iy lih th ax w ih n iy ax 0.17
louisiana l uw iy z iy ae n ax 0.92 l uw iy z iy ae n ax lih td th w ey n iy ax 0.16
low 1 ow 0.98 1 ow lih tf ax w ey n iy ax 0.09
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lower lowaor 0.33 1 ow er lih td ax w ey niy ax  0.09
1 ow er 0.25 live lih v 0.82 lih v
l aw 0.13 lax v 0.14
laor 0.11 local low k ax 1 0.96 low k ax 1
lows low z 0.99 low z location low k ey sh ax n 0.89 low k ey sh ax n
lucia lax sy ax 0.57 1 uw sh ax logan low gaxn 0.86 low gaxn
I uw sh ax 0.36 low gaxnz 0.13
lumpur lahmpaor 0.94 lahmpaor long 1 ao ng 0.96 l ao ng
luxembourg l ah kd s ax m b er gd 0.63 lah kd s ax m b er gd looking 1 uh k ih ng 0.99 1 uh k ih ng
lahkdsaxnbaorgd 0.24 los laa s 0.57 l(ow|ao|aa)s
lah kd sax m baor 0.11 laos 0.40
gd
lyon liy aa n 0.74 lay ax n louis luw ax s 0.99 luw (iy | axs)
ly ao 0.24 louisville luw iy v ih 1 0.55 luw (ax | iy ) v (ax |
ih )1
macon mey k ax n 0.81 mey k ax n luw ax v ax 1 0.28
may kax n 0.18 luw ax v ih 1 0.10
madison m ae df ax s ax n 0.99 m ae df ax s ax n lowell low ax | 0.97 low ax 1
madrid m ax dr r ih dd 0.76 m ax dr r ih dd lowest low ax s td 0.99 low ax s td
major m ey jher 0.99 m ey jher lubbock 1 ah b ax kd 0.96 1 ah b ax kd
malaysia m ax | ey zh ax 0.94 m ax | ey zh ax luis luw ax s 0.36 luw (ax s |iy)
malta m aa |l tf ax 0.50 m ao | tf ax luw iy z 0.33
maalt aa 0.23 luw iy s 0.10
maaltax 0.16 luw iy v z 0.10
m aa | tf aa 0.09 lusaka l uw s aa k ax 0.99 luw s (aa | ae ) k ax
managua m ax n aa gd w ax 0.64 max naa g w ax lynn lih n 0.99 lih n
m ax n aa gd w ah 0.11 m eh m 0.97 eh m
maanaagwaa 0.09 made m ey dd 0.88 m ey dd
manhattan m ae n hh ae tq en 0.87 m (ax | ae ) n hh ae tq m ey td 0.09
en
manitoba m ae n ax t ow b ax 0.96 m aen ax t ow b ax madras m ax drr aa s 0.76 m(aadrrax|axdrr
aa ) s
map m ae pd 0.99 m ae pd maine m ey n 0.98 m ey n
marine maxriyn 0.97 m er iy n make m ey kd 0.99 m ey kd
market m aar k ax td 0.99 m aar k ax td mali m aa l iy 0.82 m aa l iy
marquette m aar k eh td 0.42 m aa r k eh td man m ae n 0.70 m ae n
m aar k ae td 0.30 m ax n 0.15
m aa r kd ae td 0.27 manchester maenchehster 0.93 maenchehster
marseille maarsey 0.63 maarsey manila m ax n ih 1 ax 0.72 m ax n ih | ax
martinique m aa r tq en iy kd 0.80 m aa r tq en iy kd m ax n ax | ax 0.16
m aar tq en ey iy kd 0.14 many m eh n iy 0.94 m eh n iy
mass m ae s 0.99 m ae s march m aa r ch 0.91 m aa r ch
maui m aw iy 0.84 m aw iy maritime mehraxtaym 0.99 maer ax t ay m
may m ey 0.97 m ey marlborough maarlbrow 0.65 maarlb(r|er)ow
mckinley m ax k ih n 1 iy 0.99 m ax k ihn1iy maarlberow 0.23
mean m iy n 0.91 m iy n mars maarz 0.86 maarz
meant m eh n td 0.89 m eh n td martin m aa r tq en 0.99 m aa r tq en
mediterranean | m eh df ax tf ax rey n  0.96 m eh df ax tf ax r ey n maryland mehraxlaxndd 0.99 mehrax]axndd
iy ax n iy ax n
memorial max m ao r iy ax 1 0.66 m ax m aor iy ax 1 massachusetts | m ae s ax chuwsaxtd 0.97 m ae s ax ch uw s ax td
S S
max m aor ax l 0.33 maximum m ae kd s ax m ax m 0.99 m ae kd s ax m ax m
menlo m eh nlow 0.91 m eh nlow maybe m ey b iy 0.91 m ey b iy
menu mehnyuw 0.73 mehnyuw me m iy 0.99 m iy
meyny uw 0.15 meaning m iy n ih ng 0.98 m iy n ih ng
mih ny uw 0.11 medford m eh dd fer dd 0.89 m eh dd fer dd
message m eh s ax jh 0.99 m eh s ax jh melbourne mehlbern 0.62 mehlbern
mexico m eh kd s ax k ow 0.97 m eh kd s ax k ow mehlbaorn 0.36
michigan m ih sh ax g ax n 0.99 m ih sh ax g ax n memphis mehm pd faxs 0.94 mehm (f|pdf)axs
middle m ih df ax 1 0.99 m ih df ax 1 mentioned m eh n sh ax ndd 0.88 m eh n sh ax n dd
midwest m ih d w eh s td 0.53 m (ih|ax )dwehs mehntaxndd 0.09
td
m ih dd w eh s td 0.38 meridian m ax r ih df iy ax n 0.39 m ax r ih df iy ax n
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might m ay td 0.99 m ay td m ax r ih df iy ae n 0.37
mild m ay 1 dd 0.93 m ay 1 dd m ax r ih df iy eh n 0.22
mind m ay n dd 0.95 m ay n dd metropolitan | m eh trr ax p aal ax 0.58 m eh tr r ax p aa | ax
tq en tf ax n
minneapolis mihniyaepaxlaxs 0.99 mihniyaepaxlaxs meh trrax paalax 041
tf ax n
minot m ih n ow 0.39 m (ih n ow | ay n aa td miami m ay ae m iy 0.99 m ay ae m iy
m ay n aa td 0.28 mid m ih dd 0.99 m ih dd
m ay n ae td 0.17 midland m ih dd I ax n dd 0.88 m ih dd l ax n dd
m ay n ow 0.13 midwestern mihdwehstaxn 0.86 m(ih|ax)dwehst
er n
minute m ih n ax td 0.93 m ih n ax td milan m ax |l aa n 0.86 max]l(aa|ae)n
mississippi m ih s ax s ih p iy 0.90 m ih s ax s ih p iy milwaukee m ax | w ao k iy 0.84 m(ihl]ax1l)waok
iy
missouri m ax z er iy 0.73 maxz(er|aor) (iy m ih 1 w ao k iy 0.09
| ax )
m ax z ao r iy 0.20 minh m ih n 0.99 m ih n
mogadishu m ow g ax d iy sh uw 0.99 m ow g ax d iy sh uw minnesota m ih n ax s ow tf ax 0.84 m ih n ax s ow tf ax
moment m ow m ax n td 0.69 m ow m ax n td m ax n ax s ow tf ax 0.13
m aa m ax n td 0.26 minsk m ih ng td s kd 0.56 m ih n s kd
monday m ahnd ey 0.98 m ah nd ey m ih n s kd 0.25
monica m aa n ax k ax 0.99 m aa n ax k ax m iy n td s kd 0.14
monsoons maansuwnz 0.96 maansuwnz missed ax m ih s td 0.52 m ih s td
monte m aa nt iy 0.79 m aa nt iy m ih s td 0.47
m ah nt ax 0.18 missoula m ax z uw | ax 0.75 m ax z uw | ax
monterey m aa nt ax r ey 0.99 m aa nt ax r ey m ax z ax | ax 0.20
montevideo | maantaxvaxdeyeh 0.35 maant ax v (ax d ey mobile m ow b iy 1 0.94 mowb (ax1]|ayl|iy
ow ow | ih df iy ow ) 1)
m aant ax vihdfiy uw  0.28 moines m oy n 0.95 m oy n
m aa nt ax v ax d ey 0.12 monaco m aa n ax k ax 0.60 m aa n ax k ow
ow
m aa nt ax v ih df ey  0.11 m aa n ax k ow 0.35
ow
maantaxvihdeyow 0.10 mongolia m aa ng g ow 1 iy ax 0.43 m(aalax) (n|ng)
g ow l iy ax
month m aa n th 0.54 m ah n th m aan g ow |l iy ax 0.36
m ah n th 0.44 maangowlyax 0.10
months m ah n th s 0.34 m ah n th s monsoon maansaxnyaxn 0.48 maansuwn
m aa n 0.30 maansax own 0.47
m aan ths 0.20 montana m aan t ae n ax 0.99 m aant aen ax
montpelier maanpiylyer 0.62 maanp (iylyer|ax montego m aantiy g ow 0.82 m aan tiy g ow
lyey)
maantdpiylyer 0.22 mahntiygow 0.10
monument maanyaxmaxntd 045 maanyaxmaxn td monterrey m aa nt ax r ey 0.99 m aa nt ax r ey
m aa ny uw m eh td 0.31 montgomery m aan td g ah m r iy 0.35 maantdgahm(r|
axr ) iy
maanyuwmaxntd 0.21 m ah td g ah m r iy 0.23
moorhead m ao r hh eh dd 0.99 m ao r hh eh dd m aa nt g ah m r iy 0.15
morning m ao r n ih ng 0.99 m ao r n ih ng monthly m ah n th1iy 0.62 m ah n thliy
morristown maoraxstawn 0.72 maoraxstawn m ah n th ax | iy 0.18
maaraxstawn 0.24 maantliy 0.09
most m ow s td 0.89 m ow s td monticello m aa nt ax s eh | ow 0.97 m aant ax (ch|s) eh
1 ow
mountain m aw n tq en 0.81 m aw n tq en montreal m aan trriy aol 0.51 m (aa | ah ) ntrriy
ao 1
maantaxn 0.16 mahntrriyaol 0.40
move m uw v 0.33 m uw v moon m uw n 0.76 m uw n
m aw ey 0.28 more m aor 0.99 m aor
m ax v ax 0.25 morocco m ax r aa k ow 0.74 m (ax | ao ) r aa k ow
movies m uw v iy z 0.80 m uw v iy z m aar aa k ow 0.14
max 1lviyz 0.10 m aa ax r aa k ow 0.11
much m ah ch 0.98 m ah ch MOSCOwW m aa s k ow 0.50 maask (ow|aw)
music m y uw z ax kd 0.97 my uw z ax kd m aa s k aw 0.42
my m ay 0.99 m ay mount m aw n td 0.89 m aw n td
myers mayrz 0.50 mayrz mountains m aw n tq en z 0.79 m aw n tq en z
m ay er z 0.29 m aw n tq en s 0.12
m ay r ax sh 0.09 movie m uw v iy 0.71 m uw v iy
n eh n 0.74 eh n eh m eh uw v iy 0.28
ihn 0.24 _mozambique m ow z ae m b iy kd 0.99 m ow z ae m b iy kd
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nairobi nayrowb iy 0.90 nayrow b iy munich m y uw n ax kd 0.90 my uw n ax kd
named n ey m dd 0.99 n ey mdd muskogee m ax s k- ow g iy 0.88 m ax s k- ow g iy
nanchang n ae n dd ch ae ng 0.92 n ae n ch ae ng myanmar may aenmaar 0.66 m (iy |ay ) (aa|ax)

nmaar
nantucket naentahkaxtd 0.78 naentahkaxtd miyaxnmaar 0.16
naentahkehtd 0.12 myaanmaar 0.16
naples neypaxlz 0.99 neypaxlz myrtle m er tf ax 1 0.98 m er tf ax 1
nashville n ae sh vihl 0.97 n ae sh vihl nagano n aa g ax n ow 0.47 n aa g aa n ow
natchez n ae ch iy z 0.66 n aech ax z n aa g aa n ow 0.36
n ae ch ax z 0.21 name neym 0.99 ney m
naechaxzs 0.11 names neymaz 1 neymz
near nihr 0.44 nihr nanjing n ae n jh ih ng 0.98 n ae n jh ih ng
nyihr 0.27 naperville neypervihl 0.89 neypervihl
neat n iy td 0.99 n iy td nashua n ae sh uw ax 0.89 n ae sh uw ax
need n iy dd 0.99 n iy dd nassau n ae s ao 0.39 n ae s ao
nepal n ax p ao l 0.36 naxp (aal|aol) naesaol 0.16
neypaol 0.23 naess ao 0.13
n ax p aa l 0.19 national n ae sh ax n ax 1 0.80 naesh (axn|n)axl
nehpaal 0.09 n aeshnaxl 0.14
nevada n ax v ae df ax 0.67 naxv (ae|aa)dfax nearest nihraxstd 0.77 nihraxstd
n ax v aa df ax 0.32 n iy ax s td 0.11
new n uw 0.99 n uw nebraska naxbraeskax 0.99 nax braeskax
newfoundland | nuwfaonddlaendd 0.30 nuw fax n dd 1 ax n neither n iy dh er 0.45 n(ay|iy)dher
dd
nuw faxnddlaxn 0.28 n ay tf er 0.17
dd
nuw fax nddlaen 0.24 n ay td er 0.13
dd
nuw fax ndd laan 0.09 niy dhehr 0.10
dd
newport nuw p aor td 0.89 nuw p aor td n ay dh er 0.09
next n eh kd s td 0.91 n eh kd s td netherlands nehdherlaxnddz 0.99 nehdherlaxnddz
nicaragua n ih k ax r aa gd w ax 0.56 n ih k ax r aa g w ax never neh ver 0.98 n eh v er
nihk axraagd waa  0.35 newark n uw ao r kd 0.68 n(uwer|uwaar|ao
r) kd
nigeria n ay jh ih r iy ax 0.94 n ay jhih r iy ax n uw er kd 0.14
nighttime nay td t ay m 0.99 naytdtaym newk n uw kd 1
nineteen nayntiyn 0.99 nayntiyn news nuw z 0.99 nuw z
ninety naynd iy 0.81 nay (nt|nd)iy niagara n ay ae gd r ax 0.59 nay ae g r ax
n ay nt iy 0.18 nay ae gr ax 0.25
ninth n ay n th 0.91 n ay n th nice nay s 0.76 n(iy|ay)s
nome n ow m 0.93 n ow m niys 0.23
noon nuw n 0.99 n uw n night n ay td 0.99 n ay td
norfolk n ao r f ax kd 0.46 n aor f ax kd nine nay n 0.96 n ay n
naor faolkd 0.20 nineteenth nayntiynth 0.99 nay ntiynth
naorfaxlkd 0.17 nino niyny ow 0.92 niyny ? ow
n aor f ow kd 0.11 no n ow 0.99 n ow
normally naor axliy 0.99 naorm axliy none nahn 0.81 nahn
northeast n aor th iy s td 0.74 n aor th iy s td n aa n 0.11
naortiystd 0.23 nope n ow pd 0.99 n ow pd
northern naordhern 0.96 naordhern normal naorm axl 0.99 naormaxl
norway naorwehey 0.52 naorwey north n aor th 0.99 n aor th
naorwey 0.21 northeastern | naorthhhiystern 0.90 naorthiystern
nothing n ah th ih ng 0.99 n ah th ih ng naorthiystern 0.09
november nowvehmber 0.92 nowvehmber northwest naorthwehstd 0.92 naorthwehstd
number nahmber 0.93 nahmber not n aa td 0.58 n aa td
o ow 0.88 ow ow 0.16
ow ax 1 0.10 n ow 0.14
obispo ax b ih s p ow 0.26 ax b ih z p ow nova n ow v ax 0.99 n ow v ax
ax b ih z p ow 0.24 now n aw 0.95 n aw
ow b ih s p ow 0.13 numbers nahmberz 0.46 nahmberz
occured ax k er dd 0.99 ax k er dd nahmberzs 0.25

88




Word [ PMM Baseforms Weight [ Expert Baseform “[ Word [ PMM Baseforms Weight [ Expert Baseform
october aa kd t ow b er 0.97 aa kd t ow b er nowmb erz 0.15
off ao f 0.88 ao f oakland ow kd 1 ax n dd 0.93 ow kd I ax n dd
aa f 0.11 occur ax k er 0.99 ax k er
ogden aagd daxn 0.95 aa gd d ax n ocean ow sh ax n 0.86 ow sh ax n
okay ow k ey 0.92 ow k ey of ax v 0.76 (ah|ax)v
old ow 1dd 0.93 ow 1 dd offer ao fer 0.73 ao fer
omaha ow m ax hh aa 0.84 ow m ax hh (aa | ao) aa fer 0.25
ow m ax hh ao 0.12 ohio ow hh ay ow 0.98 ow hh ay ow
once wahns 0.45 wahns oklahoma ow kd I ax hh ow m ax  0.98 ow kd | ax hh ow m ax
W aans 0.33 olympia ax 1 ih m p iy ax 0.48 (ow|ax)lihm piy
ax
w ah n s eh 0.20 ow 1 ih m p iy ax 0.36
only ow nliy 0.31 ow nliy on aan 0.94 (ah|aa)n
ao nliy 0.18 one w ah n 0.90 w ah n
ow n iy 0.14 W aa n 0.09
ow | iy 0.12 ontario aantehriy ow 0.96 aan t ehriy ow
ow ax 1 iy 0.11 or aor 0.93 aor
ao liy 0.09 order aor df er 0.80 aor df er
options aa pd sh ax n z 0.89 aa pd sh ax n z ow r df er 0.18
orange ao r n jh 0.56 ao r ax n jh orient ao r iy ax n td 0.66 aoriy (eh|ax)ntd
aor ax n jh 0.43 aoriyehn 0.22
oregon aor ax g ax n 0.88 aorax g (aa|ax)n ao r iy eh nt 0.11
aor ax g aan 0.10 orleans aorlaxmnz 0.71 aorl (ax |iy|iy ax)
nz
orlando aorlaendow 0.98 aorlaendow aorliynz 0.20
orly waorliy 0.73 aorliy osaka ow s aa k ax 0.99 ow s aa k ax
T aor liy 0.26 other ah dh er 0.94 ah dh er
oslo aa z 1 ow 0.47 aa (z|s)low our aar 0.43 (awer |aar)
aas]ow 0.46 ax ey 0.31
ottawa aa tf ax w aa 0.57 aa tf ax w ax aarey 0.23
aa tf ax w ax 0.34 outlook aw td 1 uh kd 0.92 aw td 1 uh kd
out aw td 0.98 aw td over oW Vv er 0.98 oW Vv er
outside aw td s ay dd 0.91 aw td s ay dd overnight ow v er n ay td 0.99 ow v er n ay td
overcast ow v er k ae s td 0.99 ow v er k ae s td ozone OW Z OW Nl 0.79 OW Z OW n
oxford aa kd s f er dd 0.62 aa kd s f er dd ow z ow n ax td 0.19
aa kd s fertd 0.35 pacific p ax s ih f ax kd 0.92 p ax s ih f ax kd
P p iy 0.67 p iy palm p aam 0.73 paal? m
p iy ey 0.26 paalm 0.23
pakistan paekaxstaen 0.62 packaxstaen panama p ae n ax m aa 0.91 p ae n ax m aa
packaxstaxn 0.11 pardon paardden 0.74 paardden
paakaxstaan 0.10 paardfaxn 0.17
palo p aal ow 0.63 p (ae|aa)low park p aar kd 0.99 p aar kd
p ae 1l ow 0.33 participating | paxrtfaxsaxpeytf 0.77 p aar tih s ax p ey tf
ih ng ih ng
paraguay paerax gw ay 0.46 paeraxgw (ay | ey paxrtihsaxpeytf 0.17
) ih ng
paerax gwehey 0.22 pasadena p aes ax d iy n ax 0.99 p ae s ax d iy n ax
paeraxgwey 0.22 past p ae s td 0.99 p ae s td
paris paeraxs 0.97 paeraxs paulo p aa l ow 0.49 p(aw|ao)low
part p aar td 0.99 paartd p ao l ow 0.37
partly paartdliy 0.94 paartdliy pearson kersaxn 0.99 pihrsaxn
paso p ae s ow 0.85 p ae s ow peking p iy k ih ng 0.65 p iy k ih ng
paul paol 0.97 paol p ey k ih ng 0.33
paz p aa z 0.78 p aa z penh paen 0.97 pehn
p aaay z 0.11 pensacola pehnsax kowl ax 0.83 pehnsax k owl ax
pegasus pehgaxsaxs 0.79 pehgaxsaxs peoria Py aoriy ax 0.71 p iy ao r iy ax
pey gaxsaxs 0.16 p iy ao r iy ax 0.24
pendleton | pehndaxltfaxn 0.34 pehndaxltfaxn percentage p er s eh nt ax jh 0.85 p er s eh nt ax jh
pehnddax1tfaxn 0.33 peru p er uw 0.36 p er uw
pehnaxltfaxn 0.20 p ax r uw 0.25
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pennsylvania pehnsaxlveyny 0.99 pehnsaxlveyny philadelphia | fihlaxdehlfiy ax 0.97 fihlaxdehlfiy ax
ax ax
people piy paxl 0.92 piy paxl phnom n aa m 0.99 (fn|pn|n)aam
percent per s ehn td 0.81 persehntd phone fown 0.91 fown
perth p er th 0.89 p er th pierre piyehr 0.86 piyehr
petersburg piy tferzber gd 0.98 piy tferzber gd piscataway | p ih s k ae tf ax w ey 0.38 p ax s k ae tf ax w ey
philippines fihlaxpiynz 0.99 fihlaxpiynz p ax s k ae tf ax w ey 0.37
phoenix fiyn ax kd s 0.99 fiynaxkds p ax s k ae tf ax w ay 0.10
picture p ih kd ch er 0.99 pihkd (ch|sh)er pittsfield pihtd s fiy1ldd 0.97 pihtds fiyldd
pine payn 0.99 payn place pleys 0.99 pleys
pittsburgh pihtd s b er gd 0.99 pihtd s ber gd plain pleyn 0.98 pleyn
pizza p iy td s ax 0.99 p iy td s ax planet plaenaxtd 0.76 plaenaxtd
places pleysaxz 0.95 pleysaxz plaeney 0.09
plains pleynz 0.90 pleynz platte plaetd 0.86 plaetd
playaenz 0.09 plaxtd 0.12
planning p 1l ae n ih ng 1 plaenih ng please pliyz 0.99 pliyz
play pley 0.84 pley plymouth plih m ax th 0.71 plih m ax th
play 0.11 p lih m ax th td 0.09
plus plahs 0.77 plahs point p oy n td 0.93 p oy n td
plaxs 0.15 pole paol 0.39 p ow 1
pocatello pow k ax t eh 1 ow 0.90 pow k ax t eh 1 ow T p ow 1 0.37
paakaxtehlax 0.09 p ow ax 1 0.13
poland p ow |l ax n dd 0.97 p ow |l ax n dd population paapdyaxleyshax 0.85 p aa pd y ax 1 ey sh ax
n n
pollen paalaxn 0.92 paalaxn portland paortdlaxndd 0.99 paortdlaxndd
port p aor td 0.98 paortd portugal paorchax gaxl 0.99 paorchax gaxl
portsmouth p aor td s m ax th 0.96 paortdsm ax th possible paasaxbaxl 0.67 paasaxbaxl
possibility paasax bihlax tfiy 0.99 p aa s ax b ih | ax tf iy paasaxbaxlz 0.32
poughkeepsie p ax k ih pd s iy 0.95 p ax k ih pd s iy powell paol 0.49 p aw ax 1
prague praagd 0.73 praagd p aa ax 1 0.39
praakd 0.14 p aw ax 1 0.11
predict pr ax d ih kd td 0.99 praxdihkd td precipitation | praxsihpaxteysh 0.95 praxsih p ax t ey sh
ax n ax n
predicting pr ax d ih kd t ih ng 0.99 praxd ih kd t ih ng predicted praxdihkdt ax dd 0.99 praxdih kd t ax dd
predictions praxdihkdshaxnz 0.99 praxdihkdshaxnz prediction praxdihkdshaxn 0.99 praxdihkdshaxn
president prehzax df ax n td 0.96 prehzaxdfaxntd present prehzaxntd 0.99 prehzaxntd
pressure prehsher 0.99 preh sher presque preh s kd 0.60 prehskd
pretty p r ih tf iy 0.99 prih tf iy p r eh sh kd 0.31
prince prihns 0.73 prihns pretoria praxtaoriyax 0.87 praxtaoriyax
praxntds 0.25 praxtaory ax 0.09
probability praabaxbihlaxtf 0.94 praabaxbihlax tf price prays 0.99 prays
iy iy
program prowgdraem 0.99 prowgdraem princeton prihnstaxn 0.90 prihnstaxn
projected praxjhehkdtaxdd 0.99 prax jhehkd t ax dd probably praabaxliy 0.99 praabaxbliy
provide praxvaydd 0.99 praxvaydd project pr aa jh eh kd td 0.79 pr(ax|aa)jhehkd
td
provincetown | praavaxnstawn 0.87 praavaxnst-awn praajh ax kd td 0.16
praavaxnstaxvn 0.12 projection prax jhehkdshaxn 0.99 pr ax jh eh kd sh ax n
pueblo p w eh bd 1 ow 0.43 pwehblow providence praavaxdfaxns 0.93 praavaxdfaxns
pwehblow 0.40 provo pPTroOw VvV ow 0.99 pProw v ow
puson p uw s aa n 0.99 p uw s aan puerto p aor tf ax 0.59 p(weh|ao)rtf(ow
| ax )
q kyuwz 0.50 ky uw p ao r tf ow 0.37
kyuw 0.49 pyongyang Py aangy ae ng 0.47 py(aalah)ngy (aa
| ae ) ng
quality k w aa 1 ax tf iy 0.97 k w aa 1l ax tf iy p y ah ng y ae ng 0.25
queens kwiynz 0.90 kwiynz py aa ng y ax ih ng 0.11
question k wehschaxn 0.52 kweh(sch|shch? qgingdao ch iy ng d aa ow 0.70 ch iy ng d aw
) ax n
k w eh sh ax n 0.29 jh ih ng d aw 0.16
k w eh sh ch ax n 0.10 quebec k ax b eh kd 0.56 k (ax | wax)behkd
quincy k wih n s iy 0.48 kwihn(s|z)iy k w ax b eh kd 0.32
k wihn z iy 0.32 k w ax b ae kd 0.09
k ih n iy 0.14 query kriy 0.34 kw(ihr|ehr)iy
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quite k w ay td 0.99 k way td k wehriy 0.33
r aar 0.85 aar k wih r iy 0.31
rain reyn 0.99 reyn questions kwehschaxnz 0.62 kweh(sch|shch?
) ax n z
rained rey ndd 0.99 rey ndd k wehshaxnz 0.35
raining r ey n ih ng 0.98 r ey n ih ng quit k w ih td 0.75 k w ih td
rainy r ey niy 0.99 rey niy k w eh td 0.23
range reynjh 0.97 reynjh quito k iy tf ow 0.48 k(iyt]|wiy tf) ow
rapid r ae p ax dd 0.72 r ae p ax dd k iy t ow 0.28
r ae p ax td 0.17 k w iy tf ow 0.15
raton raxt own 0.79 raxtown rabat raabaotd 0.94 r ax b aa td
reading r eh df ih ng 0.86 r (eh | iy ) df ih ng raincoat rey n k ow td 0.96 rey n k ow td
r iy df ih ng 0.12 rainfall reynfaol 0.98 reynfaol
really riyliy 0.83 riyliy rains reynaz 0.88 reynaz
received raxsiy vdd 0.99 raxsiyvdd reyns 0.11
recognition | r eh k ax gd n ih sh ax 0.87 r eh k ax gd n ih sh ax raleigh r aal iy 0.83 r(aal|aol)iy
n n
rehkaxgdnddihsh 0.12 raoliy 0.10
ax n
record rehkerdd 0.99 r(ehker|axkaor) ranges reyn jhaxz 0.68 reyn jhaxz
dd
regarding r iy g aa r df ih ng 0.99 r (iy | ax ) gaardfih reynjhiyzs 0.27
ng
region riy jhaxn 0.95 riy jhaxn rapids raepaxddz 0.98 raepaxddz
relative rehlaxtfih v 0.66 rehlaxtf (ih|ax)v reach r iy ch 0.80 r iy ch
rehlaxtfaxv 0.25 riychs 0.10
repeat r ax p iy td 0.50 r(iy|ax)piytd readings riy df ih ng z 0.49 r iy df ih ng z
r iy p iy td 0.48 r iy ih ng z 0.44
report riy paor td 0.55 r(iylax)paortd receive riysiyv 0.61 raxsiy v
rax p aor td 0.44 raxsiyv 0.38
reports riypaortds 0.50 r(iy|ax)paortds recently riysaxntdliy 0.93 riysaxntdliy
raxpaortds 0.48 recognize reh k ax gd n ay z 0.46 reh k ax gd n ay z
request rax k wehstd 0.49 r(iy|ax)kwehstd axrehkaxgdnayz  0.22
riy k w eh s td 0.45 rehkaxgdnayzz 0.13
restart riyst-aartd 0.99 riyst-aartd reh k ax gd n ay s ax 0.12
restaurants | reh strraantds 0.59 rehs(trr|taxr) ( redmond r eh dd m ax n dd 0.99 reh dd m ax n dd
ax |aa ) ntds
rehstaxraantds 0.21 regina r ax jh ay n ax 0.53 rax (jh|g) (iy | ay
) n ax
reykjavik r ey kd y ax v ih kd 0.46 rey kd (iy ax | y ax ) riy jh ay n ax 0.28
v ih kd
r ey kd jh ax v ih kd 0.19 r ax jh ax n ax 0.10
rey kd y ax v iy kd 0.13 related riy l ey tf ax dd 0.75 r(iy | ax ) ley tf ax
dd
rhodes row dd z 0.91 row dd z rax ey dd 0.23
richmond r ih ch m ax n dd 0.94 r ih ch m ax n dd reno r iy n ow 0.89 r iy n ow
right r ay td 0.99 r ay td rephrase riyfreyz 0.99 r(iylax)freyz
rise ray z 0.99 ray z reported r ax p ao r tf ax dd 0.59 r(iy|ax)paortfax
river r ih v er 0.91 rih v er riy p aor tf ax dd 0.29
road r ow dd 0.99 r ow dd riy paordf ax dd 0.10
rochester raachehster 0.97 raachehster republic r ax p ah bd 1 ax kd 0.57 r(iy|ax ) pahbdl
ax kd
rockford r aa kd f er dd 0.93 r aa kd fer dd r iy p ah bd I ax kd 0.42
rocky r aa k iy 0.99 r aa k iy rest reh s td 0.93 r eh s td
rome r ow m 0.98 r ow m restaurant | r eh s tr r aa n td 0.40 rehs (trr|taxr) (
ax | aa ) n td
rosa I OW z ax 0.91 T OW Z ax rehstrraxntd 0.18
rouge r uw zh 0.80 r uw zh raxstaxraxn td 0.15
r uw jh 0.18 rehsteraan td 0.09
rutland rahtdlaxndd 0.96 rah tdl ax n dd reston rehstaxn 0.99 rehstaxn
sacramento | s ae kd r ax m eh nt ow  0.98 s ae kd r ax m eh nt ow rhode r ow dd 0.99 r ow dd
said s eh dd 0.81 s eh dd rica riy k ax 0.98 riy k ax
salem seylax m 0.99 seylax m rico r iy k ow 0.99 r iy k ow
salisbury saolzbehriy 0.84 saolzb (er|ehr)iy rio r iy ow 0.94 r iy ow
salvador saclvaxdaor 0.95 saclvaxdaor rising r ay z ih ng 0.90 r ay z ih ng
same sey m 0.99 s ey m ax r ay z ih ng 0.09
san saen 0.99 s ae n riyadh r iy aa dd 0.41 r iy aa dd
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sanibel saenax b ehl 0.83 saenaxb (ax1|ehl riy ae dd 0.24
)
saenax behll 0.16 riy y ae dd 0.17
santiago s aa nt iy aa g ow 0.40 s aa nt iy aa g ow r iy ax dd 0.09
s ah nt iy aa g ow 0.29 roanoke r ow ax n ow kd 0.90 r ow ax n ow kd
s ae nt iy aa g ow 0.27 rock r aa kd 0.98 r aa kd
sao s aw 0.83 s aw rockville raakdvihl 0.93 raakd vihl
S oW 0.09 romania rowmeyny ax 0.45 r ow m ey n iy ax
sarajevo saeraxy ey v ow 0.35 s(aar|aer)axyey rahmeyny ax 0.17
v ow
sehraxyeyvow 0.25 r ah m ey n iy ax 0.13
saar axy ax v ow 0.19 row miy ny ax 0.09
sardinia sehrdiyny ax 0.47 saardiyn (yax|iy root ruw td 0.65 r(uw |uh)td
ax )
saardiyny ax 0.26 r uh td 0.34
saardiyniy ax 0.24 rotterdam ax r aa tf er d ae m 0.93 raatferd aem
saskatoon saeskaxtuwn 0.99 s(ae|aa)skaxtuw russia r ah sh ax 0.95 r ah sh ax
n
saturday s ae tf er df ey 0.99 s ae tf er df ey S eh s 0.93 eh s
saudi s aw df iy 0.71 s (ao|aw ) df iy saginaw sae gaxnaa 0.64 S ae g ax n ao
s ao df iy 0.25 sey gaxn aa 0.25
savannah s ax v ae n ax 0.87 S ax v ae n ax S ae g ax n ao ow 0.09
scandinavia | sk-ihndaxneyviy 0.99 sk-aendaxneyviy saint s ey n td 0.97 s ey n td
ax ax
science say axns 1 say axns salina sax lay n ax 0.49 s ax liy n ax
scores sk-aorz 0.43 sk-aorz saelaxnax 0.15
sk-aors 0.38 saolayn ax 0.14
sk-aoraxs 0.11 salt saoltd 0.97 s aoltd
scotland sk-aatdlaxndd 0.98 s k- aatdlax n dd salzburg saoltdsbergd 0.61 saoltdsbergd
scottsdale sk-aatdsdeyl 0.83 sk-aatdsdeyl saolzbergd 0.38
scratch s k- r ae ch 0.89 s k- r ae ch samoa S ax m ow ax 0.85 S ax m ow ax
srch 0.10 s ax b ow ax 0.10
sea s iy s iy 0.45 s iy sandusky saendahskiy 0.51 saend ahskiy
Sy uw 0.22 saxndahskiy 0.42
s iy uw 0.20 santa s ae nt ax 0.99 s ae nt ax
s iy 0.11 santo s ae nt ax 0.64 s ae nt ow
season s iy z ax n 0.99 siy z ax n s ey nt ax 0.18
second s eh k ax n dd 0.96 s eh k ax n dd s ae nt ow 0.15
select s ax 1 eh kd td 0.99 s ax 1 eh kd td sapporo S ax p ao r ow 0.99 s(aalax)paorow
senegal sehnaxgaol 0.61 sehnaxgaol sarasota s aer ax s ow tf ax 0.99 s aer ax s ow tf ax
sehnaxgaal 0.30 saskatchewan | s ae s k ae ch ax w aa  0.46 s ae s k ae ch ax w aa
n n
september sehpdtehmber 0.87 sehpdtehmber s ax s k ae ch ax w aa  0.38
n
sax pdtehmber 0.10 s ax s k- ae ch ax waa  0.09
n
service S ervaxs 0.64 S ervaxs satellite s ae tf ax | ay td 0.99 s ae tf ax | ay td
servays 0.16 saturn saetfern 0.99 saetfern
sservaxs 0.11 sausalito s ao s ax 1 iy tf ow 0.82 s ao s ax 1 iy tf ow
setting s eh tf ih ng 0.99 s eh tf ih ng s aw td s ax | iy tf ow 0.09
seventeenth seh vaxntiyn th 0.94 seh vaxntiynth say s ey 0.90 s ey
seventy seh vaxndiy 0.89 sehvax(nt|nd)iy schedules sk-ehjhaxlz 0.99 sk-ehjh(uhl|axl)
z
seville sax vihl 0.86 s ax vih1 score s k- ow 0.38 sk-aor
sax vihll 0.12 sk-aor 0.33
shanghai sh ae ng hh ay 0.82 sh ae ng hh ay sk-waor 0.27
shining sh ay n ih ng 0.91 sh ay n ih ng scotia s k- ow sh ax 0.93 s k- ow sh ax
shore shaor 0.99 shaor scotts sk-aatds 0.99 sk-aatds
should sh uh dd 0.66 sh uh dd scranton s k- r ae n tq en 0.92 s k- r ae n tq en
sh ax dd 0.20 screwed s k- r uw dd 0.99 s k- r uw dd
ch uh dd 0.11 seal s iyl 0.48 s iyl
showers sh aw er z 0.87 sh aw er z syax]l 0.30
shut sh ah td 0.22 sh ah td s iy ax | 0.12
sh aw td 0.21 seattle s iy ae tf ax 1 0.99 s iy ae tfax 1
sh ah td ax 0.15 see s iy 0.93 s iy
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sh ax td 0.14 seneca sehn ax k ax 0.99 sehn ax k ax
sh ah tf ax 0.13 seoul s ow 1 0.73 s ow 1
sicily s ih s ax 1 iy 0.99 sih s ax 1iy s ow ax 1 0.11
significant | s ax gd nih fax kd eh  0.42 saxgdnih faxk ax n serbia s er b iy ax 0.88 s er b iy ax
n td td
sax gd nih f ax kd ae  0.23 ser b iy aem 0.10
n td
saxgdnihfaxkaxn 0.22 set s eh td 0.98 s eh td
t ax
sioux s uw 0.84 s uw seven seh vax n 0.99 seh v ax n
S s uw 0.09 seventh seh v ax n th 0.99 seh v ax n th
six sih kd s 0.96 s ih kd s severe sax vihr 0.94 sax vihr
sixth s ih kd s th 0.96 s ih kd s th sex s eh kd s 0.93 s eh kd s
ski s k- iy 0.89 s k- iy shine sh ay n 0.99 sh ay n
sky s k- ay 0.94 s k- ay shit sh ih td 0.51 sh ih td
sleet s liy td 0.86 s liy td sh ax t s 0.36
s 1iy iy td 0.13 short sh r 0.99 sh ao r td
slow sl ow 0.99 sl ow show sh ow 0.94 sh ow
smith s m ih th 0.55 s m ih th shreveport shriyvpaortd 0.96 shriyvpaortd
s m ih td 0.31 siberia s ay b ih r iy ax 0.94 s ay b ih r iy ax
s m eh th 0.12 side s ay dd 0.99 s ay dd
snow s n ow 0.99 s n ow singapore sihnggd ax paor 0.51 sihngaxpaor
snowed s n ow dd 0.99 s n ow dd sihngaxpaor 0.44
snowing s n ow ih ng 0.99 s n ow ih ng situation s ih ch uw ey sh ax n 0.99 s ih ch uw ey sh ax n
snowstorm snowstaorm 0.97 snowstaorm sixteenth s ih kd s t iy n th 0.86 s ih kd s t iy n th
SNOWY s n ow iy 0.88 s n ow iy sixty sih kd s t iy 0.67 s ih kd s t iy
sofia s ow f iy ao 0.33 s ow f iy ax s ih kd s t ax 0.14
s ow f iy ax 0.30 skiing s k- iy ih ng 0.99 s k- iy ih ng
sow fiy ax b y ax 0.19 sleep s 1iy pd 0.62 s liy pd
sow ax fy ax 0.14 s iy 0.37
some s ah m 0.70 s ah m slovakia slow v aakdy ax 0.46 sl ow v aa k iy ax
s ax m 0.29 slow v aa kd y uw 0.22
something s ah m th ih ng 0.96 s ah m th ih ng sl ax v aa k iy ax 0.18
somewhere sahmwehr 0.84 sahmwehr slow v aa ky ax 0.11
sorry s aar iy 0.62 s(aar|aor)iy smart sm aar td 0.92 sm aar td
s ao r iy 0.20 smog s m aa gd 0.77 s m aa gd
s aar ay 0.10 s m ao gd 0.22
sounds sawn dd z 0.99 saw n dd z snowbase ehsnowbeys 0.53 snowbeys
southeast s aw th iy s td 0.95 s aw th iy s td snowbeys 0.46
southern sah dhern 0.94 sah dhern snowfall snowfaol 0.97 snowfaol
southwest s aw th w eh s td 0.95 s aw th w eh s td snowmass snowmaes 0.99 snowmaes
space s p-iy s 0.49 sSp-eys snowstorms snowstaormz 0.78 snowstaormz
s p- ey sh y ax 0.27 snowaxst-aormz 0.11
s p- ey sh 0.20 SO s oW 0.86 s oW
spanish s p- ae n ax sh 0.56 s p- ae n ax sh s ax 0.09
s p ae n ax sh 0.18 somalia sax m aaly ax 0.65 s(ow|ax)maal (iy
ax |y ax )
s p-aenihz 0.11 s ax m aa l iy ax 0.28
Sp-aenaxs 0.09 someone sahm wahn 0.55 sahmw (ah|ax)n
speak s p- iy kd 0.99 s p- iy kd s ah m w aa n 0.44
specific s p- ax s ih f ax kd 0.99 s p- ax s ih f ax kd sometime sahmtaym 0.66 sahmtaym
speed s p- iy dd 0.99 s p- iy dd ax sah mt ay m 0.33
spell s p-ehl 0.99 s p-ehl soon s uw n 0.64 S uw n
sports sp-aortds 0.93 sp-aortds saxn 0.27
spring s p- r ih ng 0.99 s p- r ih ng sound s aw n dd 0.99 s aw n dd
springs sp-rihngz 0.99 sp-rihngz south s aw th 0.99 s aw th
squall sk-waol 0.52 sk-waol southeastern saw thiystern 0.40 saw thiystern
s k- w aa 0.47 sawthiyztern 0.35
sri sriy 0.72 (s]sh)riy saw thiyshtern 0.21
shr iy 0.21 southernmost | sahdhernmowstd 0.99 s ah dh er n m ow s td
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stafford s t- ae f er dd 0.99 s t- ae fer dd southwestern | saw th wehstern 0.99 saw thwehstern
stapleton st-eypaxltfaxn 0.51 st-eypaxltfaxn spain Sp-eyn 0.96 Sp-eyn

st-eypaxltfsaxn 0.33 spartanburg s p-aar tqenber gd 0.99 s p-aartqenbergd
starting s t- aa r tf ih ng 0.65 s t- aa r tf ih ng special s p- eh sh ax 1 0.68 s p- eh sh ax |
s t- ao r tf ih ng 0.33 sp-eyshehl 0.22
statement s t- ey td m eh n td 0.52 s t- ey td m ax n td specifically s p-axsih fax kliy 0.82 s p- ax s ih fax k 1 iy
s t- ey td m ax n td 0.47 sp-axsihfaxkdliy 0.17
status s t- ae tf ax s 0.98 st- (ae|ey) tfaxs speeds s p- iy dd z 0.99 s p- iy dd z
stock s t- aa kd 0.94 s t- aa kd spokane s p- ow k ae n 0.92 sp-owk (ae|ey)n
stockville s t- aa kd v ih 1 0.99 s t- aa kd v ih 1 spot s p- aa td 0.99 s p- aa td
storm St-aorm 0.99 st-aorm springfield sp-rihngfiyldd 0.81 s p-rihng fiy 1dd
stormy s t- aor m iy 0.99 s t- aor m iy sprinkles sp-rihngkaxlz 0.72 sp-rihngkaxlz
stupid s t- uw p ax dd 0.68 s t- uw p ax dd sp-rihngkdax1z 0.27
s t- uw p ih td 0.12 square sk-wehr 0.99 sk-wehr
s t- uw p ih dd 0.09 st s ey n td 0.99 s ey n td
suburb s ax b er bd 0.86 s ah b er bd stamford st-aem ferdd 0.78 s t- ae m f er dd
s ah b er bd 0.13 start s t- aar td 0.85 s t- aar td
summary s ah m ax r iy 1 s ah m ax r iy state s t- ey td 0.99 s t- ey td
sun s ah n 0.99 s ah n states st-ey tds 0.98 st-ey tds
sunlight sahnlay td 0.96 sahnlaytd still s t- ih 1 0.98 s t- ih 1
sunnyvale sahniyveyl 0.98 sahniyveyl stockholm s t- aa kd hh ow 1 m 0.58 st-aa (k| kd hh ) ow
I m
sure sh er 0.69 sh(er|aor) st-aak owlm 0.39
sh ao r 0.21 stop s t- aa pd 0.91 s t- aa pd
surfing s er f iy ng 0.73 s er f ih ng storms st-aormz 0.98 st-aormz
s er fiy ng gd 0.25 strasbourg strraesbergd 0.62 strr(aalae) (z]|s
)b (er|aor)gd
sweden s w iy dd en 0.93 s w iy dd en strraasbergd 0.17
sydney s ih dd n iy 0.98 s ih dd n iy stuttgart sht uh td g aar td 0.48 sh t uh td g aa r td
syria s ih r iy ax 0.95 s ih r iy ax st-uhtd gaartd 0.18
systems sihstaxmz 0.77 sihstaxmz s t- ax td g aa r td 0.09
sstaxmz 0.11 shtuwtd gaartd 0.09
tacoma t ax k ow m ax 0.86 t ax k ow m ax suburbs sah ber bd z 0.99 sah ber bd z
tahoe t aa hh ow 0.99 t aa hh ow summer s ah m er 0.90 s ah m er
taiwan tay waan 0.99 tay waan sunday sahnd ey 0.98 sahndey
talk t ao kd 0.53 t ao kd sunny s ah n iy 0.99 s ah n iy
t aa kd 0.46 supposed s ax p ow z dd 0.69 s ax p ow z dd
tallahassee t ae | ax hh ae s iy 0.84 t ae | ax hh ae s iy sax p ax s td 0.15
tanzania taenzeyniy ax 0.57 t ae n z ax n iy ax s ax p ow s td 0.15
taenzaxniyy ax 0.14 surf serf 0.91 serf
taenzaxniy ax 0.13 sweater s w ah tf er 0.51 s w eh tf er
tasmania t ae z m ey n iy ax 0.57 t ae z m ey n iy ax s w eh tf er 0.48
taezmiyny ax 0.11 switzerland swihtdserlaxndd 0.84 swihtd (z|s)erlax
n dd
taezmeyniyy ax 0.11 swihtdsaxlaxndd 0.14
taezmeyny ax 0.11 syracuse sithraxkyuwz 0.49 sthraxkyuw (z|s
)
tehran tehraan 0.49 tehraan sihraxkyuws 0.36
teyraan 0.25 system sihstaxm 0.96 sihstaxm
tiyraan 0.24 t t iy 0.97 t iy
telephone tehlaxfaon 0.49 tehlax fown tahiti t ey hh iy tf iy 0.62 t ax hh iy tf iy
tehlax fown 0.35 t ax hh iy tf iy 0.27
t eh 1 ax f ao 0.14 taipei t ay p ey 0.98 t ay p ey
temecula taxmehkdyuwlax 0.28 t eh m ax k uw 1 ax take t ey kd 0.95 t ey kd
t ax m eh k uw 1 ax 0.24 talking t ao k ih ng 0.66 t ao k ih ng
t ax m eh k uw | aa 0.13 t aa k ih ng 0.27
taxmehkd yuwlaa 0.10 tampa t ae m p ax 0.95 t ae m p ax
temperatures | t eh m p ax ch er z 0.55 tehmp (erax|rax taos t aa ow s 0.38 t aa ow s
| ax ) cherz
tehmpraxcherz 0.43 t aw s 0.30
tennessee t eh n ax s iy 0.75 t eh n ax s iy t aw z 0.16
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term t er m 0.99 ter m t ay ow z 0.10
territories tehraxtaoriyz 0.99 tehraxtaoriyz tegucigalpa tehguwsiygaalp 0.23 taxguws (iy |ax ) g
ax aa l p ax
texarkana t eh kd s er k ae n ax 0.35 t eh kd s aa r k ae n ax taxguwsaxgaelp 0.19
ao
tehkdsaarkaenax 0.24 teyguwsiygaalp 0.18
ax
t eh kd s ax k ae n ax 0.19 taxguwsaxgaalp 0.10
aa m
thailand t ay l ae n dd 0.64 tayl(ae|ax)ndd tax guwsiygaalp 0.09
aan
tay l ax n dd 0.34 tax guwsiy gaalp 0.09
ax
thank th ae ng kd 0.99 th ae ng kd tel t ehl 0.99 tehl
that dh ae td 0.97 dh ae td tell tehl 0.99 tehl
them ax m 0.35 dh eh m temperature t eh m p ax ch er 0.60 tehmp (erax|rax
| ax ) ch er
dh ax m 0.23 t eh m p r ax ch er 0.37
dh eh m 0.13 ten tehn 0.76 tehn
there dhehr 0.96 dhehr ae n 0.10
they dh ey 0.95 dh ey tenth t eh n th 0.95 t eh n th
things th ih ng z 0.99 th ih ng z terrific t ax r ih f ax kd 0.99 t ax r ih f ax kd
third th er dd 0.95 th er dd test t eh s td 0.72 t eh s td
thirtieth th er tf iy ax th 0.95 th er tf iy ax th tax s td 0.27
this dh ih s 0.98 dh ih s texas teh kd s ax s 0.97 t eh kd s ax s
those dh ow z 0.91 dh ow z than dh ae n 0.43 dh ae n
thousand th aw z ax n dd 0.99 th aw z ax n dd dh en 0.25
three th r iy 0.94 th r iy dh ax n 0.21
throughout th r ax aw td 0.65 th r uw aw td thanks th ae ng kd s 0.99 th ae ng kd s
th r uw aw td 0.34 the dh ax 0.58 dh (ax | ah | ih | iy )
thunderstorm | thahnderst-aorm 0.98 thahnderst-aorm dh ah 0.18
thursday therzdey 0.99 therzd ey dh iy 0.11
tibet t ax b eh td 0.76 t ax b eh td dh ih 0.10
t ax b ae td 0.22 then dh eh n 0.69 dh eh n
tides tayddz 0.99 t ay dd z dh ax n 0.17
time t ay m 0.99 tay m these dh iy z 0.97 dh iy z
to tf ax 0.40 tf (ax | uw ) thing th ih ng 0.90 th ih ng
tf uw 0.24 th 0.09
t uw 0.23 think th ih ng kd 0.99 th ih ng kd
tokyo t ow kd y ow 0.83 towk (iy|y) ow thirteenth ther t iy n th 0.99 ther t iy n th
toll t ow 1 0.98 t ow 1 thirty th er tf iy 0.99 th er tf iy
tonight t ax n ay td 0.99 t ax n ay td thomas taa maxs 0.89 taamaxs
topeka t ax p iy k ax 0.90 t ax p iy k ax thought th ao td 0.99 th ao td
taxpiykaes 0.09 threatening th r eh tq en ih ng 0.95 threh (tfaxn|tqen
| td n ) ih ng
tornados taormneydf owz 0.93 t (aor|er)neydfow through th r uw 0.92 th r uw
z
torrence taoraxmns 0.99 taoraxns thunder th ah nd er 0.99 th ah nder
toulouse tax1luw z 0.95 tuw l uw z thunderstorms | thahnderst-aorm 0.99 thahnderst-aorm
z z
town taw n 0.99 t aw n tianjin t ih ae n jhih n 0.42 t(iy|y)(eh|aa)n
jhih n
traffic tr r ae f ax kd 0.94 trr ae f ax kd tihnjhihn 0.38
travelling tr r ae v ax 1 ih ng 0.99 tr r aec v ax | ih ng tihihn jhihn 0.16
trenton tr r eh n tq en 0.97 tr r eh n tq en tide t ay dd 0.99 t ay dd
trip tr r ih pd 0.99 tr r ih pd timbuktu tihmb ax kd t uw 0.39 tihmbax kd t uw
tropical trraapaxkaxl 0.94 trraapaxkaxl t ih m b ah kd t uw 0.21
try tr r ay 0.96 trr ay taxmb ax kd t uw 0.13
tucson tuw s aan 0.94 tuw s aan times taymz 0.98 taymz
tulsa tahlsax 0.95 tahlsax today t ax df ey 0.84 t ax df ey
tunisia t ax n iy zh ax 0.62 t (ax | uw ) n iy zh ( tax d ey 0.14
ax | iy ax )
t uw n iy zh ax 0.28 toledo t ax 1 iy df ow 0.87 t ax 1 iy df ow
tuscaloosa tah sk ax1luw s ax 0.66 t ah s k ax 1 uw s ax tf ax 1 iy df ow 0.10
t ah s kax1uh z ax 0.20 tomorrow t ax m aar ow 0.99 t ax m aa r ow
twelve twehlv 0.80 twehlv too t uw 0.95 t uw
eytwehlv 0.19 tornado t ao r n ey df ow 0.90 t (aor|er)neydfow
twenty t w eh nt iy 0.98 t w eh nt iy toronto t ax r aa nt ow 0.98 t ax r aa nt ow
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two t uw 0.99 t uw total t ow tf ax 1 0.96 t ow tf ax 1
typhoons | tayfaxlaxnz 0.27 tay fuwn z towards taorddsiy 0.99 t(aor|axwaor|w
aor ) dd z
tayfaonz 0.21 towns tawn z 0.98 tawn z
t ay f uw m 0.16 travel trraevaxl 0.96 trraevaxl
tay fuwnsaxz 0.14 traverse trraevers 0.95 trr (ae|ax)vers
tay fuwnz 0.12 trinidad tr r ih n ax d ae dd 0.99 tr r ih n ax d ae dd
u y uw 0.96 y uw tripoli trrih pax1wiy 0.99 tr r ih p ax l iy
ukraine yuw kreyn 0.99 yuw kreyn troy tr r oy 0.82 tr r oy
understand | ahnderst-aendd 0.81 ahnderst-aendd ch er oy 0.15
universe Yy uw n ax v er s 0.99 yuwnaxvers trying tr r ay ih ng 0.83 tr r ay ih ng
up ah pd 0.81 ah pd tr r ay 0.13
upper ah per 0.88 ah per tuesday tuwzd ey 0.95 tuwzd ey
ow p er 0.11 tunis t uw n ax s 0.54 tuw n ax s
uruguay yaor ax g w ay 0.50 y(erlaor)axgw ( tuwnihs 0.33
ey | ay)
y er ax g w ey 0.49 ch uw n ih s 0.12
use y uw z 0.90 yuw (s|z) turkey ter k iy 0.99 ter k iy
usually y uw zh ax | iy 0.44 yuw zh (uw ax 1] ax 1 twelfth twehlfth 0.75 twehlfth
| wax 1) iy
y uw zh uw ax | iy 0.22 t wehlth 0.16
y uw zh | iy 0.16 twentieth t w eh nt iy ax th 0.99 t w eh nt iy ax th
y uw zh ax 1 ay 0.15 twin t wih n 0.99 t w ih n
utica y uw tf ax k ax 0.99 y uw tf ax k ax typhoon tay fuwn 0.99 tayfuwn
v v iy 0.86 v iy typically tihpaxkaxliy 0.99 tihpaxk (ax1]|1)iy
vy ax 0.12 uganda y uw g aa n d ax 0.99 y uw g aa n d ax
vail veyl 0.89 veyl umbrella axmbrehlax 0.36 (ax|ah)mbrehlax
valley v ae l iy 0.97 v ae liy ah m bd r eh 1 ax 0.21
vegas veygaxs 0.96 veygaxs ax m bd r eh ] ax 0.10
venezuela vehnaxzweylax 0.53 vehnaxzweylax ahmbrehlax 0.10
vehnaxzwehlax 0.42 united y uw n ay tf ax dd 0.99 y uw n ay tf ax dd
vermont ver m aa n td 0.97 v er m aa n td until axntihl 0.99 axntihl
vero v ih r ow 0.69 v (ih|eh)row update ah pd d ey td 0.99 ah pd d ey td
vy ih r ow 0.29 urbana er b ae n ax 0.99 er b ae n ax
vicinity v ax s ih n ax tf iy 0.97 v ax s ih n ax tf iy us ah s 0.54 ah s
vienna v iy eh n ax 0.87 v iy eh n ax ax s 0.38
view vy uw 0.99 vy uw useful uw s f ax 1 0.98 yuw s fax 1
virgin ver jhaxn 0.98 ver jhaxn utah y uw t aa 0.78 yuwt (ao | aa)
visibility vihzaxbihlax tfiy 0.99 v ih z ax b ih 1 ax tf iy uzbekistan | yuwzbehkaxstae 0.97 uhzbehkaxstaan
n
voice vV oy s 0.99 vV Oy S vacation v ey k ey sh ax n 0.89 v ey k ey sh ax n
w dahbaxlyuw 0.59 dahb (axl|ax? )y vey kyeyshaxn 0.10
(uw | ax)
dahbyuw 0.38 vallarta v ay aar tf ax 0.60 vay (aa|eh)rtfax
wait w ey td 0.73 w ey td v ay y aar tf ax 0.25
w ah iy 0.11 veyyaar tf ax 0.12
w ey 0.10 vancouver vaenkuw v er 0.73 vaenkuwver
wales w ey 1 0.29 weylz v ae ng k uw v er 0.24
wah tfax 1z 0.25 velocity v ax |l aa s ax tf iy 0.82 v ax |l aa s ax tf iy
weylaxs 0.23 v ax 1 ao s ax tf iy 0.17
weylz 0.21 venice vehnaxs 0.88 vehn (ax|iy)s
walnut w ao l n ah td 0.25 w ao 1 n ah td vernal vernaxl 0.69 vernaxl
w aa n ax td 0.21 vernowl 0.19
w ao | n ax 0.17 vertnaol 0.10
w ao |l m ax td 0.16 very vehriy 0.99 v ehriy
w ao I n ax td 0.13 victoria v ax kd t ao r iy ax 0.86 v ax kd t ao r iy ax
wanted w aa nt ax dd 0.83 w aa nt ax dd v ih kd t ao r iy ax 0.10
w ah tf ax dd 0.09 vietnam v iy eh td n aa m 0.76 viy (ax|eh)tdn (ae
| aa ) m
warmer W aor m er 0.80 W ao r m er v iy eh td n ae m 0.17
warning w ao r n ih ng 0.99 w ao r n ih ng vilnius vihlaxnaxs 0.48 vihIniy axs
warsaw W aor s ao 0.71 W aor s ao vihniy axs 0.44
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Word [ PMM Baseforms Weight [ Expert Baseform “[ Word PMM Baseforms Weight [ Expert Baseform
was w ah z 0.59 w ah z virginia v er jhih n y ax 0.99 v er jhih ny ax
w uh z 0.36 vladivostok vlaadfax vaastaa 0.32 vlaadfax vaast aa
kd kd
watch w aa ch 0.93 w aa ch vliaedf ax vaastaa 0.29
kd
water w aa tf er 0.63 w (aa|ao|uh) (tf| voyager v oy jh er 0.59 v (oy ax | ow y ax | ao
df ) er y ax | oy ) jher
w ao tf er 0.19 v oy ax jh er 0.33
w aa df er 0.12 waco w ey k ow 0.70 w ey k ow
waterloo w aa tf er 1 uw 0.78 w (aa|ao|uh) (tf| w ah ey k ow 0.19
df ) er 1 uw
w ao tf er | uw 0.21 w ey k ow ax 1 0.09
waterville w aa df er v ih 1 0.78 w (aa|ao|uh) (tf| wake w ey kd 0.99 w ey kd
df ) er vihl
w aa tf er v ih 1 0.21 walla w aa | ax 0.90 w aa |l ax
waves weyvVz 0.98 weyvVz want w aa n td 0.60 w aa n td
wayne w ey n 0.91 W ey n w ah 0.16
wear wehr 0.89 wehr W aan 0.12
w ih r er 0.10 warm W aor m 0.99 W aorm
weather w eh dh er 0.99 w eh dh er warmest waor m ax s td 0.99 waorm ax s td
week w iy kd 0.97 w iy kd warnings w ao r n ih ng z 0.99 w aornih ngz
weekly w iy kd 1 iy 0.99 w iy kd 1 iy warwick w aor w eh kd 0.46 w aor w ax kd
welcome wehlkaxm 0.50 wehlkaxm w ao r w ih kd 0.41
wax 1l k ax m 0.18 washington w aa sh ih ng t ax n 0.98 w aa sh ih ng t ax n
w ax 1 k ow m 0.15 watches w aa ch ax z 0.82 w aa ch ax z
w ax k ah m 0.10 waachaxzs 0.09
wellington wehlihngtaxn 0.88 wehlihngtaxn waterbury | waatferbehriy 0.39 w (aa|ao|uh) (tf]
df ) er ber iy
vehlihngtaxn 0.11 w aa tf er b er iy 0.21
west w eh s td 0.99 w eh s td w aa df er b er iy 0.09
westlake w eh s 1ey kd 0.58 wehs (tdl|1)eykd watertown w aa df er t aw n 0.35 w (aa|ao|uh) (tf]
df )er t aw n
w eh s td 1 ey kd 0.41 w ah tf er t aw n 0.22
what w ah td 0.99 w ah td w aa tf er t aw n 0.15
when w eh n 0.93 w eh n w ao tfer t aw n 0.09
whether w eh dh er 0.99 w eh dh er wave w ey v 0.92 w ey v
white w ay td 0.99 w ay td way w ey 0.52 w ey
who hh uw 0.86 hh uw W ey ey 0.20
why w ay 0.81 w ay w ah oy 0.16
wildwood w ay | dd w uh dd 0.77 w ay | dd w uh dd w ah ey 0.09
w aa ldd w uh dd 0.21 we w iy 0.97 w iy
williamsburg wihlyaxmzbergd 0.76 wihlyaxmzbergd wearing w eh r ih ng 0.68 w eh r ih ng
wihliyaxmzbergd 0.12 w ih r ey ih ng 0.10
wilmington | waxlmihngtaxn 0.67 wih1m ih ngt axn er ih ng 0.10
wih1m ih ngtaxn 0.30 wednesday wehnzdey 0.93 wehnzdey
win w ih n 0.98 w ih n weekend w iy kd eh n dd 0.97 w iy k eh n dd
windiest wihndiy axstd 0.86 wih ndiy axstd weeks w iy kd s 0.96 w iy kd s
wihndiyzstd 0.12 well w eh 1 0.66 weh 1
windsor wihn zer 0.36 wihn zer w ax 1 0.29
W ax nzer 0.20 were w er 0.70 w er
w iy nzer 0.19 wehr 0.22
wih n z 0.10 western wehstern 0.94 wehstern
wihnzaor 0.09 wet w eh td 0.99 w eh td
windsurfing | wih nser fih ng 0.53 w ih n dd s er f ih ng wheeling w iy | ih ng 0.99 w iy | ih ng
w ih n dd s er f ih ng 0.46 where wehr 0.99 wehr
winnipeg w ih n ax p ey gd 0.33 w ih n ax p eh gd which w ih ch 0.95 w ih ch
w ih n ax p eh gd 0.33 whitehorse w ay td hhaors 0.66 way td hhaors
w ih n ax p ey kd 0.20 way td hhaorss 0.12
winter w ih nt er 0.97 w ih nt er whole hh ow 1 0.99 hh ow 1
wish w ih sh 0.99 w ih sh wichita w ih ch ax t ao 0.59 w ih ch ax t ao
within w ih th th n 0.38 w(ax|ih) (th|dh) w ih ch ax t aa 0.28
ih n
w ax th th n 0.19 will w ax | 0.92 w (ax|ih)1
w ax th ax n 0.18 williamsport | wihlyaxmzpaor 0.72 wihlyaxmzpaor
td td
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w ax td ih n 0.11 wihliyaxmzpaor 0.18
td
wonderful wahnderfaxl 0.55 wahnderfaxl wimbledon | wihmbaxldfaxn 0.85 wihmbaxldfaxn
waanderfaxl 0.44 wih m b ax 1 df en 0.12
woodland | w ah ddlax n dd 0.51 wuhddl(ax|ae)n wind w ih n dd 0.98 w ih n dd
dd
wuhddlaxndd 0.42 winds wih ndd z 0.93 w ih n dd z
worcester w uh s ter 0.66 w uh st er windsurf wihnddserf 0.99 wihnddserf
wahster 0.30 windy w ih n d iy 0.99 w ih n d iy
world waorldd 0.59 w er 1dd winston wihnst-axn 0.61 wihnst-axn
werldd 0.24 wihnstaxn 0.30
would w uh dd 0.98 w (uh|ax)dd wisconsin | waxsk-aansaxn 0.74 waxskaansaxn
wrong r ao ng 0.78 r ao ng waxskaansaxn 0.23
r aa ng 0.19 with w ih th 0.38 w(ax|ih) (th|dh)
xian sh iy aa n 0.45 sh (axy|iy)aan w ax th 0.24
chyaan 0.18 w ih dh 0.23
sh ae n 0.11 wonder wahnder 0.72 wahnder
sh iy ae n 0.09 w ah n d er ax 0.27
yakima y ae k ax m aa 0.82 y ae k ax m ax wondering w ah n d er ih ng 0.96 w ah n d er ih ng
year yihr 0.96 yihr woods w uh dd z 0.99 w uh dd z
years yihrz 0.43 yihrz work w ao r kd 0.65 w er kd
yihrax z 0.38 w er kd 0.29
yerz 0.15 worth w ao r th 0.54 w er th
yellowstone | y eh 1 ow s t- ow n 0.91 yehlowst- own w er th 0.45
yesterday yvehsterdey 0.95 yehsterdey wWow w ah aw 0.32 W aw
york y aor kd 0.99 y ao r kd W aa Ow 0.23
yosemite y ow s eh m ax tf iy 0.52 y ow s eh m ax tf iy w ah ow 0.21
y ow s ax m ax tf iy 0.19 wyoming w ay ow m ih ng 0.95 w ay ow m ih ng
your y er 0.79 (yuwr|yaor|yer) y 1 ay 0.68 w ay
y aor 0.19 B w ay 0.31
yukon y uw k aa n 0.92 y uw k aa n yeah y eh 0.56 y (ae|eh|eyax)
zaire zay ihr 0.31 zay (ihr|ehr) y ae 0.20
zZ ay y er 0.29 y ey ax 0.10
z ay iy er 0.23 yearly yih rliy 0.99 yih rliy
z ay er 0.11 yellowknife | y eh 1l ow n ay f 0.99 yehlownayf
zealand z iy l ax n dd 0.97 z iy l ax n dd yes yehs 0.99 yehs
zimbabwe z ax m b aa bd w ey 0.52 z ax m b aa bd w ey yokohama y ow k ax hh aa m ax 0.48 y ow k ax hh aa m ax
zaxmbaabdwehey 0.31 y ow k ow hh aa m ax 0.24
z ih m b aa bd w ey 0.11 y ow k ow hh aa m aa 0.19
yorktown yvaorkdtawn 0.99 yaorkdtawn
you y uw 0.98 y (uw | ax )
yugoslavia | yuwgowslaaviyax 0.96 yuw g ow s l aa v iy ax
yuma y uw m ay 0.33 Yy uw m ax
Yy uw m aa 0.33
iy y uw m ax 0.16
Yy uw m ax 0.16
zambia z ae m b iy ax 0.68 z ae m b iy ax
z iy ae m b iy ax 0.17
aa m b iy ax 0.14
Zero z ih r ow 0.35 z ih r ow
z iy ow 0.33
s ih r ow 0.30
zurich z er ax kd 0.66 z(er|aor) ax kd
z ao r ax kd 0.15
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